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Abstract

A smart camera is a vision system capable of extracting application-specific

information from the captured images. The paper proposes a decentralized and

efficient solution for visual parking lot occupancy detection based on a deep

Convolutional Neural Network (CNN) specifically designed for smart cameras.

This solution is compared with state-of-the-art approaches using two visual

datasets: PKLot, already existing in literature, and CNRPark-EXT. The for-

mer is an existing dataset, that allowed us to exhaustively compare with previ-

ous works. The latter dataset has been created in the context of this research,

accumulating data across various seasons of the year, to test our approach in

particularly challenging situations, exhibiting occlusions, and diverse and dif-

ficult viewpoints. This dataset is public available to the scientific community

and is another contribution of our research. Our experiments show that our

solution outperforms and generalizes the best performing approaches on both

datasets. The performance of our proposed CNN architecture on the parking

lot occupancy detection task, is comparable to the well-known AlexNet, which

is three orders of magnitude larger.
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1. Introduction

A smart camera is a vision system that has an image capture circuitry and

enough computing power to process and extract application-specific informa-

tion from the captured images. Smart cameras are also able to generate event

descriptions or make decisions that are used in intelligent and automated sys-5

tems (Belbachir, 2010).

Recently there has been a growing interest in developing smart camera so-

lutions able to detect parking lot occupancy. The approach that we propose

performs this task in real-time directly on smart cameras, without using a cen-

tral server. It is a decentralized, effective, efficient, and scalable approach, based10

on deep learning techniques (Bengio, 2009). It relies on a deep Convolutional

Neural Network (CNN) specifically designed to be executed on smart cameras.

The clear advantages of the decentralization are the reduction of the com-

munication overhead and the elimination of computing bottleneck. As a conse-

quence, the system scales better when the number of monitored parking spaces15

increases.

We believe that the proposed approach is also advantageous with respect

to those using ground sensors (e.g. magnetic sensors) placed on every parking

space. Indeed, a single smart camera can simultaneously monitor several parking

lots at a cost that is significantly lower than the cost required to install and20

maintain sensors in every parking lot.

The usage of video to monitor occupancy of parking lots is not new, see for

instance (Dan, 2002),(Wu et al., 2007), (del Postigo et al., 2015), (de Almeida

et al., 2015). However, vacant parking space detection using only visual in-

formation is still an open problem. Many techniques using video cameras are25

tailored and fine-tuned to specific contexts and scenarios. However, these tech-

niques cannnot be easily generalized, and even the adaptation of one solution

to a different parking lot is not easy.
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Thanks to the use of deep CNN, the proposed solution is robust to distur-

bances created by partial occlusions, by the presence of shadows and by the30

variation of light conditions. Moreover, it exhibits a good generalization prop-

erty: in fact, the quality of the results is maintained when we consider parking

lots and scenarios significantly different from the ones used during the CNN

training phase. Furthermore, the classification phase needs fewer computational

resources than the training phase, making it possible to run it on distributed,35

embedded, and low computing-power frameworks.

To validate our approach, we built a dataset, called CNRPark-EXT, col-

lecting images from the parking lots in the experimentation area, which is the

campus of the National Research Council (CNR) in Pisa.

The images in the CNRPark-EXT dataset are taken by 9 smart cameras with40

different point of views and different perspectives, in different days with different

weather and light conditions, and includes occlusion and shadow situations that

make the occupancy detection task more challenging. The dataset has been

exhaustively, manually annotated, and is available to the scientific community.

More details about the CNRPark-EXT dataset will be given in Section 4.45

In addition, we tested our method on PKLot, a dataset for parking lot

occupancy detection, so as to be able to compare our method against the state-

of-the-art methods discussed in (de Almeida et al., 2015).

The usage of datasets coming from different parking lots and scenarios al-

lowed us to test the generalization property of our approach. To this end, we50

trained the CNN on one scenario and tested it in a completely different one. To

the best of our knowledge, there are no other experiments where this type of

generalization property has been tested.

The paper is organized as follows. Section 2 introduces other works related

to our proposal. Section 3 describes the convolutional neural network implied in55

the classification process. Section 4 presents the datasets used to evaluate and

compare our approach. Section 5 discusses the experiments and the obtained

results. Section 6 discusses how the framework was deployed in a real scenario

and gives an overview of the overall system. Finally, Section 7 concludes the

3



paper.60

2. Related Work

One of the earliest attempts of using machine learning to approach the problem

of parking lot monitoring was due to (Dan, 2002) who used colour vector features

on a support vector machine (SVM) classifier to distinguish car regions from

space regions inside the parking lot. Wu et al. (Wu et al., 2007) tried to65

overcome the occlusions problem of this approach by classifying the state of

three neighbouring spaces as a unit and defining the colour histogram across

three spaces as the feature in their SVM classifier.

To deal with the problem of light changes, Tsai et al. (Tsai et al., 2007)

trained a Bayesian classifier to verify the detection of vehicles based on corners,70

edges, and wavelet features. Huang et al. (Huang et al., 2013) used a Bayesian

hierarchical framework to build a vacant parking space detection system that

operates day and night based on a 3D model for parking spaces. Similarly, the

method presented in (Delibaltov et al., 2013) models every parking space as a

volume in the 3D space, and thus is able to account for occlusions when estimat-75

ing the probability of a vehicle being present in a parking space. Jermsurawong

et al. (Jermsurawong et al., 2014) used specially trained customized neural

networks to determine occupancy status and parking demand based on visual

features extracted from parking spaces. They present robust results for night

and day classifiers in a one-day long evaluation based on 126 parking spaces.80

A recent work that approaches the problem by machine learning techniques

is (de Almeida et al., 2015). The authors use a dataset of roughly 700.000 images

of parking spaces coming from three different cameras to train SVM classifiers

on multiple textural features, such as LBP, LPQ, and their variations. They also

improve the detection performance using ensembles of SVMs, applying simple85

aggregation functions, such as maximum or average, to the confidence values

given by the classifiers.

The work proposed in (del Postigo et al., 2015) is based on a temporal
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analysis of the video frames to detect the occupancy variation of the parking

areas. It combines background subtraction using a mixture of Gaussians to90

detect and track vehicles, and the creation of a transience map to detect the

parking and leaving of vehicles.

(Masmoudi et al., 2014) tackles the problem of occlusions between park-

ing spaces, where one or more space of a parking can be hidden by another

parked vehicle. To this end, vehicle tracking is performed to detect the events95

of entering and leaving of a car in a parking space.

In addition to approaches using visual techniques and ground sensors, there

are techniques that use sensors installed on cars or carried by car drivers. For

instance, (Caicedo et al., 2012) proposes a framework for predicting parking

occupancy by interacting with in-vehicle navigation systems. In (Lan & Shih,100

2014), a crowdsourcing solution, leveraging on sensors in smart-phones, was

proposed to collect real-time parking availability information.

In the context of vehicle detection, the only work of which we are aware of

using CNN is the one presented in (Chen et al., 2014), which uses a multi-scale

CNN to detect vehicles in high-resolution satellite images.105

To the best of our knowledge, ours is the first work that employs deep

Convolutional Neural Networks in the context of parking lot monitoring.

2.1. Deep Learning

Deep Learning (DL) (Bengio, 2009) is a branch of Artificial Intelligence that

aims at developing techniques that allow computers to learn complex perception110

tasks, such as seeing and hearing, at human level of accuracy. It provides near-

human level accuracy in image classification, object detection, speech recogni-

tion, natural language processing, vehicle and pedestrian detection, and more.

The traditional approaches to the classification problem use ad-hoc functions to

extract from an image specific features that are considered to be indicative of115

certain objects. For example, hard corners and straight edges might be believed

to indicate the presence of man-made objects in the scene. The outputs of these

feature extraction functions are then given in input to a classification function,
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which determines whether or not a particular object has been detected in the

image. However, this approach leads to weak and false-alarm prone detectors.120

In addition, it presents the following problems:

• it is hard to think of general, robust, reliable features, which map to

specific object types;

• it is a huge task to find the right combination of features for every type

of object to classify;125

• it is difficult to design functions that are robust to translations, rotations

and scaling of objects in the image.

All these problems make developing high accuracy object detectors and clas-

sifiers for a broad range of objects very hard .

The Deep Learning approach, on the other hand, exploits a large number130

of ground-truth labeled data to discover which features and combinations of

features are most discriminative for each class of objects to be recognized, and

builds a combined feature extraction and classification model. The model thus

obtained can be employed not only to classify the specific objects it was trained

on, but also to recognize previously unseen objects that are similar to them.135

A Deep Learning approach particularly effective for vision tasks exploits

Convolutional Neural Networks (CNN) (Krizhevsky et al., 2012; Simonyan &

Zisserman, 2014; Girshick et al., 2014). A CNN is composed of a possibly large

number of hidden layers, each of which performs mathematical computations on

the input provided by the previous layer and produces an output that is given in140

input to the following layer. A CNN differs from classical neural networks for the

presence of convolutional layers, which can better model and discern the spatial

correlation of neighbouring pixels than normal fully connected layers. For a

classification problem, the final outputs of the CNN are the classes which the

network has been trained on. The training phase is usually extremely expensive145

from a computational point of view, and may take a long time to complete. Once

the network has been trained and the classifier has been initialized accordingly,
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Figure 1: CNN Architecture: for convolutional layers conv1-3, parame-

ters are specified as “size/stride num”. For max-pooling, parameters are

specified as “size/stride”. For fully connected layers we report their di-

mensionality. The last fully connected layer is followed by a 2-way soft-

max classifier.

the run time phase of prediction is quite fast and efficient.

3. Deep embedded Convolutional Neural Networks for Occupancy

Detection150

One of the objectives of our proposal is to run the occupancy detection software

entirely on smart cameras, i.e. cameras capable of processing the acquired

images and of transmitting just the result to a remote server. As a reference,

we considered Raspberry Pi 2 model B 1 equipped with the standard Raspberry

Pi camera module 2 as smart camera.155

A very popular deep convolutional neural network, used as reference in many

works, is the so called AlexNet (Krizhevsky et al., 2012). The architecture

of an AlexNet consists of 60 million parameters and 500,000 neurons. It is

organized into five convolutional layers, some followed by max-pooling layers,

1https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
2https://www.raspberrypi.org/documentation/hardware/camera.md
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and two fully connected layers with a 1000-way softmax (more details can be160

found in (Krizhevsky et al., 2012)).Using such an architecture directly on a

low-computing power device, poses a very difficult challenge, especially in light

of the fact that a single camera might need to monitor several parking places

simultaneously and that each parking place needs one independent occupancy

detection task to be executed.165

In order to make the detection software able to efficiently run directly on the

smart cameras, we defined a smaller deep CNN architecture and we compared

its performance with respect to the use of the AlexNet architecture. This sim-

plification of the network is also justified by the fact that the original AlexNet

architecture was designed for visual recognition tasks much more complex than170

our binary classification problem. Originally, AlexNet was trained on a one

million images dataset to recognize 1000 different classes. In our case, we just

have to distinguish two classes. In fact, the experiments reported in Section 5

show that our proposed architecture can cope easily and effectively with the car

parking occupancy detection problem.175

The deep CNN architecture that we defined is inspired to the AlexNet. We

called the new network mAlexNet, as mini AlexNet. Details of the architecture

are reported in Figure 1. In the mAlexNet, we used three convolutional layers

and two fully connected layers, including the output layer. The first and the sec-

ond convolutional layers (conv1-2 ) are followed by max pooling, local response180

normalization (LRN), and linear rectification (ReLU). The third convolutional

layer (conv3 ) does not use LRN. The number of filters of conv1-3 and the num-

ber of neurons in the fully connected layer (fc4 ) are drastically reduced to fit

the problem dimension, obtaining an architecture with roughly 1
1340 parameters

than AlexNet. In fc4 and fc5 (the output layer), no dropout regularization185

is used. The mAlexNet takes a 224x224 RGB image, corresponding to a crop

representing one single parking space as input. The cropped image might need

to be resized if its size is different than what needed.

The mAlexNet has a number of layers that makes the detection task exe-

cutable in real-time on an embedded device. On average, occupancy detection190
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of 50 parking spaces takes around 15 seconds on a Raspberry Pi model B.

Our CNN was trained to directly decide about the occupancy status of the

individual parking spaces seen by the video cameras. During the training phase,

we used random cropping and horizontal flipping techniques of the training

images for data augmentation: images are squashed to a resolution of 256x256,195

then are horizontally flipped with a 0.5 probability, and finally a random 224x224

crop is taken as input of the neural network. Further details on the training

phase are given in Section 5. At prediction time, images are resized to 224x224

resolution and no flip takes place.

4. Datasets200

A contribution of this paper is also the publication of CNRPark-EXT, a dataset

of roughly 150.000 labeled images of vacant and occupied parking spaces, built

on a parking lot of 164 parking spaces.

CNRPark-EXT includes and significantly extends CNRPark(Amato et al.,

2016), a smaller dataset of roughly 12.000 labeled images, which we also used205

to perform some of the experiments.

The smaller CNRPark dataset contains images of the parking lot collected

in different days of July 2015, from 2 distinct cameras A and B, (see Figure 2,

top row), which were placed in order to have different perspectives and angles

of view. The CNRPark dataset is also available for downloading3.210

The full CNRPark-EXT extends CNRPark with images collected from Novem-

ber 2015 to February 2016 under various weather conditions by 9 cameras (see

Figure 2, bottom row) with different perspectives and angles of view. It captures

different situations of light conditions, and it includes partial occlusion patterns

due to obstacles (trees, lampposts, other cars) and partial or global shadowed215

cars (see Figure 3). This allows training a classifier that is able to distinguish

most of the difficult situations that can be found in a real scenario.

3http://claudiotest.isti.cnr.it/park-datasets/CNRPark

9



(a) Overview of CNRPark CAM A (b) Overview of CNRPark CAM B

(c) Overview of CNRPark-EXT CAM

1

(d) Overview of CNRPark-EXT CAM

8

Figure 2: Parking space patches are segmented and numbered as shown

in the images. Top images belong to the small dataset CNRPark, while

bottom images belong to the full CNRPark-EXT dataset.

We built masks that allow cropping the full pictures taken by the camera

in smaller pictures, each containing one single parking space. In the reminder

of the paper we refer to such smaller pictures as patches (see Figure 3 for some220

examples). A patch is a square of size proportional to the distance from the

camera, the nearest patches are bigger than the farthest. Finally, we manually

labeled all the patches according to the occupancy status of the corresponding

parking space, 0 for vacant and 1 for occupied.

Patches of the CNRPark-EXT dataset are grouped together into subsets225

corresponding to different weather conditions (Sunny, Overcast, Rainy), days
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Figure 3: Training set patches segmented from the camera view. Images

show four parking spaces in both status: busy (first row) and free (second

row). They also present some occlusion and shadow situations that we

faced.

of capture, and camera IDs. Patches are also grouped into training, validation,

and test subsets, to provide a common and objective ground for training and

testing classification algorithms. CNRPark-EXT is composed of 4287 screen-

shots acquired in 23 different days, resulting in a dataset of 144.965 labeled230

parking space patches.

The CNRPark-EXT dataset is made available for downloading4. Table 1 re-

ports detailed information about the composition of CNRPark, CNRPark-EXT,

and PKLot(de Almeida et al., 2015). PKLot is an additional dataset, existing in

literature, which we also used to perform evaluation of the proposed techniques.235

More information on PKLot can be found in Section 5, and discussion on its

grouping into subsets can be found in (de Almeida et al., 2015).

4http://claudiotest.isti.cnr.it/park-datasets/CNR-EXT/
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datasets free spaces busy spaces total

CNRPark 4181 8403 12584

CNRPark-EXT 65658 79307 144965

PKLot 337780 358119 695899

subsets free spaces busy spaces total

CNRParkOdd 2201 3970 6171

CNRParkEven 1980 4433 6413

CNRPark-EXT TRAIN 46877 47616 94493

CNRPark-EXT VAL 5232 13415 18647

CNRPark-EXT TEST 13549 18276 31825

CNRPark-EXT SUNNY 25665 37513 63178

CNRPark-EXT OVCST 21067 23176 44243

CNRPark-EXT RAINY 18926 18618 37544

CNRPark-EXT C1 6407 9308 15715

CNRPark-EXT C2 1454 2641 4095

CNRPark-EXT C3 4101 5370 9471

CNRPark-EXT C4 7219 9357 16576

CNRPark-EXT C5 9582 11256 20838

CNRPark-EXT C6 9462 10646 20108

CNRPark-EXT C7 10595 10519 21114

CNRPark-EXT C8 11237 12847 24084

CNRPark-EXT C9 5601 7363 12964

PKLot2Days 27314 41744 69058

PKLotNot2Days 310466 316375 626841

PKLot UFPR04 TRAIN 25894 23266 49160

PKLot UFPR04 TEST 33824 22859 56683

PKLot UFPR05 TRAIN 45759 48196 93955

PKLot UFPR05 TEST 22600 49230 71830

PKLot PUC TRAIN 114424 106334 220758

PKLot PUC TEST 115616 87895 203511

PKLot TRAIN 27314 41744 105843

PKLot VAL 54909 47453 165785

PKLot TEST 275894 248583 424269

Table 1: Details of datasets used in the experiments, with the various

proposed subsets. Values refer to the number of patches contained in

every dataset or subset
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5. Evaluation

In this section, we present the methodology and the results of the experimental

evaluation. We performed different experiments to investigate different aspects240

of the proposed solution:

1. How does the proposed solution compare against state-of-the-art approaches?

2. How much the generalization performance degrades when using a reduced

CNN instead of state-of-the-art ones?

3. How robust the proposed solution is to weather and viewpoint changes?245

We used two datasets in our experiments: CNRPark-EXT, the dataset gen-

erated by us, and PKLot(de Almeida et al., 2015). The two datasets are signifi-

cantly different. Besides the fact that they contain pictures taken from different

parking lots, it is worth highlighting the following differences:

a) in CNRPark-EXT parking spaces masks are non-rotated squares; often250

images do not cover precisely or entirely the parking space volume, whereas in

PKLot images are extracted using rotated rectangular masks, which are subse-

quently straightened, resulting in a more precise coverage of the parking space;

b) CNRPark-EXT is composed also of heavily occluded spaces (almost en-

tirely covered by trees and lampposts) which are not included in the set of seg-255

mented spaces of PKLot ; moreover in CNRPark-EXT images are taken from

lower point of views with respect to PKLot, resulting in more occlusions due to

adjacent vehicles.

These aspects makes the classification of PKLot an easier challenge with

respect to CNRPark-EXT, which shows higher variability between images, and260

include more noisy factors.

The usage of two completely different datasets allowed us to extensively

validate and compare the proposed approach. We performed our experiments

using several subsets drawn from the datasets, performing training and test on

subsets coming from the same dataset, and also training on subsets from one265

dataset while testing on the other one.

13



The performed experiments are described in the following subsections, and

all the details of the subsets used are summarized in Table 1. All trained models

produced are available for download5.

5.1. Comparisons with the State of the Art270

We have compared mAlexNet against the method proposed in (de Almeida

et al., 2015), a state-of-the-art approach for car parking occupancy detection

that relies on RBF kernel SVMs trained on histograms of textural features. The

authors specifically used LBP, LPQ features and their variations (Ojala et al.,

2002; Ojansivu & Heikkilä, 2008; Rahtu et al., 2012) as input of the SVM. In275

their experiment, they show that there is no absolute best among those textural

features for this task. However, we noticed that in most of the cases, LPQu

and LPQg (Local Phase Quantization with respectively uniform and Gaussian

initialization), give better performance. They also tested ensembles of classifiers,

fusing the confidence values coming from SVMs applied to different selections280

of the above features. Confidence values were fused using simple aggregation

functions, such as Max and Mean. We noticed in their results that taking the

mean of the confidence coming from different classifiers (to which we refer with

Mean Ensemble) usually improves the performance.

Tests were performed by using both CNRPark and PKLot datasets. CN-285

RPark was split into even and odd parking spaces (CNRParkEven and CNR-

ParkOdd). Training was executed on one of the two and testing on the other.

For PKLot, we used the same configuration reported in (de Almeida et al.,

2015), splitting each of the three subsets of PKLot (corresponding to different

cameras UPFR04, UFPR05, and PUC, see (de Almeida et al., 2015) for details)290

in training and test sets with a 50-50 proportion. We made sure that images

captured the same day do not appear simultaneously in the train and in the test

sets. We trained our proposed model mAlexNet on each of the three training

sets individually, and at the end of the training phase, we tested each trained

5http://claudiotest.isti.cnr.it/park-datasets/CNR-EXT/models/
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model on all three testing sets.295

All the models were trained with gradient descent for at most 18 epochs, with

a learning rate of 0.01 halved every 6 epochs, a batch size of 64, a momentum

of 0.9, and a weight decay of 0.0005.

We computed two evaluation metrics as in (de Almeida et al., 2015). The

first one is the accuracy on the test set when choosing the most confident class300

as output (which is using a threshold of 0.5 for a binary classification problem).

The second one is the Area Under the Curve (AUC) of the Receiver Operating

Characteristic (ROC) curves. ROC curves show how True Positive Rate (TPR),

on y-axis, and False Positive Rate (FPR), on x-axis, vary as its score threshold

is varied. AUC measures how much a curve leans near the perfect classification305

point, that is the point (0,1) on the ROC plot. AUC values range from 0 (perfect

misclassification) to 1 (perfect classification), where 0.5 indicates a classifier that

performs like the random guessing classifier. This measure gives us a threshold-

independent evaluation of the classifier.

5.1.1. Results310

Results are reported in Table 2. For simplicity, for each experiment we report

only the variant of LBP or LPQ that yielded the best performance. We no-

tice that our solution generally performs much better than the other compared

methods in terms of both accuracy and AUC. In particular, mAlexNet outper-

forms the other techniques by 3% to 10%, when it is tested on images taken315

from a subset different from the training set. In fact, mAlexNet reaches ac-

curacy values of 98.27% in the UFPR04/PUC training/test set configuration.

This is roughly 10% more accurate than the best compared method, that is Max

Ensemble, which reaches 88.40 %.

Experiments on CNRPark revealed that classification on this dataset is320

more challenging than PKLot. This is probably due to the high variability

of views and occlusion patterns. In this dataset, again, mAlexNet still out-

performs the other compared classifiers in terms of accuracy. Our approach

is roughly 3% better than the best of the others. In fact, it reaches 90.13 %

15



Method Test set Accuracy AUC

Train on UFPR04

mAlexNet UFPR04 99.54 % 0.99

LPQu* UFPR04 99.55 % 0.99

Mean Ensemble* UFPR04 99.64 % 0.99

mAlexNet UFPR05 93.29 % 0.99

LPQg* UFPR05 84.92 % 0.94

Max Ensemble* UFPR05 88.33 % 0.95

mAlexNet PUC 98.27 % 0.99

LPQg* PUC 84.25 % 0.94

Max Ensemble* PUC 88.40 % 0.95

Train on UFPR05

mAlexNet UFPR04 93.69 % 0.98

LPQgd* UFPR04 85.76 % 0.93

Mean Ensemble* UFPR04 85.53 % 0.95

mAlexNet UFPR05 99.49 % 0.99

LPQu* UFPR05 98.90 % 0.99

Mean Ensemble* UFPR05 99.30 % 0.99

mAlexNet PUC 92.72 % 0.98

LPQu* PUC 87.74 % 0.94

Mean Ensemble* PUC 89.83 % 0.97

Train on PUC

mAlexNet UFPR04 98.03 % 0.99

LPQg* UFPR04 87.15 % 0.94

Mean Ensemble* UFPR04 88.88 % 0.95

mAlexNet UFPR05 96.00 % 0.99

LBPri* UFPR05 82.78 % 0.91

Mean Ensemble* UFPR05 84.20 % 0.91

mAlexNet PUC 99.90 % 0.99

LPQu* PUC 99.58 % 0.99

Mean Ensemble* PUC 99.61 % 0.99

Train on CNRParkOdd

mAlexNet CNRParkEven 90.13 % 0.94

LPQgd* CNRParkEven 87.65 % 0.95

Train on CNRParkEven

mAlexNet CNRParkOdd 90.71 % 0.92

LBP* CNRParkOdd 87.21 % 0.92

Table 2: Comparison with state-of-the-art approaches.

*(de Almeida et al., 2015)
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in the CNRParkOdd/CNRParkEven configuration and 90.71 % in the CNR-325

ParkEven/CNRParkOdd one. The other compared methods reach respectively

87.65 % and 87.21%.

5.2. Evaluation of the generalization property

Here we compare the generalization performance of our network architecture

mAlexNet against the approach proposed in (de Almeida et al., 2015) and the330

full architecture of the AlexNet (Krizhevsky et al., 2012). To do so, we perform

different experiments where we train with a dataset and we test with a different

one. Details about the subsets used in these experiments are reported in Table 1,

while the performed experiments are summarized in Table 3.

To compare generalization performance of mAlexNet and (de Almeida et al.,335

2015), we first trained on PKLot and tested on CNRPark, then viceversa. In

order to reduce training times for the SVMs, training was performed on a subset

of PKLot, called PKLot2Days. This subset is formed choosing from PKLot the

images of the first two days, in chronological order, for each camera (UFPR04,

UFPR05, and PUC) and for each weather condition (SUNNY, OVERCAST,340

RAINY).

We also compared the generalization performance of mAlexNet and AlexNet.

In this case, we trained separately with CNRPark, CNRPark plus cameras C1

and C8 of CNRPark-EXT, the whole CNRPark-EXT, and PKLot. Validation

was performed on the corresponding validation sets. Test with accuracy and345

AUC evaluation were performed on all available test sets.

Experiments with CNRPark plus cameras C1 and C8 of CNRPark-EXT

were performed in order evaluate with a training set containing a balanced set

of different viewpoints. In fact, the majority of the images in CNRPark-EXT

TRAIN are captured from a frontal viewpoint. C1 and C8 have very different350

viewpoints of the parking lot. As depicted in Figure 2, C1 has a side view of

the parking lot, while C8 has a pure front view.

All the models have been trained for at most 6 epochs, with a learning rate

of 0.0008, which is multiplied by 0.75 every 2 epochs. Other hyper-parameters
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are the following: batch size 64, momentum 0.9, and weight decay 0.0005. The355

final models were chosen as the models with the best performance on validation

sets.

5.2.1. Results

Table 3 reports the accuracy values obtained by the various methods for each

experiment. We can state that our architecture has comparable performance360

with respect to AlexNet when trained and tested with data coming from the

same dataset. In fact, the accuracy values of both models differ at most of

1% in all experiments where training and test subsets are taken from the same

dataset.

When training and test is performed on different datasets, AlexNet reaches365

slightly higher accuracy values. Note that when using a viewpoint-balanced

training set (i.e. when using CNRPark), we always obtain performance higher

than 90%. In the best case, there is practically no difference between the two

methods. In the worst case, we measured a difference of ∼ 9% with respect to

mAlexNet.370

Remember that AlexNet is three orders of magnitude more complex than

mAlexNet. Obviously, a bigger model offers a greater generalization performance

at the cost of more resources needed.

Finally, we report that mAlexNet generalizes always better than the ap-

proach proposed in (de Almeida et al., 2015). Accuracy of our methods is375

respectively 15% and 35% better than the others.

5.3. Inter-Camera and Inter-Weather evaluation

Errors in the occupancy detection of parking spaces are due to many reasons.

For instance, the lighting condition changes during different periods of the year;

moreover, occlusions and reflection patterns might introduce a fixed source of380

error. The weather condition might produce significant illumination changes as

well. During a rainy weather, puddles and wet floor create textural patterns that

may lead to a misclassification. Sunbeams can create reflections on the car’s
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Method Test set Accuracy AUC

Train on CNRPark

mAlexNet CNRPark-EXT

TEST

93.52 % 0.9838

AlexNet CNRPark-EXT

TEST

93.63 % 0.9877

mAlexNet PKLot TEST 95.28 % 0.9916

AlexNet PKLot TEST 95.60 % 0.9910

Train on CNRPark+EXT TRAIN C1-C8

mAlexNet CNRPark-EXT

TEST

95.88 % 0.9937

AlexNet CNRPark-EXT

TEST

96.85 % 0.9957

mAlexNet PKLot TEST 90.48 % 0.9738

AlexNet PKLot TEST 96.51 % 0.9937

Train on CNRPark+EXT TRAIN

mAlexNet CNRPark-EXT

TEST

97.71 % 0.9967

AlexNet CNRPark-EXT

TEST

98.00 % 0.9974

mAlexNet PKLot TEST 84.53 % 0.9699

AlexNet PKLot TEST 93.70 % 0.9923

Train on PKLot TRAIN

mAlexNet PKLot TEST 98.07 % 0.9967

AlexNet PKLot TEST 98.81 % 0.9984

mAlexNet CNRPark-EXT

TEST

83.83 % 0.9139

AlexNet CNRPark-EXT

TEST

90.52 % 0.9684

Train on PKLot2Days

mAlexNet CNRPark 82.88 % 0.899

LBP* CNRPark 65.31 % 0.580

Train on CNRPark

mAlexNet PKLot 90.38 % 0.989

LBP* PKLot 52.88 % 0.391

Table 3: Experiments performed to test the generalization performance

of mAlexNet and AlexNet. Accuracies on test sets are reported, for each

combination of (model, training set, test set).

*(de Almeida et al., 2015)
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windscreen or on water, covering the majority of the images with saturated

patterns. As we discussed in previous experiments, errors might also be due385

to low generalization properties of the classifier. When a classifier does not

generalize well, it works well just in the conditions where it was trained. For

instance, a bad classifier trained on a certain point of view of the parking lot,

does not work well when tested with images coming from a camera seeing the

parking lot from a different point of view.390

To measure the robustness of our approach to these scenarios, we performed

two types of experiments: inter-camera and inter-weather experiments.

In the former, we trained our neural network using images from one single

camera of the CNRPark-EXT dataset. Then we measured the accuracy ob-

tained with the trained network on pictures captured by another camera. To395

give maximum emphasis to robustness to viewpoint changes, we performed two

different trainings with pictures coming respectively from C1 and C8. C1 is

a side view of the parking lot, while C8 has a front view of the parking lot.

Examples of images taken from these two cameras are depicted in Figure 2.

In the latter experiment, we trained on images taken during one particu-400

lar weather condition, and we measured the accuracy obtained on images with

different weather conditions. We performed three experiments, training respec-

tively on CNRPark-EXT SUNNY, OVERCAST, and RAINY subsets.

We used the same training hyper-parameters used in the experiments de-

scribed in Subsection 5.2.405

5.3.1. Results

Results of inter-camera and inter-weather experiments are reported in Fig-

ure 4 and 5, respectively. The histograms compare the accuracy of a classifier

trained on a specific scenario (a specific camera or a specific whether condition)

when tested on all other possible scenarios.410

In inter-camera experiments, we noticed that the best accuracy is given by

the model trained on C8. This is reasonable because it has a front view of

the parking lot, which is common to most of the cameras and to other parking
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Figure 4: Results of inter-camera experiments in terms of accuracy ob-

tained when training on camera 1 (in blue), and on camera 8 (in red).

Figure 5: Results of inter-weather experiments in terms of accuracy ob-

tained when training on a sunny (in blue), overcast (in red), or rainy (in

yellow) weather.
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(a) Inside of a camera box (b) The complete camera box

Figure 6: Each Raspberry Pi is mounted inside a outdoor camera box (Fig-

ure A on the left) and it is mounted on top of the roof of the building,

attached to a steel pole (Figure B on the right).

lots scenarios (like PKLot). C1 often captures only partial images of parking

spaces, and it has a very skewed view of a portion of the parking lot. In fact, it415

reaches a lower accuracy on PKLot, which is mainly composed by images with

no occlusions, with a central and vertical view of the parking lots. Nevertheless,

it reaches accuracy values over 90% when tested with pictures coming from all

other cameras of CNRPark-EXT.

A very good generalization is achieved even in inter-weather experiments.420

We noticed that the amount of error made by our model is related with the

difference between the training and testing weather conditions. For example,

our model trained on “sunny” images performs better on “overcast” images than

“rainy” ones. The same goes for the model trained on “rainy” images, which is

more accurate on “overcast’ images than “sunny” ones. However, performance425

differences are small. Rainy training is the winner when tested with the PKLot

dataset. This is probably due to a bias in the PKLot dataset where most images

seems to be similar to “rainy” images.
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6. Deployment of the proposed solution in a real scenario

As we already said, smart cameras were built around Rasbperry Pi 2 model B,430

equipped with standard Raspberry Pi camera modules. Each smart camera has

been mounted in an outdoor camera box and has been installed on the roof of

a building in front of the parking lot (see Figure 6).

The entire framework was deployed in the parking lot of the research campus

of the CNR in Pisa as a Smart City application. The monitored parking lot435

consists of 164 parking spaces, organized in five rows, four of which are composed

of about 35 parking spaces each, and one row is composed of 18 parking spaces.

Although a single Raspberry Pi equipped with the standard camera module is

able to monitor more than 50 parking spaces (i.e. with the given height and

distance of the cameras from the parking lot), due to the conformation of the440

parking lot monitored, we had to deploy 9 smart cameras in order to monitor

all the parking spaces. Some cameras monitor about 20 parking spaces, while

some others more than 50.

Due to the angle of view and the perspective of the camera module used,

and the position of the smart cameras, most of the parking spaces closest to the445

building are monitored by just one camera, while the parking spaces farthest

from the building are monitored by more cameras. We used the redundancy

of the overlapping parking spaces to reduce occlusion problems (for examples

trees).

In particular, we assigned a weight value to each pair 〈parking space, camera〉,450

representing how good is the view of that parking space seen by that camera. A

high value of this parameter means that the parking space is in the center of the

image and that there is no obstacle between the camera and the parking space.

The confidence returned by the CNN for a given parking space is weighted with

this value and, in case of a parking space monitored by more cameras, the high-455

est weighted confidence value is selected at server side. In this way, we are able

to correct classification errors on parking spaces occluded for some cameras, by

choosing the confidence value of another camera that has a clearer view of that
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parking space.

Using smart cameras, rather than ground sensors, has two relevant advan-460

tages: lower cost per parking space and versatility. The cost of a Raspberry Pi

equipped with a camera module is about 80e, and the outdoor camera box with

pole support has about the same price. These are very limited costs, and, as

shown in (Amato et al., 2016) and in Section 5, the accuracy of this approach

is very good, and it is comparable to the accuracy of a ground sensor. There-465

fore, it is possible to monitor a large parking lot with a cost per parking space

which is an order of magnitude lower than ground sensors, and still achieving

comparable accuracy results.

Moreover, with smart cameras we are not limited solely to parking lots

monitoring applications.470

We could exploit the smart camera to perform additional activities like,

for example, video surveillance activities, such as face/people recognition, or

tracking and logging of people and moving vehicles.

6.1. Implementation

The software running on the smart cameras periodically captures the image of a475

portion of the parking lot and, for each parking space, determines the occupancy

status by using a CNN trained offline.

Pictures captured by cameras are filtered by a mask that identifies the var-

ious parking spaces. The mask was built manually once and for all. Examples

of masks built for different cameras are shown in Figure 2. At run time, each480

frame is automatically segmented in patches (we recall that a patch is the por-

tion of the original image containing a single parking space) corresponding to

the parking spaces monitored by that camera, by using the generated masks.

Every patch is then classified using the trained CNN, to decide whether the

corresponding parking space is empty or busy. On the Raspberry Pi 2, the485

classification of 50 parking spaces and the transmission of the results to a web

server takes about 15 seconds. Figure 7 shows an example of the classification

of a portion of the parking lot monitored by a smart camera. As can be seen
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Figure 7: Example of classification of a portion of the parking lot.

in figure, our approach deals very well with common challenging visual classi-

fication problems such as shadows, obstacles (trees or lamps) or even people490

occupying the parking spaces. We prepared a website6 to access the live view

of all the cameras by authorized people.

A key aspect of the proposed solution is its decentralized strategy and the

delegation of the parking decision to the smart cameras themselves. This so-

lution has the clear advantage of being scalable, as it requires no additional495

elaboration on the server side. In a centralized solution, images of the parking

lot acquired at high resolution (of about 3MB each) are sent to the server which

would thus become a bottleneck and a single point of failure.

Hardware and software details are briefly reported for completeness. The

smart cameras are equipped with an ARM Cortex-A7 CPU, 1GB RAM DDR2,500

6http://claudiotest.isti.cnr.it/telecamere.html
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and a 32GB micro SD card for storage. The camera module is a 5MP fixed-

focus camera that supports 1080p30, 720p60 and VGA90 video modes, as well

as still captures. The view angles of the camera are 53.50◦ horizontally and

41.41◦ vertically. We capture still pictures at a resolution of 2592x1944 pixels.

We used the OpenCV7 library to elaborate the frames acquired by the cam-505

eras, and Caffe (Jia et al., 2014) to train and use neural networks.

7. Conclusions

A decentralized and efficient solution for visual detection of the parking status

was presented, which exploits deep Convolutional Neural Networks (CNNs) to

classify the parking space occupancy. The solution employes smart cameras510

built using Raspberry Pi platform equipped with a camera module. Each smart

camera can simultaneously monitor up to fifty parking spaces.

A deep CNN architecture designed to run on embedded systems such as

smart cameras, is used to classify images of parking spaces as occupied or vacant

directly on board of the smart camera. In this way, the only information that is515

sent to a central server for visualization is the binary output of the classification.

As a further contribution, we collected and made publicly available CNRPark-

EXT, a dataset containing images of a real parking lot taken by nine smart cam-

eras, in different days, with different weather and light conditions. CNRPark-

EXT contains images with high variability related to occlusions, point of views,520

illumination and weather conditions. This makes the dataset more compatible

with a real scenario of an outdoor parking lot, and represents a good complement

to other publicly available datasets, for more reliable assessments.

Using both CNRPark-EXT and PKLot, another publicly available dataset

for parking occupancy detection, we performed experiments to compare the525

performance and generalization capabilities of our approach against other state-

of-the-art techniques. These experiments show that our approach outperforms

7http://opencv.org/
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other ones based on shallow models, such as SVMs. Specifically, our CNN

exhibits very high accuracy, even in presence of noise due to light conditions

variation, shadows, and partial occlusions.530
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