Consiglio Nazionale delle Ricerche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA
| IST. EL. INF.
BIBLIOTECA

AN 8 v by o
v e | %‘;"i N ld }
Possz.,.%.%hx___.a..s:-k.s;%m

A Declarative Approach to the Design and
Realization of Graphic Intefaces

D. Apuzzo, D. Aquilino, P. Asirelli

Nota Interna B4-39
Ottobre 1994




A Declarative Approach to the Design and Realization of
Graphic Interfaces

D. Apuzzo®, D. Aquilino®, P. Asirelli*!

Abstract

This paper presents the design and realization of a software Process model Editor for the.
OIKOS environment. This editor has been realized using GEDBLOG, a multi-theory deductive
database management system. GEDBLOG allows applications which heavly rely on graphic
user interaction to be developed and enacted according to a declarative definitional style. It
supports the consistent design and prototyping of graphic applications through an incremental
development and/or by combining pre-defined theories. The case study we present highlights
the GEDBLOG system features.

Keywords: Deductive Databases, Graphic Interfaces, Logic Programming, Prototyping.
Topics: visual user interfaces management systems, iconic systems.

1. Work partially supported by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo
¥ Intecs Sistemi S.p.A. - Via Gereschi, 32 Pisa; e-mail: {aquilino,mimmo } @sole.intecs.it
*Istituto Elaborazione Informazione C.N.R. - Via S. Maria, 46 Pisa; e-mail: asirelli@iei.pi.cnr.it



1 Introduction

The main goal of this paper is to give some evidence that declarativeness supports graphic
applications prototyping quite well. In this perspective, the GEDBLOG system [As94]
has been used to realize the presented approach. Beside the outlining of new concepts and
techniques provided by GEDBLOG, the main contribution relies in the realization of a
complex, non-toy application by means of it. The application presented here is a graphic
editor for OIKOS [Ap94] that allows to handle software process model schemata.

GEDBLOG is a deductive database management system for the design, validation and
execution of interactive graphical applications. The main feature of the system is its
declarativity which allows users to develop their own applications in a compositional and
consistent (with respect to the assessed requirements) fashion. This permits the graphical
representation of concepts and their declarative semantics to be combined within a uni-
form, logic framework. An important feature of the system is the provision of an integrity
constraints checking mechanism which permits application properties under development
to be proved. A graphic application is designed through a step by step refinement of the
knowledge base. The application is developed consistently with respect to the defined
integrity constraints that can be considered as those requirements that the application must
satisfy. Sy

The application knowledge is expressed as a deductive database [Sp84, Za90, We76]
spread into multiple extended logic theories [Bro90, Mo89]. Each theory entails a piece of
application data model and control by means of

* facts and rules to express the “general” knowledge;

* integrity constraints formulas to express either “exceptions” to the general
knowledge, or general “requirements” of the application being developed;

* transactions to express atomic update operations that can be performed on
the knowledge-base.

Graphic capabilities are handled by the system so that a graphic representation can be
associated with a concept. The strategy is to use a logic language for the definition of
graphic objects and their operations [As87a, As87b, He86, Hu86, Pn90, Pe86]. Since the
representation is rigorously declarative, the graphic shape of an object is fully determined
by the values of its attributes; there is no notion of global attributes. The goal is to com-
bine graphic and non graphic components in the same declarative context.

Graphic objects, their relationships, and the set of operations that the user can perform
will be included in the knowledge of the application. The result of this integration will be
that the overall semantics of the application can be affected by constraints imposed only
on the graphic representation and, vice versa, the graphic representation can be affected
by semantics.
Combining the concepts semantics and their graphic denotation within the same context it
makes the tool particularly suitable for developing and prototyping applications in the
areas of visual languages [Ch87, He90], graphic interfaces and some aspects of CAD.



2 The GEDBLOG System

The system is implemented following a client-server approach as it is shown in Figure 1.
The client side realizes the user interface and thus it deals with the database editing capa-
bility. It requires a window management system to run (in the actual version we use Motif
1.2 [OS] on X11R5 ). However, GEDBLOG does not depend on any particular support. A
different window system can quite easily be connected.

The server is the part of the system that deals with the knowledge-base management. The
actual version of the system is implemented in IC-Prolog [C093] which forms the bottom
layer. On this layer the Logic Kernel and the DBMS are built. These support knowledge
handling at the logical level.

Motif - X11
database Editing Execution

interface

TCP-IP sockets
communications

[

transactions

groeotles Managers
object ybnk 3T Graphic Language
e o) | DBMS
- Logic Kernel
> IC - Prolog

Figure 1: GEDBLOG Architecture

The DBMS is extended by the graphic component and by the managers. These make
available to the clients the following features:

* multiple theories management, i.e. the capabilities to combine different pre-
existing databases and load them as a single logical database;

* transactions management

 graphic objects management.




2.1 The Logic Kernel

In the following, some familiarity with Logic Programming and database terminology is
assumed. Details can be found in [L187, Ga84].
The kernel of the system consists of a logic theory Tgp=Tpg + ToonsTRAINT WhETe:
Tpp is a logic program in which:

- the set of facts, “unit” definite clauses are considered to be the Extensional
component of the DB (EDB);

- the set of deductive rules, definite rules are considered to be the Intensional
component of the DB (IDB);

TconsTRAINT r€ integrity constraint formulas of two kinds:
- a set of Integrity Constraints (IC), which are formulas of the form:
Ag>>B1.,..., Bg
- a set of Control formulas which are either IC formulas or else
A, Apy=>B1,....Bp
The connective “,” stands for the logical connective A.
Integrity checking is performed according to [As85]. The two forms of integrity formulas
are used respectively to guarantee i) the construction of “correct with respect to con-
straints” applications (no illegal query will be answered) and ii) to perform controls at the
user request. The two forms of integrity constraints correspond to two different integrity
checking algorithms. The first (The Modified Program Method) considers a subset of the
given logic formulas, called IC, and uses them to modify the logic program automatically
so that all facts which do not satisfy IC are not provable/derivable from the modified logic
program/DB (i.e. illegal queries cannot succeed). The second (The Consistency Proof
Method) considers a wider class of logic formulas, Controls, and proves that they are true
or false using a metalevel proof, on request from the user.

2.2 The DBMS

The DBMS has been realized following a meta-programming approach [Sa86, St85]. It
consists of the implementation of primitive updating operations plus a language inter-
preter and a theorem prover (a Goal evaluator). The language interpreter is used to evalu-
ate user-defined updating operations (i.e. transactions).
The logic theory Txp, described in the previous section is augmented by a meta-theory
Tyxpms= Tt + Tpp that realizes the management system.
Ty is the theory of transaction definitions: a set of clauses that define compound updating
operations (transactions) with the following syntax and procedural interpretation:

trans = prec # £ [ye.., ty # post
To execute a transaction trans, the precondition (prec) must be verified in the current DB.
If it is verified, ..., &; are executed and the corresponding postcondition (post) verified
in the modified database. A failure makes the computation to proceed by searching for
another suitable definition of trans.A transaction fails if all its defining clauses fail.
The #; in the transaction bodies can only be user defined or system predefined transactions.
Preconditions / postconditions in the definitions of transactions denote particular forms of
Controls which must be checked before/after the execution of a set of operations (body of
the transaction). ‘
Tpg is a set of elementary operations provided as a meta-theory with respect to the Txy.



2.3 The Graphic Language

The graphic language layer supports a language for the definition and visualization of
graphic objects thus enriching the theory Tggpg by Tgrapy- This theory contains the
definition of grahic primitives, the rules needed to interpret the representations of graphic
definitions and the meta-interpreter to visualize graphic objects.

A pre-defined windowing system has been-exploited thus assuming the existence of low
level consolidated mechanisms to define and manipulate graphic entities. This does not
mean that the obtained system is tightly bound to a particular graphic system, but it allows
to rise the power and make easier the specification of objects and interactions.
GEDBLOG uses the technology supported by Motif [OS] and X 11 [Sc86], and integrates
it into a completely declarative environment. This means that graphic objects and interac-
tions are specified by a language provided by GEDBLOG and based on a clausal repre-
sentation according to the following elements:

e prototypes, i.e. templates of graphical objects;
e graphic objects, i.e. instances of prototypes;

2.3.1 Prototypes
Prototypes in GEDBLOG can be either primitive or user-defined:

Primitive prototypes

A primitive prototype is directly implemented as a GEDBLOG primitive. Primitive proto-

types are grouped into two classes: simple and structured. Simple prototypes cannot con-

tain sub-components, while structured ones are able to include prototypes as sub-parts.

* Simple: line, ball, text, label, separator, pushButton, arrowButton, toggleButton, drawn-
Button

* Structured: form; rowColumn, formDialog, mainWindow, messageBox, drawingObj,
drawingArea, bulletinBoard, list, cascadeButton, scrolledWindow, fileSelectionBox

The two lists above define names of types that correspond to Motif [OS] widgets, apart

from ball, line and drawingObj that are a GEDBLOG extension to Motif widgets in order

to support the representation of low-level graphic objects.

User-Defined prototypes

The above defined prototype can be used to define new graphic objects that in turn can be
used to define new objects. To this end GEDBLOG provides the following defined predi-
cates: prototype, object and link.

A user-defined prototype is defined in GEDBLOG by means of the predicate prototype
prototype(Proto_name(List_ParForm), Proto).

Proto ::= Base_proto(Resources, Operations, Links).

Resources ::= [(resource_name, Val), ..., (resource_name, Val)]

Operations ::= [Goal & ... & Goal]

Links ::= [(link(link_name,Proto_name(List_ParAct)),

| link(link_name,Proto)),...]

Base_Proto is a graphic primitive-type while Proto_name is the name of user-defined pro-
totype. Goals are queries to the logical knowledge base. They can be used to instantiate
variables used in the resources values.
Val defines the value associated to resources . To handle the different type of values that




can be used for resources, the following type constructor have been defined:
Val ::= file(File)l p1xmap(P1xmap)| strmg(Strmg)Icallback(Transactlon)
| Numeric_value | Variable. :

The names of the resources, that can be set up for each basic prototype, correspond to Motif
widgets resources.

2.3.2 Graphic Objects

A graphic object is instantiated by means of the predicates object and link:

object(Object_name,Base_proto)

that defines the graphic object Object_name starting from the basic prototype Base_proto.
object(Object_name,Proto_name(List_Par_Act))

that defines a graphic object given the user-defined prototype Proto_name
link(Child_name,Object,Base_proto)

builds a sub-object (child) of Object whose name is Child_name and whose type.is the
basic prototype Base_proto. '
link(Child_name,Object,Proto_name(List_Par_Act))

builds a sub-object (child) of Object whose name is Child_name and whose type is the
user-defined prototype Proto_name.

24 The Server Managers

The managers layer defines the services that are provided to access, modify and load the
knowledge stored into the server logical database. These services are used by the clients to
edit GEDBLOG databases, and execute the resulting specifications.

Theory Manag@r
It allows to load multi-theories databases into the server logic database. GEDBLOG
supports this by the finéd predicatetheory. By this Predicate, different theories can be

included in a database definition. The knowledge expressed by the actual database is
considered to be the union of the knowledge expressed by the imported theories.

Graphic Frame Manager

The frame is the abstract logical space where objects are visualized and available for user
interaction. In GEDBLOG the frame is managed in a strictly declarative way. This means
that the objects on the frame at a certain instant are all and only those that can be proved
(deduced) at that time in the knowledge base.

The frame manager can be used along to.the specification execution to access the list of all
objects that are on the frame at a certain instant.

Transactions Manager

The mechanism that GEDBLOG uses to catch the input events that happen on visualized
objects is the same used in Motif widgets. It is based on the automatic activation of a pro-
cedure (callback) that handles the kind of event the object receives. Transaction manager
enables client applications that catch an event on an object to give the control to the trans-
action execution feature of the DB management system of GEDBLOG.



2.5 The GEDBLOG client side

The GEDBLOG client supports the database editing. graphical interface for GEDBLOG
database editing and the execution of GEDBLOG applications. To do this, it interacts with
the managers level of the server by means of a communication protocol based on mes-
sages exchange built on top of UNIX sockets.

Figure 2: A GEDBLOG database

The database editor provides a graphical interface to edit GEDBLOG databases as a col-
lection of multiple, heterogeneous theories. Each theory is, visualized.in a View-Window,
diveded into four sections which respectively contains the four different classes of formu-
las: facts, rules, constraints and transactions.

Once a database is loaded into: the server knowledge-base, the logic specification it
defines can be executed. The execution client realizes the support to this phase. It shows
the graphical objects that are stored in the logical frame and calls the transactions acti-
vated by the interaction of the user with the objects.
As transaction execution may update the knowledge-base, the execution client is also
responsible to keep up-to-date the visualized objects and their attributes.
To execute a GEDBLOG database the execution client performs a cycle made of the fol-
lowing steps:

* obtain from the server the list of graphic objects on frame and update the dis-

play




e when an event on a visualized object is caught, call the associated transaction
trought the server transactions manager

* wait for the server to perform the knowledge-base update operations.

The cycle can be aborted by quitting the execution client and returning to database editing



3 The OIKOS Process Editor

A very interesting and practical experiment in using GEDBLOG has been carried out by
realising a graphical editor for OIKOS. OIKOS [Mo84] is an environment that provides a
set of functionalities to easily construct process-centred software development environ-
ment. In the following a brief description of OIKOS is provided. This description will
highlight the characteristics that have a direct impact with- the realisation of the OIKOS
editor.

3.1 Specification

In OIKOS a software process model is a set of hierarchical entities. Each entity is an
instance of one of the OIKOS classes and represent a modelling concept. An entity can be
either structured (i.e. formed by other entities) or simple (i.e. a leaf in the model struc-
ture).

OIKOS defines a top-down method to construct process models. This method uses two
descriptions of the entities: abstract and concrete. The abstract entities are introduced first
and then refined in the concrete ones. At the end of the modelling activity an enactable
model is obtained by adding to the defined entities the needed details. The method estab-
lishes some constraints about the entities (e.g. a coordinator entity has only the concrete
representation) and their use as sub-entities during the model refinement (i.e. constraints
in the model structure, for example a desk cannot have, among its sub-entity, a process).
The entity classes defined in OIKOS are the following: Process, Office, Environment,
Desk, Cluster, Session, Role and Coordinator.,

The OIKOS Process editor should provide the modeller with an environment to easily
specify software process models following the OIKOS method. It should permit to edit
and store different models for different users. Different modelers must operate with the
editor with the same set of static constraints (i.e. the basic constraints of the method that
cannot be changed because they are an integral part of the method) but they can work with
different dynamic constraints (i.e. constraints on alternative ways to develop models). The
editor interface layout is required to provide: a menu for selecting operations, a top level
entity to store the edited process, windows to present the informations of different entitiy
kinds and dialogs for user inputs.

3.2 OIKOS Process Editor Database

This section describes the database that implements the OIKOS Process Editor [Ap94].
An overview of the theories that compose the OIKOS Editor database is given, with some
explanations of the semantics they express.

Theories have different purposes: to map the OIKOS model into logic predicates, to hold
constraints on the modelling process, to define a graphical counterpart for OIKOS abstract
entities, and to represent the editor layout using the suitable GEDBLOG mechanisms.
From the user side, the theories are black-boxes. Users are just required to instantiate two
theories, in order to load their personal instance of the editor database (oikos.editor the-
ory) and to manage the data specific to the process they create during editor sessions (this
theory will be referred to as oikos.<process_to_create>).



3.2.1 - The Database Theories

The OIKOS Editor Database consists of the following theories: oikos.editor, oikos.model,
oikos.menu, oikos.proto, oikos.<process_to_edit>

oikos.editor

This theory declares the imported theories and instantiates a window to display the root
process. The theory is also used to record facts regarding the layout of the graphical frame
(exposed objects, selected objects, etc.). These facts are inserted by transactions along the
course of execution sessions.

Figure 3 shows the content of this theory. The predicate theory is used to load all the theo-
ries that compose the OIKOS editor database, while the predicate object instantiates a
window that stores the top_level entity of the process model.

theory(’oikos.model’ ).

theory(/oikos.menu’).

theory(’oikos.proto’).

theory(’oikos.mini_dctu’y.

object(process_row,formDialog([(dialogTitle,string(top_level))],[],[
link(theﬁrow,rowColumn([(orientation,meORIZONTAL)],[],[}))})).

Figure 3: Oikos Editor Theory

oikos.model

This theory introduces the predicates which define an abstract representation of OIKOS
entities, and the constraints to be satisfyed by OIKOS process structures.

kinda(ang_process).kinda(ang_office).kinda(ang~env).kinda(ang_desk).
kinda(ang_cluster).kinda(ang_role).kinda(ang_ses).
may (process, ang_desk) .

conc (Name, Kind, Limbo) ==> kindc(Kind).

conc (Name, Kind, Angel,Res) ==> kinda (Kind).

part_of (Namel, Kindl, Name2,Kind2) ==> conc (Namel, Kindl, Limbo) .

part_of (Namel, Kindl, Name2,Kind2) ==> may(Kindl,Xind2).
\Einc(Name,Kind,Limbo) ==> part_of (Name,Kind, Coord, coord) . “//

/;;ndc(process).kindc(office).kindc(env).kindc(desk).kindc(cluster). ‘\\

Figure 4: Oikos Model Theory

The facts with predicates kindc and kinda distinguish angelic entity kinds from concrete
ones respectively. A set of instances of predicate may is used to define the allowed inclu-
sion relations among different kinds of entities. Then a set of static constraints is given to
model OIKOS process models. The first and second constraints state that concrete and
abstract entities must have respectively concrete and abstract kind. Notice the use of the
may predicate in the fourth constraint formula. It states that an entity can be used as a part
of another one only if the two entity kinds are in the may relation.

Notice also that the theory defines only static constraints. However, dynamic constraints
on the process construction methodology can be added by adding a separate theory.

10



oikos.menu

The menu theory builds the graphical object corresponding to the OIKOS Editor main
menu and attaches transactions to the menu items in order to perform the corresponding
actions.The menu-bar is realized by a fact in the theory that instantiate a menu-bar proto-
type, a set of facts that defines the prototypes for the pull-down items of the menu and the
transactions to be performed in response to selection events.

//;bject(main_dialog,formDialog({(dialogTitle,string(menu))],[],( <\\
link(oikos_menu,menuBar( (1, [], [
link(gen, cascadeButton( [ (labelString, string(general))l, [], [
link(gen_pull,gen_pull)l))
link(edit, cascadeButton ([ (labelString, string(edit))]1, [], [
link(edit_pull,edit_pull)l)),
link(obj, cascadeButton([(labelStrlng strlng(objects) 1,01, 1
link(obj_pull,obj_pull)l)), ~
link (manag_obj, cascadeButton([(1abelString string (managers))], [], [
link (manag_obj_pull,manag_obj_pull)l))
link(serv, cascadeButton([(labelStrlng str1ng(serv1ces) 1,01, (
link(serv_pull,serv_pull)])
link(util,cascadeButton([(labelString,string(utilities))],[],[
link(util_pull,util_pull)1))1))1)).

prototype (obj_pull,pulldownMenu({], [1, [
link(coord, pushButton( [ (labelString, string(coord)),
(activateCallback,callback(sel(coord)))],(1,1[1)),
link(role,pushButton ([ (labelString, string(role)),
(activateCallback, callback(sel (ang _role)))1,[1,[1))

10

sel (Entity):
#true.
sel (Entity) := true#in(selected(Entity))#true.

\_ /

Figure 5: Oikos Menu Theory

selected (0ld) #out(selected(01ld)) &in(selected (Entity))

The sel transaction is activated when an entity kind from the objects menu is selected. Its
effect is to insert a new fact in the logic database (selected(Entity)) that records the entity
kind that will be created next time an object create action is performed. The following pic-
ture shows the menu as it is visualized on the OIKOS Editor layout.

Figure 6: The Menu-bar

Notice that, due to the use of prototypes, the menu theory can be easely imported into a
different databases and customized for a different application.

11




oikos.proto

Oikos.proto deals with the graphic presentation of entities. It declares the graphical proto-
types, the rules upon which the entities visualization depends and the transactions to be
activated in response to events occourring on them.

According to the specification section , the entities that make up an OIKOS process
description are: roles, coordinators, desks, clusters, environments, offices and processes.
All but coordinators have an angelic counterpart. In order to attach a graphic representa-
tion to OIKOS Entities, consider they have a closed and opened status. When they are
closed, only the icon representing the entity and the entity name are visible. The icons for
entities and their angelic counterparts are given by the following Table:

Process | Office Environ Desk | Cluster | Role Coordin

ment ator
o '«. g
e ‘ -

Concrete e Bt _' = @

Angell o i [:’?

ngelic —
® BR'T7 | P\

Table 1: OIKOS Entities Icons
Closed entities are graphically represented by the following prototype definitions.

prototype (microf (Path,Kind, Name) , form( [ (marginHeight,1)1,[], [
link (pbl, pushButton( [ (labelType, xmPIXMAP) , labelPixmap, pix-
map (Kind) ),
(activateCallback,callback{open(Name)))}, [1,11)),
link (1bl,pushButton({(labelString, string(Name)}},
(activateCallback, callback(set_obj (Path,Name))} 1, [1,[1))1)).

This is a compund prototype that contains two buttons. One buttom shows the entity icon
while the other one reports the entity name. Transactions are attached to button’s activate
events. The activate event on the icon button is linked to the open transaction by means of
the callback mechanism.

s

12



As regards open entities, the graphical representation is different, depending on the fol-
lowing classification:

Compound Concrete Entities: Processes, Offices, Environments, Clusters and Desks are
concrete compound entities. They are represented by a specification file written in the
Limbo language and by the set of parts (sub-entities) that define their structure

//ﬁrototype(generalconc(Name,Kind,Limbofile), ‘\\
formDialog ([ (dialogTitle, string(Name))l, [1, [
link({fig,pushButton([(labelType, xmPIXMAP),
(labelPixmap, pixmap (Kind)),
(activateCallback,callback(close(Name)))1,[1,11)),
link(descr,pushButton({ (labelString, string(Name)),
(activateCallback,callback(set_active(Name,Kind)))1,[], (1)),
link(parts,partgrid(Name, Kind)),
link{limbolab,pushButton ([ (labelString, string(limbo_update)),
(activateCallback, callback(save_file(Name!limbodef!limbodeftxt,
‘oikos.mini_dctu’,Limbofile))) 1, (1,1[1)),
link (limbodef, limbodefp (Name, Limbofile) )

\])). /

Figure 7: Compound Entity Prototype

Entity Kind
and Name

Parts

Services Instances Limbo Specification

Figure 8: Compound Entity Instance

Angels: Angels represent the abstract specification of the entity. In Figure 9 an instance of
an angelic entity is depicted.

13



Entity Kind
and Name — |

Concrete
Button

Angel
Definition

Figure 9: Angelic Entity Instance

Concrete Entities: Coordinators and Roles represent low-level entities in the OIKOS

process description. Their definition is directly given into the entity of which they are
parts.

The Oikos.proto theory connects also entities abstract representation to their graphical
counterpart by the following rules:

//gbject(Name,generalconc(Name, Kind, Limbofile)) <--
conc (Name, Kind, Limbofile) & exposed(Name).

obiject(Name, generalabs(Name, Kind, AngSpec)) <--
abs (Name, Kind, AngSpec) & exposed(Name).

object (Name, concrole{Name, Actor, Req, Behav)) <--
role{Name, Actor, Reqg, Behav) & exposed(Name) .

object (Name, conccoord(Name, Dests, Intheory)) <--
coord(Name, Dests, Intheory) & exposed(Name).

part_of (Namel,Kindl, Name,Kind) & kindc{Kind) & exposed(Namel).

part_of (Namel,Kindl, Name,Kind) & kinda(Kind) & exposed(Namel).

link (Namel!parts!gridl,Name,microf (Namel!parts!gridl!Name, Kind, Name) )<--

link (Namel!parts!grid2,Name,microf (Namel!partsigrid2!Name, Kind, Name))<--

/

Figure 10: Objects Instantiation Rules
The first group of rules states that a graphical object is on frame (see section 2.3.2 and 2.4)

if the corresponding entity belongs to the knowledge base and the entity is in opened sta-

tus (exposed). The second group of rules builds graphical objects corresponding to the
parts of an open entity (refer to Figure 8).

Notice that these rules define the abstract data model of OIKOS process structure. A com-
pound concrete entity is defined as an instance of the conc predicate. An angelic entity is
modelled by the abs predicate, while the parts of a compound entity are described by the
part_of predicate.

The motivations for using two rules to put parts into the graphic grid of a compound entity
is that we want to keep angelic and concrete sub-parts into different columns.

~

14




oikos.<process_to_edit>

This theory records the abstract representations of process entities. In general, this theory
will be empty when the editor is started for the first time on a process. It will be enriched
along to the user interaction with the editor.

The following example of this theory defines only the top level entity of a process model
that is called mini_dctu.

top_level (mini_dctu).
conc (mini_dctu, process,mini_dctu).
part_of (mini_dctu, process, manager_desk, desk) .

Figure 11: Oikos Mini_dctu Theory

3.3 Execution of the OIKOS Editor Database

In the following execution simulation, we start the editor on the mini_dctu process as it is
described by the theory of Figure 11. At the start-up, the execution engine calls the frame
manager to obtain the graphic objects to display. Recall that the frame manager returns the
list of graphic objects that can be proved in the logic knowledge-base. The objects that
will be visualized in this case are the menu bar and the process root icon., as they are facts
of the database.

4 - I menu

E l general | edit I objects I managers I services I utilities |-

§ mini_dctu |

Figure 12: An editing session at start-up

Figure 12 shows the top-level representation of process mini_dctu. The process is repre-
sented by an icon, and is closed, in the sense that its internal definition is not visible. To
open mini_dctu, the user clicks upon the icon button (the smoking factory).

The activate event on the button calls the open transaction of the oikos.proto theory. This
transaction inserts a new factin'the knowledge base: exposed (mini_dctu). Now, look at
the first rule of Figure 10. It states that a compound concrete graphic object is deducible if
the corresponding entity is defined in the database and it is exposed. So, exposing the
mini_dctu entity causes this rule to fire, as the fact conc(mini_dctu, process,
mini_dctu) is true in the knowledge-base (refer to oikos.mini_dctu theory in Figure 11).

15



2| general | edit [ obgects | managers I services l utilities

mini_detu < mini_dctu

limbo_definition

lconcrete ]]Engels ]lcoordinators

process mini_ dctu

manager _desk input,
from manager_desk

start(Req, Plan, Docd:-

followir

update_plan:— the proje

abort:~ the manager has

completeds~ the manager

successt

Figure 13: Opening the Top_level Process

The system pops-up the graphical representation of the mini_dctu entity as a compound
concrete entity. The window shows the internal structure of the mini_dctu process entity.
The only entity that appears in the mini_dctu structure is the manager desk. This is due to
the fact part_of (mini_dctu, process, manager_desk, desk) in theory
oikos.mini_dctu (Figure 11), and to rule 5 in theory oikos.proto (Figure 10).

To insert a new entity among the mini_dctu parts, first select the entity on which to oper-
ate (in this case the mini_dctu process) by clicking its name. This event activate a transac-
tion that inserts the fact active (mini_dctu, process) in the database.

|

\

}Iangels l[coordinators

Selection box

Figure 14: Selecting the active entity

Then chose the entity kind from menu objects. In the following example, a coordinator
for the mini_dctu process is created by selecting the coord item from the object menu. A
dialog window pops up, because the menu transaction asserts the fact selected (coord)
and the rule
object (Kind,dialog(Entity, Etype,Kind) )<-~

selected(Kind) & active(Entity,Etype).
is defined in the theory oikos.proto.

16




Fé;Qﬁées‘l stilities |

coordinator §I

e ———

; create | ; Cancel I i Help l

|concrete 1 Iangels I [coordir\
8 Input field for the

| entity name

manager_desk

Figure 15: Creating a sub-entity

The dialog asks for the name of the new entity. After having filled up the name field with
the name new_coord, the user clicks the create button. This action starts a transaction
mk_conc_entity(Mother,Kind, Type):=
selected (Etype) & get_par(Type!mess!rowl!nametxt, [ (value,Name)l) &
kindc (Etype)
# out (selected(Etype)) & in(conc(Name, Type,Name) &
in(part_of (Mother, Kind, Name, Type) )
# true.

that in this case instantiates the new facts conc (new_coord, coord,Name) and
part_of(mini_dctu, process, new_coord, coord). Furthermore, the transaction removes the
fact selected(coord), so the dialog is dismissed. Now, the new coordinator is shown
among the parts of the mini_dctu process by means of rules in oikos.proto theory of Fig-
ure 10. The correctness of the new schema is automaticaly granted by the constraints,
which participate to the deduction process.

general | edit | objects | managers | services | utilities

mint_detu i @,

| [angels [ Icoordinat:ors limbo_definition

praocess mini_dctu
manager_desk input
from manager_desk
start(Req, Plan, Doc):-
@ followi
update_plan:~ the proje
abort:- the manager has
new_coord completed:~ the manager
success
OESdtl] ERsTEn]

Figure 16: The Final Result

17




4 - Conclusions

We have presented GEDBLOG, a system to handle graphic objects declaratively by
means of a logic database management system environment.

The (graphic) data language is an extension of the language used to define a deductive
database. The syntax is based on Horn logic (definite clauses) and a mechanism is pro-
vided to handle integrity checking. Integrity constraints can be defined on graphic objects
and on their visualization. Since graphic objects are handled within a logic database, all
the advantages of logic-are exploited so that the resulting system is declarative, deductive
and its semantics is well founded.

One application area that seems to be very suitable for a system like GEDBLOG is the
visual languages area [Ch80, Ch87], since it is very natural to assign, to each graphic
object, its corresponding operational semantics that, usually, includes non graphic infor-
mation as well. As an example of an application, we have presented the definition of the
OIKOS process editor. The example shows that only a very few rules are needed to define
and handle something as complex as this application.

To obtain the final GEDBLOG system, we have extended the logic database management
system by integrating it with a graphic language and mapping it to Motif and X11 primi-
tives [Sc86]. At the present time, the system is implemented in C and IC-Prolog [C093]
and runs on a Sun 4 workstation under Unix 4.1.x [As90, As94b].

Acknowledgements

We thank Prof. Carlo Montangero, for his help in the specification of the OIKOS process
editor, and Dr. Chiara Renso, for her carefull review of this paper.

References
[Ap94] D. Apuzzo, D. Aquilino, C. Montangero. OIKOS Process Editor Users Manual. Intecs
Sistemi, Internal Report, 1994.

[As85] P. Asirelli, M. De Santis, M. Martelli. Integrity Constraints in Logic Data Bases. Jour-
nal of Logic Programming, Vol. 2, No. 3, Ottobre 1985.

[As87a] P. Asirelli, P. Castorina, G. Dettori. A Proposal for a Graphic-Oriented Logic Data-
base System. IEEE Proc. of The 2nd Int. Conf. on Computers and Applic., Pekin,
June 1987.

[As87b] P. Asirelli, G. Mainetto. Integrating Logic DataBases and Graphics for CAD/CAM
applications. IEEE WorkShop on Lang. for Automation,Vienna, August 1987, pp.
173 - 176

[As90] P. Asirelli, D. Di Grande, P. Inverardi. GRAPHEDBLOG Reference Manual. 1L.E.L
Internal Report B4-08 February 1990.

[As94a] P. Asirelli, D. Di Grande, P. Inverardi, F. Nicodemi. Graphics by a Logic Database
Management System. to appear in Journal of Visual Languages, 1994.

[As94a] P. Asirelli, P. Inverardi, D. Aquilino, D. Apuzzo. GEDBLOG Reference Manual. in
preparation. '

18




[Bro90] A. Brogi,P. Mancarella, D. Pedreschi, F. Turini. Composition Operators for Logic
Theories. In Computational Logic, Symposium Proceedings, editor J.W. Lloyd,
Springer-Verlag, 1990.

[Ch80] N.S. Chang, K.S. Fu. A Relational Database System for Images. In N.S. Chang and
K.S. Fu (Ed.), Pictorial Information Systems, Springer, 1980, 288-321.

[Ch87] S-K Chang. Visual Languages: a tutorial and survey. IEEE Software 4, 1987, pp. 29-39

[Co93] Y. Cosmadopoulos, D. Chu. IC Prolog User’s guide. available by ftp from:
src.doc.ic.ac.uk in /computing/programming/languages/prolog/icprolog.

[Ga84] H. Gallaire, J. Minker, J. M. Nicolas. Logic and Databases: a Deductive Approach.
Computing Surveys, Vol.16, No.2, 1984, pp. 153 - 185.

[He86] R. Helm, K. Marriot, Declarative Graphics. Lecture Notes in Computer Science No.
225. Springer - Verlag, London, July 1986, pp. 513 - 527.

[He90] R. Helm, K. Marriot. Declarative Specification of Visual Languages. Proc. 1990 IEEE
Workshop on Visual Languages, IEEE, pp. 98 - 103.

[Hu86] W. Hubner, Z. I. Markov. GKS Based Graphics Programming in Prolog. Computer
Graphics Forum, Vol.5, March 1986, pp. 41 - 50.

[L187] J. Lloyd. Foundations of Logic Programming. 2d edition, Springer-Verlag 1987.

[OS] OSF/Motif Programmers Guide. Open Software Foundation, Cambridge, MA.

[Mo34] C. Montangero, V. Ambriola. Oikos: Constructing Process-Centered SDEs. Software
Process Modelling and Technology, editor A. Finkelstein and J. Kramer and B.
Nuseibeh, Research Study Press distributed by J. Wiley and sons, London, 1994.

[Mo89] L. Monteiro and A. Porto. Contextual logic programming. "Proceedings Sixth Inter-
national Conference on Logic Programming”, G. Levi and M. Martelli (Eds.),The
MIT Press, 1989.

[Pr90] M. J. Prospero, F. C. N. Pereira. On Programming an Interactive Graphical Application
in Logic. Computer&Graphics Vol. 14, No. 1, pp. 7-16, 1990.

[Pe86] F. C. N. Pereira. Can Drawing Be Liberated from Von Neumann Style?. Logic Pro-
gramming and Its Applications, M. van Caneghem e D. H. D. Warren Edd., A.P.C.,
Norwood, New Jersey, 1986, pp. 175 - 187.

[Sa86] S. Safra, E. Shapiro. Meta Interpreters for real. Inf. Proc. 86. H-J Kugler (Ed.), 1986,
pp- 271-278.

[Sc86] R. W. Scheifler, J. Gettys. The X window system. ACM Transaction on Graphics,
Vol.5, No.2, April 1986, pp. 79 - 109.

[Sp84] D. L. Spooner. Database Support for Interactive Computer Graphics. Proc. SIGMOD,
1984, pp. 90 - 99. /

[St85] L. Sterling. Expert System = Knowledge + Meta-Interpreter. Dept. of Applied Mathe-
matics, The Weizmann Institute of Science, Internal Report CS-84-17, 1985.

[We76] D. Weller, R. Williams. Graphics and Database Support for Problem Solving. ACM
SIGGRAPH Computer Graphics, Vol.10, 1976, pp. 183 - 189.

[Za90] C. Zaniolo. Deductive Databases: Theory Meets Practice. (Invited Paper) Proc.
EDBT'90, Lecture Notes in-Computer Science No. 416, Springer - Verlag, pp. 1-15.

19






