
From the Archives of the
Formal Methods and Tools Lab

Axiomatising and Contextualising ACTL

Stefania Gnesi(�)[0000−0002−0139−0421] and
Maurice H. ter Beek[0000−0002−2930−6367]

Formal Methods and Tools Lab
ISTI–CNR, Pisa, Italy

{stefania.gnesi,maurice.terbeek}@isti.cnr.it

Abstract. We present a sound and complete axiomatisation of ACTL,
an action-based version of the well-known branching-time temporal logic
CTL, and place it into a historical context. ACTL was originally intro-
duced by Rocco De Nicola together with Frits Vaandrager 30 years ago,
and it has played a major role in shaping the activity of our Formal
Methods and Tools Lab from the nineties to this very day.

Keywords: Temporal logic · ACTL · Axiomatisation.

1 Introduction

To appreciate the contribution of this paper, we first provide some necessary
context through a brief recollection of memories from the last 40 years.

1.1 Rocco & Stefania

Rocco and Stefania were fellow students in Computer Science at the University
of Pisa. They followed the same classes and had the same thesis supervisor. In
fact, both were advised by Ugo Montanari and both graduated in 1978. After
that, they followed a different road for some time. Their paths crossed again in
1984 when Stefania started working at the CNR, in the Istituto di Elaborazione
dell’Informazione (later incorporated in what is nowadays called the Istituto di
Scienza e Tecnologie dell’Informazione (ISTI)), where Rocco had been employed
a couple of years earlier. Those were the years of the birth of formal verifica-
tion techniques and tools. Temporal logics [15,11,16,12,47,27,28,26,53] were very
much à la mode at that time and the first automatic tools for the verification of
concurrent systems, mostly model checkers [15,48,17,18,33], were being realised.

The late eighties was the time during which Rocco and Frits Vaandrager
worked on the definition of the so-called action-based branching-time temporal
logics, namely ACTL and its extended version ACTL∗ [23,24,25]. Such temporal
logics are highly suitable to express properties of concurrent systems specified
by means of process algebras.

2 S. Gnesi and M.H. ter Beek

1.2 Action-Based Temporal Logics

Process algebras [43,44,1,51,2] are generally recognised as being a convenient
means for describing concurrent systems at different levels of abstraction. Their
basic operational semantics is usually defined in terms of Labelled Transition
Systems (LTSs), which are then quotiented by means of observational equiva-
lences and allow the behaviour of a system to be analysed in relation to the
actions the specified system may perform.

Specific logics for process algebras were proposed (cf., e.g., [42,53]), typically
interpreted on LTSs, and ACTL and ACTL∗ were defined in this framework
as the action-based counterparts of CTL and CTL∗ [15,16,27,28]. In another
Festschrift contribution [6], we provided a more detailed historical account of
temporal logics for reasoning on state-based as well as action-based properties
and their interpretation structures, typically variants of the Doubly-Labelled
Transition Systems (L2TS) introduced by Rocco and Frits Vaandrager in [24,25].

1.3 Model Checking Action-Based Temporal Logics

Model-checking techniques [17,18] were defined to verify system properties, ex-
pressed as temporal logic formulae, on finite-state models of the behaviour of
systems. Once a model of a system has been generated, the properties are auto-
matically verified by model-checking tools.

An efficient model checker, called AMC, was defined for ACTL to verify
the satisfaction of ACTL formulae over states in an LTSs as a collaboration
between Stefania, Rocco and other colleagues from Pisa and was first presented
at CAV’91 [20,21]. The model checker AMC was later integrated in the JACK
verification environment [14], whose extended version also contains a symbolic
model checker for ACTL, called SAM [36], and they were successfully used to
verify properties expressed as ACTL formulae on several concurrent systems,
among which some interesting industrial case studies [19,13,36,38].

Following this initial experience and to better deal with the so-called state-
space explosion problem which is typical of explicit-state model checkers, the
on-the-fly model checker FMC [41] was developed by Franco Mazzanti, another
Formal Methods and Tools Lab member. This tool formed the basis on which a
family of model checkers, named KandISTI, has been developed at ISTI–CNR for
over two decades now; that family now includes besides FMC, the UML model
checker UMC [4], the model checker CMC for verifying specifications in the
Calculus for Orchestration of Web Services (COWS) [35] and—the most recent
member of the family—the variability model checker VMC [9,10]. Each tool
allows for the efficient verification, by means of explicit-state on-the-fly model
checking of a family of logics based on ACTL. The KandISTI model checkers,
available online at http://fmt.isti.cnr.it/kandisti/, allow for model checking with
a complexity that is linear with respect to the size of the model and the size of the
formula, when ignoring the fixed point operators and the parametric aspects of
the logics (in which cases the complexity depends on the number of nested fixed
point operators and the number of instantiations of parametric subformulae).

http://fmt.isti.cnr.it/kandisti/

Axiomatising and Contextualising ACTL 3

In yet another Festschrift contribution [7], we described the development of the
KandISTI family of model checkers from its origins.

1.4 The ERCIM Workshop on Theory and Practice in Verification

The eighties and nineties of the last century saw the birth of numerous events
concerning the formal verification of systems and protocols. The IFIP WG6.1
established the series of symposia on Protocol Specification, Testing and Verifica-
tion (PSTV) and conferences on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE). In 1989, exactly 30 years ago,
the conference series on Computer Aided Verification (CAV) began as a work-
shop on Automatic Verification Methods for Finite State Systems, including a
contribution by Rocco and some of his colleagues from Pisa [22]. Subsequently, a
steering committee composed of Edmund Clarke, Robert Kurshan, Amir Pnueli
and Joseph Sifakis decided that CAV was to be organised annually. Started as
a workshop, nowadays it is the premier international conference on formal veri-
fication. Together with colleagues from Pisa, Rocco and Stefania contributed to
CAV’91 with a paper that shows how to model check ACTL formulae [20].

A year later, in 1992, Stefania and colleagues from Pisa organised a work-
shop on the Theory and Practice in Verification at the CNR, in the context of
the European Research Consortium for Informatics and Mathematics (ERCIM),
founded in 1989 to foster collaborative work within the European ICT research
community and to increase co-operation with European industry, which CNR
joined in 1992. This workshop was the first ‘European’ meeting in the context of
formal verification and Rocco was among the participants, together with many of
the main actors in verification in the context of process algebras (cf. Figs. 1–2).

1.5 The Formal Methods and Tools Lab of ISTI–CNR

From that moment, formal verification became one of the main research fields
for us and we may say that this particular event, as well as the collaborations
with Rocco on ACTL, have played a major role in shaping the activity of the
Formal Methods and Tools Lab of ISTI–CNR from the nineties to this very day.

Since Maurice joined the lab in the beginning of this century, he has worked
together with Rocco and Stefania in a number of European and national projects,
most notably the FP6-IP-IST-016004 project SENSORIA (Software Engineering
for Service-Oriented Overlay Computers) and the FP7-FET-ICT-600708 project
QUANTICOL (A Quantitative Approach to Management and Design of Col-
lective and Adaptive Behaviours), as well as the MIUR–PRIN 2010LHT4KM
project CINA (Compositionality, Interaction, Negotiation, Autonomicity for the
future ICT society) and the most recently approved MIUR–PRIN 2017FTXR7S
project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems), both
coordinated by Rocco. During this period, he has become acquainted with ACTL
and he has helped to promote the model checkers from the KandISTI fam-
ily [8,9,10,5,7], which are characterised by their logics based on ACTL that allow
for the verification of action-based as well as state-based properties [3,4,6].

4 S. Gnesi and M.H. ter Beek

1.6 Contribution: An Axiomatisation of ACTL

An alternative to the model-theoretic approach to verification is the proof-
theoretic one, according to which a system is modelled in terms of set-theoretic
structures on which deduction rules are defined and theorems can be proved [49].
A proof assistant or theorem prover is an (interactive) tool which assists the user
in the development of formal proofs of properties of finite- as well as infinite-state
specifications, a known advantage over model checking. Furthermore, deductive
proofs can certify or justify the validity of a model-checking result [45,46]. How-
ever, there is no automatic procedure that can always determine whether there
exists a derivation of a given formula in a given logic setting, which is the reason
for which theorem proving typically involves interaction with a trained user.

The technical contribution of this paper is to present a set of axioms and
inference rules for ACTL, which provide a sound and complete axiom system
for ACTL, and which may thus form the basis for realising a proof-theoretic
approach to the verification of ACTL formulae. It complements the sound and
complete axiomatisations of CTL and CTL∗ first presented in [29] and [50],
respectively.1

1 A preliminary version of the axiom system was presented in [40]; here we provide
a more succinct set of axioms, based on the fact that the eventually and always
operators F and G can be expressed in terms of the Until operator U , cf. Section 3.

Fig. 1. Rocco, Stefania and several other contributors, as well as 3⁄4 of the editors of
this Festschrift, at the 1992 ERCIM Workshop on Theory and Practice in Verification.

Axiomatising and Contextualising ACTL 5

Fig. 2. Contents of the 1992 ERCIM Workshop on Theory and Practice in Verification
and the abstract of Rocco’s contribution (including his likely first-ever email address).

6 S. Gnesi and M.H. ter Beek

Outline

This paper is organised as follows. Section 2 provides some relevant prelimi-
nary definitions. Section 3 contains the definition of the sound and complete
axiomatisation of ACTL. Section 4 concludes the paper.

2 Basic Definitions

The semantic models for the action-based branching-time temporal logic ACTL
are Labelled Transition Systems (LTSs).

Definition 1. A Labelled Transition System (LTS) is a triple

L = (Q, −→ , A ∪ {τ}),

where

– Q is a set of states, and u, v, w, s, t, . . . range over Q.
– A is a finite and non-empty set of visible actions, and a, b, c, . . . range over A;
τ is the silent action, which is not in A. We let Aτ = A∪{τ} = {`1, `2, . . .}.

– −→⊆ Q×Aτ ×Q is the state transition relation. Instead of (s, `, t) ∈−→ ,

we also write s
`−→ t and we call such transition an `-transition.

Remark 1. Hereafter, when we write that a state t is a successor of s, we intend

that ∃ ` ∈ Aτ such that s
`−→ t; if s = t, such transition is called a loop (on `).

Definition 2. Let L = (Q, −→ , A ∪ {τ}) be an LTS and let

−→n = −→ × −→ ×· · ·× −→︸ ︷︷ ︸
n times

and −→∞ = −→ × −→ ×· · ·︸ ︷︷ ︸
∞ times

be Cartesian products of the state transition relation −→ . Then:

– an infinite sequence σ of ordered triples of the form

σ = (s0, `0, s1) (s1, `1, s2) (s2, `2, s3) · · · ∈−→∞

is called a path beginning in s0, and σ, π, δ range over paths.
– a finite sequence σ of ordered triples of the form

σ = (s0, `0, s1) (s1, `1, s2) · · · (sk−1, `k−1, sk) ∈−→k

is called a (finite) path from s0 to sk (of length k).
– a path σ that cannot be extended, i.e. σ is infinite or ends in a state without

outgoing transitions, is called a full path.
– σ(0) is the starting state of the path σ, also denoted by first(σ).
– σ(n), for some n ≥ 0, is the nth state of the path σ.
– if σ is a finite path, last(σ) denotes its last state.
– the nth suffix of σ, denoted by σn, with n ≤ k for finite paths of length k,

is the sequence that contains all the states of σ starting from σ(n), which is
thus included. Thus σ0 = σ.

– if σ is a finite path and δ is a path such that last(σ) = first(δ), the path
π = σδ is called a concatenation of σ and δ (and δ is a suffix of π).

Axiomatising and Contextualising ACTL 7

3 The Temporal Logic ACTL

The branching-time temporal logic ACTL [23] is the action-based version of
CTL [15,16] and its semantic models are LTSs. ACTL is suitable for describing
the behaviour of systems that perform actions during their execution. In fact,
ACTL embeds the idea of “evolution over time by actions” and is suitable for
describing the various possible temporal sequences of actions that characterise a
system. The original definition of ACTL includes an action calculus to improve
the expressiveness of its operators.

In this section, we consider an LTS L = (Q, −→ , A ∪ {τ}) as defined above.

Definition 3. Let a ∈ A. Then action formulae f, g are defined by the grammar:

f, g ::= a | ¬f | f ∨ g

Let Afor be the set of action formulae over A.

Intuitively, the action formulae are Boolean expressions over (visible) actions.

Next we define the satisfaction of an action formula f by a single action a,
and we denote this satisfaction by a |= f .

Definition 4. Let a ∈ A and let f, g ∈ Afor. Then:

a |= a always holds

a |= ¬b holds for each b ∈ A such that a 6= b

a |= ¬f iff a 6|= f

a |= f ∨ g iff a |= f or a |= g

It is common to let tt denote a formula that is always satisfied in a calculus and
to let ff correspond to ¬tt. In our action calculus Afor, we define the formula tt
by choosing an a ∈ A and letting tt = a∨¬a (i.e. all actions of A are permitted).

Given f ∈ Afor, the set of actions satisfying f is defined as JfK = { a | a |= f }.
Well-formed ACTL formulae are defined by the state formulae generated by

the following grammar.

Definition 5. Well-formed formulae φ, ψ of ACTL are defined by the grammar:

φ, ψ ::= tt | φ ∧ φ | ¬φ | ∀π | ∃π
π ::= Xτ φ | Xf φ | X φ | φ fU ψ | φ fUg ψ

where f, g ∈ Afor are action formulae.

Here, ∀ and ∃ are universal and existential path quantifiers, while X and U
are (action-based) neXt(time) and Until operators (first introduced in [23]).

8 S. Gnesi and M.H. ter Beek

3.1 Models for ACTL

Let L be a total LTS (i.e. each state has a successor) and let RL be a non-empty
and suffix-closed set of paths on L (i.e. σ ∈ RL implies σi ∈ RL for all i ≥ 0). The
tuple (L,RL) is called an extended LTS and it is a model for ACTL formulae.
We consider only total LTSs to simplify the ACTL axiom system presented next.
Note that this is not a limitation, since there is a simple way to transform any
finite path of an LTS into an infinite one: it suffices to add a loop on τ in its
final state. First, we define the satisfaction relation for ACTL formulae.

Definition 6. Let M be an extended LTS, let s ∈ Q be a state of M , and let σ
be a path of M . Then the satisfaction relation |= for well-formed ACTL formulae
φ, ψ is inductively defined as follows:

M, s |= tt always holds

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= ∀π iff ∀σ such that σ(0) = s : M,σ |= π

M, s |= ∃π iff ∃σ such that σ(0) = s and M,σ |= π

M, σ |= Xφ iff M,σ(1) |= φ

M, σ |= Xτ φ iff M,σ(1) |= φ and σ(0)
τ−→ σ(1)

M,σ |= Xf φ iff M,σ(1) |= φ and σ(0)
`−→ σ(1) such that ` 6= τ and ` |= f

M, σ |= φ fU ψ iff ∃ k ≥ 0 such that M,σ(k) |= ψ and ∀ 0 ≤ j < k :

M,σ(j) |= φ and (σ(j)
`−→ σ(j + 1))→ (` = τ or ` |= f)

M,σ |= φ fUg ψ iff ∃ k ≥ 0 such that M,σ(k + 1) |= ψ, M, σ(k) |= φ,

(σ(k)
`−→ σ(k + 1))→ (` |= g) and ∀ 0 ≤ j < k :

(M,σ(j) |= φ and (σ(j)
`−→ σ(j + 1))→ (` = τ or ` |= f))

The meaning of the propositional operators and the CTL path quantifiers is
standard. Intuitively, the neXt operator says that in the next state of the path
(reached by the silent action τ or by an action satisfying f) the formula φ holds;
the Until operator says that ψ holds at some future state of the path (reached
by an action satisfying g), while φ holds from the current state until that state
is reached and all actions executed meanwhile along the path satisfy f .

As usual, numerous modalities can be derived starting from these basic ones.
In particular, we may write ff for ¬tt and φ ∨ ψ for ¬(¬φ ∧ ¬ψ). Furthermore,
we define the following derived operators:

– ∃F φ stands for ∃[tt ttU φ]

– ∀Gφ stands for ¬∃F ¬φ
– 〈τ〉φ stands for ∃[tt ffU φ]

– 〈a〉φ stands for ∃[tt ffUa φ]

Axiomatising and Contextualising ACTL 9

The meaning of ∃F φ is that φ must eventually be true in a possible Future,
while ∀Gφ means that φ must always be true in all possible futures (Globally).
The meaning of 〈τ〉φ is that φ must be true in some future state reached by
zero or more τ -transitions. The meaning of 〈a〉φ is that φ must be true in some
future state reached by zero or more τ -transitions followed by an a-transition;
this resembles the diamond modality (possibly) of Hennessy–Milner logic [42],
which however does not require φ to be true immediately in the state reached
by the a-transition, but allows another zero or more τ -transitions also after the
a-transition before reaching the state in which φ is true (i.e. 〈a〉 〈τ〉φ in ACTL).
More details on the variants of Hennessy–Milner logic introduced in [42,52,24]
and their relation to ACTL can be found in [37]. Finally, the dual box modalities
(necessarily) of Hennessy–Milner logic, denoted by [·]φ, are defined by ¬〈·〉 ¬φ.

ACTL can thus be used to define the well-known properties of liveness
(“something good eventually happens”) and safety (“nothing bad can happen”).

Definition 7. Let M be an extended LTS and let s be a state of M . If M, s |= φ,
then we say that M is a model for φ in state s and that state formula φ is
satisfiable. Analogously for path formulae. We say that φ is valid, denoted by
|= φ, if φ is satisfiable for all models and all its states (for a state formula) and
similarly for a path formula.

Note that a formula is satisfiable iff its negation is not valid.

Notation 1. Neither ∀Xf∨τ φ nor ∃Xf∨τ φ is a well-formed ACTL formula.
Therefore, we define the following shorthands to be used in the rest of the paper:

∃Xf∨τ φ
def
= ∃Xf φ ∨ ∃Xτ φ

∀Xf∨τ φ
def
= ¬∃Xtt ¬φ ∧ ¬∃Xτ ¬φ ∧ ¬∃X¬f tt

We are now ready to present the main (technical) contribution of this paper.

3.2 An Axiom System for ACTL

We define an axiom system for ACTL, after which we present the main result of
this paper: the set of axioms and inference rules provides a sound and complete
axiomatisation of ACTL.

The axiom system for ACTL is shown in Fig. 3. We now provide some ex-
planations of this axiomatisation, discussing first the axioms and then the rules.

A0 represents any set of axioms that characterises the propositional tautologies.
A possible choice could be the following:

(A0/1) (φ ∨ φ)→ φ

(A0/2) φ→ (φ ∨ ψ)

(A0/3) (φ ∨ ψ)→ (ψ ∨ φ)

(A0/4) (φ→ ψ)→ ((φ ∨ γ)→ (ψ ∨ γ))

Together with the MP rule, this is a consistent and complete axiomatisation
of the calculus of the sentences.

10 S. Gnesi and M.H. ter Beek

ACTL axiom system

Axioms:

(A0) All tautology instances

(A1) ∃Xf φ↔
∨
a∈JfK

∃Xa φ

(A2) ∃Xf (φ ∨ ψ)↔ (∃Xf φ ∨ ∃Xf ψ)

(A3) ∃Xτ (φ ∨ ψ)↔ (∃Xτ φ ∨ ∃Xτ ψ)

(A4) ¬∀Xf tt↔∃Xτ tt ∨ ∃X¬f tt
(A5) ¬∀Xτ tt↔∃Xtt tt

(A6) ∀Xf φ↔∀X φ ∧ ∀Xf tt

(A7) ∀Xτ φ↔∀X φ ∧ ∀Xτ tt

(A8) ∃X φ↔∃Xtt φ ∨ ∃Xτ φ

(A9) ∀X φ↔¬∃X ¬φ
(A10) ∀X (φ→ ψ)→ (∃Xf φ→∃Xf ψ)

(A11) ∀X (φ→ ψ)→ (∃Xτ φ→∃Xτ ψ)

(A12) ∃X tt ∧ ∀X tt

(A13) ∃(φ fU ψ)↔ ψ ∨ (φ ∧ ∃Xf∨τ ∃(φ fU ψ))

(A14) ∀(φ fU ψ)↔ ψ ∨ (φ ∧ ∀Xf∨τ ∀(φ fU ψ))

(A15) ∃(φ fUg ψ)↔ φ ∧ (∃Xg ψ ∨ ∃Xf∨τ ∃(φ fUg ψ))

(A16) ∀(φ fUg ψ)↔ (φ ∧ ∀Xf∨g∨τ tt ∧ ¬∃X¬f∧g ¬ψ ∧
¬∃Xf∧g (¬∀(φ fUg ψ) ∧ ¬ψ) ∧ ¬∃X(f∧¬g)∨τ (¬∀(φ fUg ψ)))

(A17) ∀G (γ→ (¬ψ ∧ ¬∃Xf∨τ (∃(φ fU ψ) ∧ ¬γ)))→ (γ→¬∃(φ fU ψ))

(A18) ∀G (γ→ (¬(φ ∧ ∃Xg ψ) ∧ ¬∃Xf∨τ (∃(φ fUg ψ) ∧ ¬γ)))→
(γ→¬∃(φ fUg ψ))

(A19) ∀G (γ→ (¬ψ ∧ ∃X γ))→ (γ→¬∀(φ fU ψ))

(A20) ∀G (γ→ (∃X(f∧¬g)∨τ γ ∨ ∃Xf∧g (¬ψ ∧ γ)))→ (γ→¬∀(φ fUg ψ))

(A21) ∀G (γ→ (¬ψ ∧ ∃X γ))→ (γ→¬∀F ψ)

(A22) ∀G (γ→ (¬ψ ∧ ∀X γ))→ (γ→¬∃F ψ)

Rules:

(R∀X)
`φ
` ∀X φ

(MP)
`φ→ ψ `φ

`ψ
(R∀G)

`φ
` ∀Gφ

Fig. 3. The axiom system of ACTL.

Axiomatising and Contextualising ACTL 11

A1 defines the ∃Xf operator in terms of single action ∃Xa operators.

A2–A12 concern the quantified neXt operators. More precisely:

A2 distribution law related to visible actions satisfying f .

A3 distribution law related to the silent action τ .

A4 defines the relation between the universal and existential next operators.
It says that if not all the states that are successors of a state s are
reachable from s by satisfying f , then at least one of them is reachable
either by the silent action τ or by an action that does not satisfy f ; the
reverse holds too.

A5 defines the separation between the visible actions and the silent action.
It says that if not all the states that are successors of a state s are
reachable from s by the silent action τ , then there is one such successor
state that is reachable by a visible action satisfying f , and vice versa.

A6 defines the ∀Xf operator. It says that if a state s satisfies ∀Xf φ, then all
the successors of s satisfy φ (∀Xφ) and, moreover, they are all reachable
by actions that satisfy f (∀Xf tt).

A7 defines the ∀Xτ operator in a way that is analogous to A6.

A8 defines the ∃X operator.

A9 defines the ∀X operator as the dual of the ∃X operator.

A10 distribution law.

A11 distribution law.

A12 guarantees that each model for ACTL formulae must be total.

A13–A16 show the inductive way by which ∃(φ fU ψ), ∀(φ fU ψ), ∃(φ fUg ψ)
and ∀(φ fUg ψ) (in a slightly different way, cf. [40] for details) propagate
themselves along the paths of models. Note that A13–A16 do not forbid the
infinite unfolding of the Until operators, which is handled by A17–A20.

A17–A20 avoid the infinite unfolding of the Until operators. The trick is to use
a placeholder γ to characterise the case of infinite unfolding of an operator
O that should actually have a finite unfolding; we then say that if γ holds
in a state (i.e. such a state is the initial one for an infinite unfolding of O),
then in such a state O cannot hold.

A21–A22 avoid the infinite unfolding of the eventually operators F in a way
similar to the way this is done for the Until operators in A17–A20.

MP the usual Modus Ponens.

R∀X ensures that the theorems of the inference systems are closed under the
most general universal neXt operator.

R∀G ensures that the theorems of the inference systems are closed under the
always operator G.

12 S. Gnesi and M.H. ter Beek

We say that a formula φ can be inferred from an axiom system, denoted by
`φ, if there exists a finite sequence of formulae, ending with φ, such that each
formula is an instance of one of the axioms or follows from previous formulae by
applying one of the rules.

Finally, the next theorem ensures the soundness and completeness of the
axiom system for ACTL.

Theorem 1 (Soundness and Completeness). Each well-formed ACTL for-
mula φ is valid if and only if it can be inferred from the ACTL axiom system,
i.e.

`φ ↔ |= φ

Proof sketch. (`φ → |= φ) The soundness proof is a rather standard proof by
induction on the structure of the derivation of φ.

(|= φ → `φ) The completeness proof is quite long and tedious; therefore,
we only provide an outline. It uses a technique from [30,26] based on a decision
algorithm for the satisfiability of CTL formulae. This technique is a variant of
the tableau approach, which was applied to the branching-time logics considered
in [12,34].

A formula ψ is consistent if ¬ψ cannot be inferred from the axiom system.
To show that any valid ACTL formula can be inferred from the axiom system,
it thus suffices to show that any consistent ACTL formula is satisfiable.

Let φ be a consistent ACTL formula. Then we need to define a procedure
to characterise a model for φ in a structural way, i.e. in a way that allows us to
automatically build and manipulate an LTS to achieve a model for φ. To do so,
we define a Fischer–Ladner finite closure set for φ (cf. [39]) and a particular class
of LTSs, so-called Hintikka Structures (HS), as in [12,30]. HS have the property
that each of their states is labelled by a subset of the Fischer–Ladner closure of φ
and we say that an HS is an HS for φ if one of its states contains the formula φ.
The following property holds: each model for φ is an HS for φ, and each HS
for φ is extendible to a model for φ without changing the number of its states.
Hence, if we have an algorithm that returns an HS for φ, then we know that φ
is satisfiable.

In order to write a procedure that takes φ, calculates its Fischer–Ladner
closure and tries to build an HS for φ, we must ensure that such a procedure
will terminate, i.e. that it is possible to build a finite HS for φ if φ is satisfiable.
To achieve this, we prove that φ is satisfiable if and only if it is possible to build
a finite HS that satisfies φ.

We conclude this proof sketch with an outline of the above mentioned decision
procedure:

1. Calculate the Fischer–Ladner closure of φ.

2. Let M be the set of all maximal subsets of this closure. Build an LTS L
that satisfies a minimal subset of conditions among those defining an HS
and whose states are elements of M . This ensures that whenever a finite HS
for φ exists, it is contained in L.

Axiomatising and Contextualising ACTL 13

3. Purge all states of L that do not match the definition of HS. We prove that
(i) if φ is consistent, then there exists a consistent element S of M that
contains φ, and (ii) if a state is purged, then it was not consistent. Hence,
S cannot be purged by the procedure, and S will be a state of the resulting
HS that is calculated by the procedure. But S contains φ, so we obtain an
HS for φ and hence φ is satisfiable.

4 Conclusion

In this paper, we have revisited De Nicola & Vaandrager’s action-based logic
ACTL. We have sketched the context in which it was introduced 30 years ago
and the impact it has had on our research and that of many of our colleagues of
the Formal Methods and Tools Lab. Furthermore, we have revamped an axiom
system for ACTL that has originally been published in the proceedings of a
national conference [40], by providing a more concise sound and complete axiom
system for ACTL.

Axiomatisation of a logic is often said to offer a better understanding of the
logic. Moreover, the ACTL axiom system may form the basis for developing a
theorem prover for the verification of ACTL formulae. In [40], a preliminary proof
assistant for ACTL implemented in HOL (http://hol-theorem-prover.org) was
described. Other directions for future work include the consideration of infinite-
state systems, to overcome limitations of model checking, and to investigate
the use of ACTL theorem proving to certify or justify the validity of an ACTL
model-checking result.

Finally, it would be interesting to develop an axiom system also for ACTL∗.
This logic, as is the case for CTL∗, includes both linear- and branching-time
operators, and it is well known that the model-checking algorithms for this class
of logics are PSPACE-complete. A proof-theoretic approach for ACTL∗ formulae
might ease verification for at least some classes of properties. However, it is
known from [26] and [31,32] that the complexity of checking satisfiability of
CTL and CTL∗ is EXPTIME-complete and 2-EXPTIME-complete, respectively,
in the length of the formula.

Acknowledgements Stefania wishes to thank Salvatore Larosa, who worked on
the ACTL axiomatisation; Alessandro Fantechi, Franco Mazzanti, and Monica
Nesi, for interesting discussions on the preliminary version of the ACTL ax-
iomatisation; and Maurizio La Bella, who developed the ACTL proof assistant.
And, last but not least, Stefania would like to thank Rocco, for having initiated
this line of research that has led to so many interesting papers, projects, and
collaborations with many different people, and which in hindsight has made it
worthwhile to remain at the CNR.

Maurice also would like to thank Alessandro and Franco, for numerous pleas-
ant collaborations on, among others, ACTL-like logics and the KandISTI family.
And, of course, also Rocco, for quality time spent together during a number of
projects, not limited to research.

http://hol-theorem-prover.org

14 S. Gnesi and M.H. ter Beek

References

1. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in The-
oretical Computer Science, vol. 18. Cambridge University Press (1990). doi:
10.1017/CBO9780511624193

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. Cambridge University Press (2010). doi: 10.1017/CBO9781139195003

3. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Revised Selected Papers of the 12th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS’07). LNCS, vol. 4916,
133–148. Springer (2008). doi: 10.1007/978-3-540-79707-4 11

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Science of Com-
puter Programming 76(2), pp. 119–135 (2011). doi: 10.1016/j.scico.2010.07.002

5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for family-
based analysis of software product lines. In: Proceedings of the 19th International
Software Product Line Conference (SPLC’15), pp. 432–439. ACM (2015). doi:
10.1145/2791060.2791118

6. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: States and Events in Kand-
ISTI: A Retrospective. In: Models, Mindsets, Meta: The What, the How, and the
Why Not? LNCS, vol. 11200, pp. 110–128. Springer (2018).

7. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: Software, Services and Systems. LNCS, vol. 8950, pp. 312–328.
Springer (2015). doi: 10.1007/978-3-319-15545-6 20

8. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC–UMC: A framework for the verifi-
cation of abstract service-oriented properties. In: Proceedings of the 24th Annual
ACM Symposium on Applied Computing (SAC’09), pp. 2111–2117. ACM (2009).
doi: 10.1145/1529282.1529751

9. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: A tool for product variability
analysis. In: Proceedings of the 18th International Symposium on Formal Methods
(FM’12). LNCS, vol. 7436, pp. 450–454. Springer (2012). doi: 10.1007/978-3-642-
32759-9 36

10. ter Beek, M.H., Mazzanti, F.: VMC: Recent Advances and Challenges Ahead.
In: Proceedings of the 18th International Software Product Line Conference
(SPLC’14), pp. 70–77. ACM (2014). doi: 10.1145/2647908.2655969

11. Ben–Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. In:
Proceedings of the 8th Annual ACM SIGACT/SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL’81), pp. 164–176. ACM (1981). doi:
10.1145/567532.567551

12. Ben–Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta
Informatica 20(3), pp. 207–226 (1983). doi: 10.1007/BF01257083

13. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S., Mongardi, G., Ro-
mano, D.: A Formal Verification Environment for Railway Signaling System
Design. Formal Methods in System Design 12(2), pp. 139–161 (1998). doi:
10.1023/A:1008645826258

14. Bouali, A., Gnesi, S., Larosa, S.: JACK: Just Another Concurrency Kit – The
integration project. Bulletin of the EATCS 54, pp. 207–223 (1994).

Axiomatising and Contextualising ACTL 15

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proceedings of the Workshop on Logics of
Programs. LNCS, vol. 131, pp. 52–71. Springer (1981). doi: 10.1007/BFb0025774

16. Clarke, E.M., Emerson, E.A.: Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2(3), pp. 241–266
(1982). doi: 10.1016/0167-6423(83)90017-5

17. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In:
Proceedings of the 10th Annual ACM SIGACT/SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL’83), pp. 117–126. ACM (1983). doi:
10.1145/567067.567080

18. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2), pp. 244–263 (1986). doi: 10.1145/5397.5399

19. De Nicola, R., Fantechi, A., Gnesi, S., Larosa, S., Ristori, G.: Verifying hardware
components with JACK. In: Proceedings of the 8th Advanced Research Working
Conference on Correct HARdware Design MEthodologies (CHARME’95). LNCS,
vol. 987, pp. 246–260. Springer (1995). doi: 10.1007/3-540-60385-9 15

20. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action based framework
for verifying logical and behavioural properties of concurrent systems. In: Proceed-
ings of the 3rd International Workshop on Computer Aided Verification (CAV’91).
LNCS, vol. 575, pp. 37–47. Springer (1991). doi: 10.1007/3-540-55179-4 5

21. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action-based framework
for verifying logical and behavioural properties of concurrent systems. Com-
puter Networks and ISDN Systems 25(7), pp. 761–778 (1993). doi: 10.1016/0169-
7552(93)90047-8

22. De Nicola, R., Inverardi, P., Nesi, M.: Using the axiomatic presentation of be-
havioural equivalences for manipulating CCS specifications. In: Proceedings of the
International Workshop on Automatic Verification Methods for Finite State Sys-
tems. LNCS, vol. 407, pp. 54–67. Springer (1989). doi: 10.1007/3-540-52148-8 5

23. De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Semantics of Systems of Concurrent Processes: Proceedings of the
LITP Spring School on Theoretical Computer Science. LNCS, vol. 469, pp. 407–
419. Springer (1990). doi: 10.1007/3-540-53479-2 17

24. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation (extended
abstract). In: Proceedings of the 5th Annual Symposium on Logic in Computer
Science (LICS’90), pp. 118–129. IEEE (1990). doi: 10.1109/LICS.1990.113739

25. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. Journal
of the ACM 42(2), pp. 458–487 (1995). doi: 10.1145/201019.201032

26. Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science, vol. B: Formal Models and Semantics, pp. 995–1072. Elsevier (1990). doi:
10.1016/B978-0-444-88074-1.50021-4

27. Emerson E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time (preliminary report). In: Proceedings of the 10th Annual
ACM SIGACT/SIGPLAN Symposium on Principles of Programming Languages
(POPL’83), pp. 127–140. ACM (1983). doi: 10.1145/567067.567081

28. Emerson E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. Journal of the ACM 33(1) (1986), pp. 151–
178. doi: 10.1145/4904.4999

16 S. Gnesi and M.H. ter Beek

29. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Proceedings of the 14th Annual ACM Sym-
posium on Theory of Computing (STOC’82), pp. 169–180. ACM (1982). doi:
10.1145/800070.802190

30. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences 30(1),
pp. 1–24 (1985). doi: 10.1016/0022-0000(85)90001-7

31. Emerson, E.A., Jutla, C.S.: The Complexity of Tree Automata and Logics of
Programs (Extended Abstract). In: Proceedings of the 29th Annual Symposium
on Foundations of Computer Science (FOCS’88), pp. 328–337. IEEE (1988). doi:
10.1109/SFCS.1988.21949

32. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics
of programs. SIAM Journal on Computing 29(1), pp. 132–158 (1999). doi:
10.1137/S0097539793304741

33. Emerson, E.A., Lei, C.-L.: Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus (Extended Abstract). In: Proceedings of the First Annual IEEE
Symposium on Logic in Computer Science (LICS’86), pp. 267–278. IEEE (1986).

34. Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Information and
Control 61(3), pp. 175–201 (1984). doi: 10.1016/S0019-9958(84)80047-9

35. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
logical verification methodology for service-oriented computing. ACM Transac-
tions on Software Engineering and Methodology 21(3), pp. 16:1–16:46 (2012). doi:
10.1145/2211616.2211619

36. Fantechi, A., Gnesi, S., Mazzanti, F., Pugliese, R., Tronci, E.: A Symbolic Model
Checker for ACTL. In: Proceedings of the International Workshop on Current
Trends in Applied Formal Methods (FM-Trends’98), LNCS, vol. 1641, pp. 228–
242. Springer (1999). doi: 10.1007/3-540-48257-1 14

37. Fantechi, A., Gnesi, S., Ristori, G.: Model Checking for Action-Based Logics. For-
mal Methods in System Design 4(2), pp. 187–203 (1994). doi: 10.1007/BF01384084

38. Fantechi, A., Gnesi, S., Semini, L.: Formal Description and Validation for an In-
tegrity Policy Supporting Multiple Levels of Criticality. In: Dependable Comput-
ing and Fault-Tolerant Systems, vol. 12: Proceedings of the 7th IFIP international
Conference on Dependable Computing for Critical Applications (DCCA-7), pp.
129–146. IEEE (1999). doi: 10.1109/DCFTS.1999.814293

39. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18(2), pp. 194–211 (1979). doi: 10.1016/0022-
0000(79)90046-1

40. Gnesi, S., Larosa, S.: A sound and complete axiom system for the logic ACTL.
In: Proceedings of the 5th Italian Conference on Theoretical Computer Science
(ICTCS’95), pp. 343–358. World Scientific (1996). doi: 10.1142/9789814531184

41. Gnesi, S., Mazzanti, F.: On the fly verification of networks of automata In: Pro-
ceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99), pp. 1040–1046. CSREA Press (1999).

42. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency.
Journal of the ACM 32(1), pp. 137–161 (1985). doi: 10.1145/2455.2460

43. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985).
44. Milner, R.: Communication and Concurrency. Prentice Hall (1989).
45. Namjoshi, K.S.: Certifying Model Checkers. In: Proceedings of the 13th Interna-

tional Conference on Computer Aided Verification (CAV’01). LNCS, vol. 2102, pp.
2–13. Springer (2001). doi: 10.1007/3-540-44585-4 2

Axiomatising and Contextualising ACTL 17

46. Peled, D., Pnueli, A., Zuck, L.: From Falsification to Verification. In: Proceedings
of the 21st Conference on Foundations of Software Technology and Theoretical
Computer Science (FST TCS’01). LNCS, vol. 2245, pp. 292–304. Springer (2001).
doi: 10.1007/3-540-45294-X 25

47. Pnueli, A.: Linear and Branching Structures in the Semantics and Logics of Reac-
tive Systems. In: Proceedings of the 12th International Colloquium on Automata,
Languages, and Programming (ICALP’85). LNCS, vol. 194, pp. 15–32. Springer
(1985). doi: 10.1007/BFb001572

48. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Proceedings of the 5th International Symposium on Programming (Pro-
gramming’82). LNCS, vol. 137, pp. 337–351. Springer (1982). doi: 10.1007/3-540-
11494-7 22

49. Ray, S.: Scalable Techniques for Formal Verification. Springer (2010). doi:
10.1007/978-1-4419-5998-0

50. Reynolds, M.: An Axiomatization of Full Computation Tree Logic. The Journal of
Symbolic Logic 66(3), pp. 1011–1057 (2001). doi: 10.2307/2695091

51. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997).
52. Stirling, C.: An Introduction to Modal and Temporal Logics for CCS. In: Pro-

ceedings of the UK/Japan Workshop on Concurrency: Theory, Language, and Ar-
chitecture (CONCURRENCY’89). LNCS, vol. 491, pp. 2–20. Springer (1991). doi:
10.1007/3-540-53932-8 41

53. Stirling, C.: Modal and temporal logics. In: Handbook of Logic in Computer Science,
vol. 2: Background: Computational Structures, pp. 477–563. Oxford University
Press (1993).

	From the Archives of the Formal Methods and Tools Lab

