
The Web Object Store: an infrastructure for mining

semantics from web resources and their usage

TECHNICAL REPORTTECHNICAL REPORTTECHNICAL REPORTTECHNICAL REPORT

Mirco Nanni1*
, Fabrizio Silvestri

*
 Fosca Giannotti

*
, Dino Pedreschi

**

 *ISTI-CNR **Dipartimento di Informatica,

 Pisa, Italy Università di Pisa, Italy

 {mirco.nanni, fabrizio.silvestri, pedre@di.unipi.it

 fosca.giannotti}@isti.cnr.it

Abstract. The development of methods for an effective and efficient access to the

information contained in large masses of digital documents is a long-standing objective in

computer science research, and its importance is emphasized by the growing availability of

large information repositories. With the advent of the web, the methods for content delivery

evolved in the services offered by search engines, categorization and topic search services,

related pages services, etc.: the main innovation needed was a shift from content-only

analysis methods to the combined analysis of contents and hyperlinked structure of web

documents, as witnessed by the PageRank metric for document relevance. However, as the

web explosion continues, the limitations of the current generation of access services to web

contents are becoming clearer, in terms of scarce quality and freshness of the results, etc.

The overall vision presented in this paper is the development of a new generation of

services for enhanced content delivery – web search, document classification, question

answering, etc. – tailored for a large-scale community of web users, and based on the use of

knowledge extraction methods for enriching raw data with automatically-extracted semantic

information. We refer to such category of services as Usage-enhanced Web-Access services

(UWA), emphasizing the fact that they are based on a combination of web usage, web

content and web structure mining. Usage data are those that the community of web users

decides to share, on a privacy-preserving basis, in a participatory style. Usage-enhanced

Web-Access services (UWA) applications are complex, for several reasons. They deal with

enormous volumes of data. They deal with continuously incoming streams of data. They

deal with different abstractions of the data. They apply computationally expensive data

mining algorithms on the data. The needed infrastructure for supporting the development of

UWA applications is called, in our project, Web Object Store – WOS – a web data

management system specialized in dealing with web content, structure and usage data. The

WOS is designed to provide persistency, compression and efficient access methods for data

structures representing basic web objects (Web documents, URIs, Citations, and HTTP

requests), and to help the development of sophisticated applications that need complex data

structures and advanced analysis methods.

Keywords: Data Mining, Web Usage Mining, Web Semantics, Knowledge Discovery

Support Environment, Web Data Management System, Enhanced Content Delivery

services.

1 Contact author.

1 Introduction

The development of methods for accessing, retrieving, filtering, and discovering of

desired contents within large masses of digital documents is a long-standing objective in

computer science research, which received always increasing attention – due to the

increasing availability of larger and larger information repositories. To this general purpose,

methods developed for information retrieval, intelligent query answering, document

classification and categorization, text mining, etc. are based on the analysis of document

content. With the advent of the web, the methods for content delivery evolved in the

services offered by search engines, categorization and topic search services, related pages

services, etc.: the main innovation needed was the combined analysis of contents and

hyperlinked structure of web documents, as witnessed by the PageRank metric for

document relevance.

Despite the vast popularity of search engines, as the web explosion continues, the

limitations of the current generation of access services to web contents are becoming

clearer, in terms of:

− scarce precision and quality, difficulty of matching users’ desire to obtain

relevant high-quality information in response to queries or questions;

− scarce readiness to novelty: the ranking mechanisms of search engines

penalize new important pages that enter the scene, in a inertial phenomenon

where “rich get richer” and fresh important information is not delivered to

users (see [5]);

− inadequate conceptual tools for managing the complexity of query results.

If these weaknesses are due, in part, to the overwhelming over-abundance of low-

quality, irrelevant web material that obfuscates the search, it is widely accepted that the

main impediment lies in the lack of semantics of the web documents: there is a lot of tacit

knowledge hidden in such documents – background information and experience, social

conventions – and it is often impossible to discover such knowledge from the syntactic

nature of the available web resources. The awareness of these limitations is precisely at the

basis of the Semantic Web effort, aimed primarily at finding ways to annotate web

documents with semantic tags in order to access knowledge instead of rough unstructured

material. While we adhere to this agreeable, illuminist, far-reaching vision of the semantic

web, we are also aware that it is essentially a long-standing goal, which will require time

and large efforts to be achieved. What to do in the meanwhile? The answer seems obligate:

try to extract as much semantics/knowledge as possible from the available web information,

and use such semantics/knowledge to improve the services to access, retrieve, filter,

discover desired web contents. While we wait for the optimum – the semantic web – let’s

try to live with an imperfect approximation – the web semantics that we can derive using

data mining and knowledge discovery methods over available web-related information. It

should be observed that mining web semantics is not in contraposition with semantic web,

as the achieved techniques may easily evolve synergistically as the semantic web becomes

a reality (see [20]).

To this extent, another crucial source of information entered the scene in the last few

years: the web usage data, recorded in log files by web servers or proxy servers;

potentially, these data contain information on how people use (access) the web resources,

and web usage mining techniques have been put forward to extract such information.

Accordingly, a first generation of web usage mining applications has been proposed,

ranging from:

− adaptive sites, which adjust dynamically their structure in response to users’

behavior (e.g., see [19]);

− recommendation systems, which exploit user profiles extracted form the usage

data to suggest alternative products, related pages, etc. (see [1]);

− proxy-level intelligent caching and prefetching of web pages, which improves

performance in accessing contents on the basis of previous experience (see [17]).

So far, web usage mining applications are mostly limited at improving local resources on

the basis of how the external world looks at you (your own site, your own proxy) on the

basis of the locally gathered usage information. Albeit interesting, these applications just

scratch the surface of the potential knowledge that is hidden in the usage data – in principle,

there are unprecedented opportunities to learn precious knowledge from the traces of

people’s access to the web resources. So far, no application is based on the analysis of how

a given group of users access the general web, with the aim of exploiting such usage

information to the purpose of providing enhanced access to web resources to the users from

this group.

The point of view advocated in this paper is that it is possible to deliver better contents

with combined web content, structure and usage mining. If a sufficiently large group of

web users is willing to share its usage data, on a privacy-preserving basis, then it is in

principle possible to learn from these data new models and patterns that, in combination

with document content and structure analysis, may yield enhanced, semantics-based content

access and delivery – better search services, better categorization and document

classification services, better question answering services.

The key idea is that, starting from usage data and network traffic information, is not only

possible to derive models of the users’ behavior, but also, indirectly, discover semantics of

the content of the accessed resources. Two examples are the following.

Example 1. By analyzing traffic data, e.g., at proxy level, it is possible to reconstruct

sessions consisting of queries to search engines followed by accesses to some of the pages

presented in the query result. From these query sessions it is possible to extract models,

which describe how users in the community use some search services, in order to provide to

such users sharper focus on content that emerges as important from the community’s

behavior.

Example 2. From usage data it is possible to reconstruct the web subgraph that is

accessed by the community, with links adorned with traffic measures. Information about

contents can be induced from this “traffic graph”, e.g. about new interesting sites visited by

users of the community – even weak signals about new pages with high potential quality

can be discovered, fed to the crawler of the community search service for download, and

promoted in their rank adopting a generalized PageRank metric that combines content,

structure and usage of web pages.

1.1 Vision

Summarizing, we envisage the development of a new generation of services for

enhanced content delivery – web search, document classification, question answering, … –

tailored for a large-scale community of web users, and based on semantics/knowledge

extracted by means of an intertwined combination of web content, structure and usage

mining. Usage data are those that the community of web users decides to share, on a

privacy-preserving basis, in a participatory style.

Enhancements in contents access and delivery is rooted, besides in better analysis of

documents’ contents and structure, in the ability of combining knowledge induced from

usage data, describing how users within the community access to web resources outside

(and possibly also inside) the community. This general goals is pursued within an Italian

national project called ECD – Enhanced Content Delivery – funded by the Ministry of

Research.

Some Usage-enhanced Web-Access services – UWA services from now on – of this

combined style are sketchily reported below, which are currently pursued within our

project.

− Characterization, on the basis of usage only or usage + contents + structure, of

new important emerging sites, or irrelevant sites (e.g., advertising sites); this is

crucial to instruct the crawler of the community web repository towards fresh,

relevant documents while avoiding unimportant documents (see [7]).

− Page ranking based not only on static hyperlink structure, but also on usage

information, for achieving a more accurate and dynamic measurement of

documents’ importance.

− Recommendation of similar/related documents and keywords, on the basis of

combined usage/content analysis (see [1]).

− Caching and clustering of web search results (see [18]).

Another example is the intelligent query answering proposed by Chakrabarti et al., that

learns from training sets of query-answer pairs accumulated by using the system (see [6]).

Are the advocated communities of web users existing, and willing to share their usage

data to obtain enhanced access services to contents? Strictly speaking, any group of users

which share a proxy server (or a collection thereof) is a candidate community, as web

traffic logs of appropriate format can be recorded at proxy level. Examples include (i)

students, professors/researchers of a large university campus/research centre, (ii) citizens,

administrators and policy makers of a town/province, (iii) customers of a geographically

distributed Internet provider. An important caveat to be taken into account is privacy. The

usage data analysis should be based on privacy-preserving mining methods (see [11]),

capable of assuring the individual user that sensitive data (about preferences, accessed sites,

etc.) is never disclosed. In a trustable setting, where sensitive usage data are shared to the

purpose of developing public knowledge which helps in achieving better access to contents

(and not to the purpose of individual surveillance), the advocated notion of web user

community may exist, in a participatory style where everybody contributes to better service

to the whole community.

Is this scenario technically feasible? The main objective of this paper is to illustrate the

underlying principles and the architecture of an enabling infrastructure for extracting

semantics from web resources and their usage data, to the purpose of deploying usage-

enhanced web-access services.

1.2 An infrastructure for mining semantics from web resources and their usage

UWA services, such as those described later in this paper, are complex, for several

reasons. They have to deal with enormous volumes of data. They have to deal with

continuously incoming streams of usage data. They have to deal with different abstractions

of the data. They need to apply computationally expensive data mining algorithms on the

data. An enabling infrastructure to develop UWA services, which facilitates mining

semantics annotation from rough web data, needs therefore to satisfy a number of

requirements.

First, it should provide useful abstractions of web-related concepts, and enable their

direct deployment at different levels: for instance, a comprehensive ontology of usage

concepts is needed, ranging from elementary access log entries to page-views, sessions or

specific types of sessions. This is needed because UWA services may refer to usage and

content information at different levels of abstraction, or need to create their own specific

abstractions from basic ones in a direct way.

Second, it should provide a comprehensive repertoire of pattern and model types, to

represent the extracted knowledge/semantics to be used in constructing UWA services.

Again, this is needed because UWA services may need a wide variety of mining models

(frequent patterns, rules, classifiers, predictors, clusterings), or may need to create their own

specific models from basic ones in a direct way.

Third, it should provide extremely efficient data structures for both data and models –

both space and time efficient – and should guarantee persistency over time, in order to

provide easy and tractable means to deal with previously extracted knowledge. Issues here

include data compression and specific access methods.

The needed infrastructure for supporting the development of UWA services is called, in

this paper, a Web Object Store – WOS – a web data management system specialized in

dealing with web content, structure and usage data. The WOS is precisely designed to

provide persistency, compression and efficient access methods for data structures

representing basic web objects:

− Web documents,

− URLs and URIs,

− Citations and web graphs,

− HTTP requests,

− Page views,

− User sessions.

Besides basic web objects and their access methods, the WOS provides means for

accommodating data structures representing the knowledge extracted by information

retrieval or data mining algorithms from the basic data:

− Indexes,

− Traffic graphs,

− Classification rules,

− Models, patterns.

The WOS is also designed to support easy extensibility of basic web objects and other

concepts to higher-level abstractions.

In this paper we illustrate the design principles and the architecture of the Web Object

Store, and show by means of both concrete and visionary examples how the WOS may act

as the enabling infrastructure for the construction of UWA services, capable of adding more

semantics to web-access on the basis of usage information. The paper is organized as

follows: in Section 2 the Web Object Store is presented along with the description of its

classes and application categories; in Section 3 we present the methods that can be followed

in order to populate the WOS; in Section 4, a sample WOS application is described;

finally, Section 5 presents a large scale WOS application and in Section 6 some conlusions

are briefly summarized.

We are well aware that this is a very ambitious project, and that very strong competitors

exist both on the research and the industry side. We believe however that realizing the

WOS has a specific value and a specific orientation (towards web usage) which

characterizes the goal and creates novel research challenges. It should be noted that there

are at least three possible deployment strategies for the WOS that could be followed,

corresponding to incremental maturity stages of the project:

− A research infrastructure, in the spirit of the WebBase project at Stanford

University [3], over which new specific algorithms and UWA services may be

experimentally created and validated;

− An infrastructure for web analytics services to be offered to third parties, in a spirit

close to the WebFountain IBM project [4];

− An industrial Web Data Management Systems aimed at developing and

engineering web mining ECD applications.

In any case, a sensible novelty with respect to the mentioned related projects (the

WebBase and WebFountain projects, two impressively large university and industrial

initiatives) is in the orientation of services towards a community of web users, and the

explicit combination of content and usage that the community decides to share.

2 The Web Object Store

The Web Object Store (WOS) is part of the development environment for Enhanced

Content Delivery applications.In Figure 1 the components of the WOS architecture are

shown. The WOS represents the central Data Warehousing system where data coming from

various sources (Web documents, Web logs, etc.) are collected by specialized populating

algorithms (Web crawler, Traffic monitor, etc.). Such data are stored in data structures and

handled by means of ad hoc algorithms, forming what we call µWOS. The µWOS is the

kernel that provides the very basic data to be used in ECD applications. It also provides the

algorithms to access them. On top of the µWOS several layers of algorithms and (possibly)

additional shared data structures can be developed within the WOS. Eventually, such

algorithms are exploited to derive languages and applications (including user interfaces) or

are used by other WOS algorithms or populating algorithms.

Fig. 1. Architecture of ECD Applications Development Environment

In the following sections the content of the µWOS is described. In the last part an

example of extension of the basic data structures by means of a WOS algorithm layer is

presented..

2.1 µµµµWOS Classes

The four basic repositories of data provided by the kernel of the WOS are:

HTTPRequests (Usage data), Citations (Structure Data), Documents (Content data) and

URIs. These repositories, modeled as classes in an object-oriented environment, provide a

minimum kernel of concepts which allow to extract compound and extended entities that

will be exemplified in later sections. A basic set of attributes and methods for each class is

provided, together with descriptions and notes on entities modeled where needed.

URI. A Uniform Resource Identifier (URI) is a compact string of characters that

identifies a resource. Familiar examples include an electronic document, an image, a

service (e.g., "today's weather report for Pisa"), and a collection of other resources. Please

note that not all resources are network "retrievable"; e.g., human beings, corporations, and

bound books in a library can also be considered resources. A URI can be further classified

as a locator, a name, or both. The term "Uniform Resource Locator" (URL) refers to the

subset of URI that identify resources via a representation of their primary access

mechanism (e.g., their network "location"), rather than identifying the resource by name or

by some other attribute(s) of that resource. The following example illustrates a URI

represented by means of a http address scheme: http://www.math.uio.no/faq/compression-

faq/part1.html.

The kernel of WOS is able to manage URI objects.. Within the WOS, each URI

corresponds to exactly one object in the Document class (described later) that stores the

content of such resource.

HttpRequest. When a user visits a web page, the browser sends a number of requests to

a web server. One request is for the HTML file but individual requests for each of the other

elements that make up the web page are also sent. For instance, requests for graphic files,

audio files and so on.

We define an HttpRequest as the generic request to a Web server to retrieve a resource,

for example an HTML page or its parts. The information stored by a HttpRequest usually

complies with the Common Log Format (CLF). The CLF format will be described in some

detail in section 3.2.

HttpRequest objects store these values in corresponding attributes, providing methods

for accessing them. In particular, the Request field is modelled as a pointer to the URI

element that represents the requested resource. URI objects are in one-to-many relation with

HttpRequest objects because more distinct HttpRequest objects could represent requests to

the same resource.

Citation. The link structure of the Web can be represented as a digraph. The Web pages

being its nodes and the links between pages being its directed edges. The Citation class

exactly describes an edge of such graph, and therefore stores the URI of a source web page

(the origin of the edge) and the URI of a target page (the destination of the edge) which is

linked by the first one. Both URIs are modeled as references to the corresponding URI

objects stored in the µWOS.

Document. Each object in this class virtually contains a copy of a resource which is in

one-to-one correspondence with a URI object. . The content of the resource is physically

stored as a compressed file in the underlying file system, and can be retrieved and

uncompressed by means of the methods provided by the class.

2.2 WOS Application Categories

The WOS allows the building of three different application categories. Aim of this

section is to introduce a precise terminology that will be used later on. To this purpose we

are going to describe the characteristics and the Application Programming Interface (API)

of WOS algorithms.

2.2.1 WOS Algorithms, User’s Applications and WOS Languages

A WOS application can be defined as “a software module that is designed to exploit the

repositories and access methods of the µWOS in order to produce non-trivial information

and, eventually, to store it in the WOS”.

Basically, when referring to WOS applications we should distinguish among three

distinct types of software systems:

1. WOS algorithms;

2. User’s applications;

3. WOS languages.

We have three different types of modules that can be implemented using the WOS

framework since each of them is suitable for different purposes. Referring to Figure 1, we

notice that the first kind of modules are part of the WOS, and are thought as extensions of

the basic µWOS, while the last two are built on top of the WOS architecture.

WOS Algorithms. As described before, WOS algorithms are essentially software layers

that extend µWOS repositories and methods. WOS algorithms are built on top of the

µWOS and of a number of other algorithm layers, to the purpose of providing other, more

complex services to be used by upper level layers, including user’s applications and WOS

languages. As an example, we could think about a service that is able to provide, given the

URI of a Web page, URIs of semantically related pages or URIs of pages reachable

traversing at most a given number of links. These kinds of applications, in particular, are

not directly accessible by end-users, and can be accessed only by other WOS applications

that can possibly provide also some kind of interface towards end-users.

User’s Applications. User’s applications may be essentially defined as software

interfaces built on top of the µWOS and a certain number of underlying algorithm layers,

which is able to interact with end-users. In Section 4, a WOS user’s application, called

Suggest, will be presented in detail. Such user’s application is aimed to output suggestions

to users of a Proxy Server.

WOS Languages. They are strictly related to User’s Applications, and the main

difference relies on the exposed user interface. In this case the interfaces represent a kind

of higher-level access methods to the capabilities of the WOS architecture. An example of

WOS Language may be a query language designed to allow the specification of queries to

extract patterns from Web-Usage/Structure data.

2.2.2 WOS Algorithms Interface

While the WOS architecture can be freely extended by users with the algorithms and

data structures they need, adopting the application interface they want, two basic principles

have been followed so far in the development of such extensions, especially on the

algorithm interface level, which are recommended also to third-party developers:

1. Homogeneity: the user interface should provide a standard set of methods for

populating and accessing the resource (i.e., repository) they are creating. Such

methods should include: constructors for creating and populating the repository

(where the application-dependant parameters are specified), destructors for erasing

(part of) it, and a set of indexes (at least one) for accessing the objects it contains.

For each index the methods for random access and sequential access via cursors on

the repository should be provided.

2. Flexibility: as far as possible, general purpose algorithms should be applicable to

any data type which provides a minimal set of standard access and manipulation

methods, strictly required by the specific algorithm. As an example, some kind of

clustering algorithms, such as the hierarchical agglomerative ones, simply require

to be able identify the objects and to compute object-to-object distances,

regardless of the data type.

A pragmatic way to achieve such goals consists in the adoption of a hierarchy of data

type classes, which is built on the base of the access capabilities they provide. Each

algorithm, then, will accept as input any data type satisfying its data access requirements,

which correspond to the simplest data type class with that characteristic. So far, a simple

hierarchy has been adopted, amenable to step-wise refinements and extensions, which (i)

distinguishes data repository types in sequential access and random access types, possibly

combined together, and (ii) classifies the objects stored in such repositories in relation to

the operations they are able to perform, such as returning their (unique) ID or the ID of the

transaction they belong to (useful in transaction-based algorithms), and computing some

kind of distance w.r.t. another object. As an example, Figure 2 depicts the access

capabilities (listed on the top row) and object-manipulation methods (on the right column)

required by some data mining and data navigation algorithms: clustering, frequent patterns

and citations navigation (i.e., navigating the web structure).

Fig. 2. Sample Data Types for general-purpose WOS algorithms

We notice that in most of these examples, a simple sequential scan of the data is

required, since the algorithms usually build an internal, minimal and efficient,

representation of the data for their successive computations. In more complex cases,

however, more sophisticated access methods can be required, e.g., efficient range queries,

which are heavily used by any density-based clustering algorithm.

2.3 Sample WOS Algorithms for Semantic Information Extraction

In this section, we provide two examples of algorithms designed to be integrated in the

WOS architecture. Both of them can be considered as tools for enriching the basic usage

and content information managed by the µWOS with higher-level concepts and mappings

from raw data to such concepts. To give a glimpse of the wide range of possible WOS

applications of this kind which can be developed, the first example will be a simple case

which provides basic abstractions of usage data by means of elementary heuristics, while

the second one will extract complex information on content data, making use of elaborated

data analysis techniques.

2.3.1 Extraction of Usage Data Abstractions

The abstractions presented in Section 2.1 represent a minimal core to be extended.

Preprocessing routines extract new objects having HttpRequest, Citation, Document and

URI as basic data. So, the µWOS can be extended to model new significant entities or to

group existent ones into collections in order to handle aggregated information easily. As an

example, we describe here three abstractions of the basic HttpRequest entity, also depicted

in Figure 3:

• PageView: is defined as the visual rendering of a Web Page. In other words, a

Pageview consists of several items, such as frames, text, graphics and scripts that

construct a single Web page. A PageView is represented in WOS as a set of

HttpRequest objects.

• Session: is defined as a sequence (i.e., an ordered collection) of PageViews

requested by the same user in a browsing session in a chronological order. Session

objects can be intra-site, i.e., composed of PageViews belonging to the same host,

or inter-site if the session tracks the user through more hosts.

• User: is defined as a chronologically ordered sequence of sessions together with

the available information about the users.

Depending of the context, several variants of the above mentioned abstractions could be

developed. As an example, we describe here a specialization developed in order to evaluate

the usefulness of the results returned by a search engine:

• Q-Session: is defined as a maximal subsequence of a Session, which

starts with a query to a search engine (usually explicitly represented as a

parameter in the URI requested to the search engine) and does not contain

any other query. The Q-Sessions are represented as couples (Q,S), Q

being the submitted query string and S being the Q-session originated

from that query. Some applications of Q-Sessions will be outlined in

Section 5.

The data abstractions listed above represent simple examples of higher level concepts

built upon raw data (the web usage logs). Such concepts are computed by a set of

preprocessing algorithms organized into a library that is accessible by all the components of

the WOS. Such algorithms work on the basic classes provided by the µWOS, and

implement standard and well-established web log preprocessing heuristics., which can be

summarized in the following way:

• Each web page (HTML, PHP, etc.) constitutes a separate PageView, which

includes also all its embedded objects (usually multimedia components). Such

“embedding” relation can be obtained analysing all the HttpRequests from the

same client, either by trivially exploiting the Referrer field, if available, or by

selecting all multimedia resources requested after the web page within a time

window. In order to treat framesets, PageViews closer to each other than a

given time threshold, are collapsed and assumed to be frames of the same set.

• User sessions are extracted by imposing that any couple of PageViews

requested by the same client having dates closer than a given time threshold

must be part of the same session. The user sessions are then obtained by

Fig. 3. Usage Data Abstractions

computing a simple, linear transitive closure of such relation between

PageViews, and keeping them sorted w.r.t. the chronological order of their

corresponding HttpRequests.

• Q-sessions are obtained in the same way as user sessions, but selecting only

the relevant sub-sessions (those starting with a search query) and extracting

the query string from their first PageView.

• Finally, each user is described by trivially collecting all his user sessions and

some simple derived information, such as the average length of sessions, the

set of browsers and protocols adopted, his IP number, etc.

As for the µWOS components, the new classes provide a simple interface with methods

for accessing their content and for navigating the tree structure of concepts they form.

2.3.2 Labelling Content Data with traffic-based semantic information

As the above section demonstrates, reorganizing the usage information contained in the

web logs into a significant structure of concepts is a quite easy task (provided that some

approximation is allowed), both at the design and at the implementation levels. For content

data, including both the documents that populate the Web and their link structure, the

situation is completely different. Beside the purely administrative organization of web

pages into levels of domains/sub-domains and directories/sub-directories, which is trivially

obtained by analyzing URIs, it is difficult to design meaningful, consistent and computable

conceptualizations of the raw data. As an example, mapping web pages to concepts like

topics (sport, economics, etc.) or user communities (business professionals, Linux home

users, etc.), can easily result into arbitrary choices and presents several implementation

issues, due to the intrinsic vagueness of the classes of concepts and to the high inter- and

intra-document heterogeneity of web pages.

A large research area which in the last years yielded successful – yet far from definitive

– results in such direction is the Search Engines field, at the top of which stand several

proposals of algorithms and methods for web pages ranking, such as the well-known HITS

and PageRank algorithms. Such methods essentially analyze the content of web pages and

their link structure in order to induce some kind of mapping between web pages and high

level concepts like interesting page, page relevant to query Q, and so on, usually yielding

the strength of such association, e.g., the importance rank provided by PageRank.

An important characterization of web pages consists in the distinction of real content

pages as opposed to trash content. The most representative categories of the second type

are advertising sites and counter servers: both categories provide some kind of service for

other web pages (respectively, ad banners and visitors statistics) but do not contain any

meaningful information for the user which is navigating the web. From the viewpoint of a

web searching service, they are useless segments of Internet that degrade its performances,

by consuming extra time and bandwidth during its web crawling activity and by adding

noise during the query answering phase.

In this section we describe a WOS algorithm introduced in [7], which implements an

heuristics for recognizing some categories of advertising and counters sites. Actual

methods, either proposed in the search engine literature or applied in commercial systems,

are usually based on traditional document classification techniques (i.e., content-only, text

analysis heuristics) or on more sophisticated linkage-based approaches, such as the

TrustRank propagation model proposed in [8]. On the opposite, the idea of our approach is

that by analyzing the users’ behavior (stored in the usage data) it is possible to induce some

semantic information about the content of the visited pages, especially when extreme

behaviors occur, as it will be explained later in this section. The algorithm makes use of the

usage data collected at the level of a proxy server and stored in the µWOS, adds an

intermediate data structure (the Traffic Graph) to the WOS which can be exploited by other

WOS algorithms, and finally provides an approximated mapping from web sites to the two

categories content and advertising/counters, also added to the WOS and visible to other

algorithms.

a. Usage-induced link structure of the Web

The canonical view of the Web adopted in the search engine field, also implemented in

the Citation class of the µWOS, is essentially based on its link structure, which is

represented as a simple oriented graph, the web pages being its vertices and the links the

(oriented) edges between them. In the context of traffic data, each transition from page A to

page B in a user session corresponds to a link contained in page A that points to page B. The

set of page transitions that can be collected by tracing the web activity of a community of

users, then, essentially represents a sub-graph of the whole Web, each vertex corresponding

to a page and each edge to a page transition. The same page transition usually occurs more

than once, so each transition is associated with a frequency weight. This leads to the

following definition:

Definition 1 (Traffic Graph) Let S = ‹(1,r1,d1),…,(N,rN,dN)› be a sequence of N web

requests monitored in a web community over a given time interval, each request being

composed of a referrer ri (i.e. the page where the request is originated) and a destination di

(i.e. the page requested). Then we define the Traffic Graph of S (or simply Traffic Graph,

when S is clear from the context) as a triple TG = (V,E,T), where:

 Fig. 4. Example of Traffic Graph

The vertices V are called pages, while the edges in E are called transitions. Finally,

function Tp : V� N is called the Traffic of pages, while Tt : E� N is called the Traffic of

transitions. Hereinafter, the subscripts of the traffic functions are omitted when clear from

the context.

V = {r1,d1,…,rN,dN}

E = {(r1,d1),…,(rN,dN)}

Tt(p,q) = |{(n,p,q) ∈ S}| for p,q ∈ V

Tp(p) = ∑(p,q) ∈ E Tt(p,q) for p ∈ V

Figure 4 depicts (a segment of) a sample Traffic Graph for four pages, where T(q1)=5,

T(q2)=0, T(q3)=6, T(p)=15, T(q1, p)=7, T(q2, p)=3, T(q1, p)=5, while T(p, q1), T(p, q2), etc.

are not defined. Notice that, from the mathematical definition, the traffic of a page can be

higher than the page traffic.

b. Characterizing web traffic

The traffic graph defined above summarizes the traffic load over the web, and some

interesting patterns can be defined and retrieved directly on such summary, such as high

traffic links and high traffic pages. However, a more sophisticated approach can be

obtained evaluating the success of web pages, i.e., how often the references to some pages

are followed by users (even not voluntarily). We can formalize this notion by defining the

following parameter, which computes the relative incoming traffic of web pages:

Definition 2 (Relative Traffic) Given a traffic graph TG = (V,E,T), the relative traffic

R(p) of a page p ∈ V is defined in the following way:

R(p) = Φ(q,p)∈E R(q,p) for p ∈ V

where

 >

=
otherwisep)/T(q)T(q,

T(q) p)T(q, if1
 p)R(q,

and Φ : 2R � R is an aggregation operator over sets of real numbers, e.g., average,

minimum and maximum.

A similar representation of web traffic can be also found in [9], where estimated

probabilities conceptually equivalent to relative traffic are associated to links.

In several cases, reasoning on single pages can be too fine-grained an approach.

Therefore, it is useful to extend the definition above to different abstraction levels, such as

web sites or web domains. This can be achieved by simply collapsing the web pages

belonging to the same abstraction, summing up their traffic measure and deriving the

corresponding relative traffic.

c. Integrating the traffic graph in the WOS

Usage-induced link structure and additional parameters are easily implemented within

the WOS. The µWOS and the abstractions presented in the previous section (PageViews,

Sessions and Users) can be extended to store and handle the traffic information. In

particular, a new usage-oriented version of the Citation class has been provided, which

represents the visit of an host from another one, in a referrer-destination format. As

mentioned, different abstraction levels can be adopted for traffic analysis, and each level

will require managing objects of different granularity. At the lowest level, single pages will

be considered, by referring to the corresponding PageView objects. Adopting a higher

abstraction, on the contrary, will require to collapse groups of pages, reducing the size of

the traffic graph to be managed. In this situation, the same usage-oriented Citation class is

used, where each higher-level object represents a set of (corresponding) single pages and

contains an aggregation of their traffic function.

d. A Heuristic for high traffic advertising/counters

As already mentioned, we focus on the discovery of two classes of web pages, which

represent two classical examples of uninteresting pages from the viewpoint of a user

navigating the web:

• Advertising: sites containing only pure advertising. In particular, here we will

focus on high-traffic advertising sites, which have a strong visibility from other

sites, which usually link them by means of pop-up windows.

• Counter services: hosts containing scripts (CGI or other methods) that collect

statistics on the access to web pages. Monitored pages usually contain links or

scripts that autonomously invoke such services.

We selected the host as a suitable abstraction level for the computation of the traffic

graph. Advertising services, for example, are usually implemented on the level of hosts

(real and virtual), while the internal organization of their single pages can be confusing and

dispersing (in terms of web traffic).

By an experimental analysis of real usage data, we noticed that the presence of

advertising hosts and counters is particularly dense on high values of the R() function. From

such observation, we drew the following hypothesis: the higher is R(h) for a host h, the

higher is the probability that h contains advertising or counters. Therefore, we have used

the R() values to rank hosts, filtering out the top N values, with N being a parameter of the

method. An additional peculiarity of the hosts we want to spot is their link popularity: in

fact, advertising and counter services are usually delivered on impressions on several

different sites. As a consequence, from a web link structure perspective, several sites link

the same advertising host. Therefore, any reasonable candidate advertising/counter host

should be linked by at least n other hosts, n being another parameter of our heuristic. The

above observations can be summarized into the following algorithm, which extracts a set of

potential advertising/counter hosts from a dataset of web requests:

Algorithm AdvertisingHosts(S,n,N,Φ)

Input: a sequence S of web requests, two integers n and N, an aggregation

operator Φ ∈ {min, max, avg}.

Output: A list of hosts.

1. Build the Traffic Graph TG from S;

2. Compute the Abstract Traffic Graph TG’ = (V’,E’,T’) from TG using

abstraction A = (ψ, α), where ψ = {hosts} and α (p) = “host of p”;

3. Let H = {h ∈ V’| h linked by at least n other hosts };

4. For each h ∈ H : Compute R(h);

5. Let O = list of all h ∈ H, sorted by R(h) in descending order;

6. Return O[1 : N];

Preliminary experiments performed on small datasets show that the heuristic produces a

high-precision classification only over the sites with very high relative traffic – around the

top 1% of the monitored sites – while the precision quickly degrades with smaller values.

Such results, however, are expected to significantly improve with larger datasets, letting

the heuristic to yield reliable results also for smaller traffic sites.

3 Populating the WOS

One of the most important features of the Web Object Store is represented by its

capability of managing different kinds of data (i.e. content, structure and usage). It is

obvious, anyway, that the WOS (in particular the µWOS) has to be populated with content,

structure and usage data before it can be used. There are several ways to feed the µWOS

repositories. We identified four main sources of information:

1. Pages and linkage information coming from a Web Crawler (possibly focused on a

particular topic or group of topics).

2. Information about accesses to Web sites (or portals) contained within the Access

Log Files of the servers they are hosted on.

3. If we are allowed to access the data coming from the usage of a Web Search

Engine (i.e. Query Logs) we can integrate them within the WOS too. Note that we

may possibly collect information about issued queries to various Search Engines

even if we host a Proxy server and we filter out the queries from all the users’

requests.

4. Speaking about Proxy servers, another source of information is represented by the

Proxy Logs.

3.1 Web Crawlers

A Web Crawler is a sort of mobile agent scouring around Web sites getting all the kind

of information that is able to discover and, more important, that is allowed to download.

Usually, a Web Crawler is designed according to a number of specifications that should be

followed in order to guarantee a fair use of Internet resources, such as avoiding the massive

downloads from the same server, adhering to the constraints specified in robots.txt files,

etc.

During these years, a large number of different approaches for building Web Crawlers

have been proposed. The aim of such systems, in all the cases, is to download the largest

number possible of pages from the Web. This task is a very difficult one, since it is strictly

related with the possibility of discovering them. To this purpose, they have to face with the

so-called Hidden Web that is composed by those pages that are dynamically built upon a

user request. The Hidden Web is the opposite of the Surface Web that, instead, is composed

by those pages that are statically referenced.

Commento: Qua ci metto un

riferimento oppure spiego il

signficato di corret and fair?

MIRCO: Spiegare, spiegare!

Web Crawlers are responsible for building the underlying database of Web Search

Engines. They are committed to download both the content of the Web pages, and the

linkage structure given by the Web graph (i.e. the graph obtained by considering web pages

as nodes and the links as its edges).

In general, WOS content and linkage structures should be fed by using a Web Crawler.

As we will see in the next section since the WOS targets a community of Internet users, we

are planning to build a sort of Focused Crawler that would automatically download pages

interesting for the community itself. In addition, it will postpone pages that are likely to be

not relevant for that community.

3.2 Web Servers Access Log Files

Usually Web Servers write log entries in a format known as the Common Log Format

(CLF). This standard format can be produced by many different web servers and read by

many log analysis programs. The log file entries produced in CLF will look something like

this:

146.48.83.47 - frank [10/Oct/2000:13:55:36 -0700] "GET

/apache_pb.gif HTTP/1.0" 200 2326

Each part of the access log is described below:

143.48.83.47 This is the IP address of the client (remote host) which made

the request to the server.

- This field indicate the value returned by calling the identd service on the

client machine. Usually clients do not accept identd requests so, to

indicate that the requested piece of information is missing, we put the

"hyphen" symbol.

frank This is the user ID of the person requesting the document as determined

by HTTP authentication.

[10/Oct/2000:13:55:36 -0700] The time that the server finished

processing the request, wriiten following the standard format

[day/month/year:hour:minute: second zone].

"GET /apache_pb.gif HTTP/1.0" The request line from the client.

200 This is the status code that the server sends back to the client.

2326 The last entry indicates the size of the object returned to the client, not

including the response headers. If no content was returned to the client,

this value will be "-".

It is clear that each line of the access log contains a lot of information. It is also clear that

organizing this information in a more structured way will result in an improvement of the

quality of the services offered by the WOS. As shown in Section 2.3.1, we provide an

internal tool which is able to extract information about PageViews (i.e. complete

information about a Web page), Sessions and so on.

There are many examples of software, often implemented as research prototypes that

show possible analysis made on Web Server Logs. Among them, we can find systems for

producing statistics over accesses (e.g., Analog [15]) and, more recently, Web

Recommender Systems. In the latter, Web logs are analyzed in order to extract users

classification models. These models are then applied to requests made by future users in

order to advertise, in a focused way, commercial products, links to Web pages, and so on.

In Section 4 Suggest, an example of recommender system, is shown. Suggest has been built

by using the facilities offered by the WOS.

3.3 Web Search Engines Query Logs

Web Search Engines keep track of the queries submitted by the users by storing

information about them in a log file (i.e. the Query Log). Each company uses its own

format to store information in the logs. Anyway, there is information that is mandatory:

• The query topic, that is the keyword (or phrase) submitted by the user.

• The index of the first result wanted.

• The maximum number of results a user would like to obtain from the query.

Obviously there may be other information such as, for example, an identifier of the user

that submitted the query, the result chosen by the user (if the Web Search Engine adopts a

sort of “click tracking”).

The WOS may use this information to infer the usage pattern of a Web Search Engine

or, in the case the WOS is used within an Internet Community, to devise Crawling

strategies focused on the most important topics on which the community itself is oriented.

3.4 Proxies Usage Logs

As in the case of the Web Server logs, the proxy log contains information about requests

made from users of a large community to Web Sites. In contrast to Web Server logs, at the

proxy level it is possible to detect the requests addressed to several different web sites, thus

allowing to follow the full, usually inter-site, users’ navigation paths. Proxy information

include also requests made to Web Search Engines and may be used to keep track of the so-

called Q-Sessions introduced in Section 2.3.1, i.e., navigational sessions that start with a

query issued to a Web Search Engine and go on by following a link from the list of results

returned.

Figure 5: Schema of a proxy server traffic

Usually the format used to represent proxy entries is the same CLF (Common Log

Format) used by Web Servers. Thus, the same analysis tools used for Web Servers can be

used to analyze proxy usage data as well.

3.4.1 Traffic monitoring

As an alternative source of usage data coming from a proxy server, we can consider the

following, which is supported by the µWOS and has been used in preliminary experiments.

In order to populate the usage-based segment of the WOS (i.e., the HTTPRequest

repository), usage information can be extracted from the packet level data obtained from

the traffic of a proxy server, by means of packet sniffing techniques. E.g., in some

experiments we performed, the network tool Ngrep was used to filter the interesting traffic

information by specifying regular expressions to match against data payloads of HTTP

requests contained in TCP packets addressed to port 80 of Web servers.

The following example shows a fragment of matched information:

T 2003/07/21 09:18:09.877083 216.228.97.23:80 ->

131.114.3.xxx:1247 [A] HTTP/1.1 200 OK..Date: Mon, 21

Jul 2003 08:09:47 GMT..Server: Apache/2.0.47 (Unix)

mod_ssl/2.0.47 OpenSSL/0.9.7b DAV/2 PHP/4.3.2..Last-

Modified: Sun, 20 Jul 2003 22:15:13 GMT..ETag: "81c8-

22b7-f 4a93e40"..Accept-Ranges: bytes..Content-Length:

8887..Keep-Alive: timeout=15, max=92..Connection: Keep-

Alive.. Content-Type: text/html; charset=ISO-8859-

1....<!DOCTYPE HTML PUBLIC "-//W3C//DTD HT ML 4.0

Transitional//EN">.<html>..<head>

This continuous flow of raw information has been filtered by means of a data cleaning

module, which extracts only the relevant data for our objectives, and re-organize them in a

server-like form. As an example, the result obtained by applying the data cleaning task to

the fragment shown above, is the record composed of the following fields:

2003/07/21 09:18:09 131.114.3.xxx

http://www.xfce.org/index.html http://www.xfce.org/en/

The meaning of the fields is the following:

• A time-stamp of the request: 2003/07/21 09:18:09

• Client IP: 131.114.3.xxx

• URI of the requested resource: http://www.xfce.org/index.html

• URI of the resource from which the request was originated:

http://www.xfce.org/en/

In our experiments, we collected long periods of proxy-level IP traffic originated from

“Centro Servizi SERRA” network (covering the unipi.it domain). This network segment

allows extracting many-to-many web interactions, from thousands of clients belonging to

the academic network of Pisa to millions of hosts (the whole Internet). This massive stream

of data (~1GB/day raw data) contains sufficient information in order to extract precious

usage abstractions of user’s behavior, such as:

• Sessions originated from queries to search engines.

• Sessions covering many different hosts.

• Traffic graph and abstractions of the explored Web

4 A Sample WOS Application: SUGGEST

As explained above, the major goal of the WOS programming interface is to simplify the

development process of Enhanced Content Deliver applications.

From this point of view the most important component of the WOS is represented by the

µWOS layer which represents the minimum core set of functions that allow the

development of those high level algorithms manipulating the core set of Web data (i.e.

Usage – Structure – Content).

4.1 Web Recommender Systems

The huge quantity of information available on the Web comes from different sources.

There are firms and institutions that exploit the Web to conduct their business, customers

that daily use the Web to perform every kind of transactions and people that simply browse

through pages of their interest. The presence of all these categories has led to the need to

make techniques and tools able to accurately extract, filter and select Web information.

Web mining methods [2], and Web Usage Mining (WUM) in particular, represent a

promising way to tackle such web information extraction problem.

WUM applications typically extract knowledge by analyzing historical data such as

server access log files, browser caches or proxy logs. WUM techniques are important for

several reasons. It is possible to model users behavior and, therefore, to be able to forecast

their future movements. It can be useful to personalize the content of Web pages, to

improve the Web server performance, to structure a Web site according to the preferences

expressed by users, to help the business to carry out a specific users' target.

A typical application of WUM is represented by the so-called Personalization or

Recommender systems[3]. These kinds of systems allow adapting a Web site to the users’

needed. In practice, the WUM personalization process is structured according to three

phases: Preprocessing, Pattern Discovery and Pattern Analysis (see Figure 6). Such

systems provide mechanisms to collect information describing the user activity and to

elaborate this information (Preprocessing). Using these systems it is possible, for example,

to determine the number of the server accesses, the pages requested, the interval time

between different user sessions, and the IP address of the Web server users. This

information are then elaborated to synthesize user profiles (Pattern Discovery) that can be

used to provide user personalized navigational information (Pattern Analysis). As an

example we can think about the Amazon recommender system: once a user starts

navigating through the books she/he starts to receive recommendations on potentially

interesting books selected on the basis of the previously seen ones.

4.2 Suggest

The Web recommender system Suggest generates recommendations to users by

exploiting a clustering of the user’s sessions obtained from the proxy logs [1]. In Figure 7

the stages carried out by Suggest are represented.

As said before our WOS framework heavily simplifies the development of Web

applications. In this case, for instance, we can get rid of the first three phases since the data

structures needed are already offered by the WOS. In particular, the first phase (Session

Extraction) is directly supported by the µWOS while both the Weights Computation and

the Graph Building phases basically consist of constructing a simple Traffic Graph, which

is already provided by the WOS (see Section 2.3.2). Thus, we just have to generate the

clusters from the graph detecting its connected components using a simple BFS visit of the

graph itself.

Usage Data

Web Site

Preprocessing

Pattern

Discovery

Pattern

Analysis

Web Server

Session

Extraction

Weights

Computation

Graph

Building

Cluster

Generation

Figure 7: Suggest workflow

Figure 6: Tipical operations carried out by a Web Recommender System

Using the WOS facilities it has been sufficient to implement two simple methods aimed

to produce a new persistent class called sClusters defined by the followingdeclaration:

PERSISTENT_CLASS (sCluster,

 (KEY(PageView_ID, Field::primary),

 FIELD(Cluster_ID),

 FIELD(Session_Count),

 VARFIELD (_sCluster_Elements, 100)

)

);

Such declaration syntax essentially corresponds to the META and the

CLASS_DESCRIPTOR predicates, adopted respectively by the IXE[4] and Gigabase

Object-Relational Database Management System[16]. At the present, the WOS

implementation can work with both systems.

The meanings of the fields are quite intuitive. In particular, the key, PageView_ID,

represent the identifier of the PageView to which this entry is referring, and Cluster_ID

is the identifier of the cluster containing this PageView. The other fields may be used by

future applications to enhance the clustering algorithm or to implement different

applications, like for instance, an Intelligent Caching algorithm[17].

The abovementioned methods are used to fill-up the structure and are, respectively:

makelist() which builds a list of PageViews, each associated with a list of sessions

which contain the referred pages, and makeclusters() that actually builds the

persistent sCluster structure starting from the previously built list. The makeclusters()

method first materializes in-memory the graph of sessions starting from the previously

created list and assigns the appropriate weights. Then it prunes the graph using the two

heuristics described in. The method, then, proceeds by executing a BFS visit on that graph

to identify the clusters (i.e. the connected components).

An online procedure embedded into the Web Server exploits the resulting clustering

structure in order to classify the currently active user sessions and to produce a list of

recommendation on the basis of the assigned user category.

Due to the intuitive and powerful API offered by the WOS, the entire code to implement

the clustering (offline) phase of Suggest took no more than 500 lines of source C++ code.

5 A large scale Application: Search Services for User Communities

In this section we will outline a complex application that can be realized using the WOS

structures and API.

The application considered is a Web Search Engine (WSE) for large communities of

users2. This means that the WSE should focus all the operations on the topics of interest of

the community, trying to improve the accessibility to relevant sources of information and to

exclude the irrelevant ones. The WOS can potentially provide a great help to reach such

objective, since its integration of usage and content data makes it possible to combine

information on the navigation habits of the community, the web contents they show interest

in, their reactions to the way such content is organized, and direct feedbacks on the

searching service provided. Furthermore, it may help in defining new structures and novel

algorithms supporting the engine activities.

5.1 Community-oriented Web Search Engine

Excluding Web Search Engines focused on a particular country or state, to the best of

our knowledge a search facility focused on a particular community of Web users has not

been proposed, yet.

We could define a Community-oriented WSE as a WSE that manages (in principle) only

documents related to the topics of interest of a Web Community (as for example the users

of a certain department). What are the main differences between a traditional WSE and a

community-oriented one? In a department one could identify many different categories of

users, but almost all of them are expected to be mainly interested in the same topics, related

to department itself (e.g. biology, computer science, natural sciences, engineering, and so

on).

On the contrary, in a traditional, general-purpose WSE we cannot make any assumption

on the topics about which the users will submit their queries, so the WSE has to collect

everything on the Web potentially interesting for somebody on any topic, thus enlarging its

indexes as much as it can. Furthermore, since usually a Community-oriented WSE is

managed within the community itself, it can make assumptions on several aspects of its

working. More important, since a community usually accesses the Web through a single

access point (e.g., a Proxy, or a router) a community-oriented WSE could use Web usage

information to infer usage patterns and also, for example, to discover previously unknown

URLs.

Obviously, since we would like to make assumptions about usage patterns, we are

considering “large” users’ communities. In this case it is difficult to define the word

“large”, anyway we assume that a community composed of a thousand of users can be

considered “large” enough.

Since we are referring to communities and not to the entire Web, we have to restructure

some traditional WSE components. In particular, we have in mind two kinds of

extensions/refinements:

1 A Focused Crawler, which tries to spider only potentially interesting portions of

the Web (w.r.t. the community’s interests);

2 A Focused ranking schema, which gives emphasis to Web pages and sites

apparently closer to the community’s interests.

2 For an introductory description of Web Search Engines, please see [5].

In the following sections these two aspects will be described in more details.

5.2 Focused Crawler

In recent years there have been many attempts to design and implement focused

crawlers. However, so far such proposals obtained only a limited success. The reasons

seems to lie mainly in the difficulty of recognizing the adherence of Web pages to a set of

predefined topics by just analyzing links and contexts from the already downloaded pages

[6].

The seamless integration of content and usage information provided by the WOS enables

the renforcement of the traditional, content-only approaches with the available information

on the users’ activity.

The main assumption we make in our approach is the following: the Web pages visited

often by the users and the navigation paths they follow provide a reliable definition of the

interests of the community. That means, as an example, that if many of the users visit some

Web page, it will be (probably) assumed to belong to the interesting topics of the

community whatever is its real subject; in the same way, if they almost systematically

avoid the links which point to some Web page, such page will be (probably) considered

out-of-topics.

In this work, we suggest three mechanisms which can be combined together in a

collaborative way, for enabling a more reliable crawler which is focused on the interests of

a users’ community:

1. dynamic, usage-based topics updating;

2. web sites/pages selection via labels propagation;

3. trash sites detection and filtering.

In the rest of this section we briefly describe them.

5.2.1 Topics updating

A constant requirement of any focused crawling system is the necessity of compiling a

list of topics we are interested in. Sometimes, the user provides such list only implicitly, by

manually selecting a set of relevant documents. Such list of topics, then, will be the

comparison base for the successive selection of relevant Web pages. It is important to

notice, however, that listing and describing the topics of interest of a community in an

exhaustive way is in general a very hard task. Missing a relevant topic and providing poor

topics specifications, then, are high-probability risks which should be taken into account in

the design of any should-be reliable focusing system. Moreover, users are human being,

and as such their interests change/grow along time. As a consequence, any list of topics is

apt to get outdated at some time, and therefore a re-alignment mechanism between listed

and actual topics should be designed to update such list, possibly in an automatic way.

The problems listed above can be tackled by keeping track of the users’ behavior:

following the assumption mentioned at the beginning of this section, we can deduce that

frequently visited documents should belong to the interesting topics list and, if that is not

true, the list should be expanded. Such idea can be further developed leading to the method

sketched below:

Algorithm UpdateTopics(L, t, f)

Input: A list of topics L, a time window t and an integer threshold f.

Output: An updated list L’ of topics

1. Select all PageViews requested within the time window t

2. Compute the access frequency of each PageView and Filter out those

below a predefined threshold

3. Associate each PageView with the set of possible topics in the list it

can be related to; each topic will be associate with the number of

PageViews related to it, while PageViews not related to any known

topic are collected in the set W

4. [Deletion of outdated topics:] Select all topics associated with less than

f PageViews

5. [Extension of topics list:] For each PageView in W, extract a set of

related topics; each new topic related to at least f PageViews in W is

added to the topics list

The (approximated) extraction of the relevant topics for a document can be performed

adopting any of the methods described in literature – e.g., based on Latent Semantics

Indexing [10] – and will not be discussed here. In literature, an alternative usage-based

approach to automatic topics detection can be found in [12], where a clustering method for

user behaviors is implemented, by modeling such behaviors as hidden Markov models

which corresponding hidden states essentially represent the topics to discover.

5.2.2 Labels propagation

Several categories of sites, the most popular being adults-only sites, can be easily

characterized by means of a limited set of keywords, which are also the same that are

usually adopted by users when making searches with search engines. That is the usual

approach adopted by child-protecting browsing systems, which evaluate the suitability of

web pages by checking the presence of dangerous keywords within the document. One of

the results of this phenomenon is that a relevant percentage of user queries submitted to

search engines are expected to strongly characterize the general topics the users are looking

for. If the search is successful, then, it is highly probable that the navigation session

originated from the search query – or at least an early portion of it – will be devoted to that

same topic. Moreover, the (chronologically) closer is a page request to the search query, the

higher is the probability it belongs to the query topics. These ideas can be easily

summarized into the following algorithm, which makes use of the Q-session abstraction

introduced in Section 2.3.1:

Algorithm PropagateLabels(t, k)

Input: a time window t and an integer threshold k

Output: a partial labelling of PageViews

1. Select all stored Q-sessions which began within the time window t

2. For each Q-session (Q,S), with S=(PV1, ..., PVn):

3. if all significant keywords of Q belong to domain D

4. then label PV1,..., PVm as member of domain D, where m=min(k,n)

Each domain D represents a topic by means of the set of keywords that strongly

characterize it. In this simple approach, the k closer pages (i.e., PageViews) requested after

the search query are simply accepted as members of the selected domain (if any). More

sophisticated variants may assign a weighted membership to each PageView PVi, which is

computed as a function of the number of matching keywords of Q w.r.t. domain D, and the

distance “i” from the search query. Such function is expected to monotonically increase

w.r.t. the first value, and decrease w.r.t. the second one. This approach has many

similarities with Aggarwal’s Collaborative Crawling [11], where seeding pages are

manually selected instead of using queries to search engines, and a more complex

propagation strategy is implemented.

5.2.3 Trash detection

In Section 2.3.2, a WOS algorithm was introduced, aimed at detecting some classes of

useless web sites, namely advertising and counter sites, in order to avoid crawling and/or

indexing them. In addition to such approach, which can directly be exploited by the crawler

of a community search engine to prune the web search space, a complementary one can be

adopted, exploiting again the information stored in the Traffic Graph.

As an extremely high relative traffic is usually the consequence of automated

mechanisms, such as advertising and counter banners, an extremely low relative traffic is

usually the result of uninteresting contents: the users almost systematically avoid the links

which point to the web page under consideration, and so it is highly probable that the page

does not belong to the topics of interest of the users. In order to properly quantify such

phenomenon, the relative traffic of every link should be compared to its expected relative

traffic, i.e., the value it should have if users’ clicks over the links of a web page followed

some given probability distribution. In the field of search engines, the usual reference

distribution is the uniform one (an important example is the PageRanking algorithm), so

that each of the n links in a web page has an apriori probability of being followed equal to

1/n and, then, a relative traffic also equal to 1/n. A simple method can be outlined for

assigning web pages with a priority value, to be used by the crawler at the moment of

choosing the next page to visit: for each candidate page p (i.e., not-visited pages which are

linked by one or more visited pages), the value P(p) = R(p)*n is computed, R(p) being the

relative traffic of p; pages with a too small P(p) are removed from the candidate list; the

remaining pages, finally, are sorted in decreasing order w.r.t. P(p).

5.3 Community-Based Ranking Functions

One of the most important components of a WSE is the Ranking Module [5]. The

Ranking function, which is at the basis of the working of the Ranking Module, tries to

evaluate the importance of a given document (possibly considering user queries).

There are two general categories of ranking functions: content-based and link-based. The

former category measures the importance of a document on the basis of its content. The

well-known TFxIDF proposed by Salton et al. in [13] is one of such measures. The latter

take care of only the linkage structure of the Web. More precisely, if we make the

assumption that a page P links to a page Q if and only if the author of P retains important

the content of the page Q then we could devise a ranking schema based on the number and

the quality of the links connecting to a page.

The two most important examples of such ranking systems are: HITS and PageRank.

The HITS algorithm is proposed in [14]. In HITS, each Web page wi has both a hub score

and an authority score. Roughly speaking, the first measures the usefulness of a page on

giving important suggestions (links) to users. The latter, instead, measures the quality of the

information contained within wi.

The PageRank algorithm [5] statically evaluates the importance of a Web page by

considering the number and the relevance of links connecting to it.

In a more formal way, the PageRank values for each Web Page can be obtained using an

iterative algorithm that searches for the principal eigenvector of the adjacency matrix of the

available portion of the Web. The equation underlying the whole process is quite simple.

Given a page wi, the PR(wi) is given by:

PR wi()= ε + 1−ε()×
PR w j()

out − degree w j()l j ,i ∈E

∑

where ε is a dampening factor usually set between 0.1 and 0.2; n is the number of nodes

of the web digraph and out-degree(wi) is the number of edges originating from a web page

wi.

We could say that PageRank tries to mimic the users’ behavior by simulating a typical

navigator surfing the Internet. From this point of view, a user goes through a link with

probability (1 - ε), while gives up and visits a random page with probability equal to ε.

Usage information could be useful for reaching a better approximation than PageRank. We

have, in fact, actual information about users movement through the Web. Nevertheless, if

this information is collected from a Web Proxy, for instance, it is related to the pages

visited by a particular group of users.

A very similar approach to compute PageRank for small Web sites is described in [9].

Since PageRank is an iterative computation over a probability transition matrix, how the

initial distribution is chosen will influence the outcoming of the algorithm. Personalizing

the PageRank computation with the knowledge extracted from the Proxy log is quite

straightforward. Instead of considering all the pages having the same probability of being

accessed, we can assign different probabilities on the basis of the information contained

within the Proxy log. Roughly speaking, we are pushing usage information down into the

computation of the PageRank scores.

We could also exploit the information coming from the Proxy logs by combining the

PageRank value with a measure of importance derived from usage information. Practically

speaking, the usage-based measure should be a sort of estimation of the probability of

accessing a page obtained by dividing the number of accesses of a page by the total number

of accesses recorded in the log. If we call PR the PageRank value and UR the rank obtained

by the Proxy log we can devise a novel ranking function called MixedRank (MR) by a linear

combination of PR and UR: MR = α ⋅ PR + (1− α) ⋅UR 0 ≤ α ≤1.

Furthermore, exploiting Q-Sessions (see Section 2.3.1) we can think to a sort of

automatic relevance feedback aimed at incrementing the ranking of accessed pages, in the

style of [9].

Obviously, the above observation are just hypothesis that need to be accurately verified

and opportunely extended. We are quite confident that the information contained within the

WOS along with well-tuned ranking functions will improve the precision of the search

mechanisms when applied to Community-based contents.

6 Conclusion

In this paper we presented the Web Object Store – WOS – a web data management

system specialized in dealing with web content, structure and usage data. The WOS is

aimed at effectively supporting the development of User-enhanced Web-Access services,

and therefore strictly adheres to three main requirements summarized in the beginning of

this work. Firstly, it provides useful abstractions of web-related concepts, and enables their

direct deployment at different levels; secondly, it offers a comprehensive repertoire of

pattern and model types, to represent the extracted knowledge/semantics to be used in

constructing UWA services; finally, it provides efficient data structures for both data and

models, and guarantees persistency over time.

The sample algorithms and applications described within this paper clearly show the

effectiveness of the WOS approach for developing UWA services in a clean and concise

way, and strongly motivates its future employment in the development of real UWA

services. In particular, in the near future we wil pursue the research lines shown in the

large-scale, community-oriented application outlined in Section 5.

References

[1] Ranieri Baraglia and Fabrizio Silvestri. An Online Recommender System for Large

Web Sites. In Proceedings of the 2004 IEEE/WIC/ACM International Conference on

Web Intelligence (WI 2004). Bejing, China. September 20-24, 2004. pp 199-206.

[2] Soumen Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext

Data. Morgan-Kauffman, 2002.

[3] M. Eirinaki and M. Vazirgiannis. Web mining for web personalization. ACM Trans.

on Internet Technology, 3(1):1–27, February 2003.

[4] Giuseppe Attardi, Antonio Cisternino. Template Metaprogramming an Object

Interface to Relational Tables. Reflection 2001: 266-267.

[5] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web

search engine. Proceedings of WWW7 (1998), 107-117.

[6] S. Chakrabarti, M. van den Berg and B. Dom. Focused crawling: A new approach to

topic-specific Web resource discovery. Proceedings of WWW8, Toronto, May 1999.

[7] V. Bacarella, F. Giannotti, M. Nanni, and D. Pedreschi. Discovery of ads web hosts

through traffic data analysis. Proceedings of the 9th ACM SIGMOD Workshop on

Research Issues in Data Mining and Knowledge Discovery (DMKD 04) (2004).

[8] Z. Gyongyi, H. Garcia-Molina, J. Pedersen. Combating Web Spam with TrustRank.

Technical Report, Stanford University, 2004.

[9] G.-R. Xue, H.-J. Zeng, Z. Chen, W.-Y. Ma, H.-J. Zhang, C.-J. Lu. User Access

Pattern Enhanced Small Web Search. In Proceedings of SIGIR2003. July 28 -

August 1, 2003, Toronto, Canada.

[10] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, R. A. Harshman.

Indexing by Latent Semantic Analysis. Journal of the American Society of

Information Science vol. 41 n.6, 1990.

[11] Charu C. Aggarwal. Collaborative Crawling: Mining User Experiences for Topical

Resource Discovery. SIGKDD 2004.

[12] A. Ypma, T. Heskes. Automatic Categorization of Web Pages and User Clustering

with Mixtures of Hidden Markov Models. In WEBKDD 2002, LNAI 2703, 2003.

[13] Salton, G; Wong, A.; Yang, C. S. A vector space model for information retrieval.

Communications of the ACM, 18(11):613-620, November 1975.

[14] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of

the ACM (JACM), Volume 46, Issue 5 (September 1999).

[15] Analog: a WWW logfile analysis. http://www.analog.cx/.

[16] Gigabase: an Object-Relational Database Management System.

http://www.garret.ru/~knizhnik/gigabase.html.

[17] F. Bonchi, F. Giannotti, C. Gozzi, G. Manco, M. Nanni, D. Pedreschi, C. Renso, and

S. Ruggieri. Web log data warehousing and mining for intelligent web caching.

Data and Knowledge Engineering (DKE), 32(2):165-189, October 2001.

[18] Giuseppe Manco, Riccardo Ortale, Domenico Saccà. Similarity-Based Clustering of

Web Transactions. SAC 2003: 1212-1216.

[19] M. Perkowiz and O. Etzioni. Adaptive web sites: Automatically synthetizing web

pages. In AAAI-98 - Fifteenth National Conference on Artificial Intelligence,

Madison, USA, July 1998.

[20] Berendt, B., Stumme, G., & Hotho, A. (in press). Usage mining for and on the

Semantic Web. In H. Kargupta, A. Joshi, K. Sivakumar, & Y. Yesha (Eds.), Data

Mining: Next Generation Challenges and Future Directions (pp. 467-486). Menlo

Park, CA: AAAI/MIT Press.

