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We study light-matter interactions in the bulk of a two-dimensional photonic lattice system, where
photons are subject to the combined effect of a synthetic magnetic field and an orthogonal synthetic
electric field. In this configuration, chiral waveguide modes appear in the bulk region of the lattice,
in direct analogy to transverse Hall currents in electronic systems. By evaluating the non-Markovian
dynamics of emitters that are coupled to those modes, we identify critical coupling conditions, under
which the shape of the spontaneously emitted photons becomes almost fully symmetric. Combined
with a directional, dispersionless propagation, this property enables a complete reabsorption of the
photon by another distant emitter, without relying on any time-dependent control. We show that
this mechanism can be generalized to arbitrary in-plane synthetic potentials, thereby enabling flex-
ible realizations of re-configurable networks of quantum emitters with arbitrary chiral connectivity.

I. INTRODUCTION

The challenge of building fully operative quantum de-
vices such as quantum computers, quantum simulators
and quantum cryptography systems has stimulated an
unprecedented flow of ideas for the implementation of
technologies based on the principles of quantum mechan-
ics [1]. In this effort, many disruptive ideas came by
combining concepts from different areas of quantum sci-
ences [2]. Theories and concepts that were originally
developed to explain fundamental physical phenomena
are now re-elaborated in a new technological perspective.
This process not only serves to inspire the realization of
new devices, but also provides new insights on existing
knowledge and contributes to building a more complete
understanding of the microscopic world.

This is the case, for instance, for the quantum Hall
effect. This effect was first discovered in electronic ma-
terials more than 40 years ago [3] and sparkled the de-
velopment of the theory of topological materials [4] and
the proposal of novel schemes for topologically protected
quantum computing [5]. These concepts are now being
re-elaborated in the context of photonic systems, giving
rise to the field of topological photonics [6]. Here, ideas
and phenomena of the integer and fractional quantum
Hall effect are implemented and generalised to various
synthetic photonic, phononic, atomic or even molecu-
lar platforms [7–17], with unprecedented freedom in tun-
ing the physical parameters and measuring observables,
which were previously inaccessible in traditional solid-
state systems.

These developments in fundamental science have nat-
urally opened the way to technological applications, for
instance to exploit the topologically protected chiral edge
modes to create new integrated solutions for a unidirec-
tional transport of information, robust against system
imperfections [18, 19]. The potential of these new devices
became particularly evident in the framework of the field

of chiral quantum optics [20]: here, the use of topologi-
cal chiral channels for the propagation of photons com-
bined with non-linear quantum emitters, such as atoms
or quantum dots, opens the way toward the creation of a
full cascaded quantum network [21, 22], which is a cen-
tral piece in the development of quantum information
technologies [23].

This sparkled a new era for topological photonics ex-
periments, with the objective of creating hybrid qubit-
photonic lattice platforms in different spectral regions,
from the GHz up to the optical range. In these systems,
topological features are exploited to realize complete chi-
ral quantum optical setups, coupling their topological
chiral edge channels to localized quantum emitters (or
qubits) [24–26]. In parallel to such intense experimen-
tal efforts, new innovative theoretical proposals are con-
stantly made to exploit these devices for new technolog-
ical applications [27–40].

In this article we study the light-matter interaction
dynamics of two-level quantum emitters coupled to a 2D
photonic lattice subject to an homogeneous perpendicu-
lar synthetic magnetic field and an in-plane homogeneous
synthetic electric field. Differently from the existing chi-
ral quantum optics literature [7, 21, 22, 30, 32, 34, 36],
which mostly focuses on light propagating along edge
modes, here we investigate new strategies based on light
propagation through the bulk of a 2D photonic system
via the photonic analog of the Hall current. In the last
decade, related anomalous transport and Berry curva-
ture effects in the bulk of photonic systems have been
the subject of several theoretical [41–43] and experimen-
tal [44–46] works, but have never been proposed as the
operating principle of photonic devices.

Specifically, we show here how the combined effect of
crossed synthetic electric and magnetic field produces ef-
fective 1D waveguides based on the Hall effect, which al-
low light to unidirectionally propagate through the bulk
of the lattice, similar to Hall currents. The highly in-
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homogeneous local density of photonic states of these
waveguides makes the emission dynamics of two-level
quantum emitters strongly non-Markovian.

This intrinsic non-Markovianity is a unique feature
of this system and completely modifies the nature of
the most basic light-matter interaction processes such as
spontaneous emission and absorption. The photon gen-
erated by this exotic non-Markovian spontaneous emis-
sion process naturally propagates along a single direc-
tion with a highly symmetric wavepacket shape, very
different from the usual highly asymmetric wavepacket of
standard Markovian emission. As a direct consequence
of this symmetric shape, an efficient chiral state trans-
fer between distant emitters located in the bulk of the
lattice is possible without the need for fine-tuned time-
dependent control pulses [23, 47]. As another surprising
consequence of the non-Markovian light-matter interac-
tions, this system supports atom-photon bound states in
the chiral continuum [48, 49], which are typically absent
in the usual chiral quantum optics configurations.

In view of the high tunability of topological photonic
structures, these new physical effects naturally call for
technological applications and pave the way towards cas-
caded quantum networks with an improved performance
compared to conventional setups. On top of this, our
proposed approach makes full use of the whole bulk of
the photonic lattice and thereby drastically increases the
number of emitters that can be interfaced in a direc-
tional manner. Thanks to the topological origin of the
underlying mechanism, our proposed transfer method is
also highly robust with respect to imperfections and can
be readily generalized to non-uniform electric field pro-
files leading to arbitrary curvilinear chiral 1D waveguides.
This is of utmost interest in view of realizing reconfig-
urable cascaded networks with arbitrary connectivity.

From a fundamental science perspective, such a net-
work could also be seen as a quantum simulator of the
percolation theory of the quantum Hall effect and its
random network representation [50, 51], a point of view
which is closely connected to the properties of quantum
Hall extended states [52–54]. Through our findings, this
physics can be now simulated with a full freedom in the
choice of parameters and geometry. In addition, intro-
ducing non-linear emitters will provide effective interac-
tion between photons, which may open to studies of the
propagation dynamics of fractional quantum Hall edge
excitations in a novel context.

The article is structured as follows. In Sec. II we intro-
duce the model for our 2D photonic quantum Hall system
with synthetic magnetic and synthetic electric fields. In
Sec. III we use the lattice photonic Green’s function to
provide a basic description of photon propagation across
the bulk of this system and for the appearance of effective
chiral waveguide modes. In Sec. IV we study the dynam-
ics of a single emitter coupled to the photonic lattice and
discuss the different regimes of light-matter interactions
in this setup. In Sec. V we show how the non-Markovian
emission dynamics in the critical-coupling regime enables
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FIG. 1. Photonic quantum Hall system. (a) Sketch of a
2D photonic lattice with a perpendicular synthetic magnetic
field and an in-plane synthetic electric field. In analogy to
Hall currents, this configuration results in the formation of
chiral waveguide modes. Coupling of two-level emitters to
the chiral waveguide modes leads to the directional emis-
sion and reabsorption of photons. (b) Schematic view of the
photonic hopping amplitudes for the specific Landau-gauge,
Harper-Hofstadter lattice configuration under consideration.
(c) Spectrum of the photonic lattice Hamiltonian Hph in
Eq. (1), where the energy of each mode is plotted as a func-
tion of the mean displacement of its center of mass along the
x-direction. In this representation, the tilting of the Landau
levels by the electric field and the presence of edge modes at
the boundaries are clearly visible. The parameters used for
this plot are α = 1/10, Nx = Ny = 40 and U0/J = 0.05 and
we have assumed periodic boundary conditions (PBC) along
the y-direction.

high-fidelity quantum-state transfer operations between
two emitters in the lattice. In Sec. VI we extend our re-
sults to arbitrary electric field profiles and establish the
concept of photonic percolation quantum networks. Fi-
nally, in Sec. VII we summarize our main conclusions.

II. THE MODEL

A. Light-matter interactions in photonic lattices

We consider the system depicted in Fig. 1 (a), where
N (artificial) two-level emitters with frequency ωe are lo-
cally coupled to a two-dimensional photonic lattice with
dimensions Lx and Ly. We denote the position of the i-th
lattice site by r⃗i = (xi, yi) and consider a simple square
lattice geometry with lattice spacing l0 andM = LxLy/l

2
0

lattice sites in total. We also assume that the number of
emitters is much smaller than the number of lattice sites,
N ≪M .
As shown in Fig. 1 (b), every single lattice site rep-

resents a localized photonic mode with frequency ϵi and
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annihilation operator Ψi ≡ Ψ(r⃗i). By considering only
nearest-neighbor hopping between the localized modes,
the general lattice Hamiltonian is given by

Hph =

M∑
i=1

ϵiΨ
†
iΨi − ℏJ

∑
⟨ij⟩

(
eiϕijΨ†

iΨj +H.c.
)
. (1)

The tunneling amplitude is complex-valued, with a non-
trivial phase ϕij to break time-reversal symmetry. In
our system we use this phase to generate a homoge-
neous synthetic magnetic field for photons by imposing

ϕij =
e
ℏ
∫ r⃗i
r⃗j
A⃗(r⃗) · dr⃗ [6], with A⃗(r⃗) = B(0, x, 0) being the

synthetic vector potential for a homogeneous synthetic
magnetic field taken for simplicity in the Landau gauge.
As usual, we express the strength of the magnetic field
in terms of the dimensionless parameter α = eΦ/(2πℏ),
where Φ = Bl20 is the flux enclosed in a single plaquette.
Going beyond the setup considered in Ref. [55], here we
impose an additional linear frequency gradient,

ϵi = −eE xi + ℏωp, (2)

where ωp is the bare frequency of the local modes. This
simulates the effect of a homogeneous electric field in
the x-direction. The strength of field is characterized
by a voltage drop U0 = eEl0 between two neighboring
sites. This situation is then similar to a solid-state sys-

tem, where the effect of a crossed magnetic field B⃗ and

an electric field E⃗ gives rise to a quantized Hall current

J⃗H ∼ E⃗ × B⃗, which flows, in our convention, along the
y-axis.

Including the emitters and their coupling to the local
photon modes, the total Hamiltonian for this setup is
given by

H = Hph +

N∑
n=1

ℏωn
e

2
σn
z +

N∑
n=1

(
ℏgn
2

Ψ(r⃗ n
e )σ

n
+ +H.c.

)
.

(3)
Here, the σn

z/± are Pauli matrices for an emitter at po-

sition r⃗ n
e , while ω

n
e ≈ ωp and gn are its transition fre-

quency and the strength of the light-matter coupling, re-
spectively.

B. A photonic lattice in the quantum Hall regime

Since the photons are noninteracting, the properties of
the photonic lattice are fully encoded in the eigenfrequen-
cies ωλ and eigenmodes fλ(r⃗i) of the hopping matrix, i.e.,
in the solutions of the eigenvalue equation∑

j

(
ϵiδij − ℏJeiϕijδ⟨ij⟩

)
fλ(r⃗j) = ℏωλfλ(r⃗i), (4)

where δij is the Kronecker delta, and δ⟨ij⟩ is the Kro-
necker delta for nearest neighbors.

For a non-zero magnetic flux, α ̸= 0, and a homo-
geneous on-site frequency ϵi = ℏωp for all lattice sites,

the photonic spectrum is given by the famous Hofstadter
butterfly [56], where all the eigenvalues are grouped in
a finite number of narrow Landau levels, with energies
that are symmetrically distributed around ωp. A first
consequence of the presence of a finite electric field is
the broadening of these levels into bands with a width
∼ U0Nx. This is clearly visible in Fig. 1 (c), where we
plot the eigenfrequencies ωλ (black dots) as a function
of the mean displacement of the corresponding mode-
function, ⟨x⟩ =

∑
i xi |fλ(r⃗i)|2, for finite α and a finite

voltage drop U0. Here, the most visible effect of the syn-
thetic electric field is the tilting of the photonic Landau
level with a slope proportional to ∼ U0.
In the intermediate magnetic field regime, where l0 <

lB < Lx,y and lB =
√
ℏ/eB = l0/

√
2πα is the magnetic

length, Eq. (4) can be approximated by a differential
equation in the continuum, which recovers the form of
a Schrödinger equation for a particle in an external elec-
tric and magnetic field [55]. The photonic eigenmodes of
the lattice can then be approximated by Landau levels
in the continuum, fλ(r⃗i) ≡ Φℓk(r⃗i), where

Φℓk(r⃗) = l0
eiky√
Ly

φh.o.
ℓ

(
x+ l2Bk − lB

UB

ℏωB

)
. (5)

and φh.o.
ℓ (x) is the ℓ-th harmonic oscillator eigenfunction

with oscillator length given by the magnetic length lB
(see Appendix A for more details). In Eq. (5), the index
ℓ = 0, 1, 2, . . . labels the discrete Landau levels and k
is the wavevector along the y-direction. We have also
introduced the parameter

UB = eElB , (6)

which characterizes the interplay between the magnetic
and the electric field and corresponds to the voltage drop
across a cyclotron orbit. In the following we will refer to
UB as the Landau voltage and we will see how it plays
a crucial role in determining the light-matter coupling
dynamics.
In the presence of the electric field, the Landau lev-

els are no longer degenerate and their energy is approxi-
mately given by

ℏωℓk ≈ ℏωb+ℏωB

(
ℓ+

1

2

)
+ℏω(2)

ℓ +UB

(
lBk −

UB

2ℏωB

)
,

(7)
where ωb = ωp − 4J is the frequency of the lower band
edge and ωB = 4παJ is the cyclotron frequency. Here
we have also included the second order correction to the
Landau levels due to lattice discretization [55],

ω
(2)
ℓ = − ω2

B

32J

(
2ℓ2 + 2ℓ+ 1

)
, (8)

which is necessary to match this analytic result with ex-
act numerics. In Fig. 1 (c) we compare Eq. (7) (red
dashed lines) to the full spectrum (black dots) obtained
via a numerical diagonalization of Eq. (4). For the
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analytic results in this plot, we approximate the aver-
age displacement of the eigenmodes by ⟨x⟩ ≃ −l2Bk +
UBlB/(ℏωB). We see that Eq. (7) predicts very accu-
rately the lowest energy bands for the bulk modes, while
the highest energy bands are given by a symmetric mir-
roring of the lowest states. Of course, the continuum
approximation fails near the center of the band, where
the effect of the discretization become important. As we
are going to see in what follows, the linear shape of the
dispersion relation in Eq. (7) plays a crucial role since it
guarantees that wavepackets do not suffer broadening or
distortion during propagation.

Note that because we consider a finite lattice, we have
a limited number of bulk modes in each Landau level ℓ.
The eigenmodes are localized states along the x-direction,
with a spatial extension of ∆x ∼

√
1 + ℓ lB and centered

at the k-dependent position ⟨x⟩ = −l2Bk + UBlB/(ℏωB).
As such, the number of states in each Landau level
can be estimated by counting the number of k-modes
with spacing ∆k = 2π/Ly that cover the distance Lx.
For example, based on this estimate, the lowest Lan-
dau level (LLL) with ℓ = 0, contains about Mℓ=0 ≈
LxLy/(2πl

2
B) =Mα states for which 0 < k < Lx/l

2
B .

The remaining states outside this range are instead
fully localized on the edge and represent the usual topo-
logical edge modes. In Fig. 1 (c) we can see that for
states at the boundary of the system, where ⟨x⟩ ∼ 0, Lx,
the eigenfrequencies lie outside the tilted Landau level,
and form a band of edge states. Note, however, that in
contrast to the dispersionless bulk states, the large varia-
tion of the group velocity along the edges typically leads
to a significant broadening and deformation of propagat-
ing wavepackets.

III. QUANTUM HALL TRANSPORT FOR
PHOTONS

In this section we provide a theoretical framework to
describe the single photon dynamics in this synthetic
quantum Hall configuration. In particular, this analysis
highlights one of the most important consequences that
arises from the presence of both magnetic and electric
fields: the photonic bulk, often referred as a Chern insu-
lator, allows now for propagation and transport in a di-
rection perpendicular to the two fields. This is the direct
photonic analog of the quantum Hall effect for electrons.

A. Photon Green’s function

In order to describe the quantum Hall dynamics we
make use of the photonic Green’s function (or propaga-
tor). In its general form, this Green’s function can be
expressed in terms of the photonic eigenmodes and their

corresponding eigenfrequencies as

G(t, r⃗i, r⃗j) = ⟨vac|Ψ(t, r⃗i)Ψ
†(0, r⃗j)|vac⟩

=
∑
λ

fλ(r⃗i)f
∗
λ(r⃗j)e

−iωλt (9)

and provides the propagation amplitude of a photon from
position r⃗j to position r⃗i in a time t.
Using the approximated forms of the photonic eigen-

modes and eigenfrequencies given in Eqs. (5)-(7), we can
write down an explicit expression for the Green’s function
restricted to the LLL,

Gℓ=0(t, r⃗i, r⃗j) ≈
l20

2πl2B
ei(θij−ωLL

ℓ=0t)e
−

|r⃗i−r⃗j |
2

4l2
B I(t, r⃗i, r⃗j).

(10)

Here θij is the (gauge-dependent) phase

θij = −xiyj − xjyi
2l2B

+
xiyi − xjyj

2l2B
, (11)

and

ωLL
ℓ = ωb + ωB

(
ℓ+

1

2

)
+ ω

(2)
ℓ (12)

is the frequency of the ℓ-th Landau level.
The electric field enters in the dynamics only through

the time-dependent part of the propagator, I(t, r⃗i, r⃗j),
which is given by

I(t, r⃗i, r⃗j) =
2
√
πlB
Ly

∑
k

e
−
(
lBk−

(xi+xj)−i(yi−yj)

2lB
+

UB
ℏωB

)2

× ei[cHk+U2
B/(2ℏ2ωB)]t.

(13)

Here the Hall speed of propagation is given by the usual
formula

cH =
UBlB
ℏ

=
E

B
. (14)

While there is no simple compact form for Eq. (13)
in the general case, it is possible to simplify the prob-
lem in the limit Ly → ∞. In this limit, the sum in
Eq. (13) can be approximated by an integral by substi-
tuting 2π/Ly

∑
k 7→

∫
dk, and we obtain

I(t, r⃗i, r⃗j) ≃ e−
U2
Bt2

4ℏ2 e
i
(

xi+xj+i(yi−yj)

2lB
− UB

2ωB

)
UBt/ℏ

. (15)

For a vanishing magnetic field, UB = 0, this expres-
sion reduces to a constant, I(t, r⃗i, r⃗j)|UB=0 = 1, meaning
that photons do not propagate. In the presence of emit-
ters, this property gives rise to the formation of localized
Landau-photon polaritons, as described in Ref. [55].
By combining Eq. (15) and Eq. (10) we obtain the total

Green’s function in the continuum for an infinitely large
system,

G0(t,∆x,∆y) =
l20

2πl2B
e
−∆x2

4l2
B e−

1
4 (UBt/ℏ−∆y/lB)2

× ei[θij−(ωch(xj)+ωch(xi))t/2].

(16)
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Here, ∆x = xj − xi and ∆y = yj − yi, and we have in-
troduced the position-dependent Hall-channel resonance
frequency

ωch(x) = ωLL
ℓ=0 −

UB

ℏ
x

lB
+

U2
B

2ℏ2ωB
. (17)

which includes a second order correction due to mixing
with the higher Landau levels by the synthetic electric
field. From Eq. (16) we see that for ∆y > 0 the photon
emitted in yj can coherently propagate to yi at the Hall
speed cH , provided that |xi − xj | ≲ lB . On the other
hand, for ∆y < 0 the propagation is exponentially sup-
pressed (for t > 0). This clearly shows that the photon
propagation is unidirectional (or chiral) and without any
dispersion.

In summary, our calculations show that for each point
in the bulk, the photonic lattice behaves as a unidi-
rectional waveguide along the y-direction, perpendicular
to both the electric and the magnetic field and with a
Gaussian transverse size ∆x ∼ lB fixed by the magnetic
length. This is schematically shown in Fig. 1 (a). Each
chiral channel at position x has its own resonance fre-
quency ωch(x), and it is detuned from neighboring chan-
nels at positions x± l0 by ℏ|∆ω| = U0.

We emphasize that these considerations are only valid
in the regime of weak magnetic field strengths [55], which
is the regime of interest for the current study and holds
approximately for α ≲ 1/6. For larger values of the mag-
netic flux the dynamics is more complicated and exhibits
Bloch oscillations and other discrete-lattice effects. For
the sake of clarity we do not address this regime here
and refer to Refs. [57, 58] for further details. In any
case, note that all the presented results have been bench-
marked against numerical simulations of the full lattice
dynamics, i.e., with no approximations.

B. Local density of states

The photonic Green’s function derived above is useful
not only to describe the propagation of a photon through
the lattice, but also to extract the local density of states,
defined as

ρph(r⃗, ω) =

∫
dtG(t, r⃗, r⃗)eiωt. (18)

In the following we will show that this quantity is partic-
ularly important for describing the dynamics of a single
emitter that is coupled to the photonic lattice at a posi-
tion r⃗.
From Eq. (16) we can derive an analytic expression for

the local density of states for the LLL,

ρℓ=0
ph (r⃗, ω) ≈ 2

√
παℏ
UB

e
− ℏ2[ω−ωch(x)]2

U2
B . (19)

This expression shows that as long as the relevant sys-
tem dynamics takes place in a narrow range of frequencies

ℏ|ω−ωch(x)| ≲ UB , the bulk behaves effectively as a con-
tinuous 1D waveguide, with an almost constant density
of states. However, for a lower value of the electric field
or when the dynamics involves a wider range of frequen-
cies, ℏ|ω−ωch(x)| > UB , the density of states decays very
rapidly and non-Markovian effects start to play a relevant
role. In this regime, the direct analogy with a conven-
tional chiral waveguide breaks down and new phenomena
appear, as we are going to see in the next Section.
The shape of the density of states in Eq. (19) is quite

surprising at first sight. Indeed, by looking at Fig. 1
(c) and at the analytic estimates given above, one would
expect an approximately flat density of states over the
whole width ∼ U0Mx of the tilted Landau level, where
Mx = Lx/l0. Instead, our calculations show that the
effective photonic bandwidth within each Landau level
that is accessible to a localized emitter is determined by
the Landau voltage UB , independently of the lattice size.
This is due to the peculiar lateral localization of the chiral
bulk modes at a ky-dependent x position, which modu-
lates the effective light-matter coupling.
Before we proceed, it is important to emphasize how

this behaviour is different from the one of standard sys-
tems in chiral quantum optics. A non-trivial shape of the
photonic density of states is in fact also seen by an emit-
ter coupled to the chiral edge states, the frequency vari-
ation arising from the frequency-dependent penetration
length of the edge states into the bulk. In contrast to our
case, however, this density of states is relatively smooth
and does not display a quick Gaussian decay away from
the central frequency. This seemingly minor difference is
at the heart of the state-transfer application that we are
going to discuss for the bulk modes in the next sections.

IV. COUPLING REGIMES IN PHOTONIC
QUANTUM HALL SYSTEMS

Let us now go beyond the sole propagation of photons
and consider an additional quantum emitter located at
a position r⃗e = (xe, ye) in the bulk of the lattice, as
described by the total Hamiltonian in Eq. (3), with N =
1. Since there is only a single emitter here, we suppress
the index n and set ωn

e , gn 7→ ωe, g.
By assuming that the emitter is initially prepared in its

excited state with no photons in the lattice, the resulting
dynamics of the system is constrained to the single exci-
tation subspace and can be described by a wavefunction
of the form

|ψ⟩(t) = e−iωet[ce(t)σ+ +
∑
i

φ(r⃗i, t)Ψ
†(r⃗i)]|g⟩|vac⟩ .

(20)
By projecting the Schrödinger equation onto this sub-
space, we can derive a set of equations for the time evo-
lution of the emitter amplitude ce(t) and for the wave-
function of the photon, φ(r⃗i, t) [59–61]. These equations
can be readily integrated numerically, which we use to
produce most of the results discussed in the following.



6

Alternatively, we can eliminate the dynamics of the emit-
ted photon to derive a closed equation for the emitter
amplitude [55],

ċe(t) = −g
2

4

∫ t

0

dsG(t− s, r⃗e, r⃗e)ce(s)e
iωe(t−s). (21)

This is an integro-differential equation, with the photonic
Green’s function evaluated at the emitter position r⃗e as
the memory kernel. This memory kernel describes both
the photon’s emission from the atom and its eventual
re-absorption.

While in general there is no closed analytic solution
of Eq. (21), we can use an approximate expression for
the photonic Green’s function to obtain additional useful
insights into the emitter-photon dynamics. In particular,
with the help of the Gaussian approximation for the LLL
in Eq. (19), we obtain

ċe(t) = −g
2α

4

∫ t

0

ds e−U2
B(t−s)2/(4ℏ2) ei∆e(t−s) ce(s) ,

(22)
where we have introduced the position-dependent detun-
ing

∆e = ωe − ωch(xe). (23)

Under the assumption ∆e ≈ 0, this approximate form
allows us to identify three qualitatively different coupling
regimes:

1. Weak-coupling regime, ℏg
√
α ≪ UB . In this limit

the density of states is almost flat and the Green’s
function decays on a timescale that is fast compared
to the evolution of the emitter. This leads to an ef-
fectively Markovian dynamics, with an exponential
decay of the excited state.

2. Strong-coupling regime, ℏg
√
α ≫ UB . Under this

condition the coupling strength exceeds the rele-
vant bandwidth UB of the density of states and
the emitted photons can be reabsorbed before they
propagate away. Such conditions lead to the forma-
tion of so-called atom-photon bound states [62, 63],
which do not decay.

3. Critical-coupling regime, ℏg
√
α ≃ UB . For these

parameter values, the absence of a sharp band-edge
allows the excited state population to fully decay to
zero, but the sizable frequency-dependence of the
density of states makes a crucial difference from
other narrow-band waveguide systems and, as we
are going to discuss in detail below, this results in
a strongly non-Markovian dynamics and, in partic-
ular, in an almost symmetric shape of the sponta-
neously emitted photon wavepacket.

Note that the relevant coupling parameter in this discus-
sion is g

√
α, rather than the bare light-matter coupling

g. This is related to the fact that the local density of

states scales as ∼ α, resulting in an additional factor√
α in the effective coupling strength [55]. Physically,

this factor can also be understood from the spatial width
lB ∼ 1/

√
α of the waveguide mode in the transverse di-

rection.
In the following we proceed with a brief discussion of

the photon-emission dynamics in those three regimes for
a situation, where the emitter is far away from the bound-
ary.

A. Weak coupling regime: Markovian spontaneous
emission

The linear dispersion of the photonic Landau levels
introduced by the electric field E and captured by Eq.
(7) implies that photons can propagate across the lat-
tice. Therefore, a photon locally created by the emitter
can leave the interaction region, which leads to sponta-
neous decay. This is in stark contrast to the case E = 0,
where spontaneous emission is forbidden and is replaced
by the formation of bound polaritonic states between the
emitter and the localized Landau photons [55, 64].
In the standard theory of spontaneous decay [65], the

exponential decay of the atomic population arises from a
Markov approximation. The validity of this approxima-
tion requires that the density of states of the photonic is
approximately constant over a sufficiently large frequency
range. In the current setting, this is the case when the rel-
evant timescale of the emitter’s dynamics given by g

√
α is

slow compared to the inverse of the effective bandwidth
UB/ℏ identified above. Under this assumption we can
approximate the photonic Green’s function appearing in
Eq. (21) as

G(t− t′, r⃗, r⃗) ≈ ρph(r⃗, ωe) δ(t− t′), (24)

and obtain a Markovian, i.e., memoryless equation for
the emitter amplitude

ċe(t) ≈ −g
2

4
ρph(r⃗e, ωe) ce(t). (25)

By using the continuum approximation for the Green’s
function in Eq. (19), we find that the excited state am-
plitude decays exponentially,

ce(t) ≈ e−Γet, (26)

where the decay rate

Γe =

√
π

2

ℏg2α
UB

e−ℏ2∆2
e/U

2
B (27)

is inversely proportional to the applied electric field
UB ∼ E and has the expected Gaussian dependence on
the position-dependent emitter detuning ∆e.
In Fig. 2 (a) we perform an exact numerical simula-

tion of the decay of an excited emitter in a finite lattice
with periodic boundary conditions along the y-direction.
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FIG. 2. Spontaneous emission dynamics of a single emitter
in the weak-coupling regime. (a) Plot of the excited-state
population Pe = |ce(t)|2 as a function of time. The blue
crosses represent the results from an exact numerical simula-
tion, while the solid black line shows the prediction from Eq.
(22). The green dashed line indicates an exponential decay
with a rate Γe given in Eq. (27). (b) Snapshot of the photon
density |φ(r⃗, t)|2 of the emitted wavepacket at a time t > 0
well after the spontaneous emission process. The white ar-
row marks the direction of propagation. The parameters for
both plots are α = 1/20, Nx = 31, Ny = 100, U0/J = 0.001,
∆e/J ≈ 0 and ℏg = 0.4UB/

√
α ≈ 0.003ℏJ . The emitter is

located at the position r⃗e/l0 = (15, 50).

These results are compared to the dynamics predicted
by Eq. (22) for the continuum limit. We see that in this
weak-coupling regime, the continuum approximation is
in excellent agreement with exact results. This simula-
tion also confirms that apart from small deviations at the
initial stage, the temporal profile of the decay is very well
captured by an exponential decay with a rate Γe given in
Eq. (27).

In Fig. 2 (b) we also show a snapshot of the emitted
photonic wavepacket, |φ(r⃗, t)|2. This plot confirms that
the emitted photon is localized along the x-axis within a
magnetic length lB and propagates along the y-axis with
Hall speed cH . As it is typical for spontaneous emis-
sion, the wavepacket is asymmetrically stretched along
the propagation direction, with a sharp front edge and a
long exponential tail of characteristic length ∼ cH/Γe.

B. Strong coupling regime: Atom-photon bound
states in the chiral continuum

For very large values of the light-matter coupling,
ℏg > UB/

√
α, the emitter dynamics is dominated by

non-Markovian effects, which arise from the finite width
of the density of states given in Eq. (19). In particular,
the density of states is strongly suppressed outside a fre-
quency band of width ∼ UB , meaning that the Green’s
function in Eq. (21) can be approximated by a constant,
G(t−s, r⃗e) ≈ α, over the relevant timescale of the emitter
dynamics. This allows us to approximate the equation for
the emitter amplitude ce(t) by a second-order differential

0 1 2 3 4

1

0.2
0.4
0.6
0.8

0
0 1 2 3 4

(a) (b)

exact

continuum 
approx.

FIG. 3. Evolution of the excited state population Pe =
|ce(t)|2 of an initially excited emitter in the strong-coupling
regime, where (a) ℏg = 2UB/

√
α and (b) ℏg = 8UB/

√
α. The

blue crosses represent the results from an exact numerical
simulation, while the solid black line shows the prediction
from Eq. (22) in the continuum limit. The other parameters
assumed for both plots are α = 1/20, Nx = Ny = 40, U0/J =
0.01 and ∆e/J ≈ 0.

equation.

c̈e(t) ≈ −Ω2

4
ce(t), (28)

where the Rabi frequency is given by

Ω = g
√
α. (29)

This equation indicates the presence of an atom-photon
bound-state [62, 63], as an exact eigenstate of the system,
and recovers the Landau-photon polariton (LPP) picture
described in [55]. Indeed, numerical simulations confirm
that the photonic component of this bound state has the
shape of a standard Landau orbital with no visible effect
from the electric field. However, while for E = 0 LPPs
already appear at arbitrarily small values of the coupling
strength [55], in the present configuration bound states
require a minimal coupling strength that exceeds UB .
In Fig. 3 (a) and Fig. 3 (b) we show the emitter dy-

namics as we progressively enter the strong coupling
regime. Already for ℏg

√
α = 2UB we see clear non-

Markovian effects and marked oscillations, but at longer
times the emitter dynamics keeps being dominated by
a monotonous decay. For higher coupling strengths,
ℏg

√
α = 8UB , we only observe a small initial decay fol-

lowed by persistent Rabi oscillations between the pho-
tonic and the matter components of the bound state.
The fact that the Rabi oscillations in Fig. 3 (b) are
incomplete, i.e., Pe(t = 2πn/Ω) < 1 for n = 1, 2 . . .,
is due to the smoothly decaying tail of the density of
states, which still allows a small fraction of the ex-
citation to propagate away into the lattice. By fur-
ther increasing the light-matter coupling ℏg

√
α ≫ UB

the Rabi oscillations progressively reach their maximum
value Pe(t = 2πn/Ω) ≈ 1. These observations are consis-
tent with the formation of atom-photon bound states in
other narrow-band waveguide QED systems.
However, we re-emphazise that in our case this effect

appears under conditions where the effective coupling is
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still small compared to the total width of the LLL and, in
general, the total lattice band-width, ℏg

√
α ≪ U0Nx ≪

8ℏJ . Interestingly, note that in an infinite lattice the
photon has a continuum spectrum and, strictly speak-
ing, these atom-photon bound states belong to the class
of so-called bound state in the continuum (BIC) [48, 49].
This may look quite odd, since BICs are thought not
to exist in geometries where photons propagate chirally.
The controversy is easily solved by noticing that only
the local density of states matters for this kind of bound
states. As it was previously highlighted, even though the
photon has a continuum spectrum, the states accessible
to the atom are limited by the Gaussian density profile
Eq. (19). This makes the photon to locally have an
effectively finite bandwidth, and thus to follow the stan-
dard rules for atom-photon bound states in conventional
finite-band configurations [62, 63].

C. The critical-coupling regime

As we increase the coupling strength from the weak to
the strong coupling regime, the system passes through a
critically coupled regime where

ℏg ≈ UB√
α
. (30)

As shown in Fig. 4 (a), under this condition the decay
dynamics of the excited emitter is no longer Markovian,
but Rabi oscillations, as characteristic for the strong-
coupling regime, are not yet visible either. This con-
dition is of interest for two reasons. First of all, setting
ℏg ≈ UB/

√
α is the largest coupling that still allows spon-

taneous emission before being suppressed in the strong-
coupling regime, resulting in the fastest way to fully de-
excite the emitter in a time Γ−1

e ≈ U−1
B . Secondly, when

looking at the shape of the emitted photon in Fig. 4 (b),
we find that the wavepacket is very compact, also along
the y-direction. This property is shown in more detail
in Fig. 4 (c), where we plot a cut of the emitted pho-
ton wavefunction along the y-direction and we compare
it with the one obtained in the weak-coupling regime: we
see that in the critical coupling case the wavepacket is not
only highly localized, but also almost symmetric around
its maximum and travels through the lattice without any
significant dispersion.

While the formation of effective 1D chiral channels is
a property of the photonic lattice itself, the emission
of such symmetric wavepackets is connected to a spe-
cific light-matter interaction regime and goes beyond the
usual quantum Hall physics. While this seems to be a
minor detail for the emission process, in what follows we
will show how this symmetry becomes an essential prop-
erty when studying the reabsorption of the photon by
other emitters in the system.

(c)

0 804020 600

0.1

0.2
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continuum 
approx.
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0.8
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30
0.040(a) (b)

0 30150

critical coupling

weak coupling

FIG. 4. (a) Excited state population of a single emitter
Pe = |ce(t)|2 as a function of time. The blue crosses rep-
resent the results from an exact numerical simulation, while
the solid black line shows the prediction from Eq. (22) in
the continuum limit. The green dashed line indicates an
exponential decay with a rate Γe given in Eq. (27). (b)
A snapshot of the photon density |φ(r⃗, t)|2 of the emitted
wavepacket at a time t ≈ 202J−1 ≈ 23Γ−1

e . The white ar-
row marks the direction of propagation. In both plots we
assume α = 1/10, Nx = Ny = 31, U0/(ℏJ) = 0.1, ∆e/J = 0
and ℏg = UB/

√
α ≈ 0.4ℏJ . The emitter is located at

r⃗e/l0 = (15, 15), as indicated by the green dot. (c) Integrated
photon density profile ht(y) =

∫
dx|φ(x, y, t)|2 for a photon

emitted in the Markovian regime with ℏg = 0.3UB/
√
α (green

line) and from a critically coupled emitter with ℏg = UB/
√
α

(red line). The black arrow indicates the propagation direc-
tion while the green dashed line marks the emitter position
at r⃗e/l0 = (10, 70). The two snapshots are taken at the same
time Jt ≈ 64. In this plot we assume α = 1/10, Nx = 20,
Ny = 80, U0/(ℏJ) = 0.1 and ∆e/J = 0. Both results in (c)
have been obtained from a numerical simulation of the full
lattice dynamics.

D. Beyond the single Landau level approximation

Our discussion of the different coupling regimes was so
far based on the assumption that the emitter is primar-
ily coupled to the states in the LLL. This assumption is
justified as long as the light-matter coupling g is small
compared to the gap ∆gap ∼ ωB between the Landau
levels. This corresponds to g ≪ ωB . In order to reach
the critical or strong coupling conditions, we require
ℏg ≫ UB/

√
α, such that UB/(ℏωB) = U0/(2(2πα)

3/2J)
can be of order ∼ O(1) already for moderately strong
electric fields. This means that the restriction to the
LLL might not be well justified in this regime.

To investigate the influence of higher Landau levels,
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FIG. 5. Plot of the emitter excitation spectrum Se as a func-
tion of the excitation frequency ω and the light-matter cou-
pling strength g. The three panels show this spectrum for
different values of the electric field, expressed in terms of the
Landau voltage UB = eElB . In each panel, the green dashed
line marks the critical coupling value ℏg = UB/

√
α. The grey-

shaded area in the last panel is the weak-coupling (Marko-
vian) regime, whose boundary is given by ℏg ≈ UB/(2

√
2α),

as it is defined in traditional cavity QED setups with a Gaus-
sian inhomogeneous broadening of the emitters [66–68]. The
other parameters are α = 1/10, Nx = Ny = 30 and ∆e/J ≈ 0.
In all plots an artificial broadening γδ/J = 0.015 of all states
has been introduced to obtain a smooth spectrum.

we analyze the excitation spectrum of the emitter,

Se(ω) =
∑
ν

| ⟨ν|σe
+|G⟩ |2δ(ω − ων). (31)

Here |ν⟩ and ων are the ν-th eigenstate and eigenfre-
quency of the full coupled Hamiltonian in Eq. (3), while
|G⟩ is its ground state.
The excitation spectrum Se(ω) is plotted in Fig. 5

as a function of the coupling strength g and for differ-
ent strengths of the electric field. In the strong cou-
pling regime, where ℏg ≫ UB/

√
α, Se(ω) displays two

branches which are split by Ω and corresponds to the
bound states discussed above. For very small electric
fields, i.e., UB ≪ ℏωB , the two branches are very narrow
and almost symmetric, with only a small downward shift
of the frequency of the upper bound state. This shift of
the upper branch can be understood as a second-order
correction given by the presence of the higher Landau
level. However, since the states in the ℓ = 1 Landau level
are spatially well separated from the ℓ = 0 states at the
same energy, as one can see in Fig. 1 (c), their effect is
still small, acting only perturbatively on the bound-state
dynamics.

By increasing the electric field to values of UB ≈ ℏωB ,
the coupling to the higher Landau level becomes more rel-
evant, since resonant states in different ℓ-manifolds have
a larger spatial overlap. This is most visible for the up-
per bound-state. As its energy approaches the next Lan-
dau level, it becomes progressively more broadened, due

to the increasing possibility to decay into propagating
modes in the ℓ = 1 manifold. The effect on the lower
bound-state is much weaker as this state is further de-
tuned from the ℓ = 1 levels and thus the effective tunnel-
ing barrier to resonant propagating states is wider.
More quantitatively, the higher Landau levels result in

additional peaks in the density of states, which are sepa-
rated by multiples of ℏωB and can be well approximated
by

ρℓph(r⃗, ω) ≈
2
√
παℏ√

2ℓ ℓ!UB

H2
ℓ (ω − ωch(x)− ℓωB)

× e
− ℏ2[ω−ωch(x)−ℓωB ]2

U2
B ,

(32)

where Hℓ(x) is the ℓ-th Hermite polynomial. From this
approximate expression for the density of states, we can
interpret higher Landau levels in the presence of an elec-
tric field as regular Landau levels that are shifted in space
by ∆xB ≈ ℓℏωB/U0. In this picture, the negligible cou-
pling to neighboring Landau levels can be explained in
terms of the reduced spatial overlap ∼ exp(−ℓω2

B/U
2
B)

between the wavefunctions, which is strongly suppressed,
unless the electric field is very strong.
Finally, for very strong electric fields, UB ≳ ℏωB , as

shown in the right panel of Fig. 5, the strong-coupling
regime cannot be reached without having the light-
matter coupling comparable or even larger than the en-
ergy gap between the neighboring Landau levels. As a
consequence, the upper bound-state is strongly broad-
ened by a significant hybridization with a wide band of
propagating states in the ℓ = 1 Landau level.

V. QUANTUM REVIVALS AND STATE
TRANSFER

In this section we now explore in more detail one of the
most remarkable features of the critical coupling regime,
namely the symmetry between emission and absorption
processes. Due to the symmetric shape of the emit-
ted wavepacket and its unidirectional propagation, the
emission of a photon in this regime is indistinguishable
from the time-reversed reabsorption process of the same
photon. In the quantum communication literature [23],
this symmetry argument has been used to derive spe-
cific control pulses g(t), which produce such symmetric
wavepackets and thus allow for high-fidelity state transfer
operations in unidirectional Markovian channels. Here
we find that in our proposed configuration this symme-
try emerges naturally and without any time-dependent
control from the non-Markovian dynamics of a critically
coupled photonic quantum Hall system.

A. Quantum revivals

To analyze reabsorption processes in our system, let
us stick to the case of a single emitter, but now in a lat-
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FIG. 6. Evolution of the excited state population Pe = |ce(t)|2
(left panels) and snapshot of the emitted photon density
|φ(r⃗, t)|2 (right panels). In (a) the emitter is weakly coupled
with g

√
α = 0.3UB/ℏ ≈ 0.038 J , while (b) shows the case of

a critically coupled emitter with g
√
α = UB/ℏ ≈ 0.126 J . In

both cases Jτrev ≈ 390. The other parameters for these plots
are α = 1/10, Nx = 31, Ny = 61, U0/(ℏJ) = 0.1, ∆e = 0 and
the emitter is located at r⃗e/l0 = (15, 53). All results have
been obtained from a numerical simulation of the full lattice
dynamics.

tice with periodic boundary conditions (PBC) along the
y-direction. In this case the emitted photon still propa-
gates unidirectionally with a group velocity set by the
Hall speed cH and without any significant dispersion.
However, after a round-trip time

τrev = Ly/cH (33)

the photon will reach again its initial position, where it
can be partially or fully reabsorbed by the emitter.

In Fig. 6 (a) and (b) we simulate this emission and
reabsorption process under weak-coupling and critical-
coupling conditions, respectively. In the first case, we
see that after each round-trip only a fraction of about
60% of the initial excitation is reabsorbed. This is very
similar to what is expected for photon reabsorption in a
1D Markovian channel without any time-dependent con-
trol. In contrast, for a critically coupled emitter, the
photon is reabsorbed with more than P = 95% proba-
bility, and significant revivals can still be observed af-
ter multiple roundtrips. This near perfect reabsorption
can also be interpreted as a coherent quantum revival ef-
fect, where all the eigenmodes forming the initial state in
Eq. (20) periodically rephase, i.e., ce(t = nτrev) ≃ ce(0)
for n = 1, 2 . . ..

As mentioned above, we can understand this high
reabsorption probability from the symmetry and the
dispersion-free propagation of the emitted wavepacket,
as shown in the right panels in Fig. 6. To see under

0
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FIG. 7. Maximum value of the revival probability Prev of the
excited state population after a time t ∼ τrev. This proba-
bility is plotted as a function of the light-matter coupling g
and the local detuning ∆e. These results were derived from
Eq. (21), using the continuum Green’s function with PBC
and for α = 1/10 and Ly/l0 = 200.
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FIG. 8. (a) Sketch of a lattice with PBC along the y-axis
and OBC on the x-axis, and with an homogeneous out-of-
plane magnetic field and an homogeneous in-plane electric
field along the x-axis (left panel). In this case the photonic
eigenmodes fλ(r⃗i) are approximately described by the Lan-
dau wavefunctions in Eq. (5), which are homogeneous stripes
along the y-direction with lateral size ∼ lB (right panel). (b)
Sketch of the same lattice, but with OBC along both x and
y (left panel). In such a lattice, photonic eigenmodes form
closed loops along the edge (right panel). The lattice param-
eters assumed for both cases are α = 1/20 and Nx = Ny = 41.

which conditions this effect occurs, we plot in Fig. 7 the
maximal revival probability Prev as a function of the cou-
pling strength g and the (local) detuning ∆e of the emit-
ter from the LLL. This plot confirms that high revival
probabilities of Prev > 0.9 can be observed within an
extended parameter regime and without the need for a
precise fine-tuning of any of the system parameters.
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FIG. 9. (a) Snapshots of the photon density |φ(r⃗, t)|2 at three
different times after the excitation is released by an emit-
ter located at the center of the lattice. (b) Excited state
population Pe = |ce(t)|2 as a function of time in units of
τrev. The three dashed lines mark the times of the snap-
shots shown in (a). The other parameters for theses plots are
α = 1/10, Nx = Ny = 21, U0/(ℏJ) = 0.1, ∆e/J = 0 and
ℏg = UB/

√
α ≈ 0.4ℏJ .

B. Bulk-edge quantum channels

Let us now switch to the experimentally more realistic
scenario of a lattice with open boundary conditions. In
this case the emitted photon cannot simply return to the
emitter by propagating along a straight line. Instead,
once it reaches the lattice boundary, the propagation via
edge-modes, which so far we have omitted from our anal-
ysis, becomes important. Surprisingly, we find that the
essential features discussed for periodic systems survive
for photonic quantum Hall systems with edges. This is
illustrated in Fig. 8, where we compare the characteristic
shape of an eigenmode of a periodic lattice with that of
a lattice with open boundary conditions. While within
the bulk region, both mode functions are very similar, in
the case of open boundary conditions the modefunction
continues along the edges. Therefore, also in this case the
photons can travel in loops and return to the emitter.

In order to verify that this peculiar shape of the pho-
tonic eigenmodes creates an equivalence between lattices
with periodic and open boundary conditions, we consider
again a critically coupled emitter, but now located in
the middle of a finite-size lattice. In Fig. 9 (a) we then
show three snapshot of the emitted photonic wavefunc-
tion, similar to the situation considered in Fig. 6 (b) for
PBC. We see that when the photon reaches the lower
boundary of the system, it is transported along the edge
to the upper boundary. Here, it makes a turn and prop-
agates again through the bulk towards the emitter.

In Fig. 9 (b) we plot the corresponding time evolu-

0 40

40

0

1

pump

(a) (b)

0

quantum-Hall
demultiplexer

FIG. 10. (a) Example of a photonic lattice with a smooth
edge given by a confining potential Vconf and a linear poten-
tial gradient along the x-axis. The equipotential lines of the
total potential (black lines) are straight lines in the bulk, but
bend into a closed loop along the edge. The white arrow
marks the direction of the electric field in the bulk while the
red arrows show an example of a photon trajectory along the
red equipotential line. (b) Sketch of the proposed photonic
demultiplexing device based on the guiding-center photonic
motion along equipotential lines.

tion of the excited state population Pe(t) = |ce(t)|2. In
exactly the same way as in the case of PBC, the emit-
ter population undergoes almost complete revivals after
a time that, in spite of the much longer path, is still close
to τrev given in Eq. (33) as a result of the much higher
propagation speed along the edges.

C. Guiding centers, equipotential lines and
photonic demultiplexing

The appearance of closed-loop channels, where pho-
tons propagate both in the bulk and along the edges, is
puzzling at first, since it seems to break the familiar con-
cept of topologically protected edge states. However, the
existence of such loops can be understood from an essen-
tial property of Landau wavefunctions in external poten-
tials [69], namely that wavepackets move along guiding
center trajectories that follow the equipotential lines of
this external potential landscape.
In the bulk of the lattice, this principle readily explains

the motion of the photons along straight lines, which are
the equipotential lines of the linear potential gradient
along the x-direction. The behavior of the photons near
the edges can then be understood by considering the po-
tential shown in Fig. 10 (a), where on top of the constant
electric field the edges are modelled by a smooth confin-
ing potential Vconf , such that

ϵi = −eExi + Vconf(r⃗i). (34)

The potential Vconf(r⃗i) is taken to be small and smooth
in the bulk and to grow very rapidly near the boundaries
of the lattice. This example illustrates very clearly how
the equipotential lines in this system form closed loops,
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represented by straight lines in the bulk, which then con-
tinue around the edges. Therefore, these equipotential
lines explain the shape of the modefunction shown in
Fig. 8 (b), but also the fact that the photons propagat-
ing along the edge reenter the bulk region exactly at the
position xe, where they have been emitted.

In electronic systems, this guiding-center principle is
crucial to understand the quantized Hall transport and
the existence of extended states in the bulk, even in the
presence of strong disorder [54]. This latter aspect is ulti-
mately related to the non-trivial topology of the electron
wavefunctions [53] and is linked to the integer quantum
Hall effect through percolation theory [52]. Even though
extended states are sensitive to the boundaries and are
different for every different realization of disorder, at least
one of them must always exist and connect one boundary
to the other. In the current setting, this last feature is
exactly what gives rise to the observed periodic photonic
orbits, even in a finite-size lattice. It is worth noticing
that this type of physics was also recently observed in
ultracold gases experiments with rotating traps [70, 71].

As another consequence of this principle and a key dif-
ference from the E = 0 case, photons injected at the
boundary of the quantum Hall lattice can penetrate into
the bulk while following specific equipotential lines. Since
every equipotential line identifies a unique resonance fre-
quency, photons of different frequency are transported to
different regions in the bulk. More specifically, for a con-
figuration shown in Fig. 10 (b), photons that are injected
at the upper-right corner of the lattice with a frequency
ωin will propagate along the edge before making a turn
into the bulk region at a position

xout = −lB
ℏ(ωin − ωch)

UB
. (35)

Therefore, this system realizes in a natural way a
frequency-demultiplexing element for photons. By re-
quiring that the separation between the output channels
exceeds the spatial width of the Landau orbitals, i.e.,
∆xout > lB , we can estimate a frequency resolution of
δω ≃ UB/ℏ and a total number of Nω ≈ Lx/lB frequency
components that can be spatially separated with such a
basic device.

D. Quantum state transfer: edge-to-edge versus
bulk-to-bulk

Let us now generalize the previous analysis to a mul-
tiple emitter case and discuss a basic application of pho-
tonic quantum Hall systems, namely to transfer an ar-
bitrary quantum superposition state between two such
emitters, i.e., to realize the mapping

(α|g⟩1 + β|e⟩1)|g⟩2 → |g⟩1(α|g⟩2 + β|e⟩2). (36)

Such state-transfer processes have previously been dis-
cussed in great detail for emitters coupled to chiral

waveguides or to edge channels of 2D photonic lattices
systems. In this case the transfer is achieved via the
emission of a single photon and a high efficiency requires
time-dependent couplings gi=1,2(t) in order to reabsorb
of this photon with close to unit probability [23]. Note
that state transfer schemes have also been analyzed in 1D
spin chains and topological lattices [72–76], where, how-
ever, a high-fidelity transfer again relies on very specific
coupling patterns or time-dependent control techniques.
Compared to those settings, the findings in the previous
sections suggest that our photonic quantum Hall systems
offer an essential advantage for state transfer applica-
tions, by enabling an almost perfect excitation transfer
without the need for any fine tuning or additional time-
dependent control.
To support this intuition, we consider a small photonic

lattice as depicted in Fig. 11, with two emitters located
either on the edge of the lattice or in the bulk at positions
r⃗ n
e . By assuming an initial state as in Eq. (36) the ansatz
for the full state generalizes to

|ψ⟩(t) =α|g⟩1|g⟩2|vac⟩+ β
[
e−iω1

etc1(t)σ
1
+ + e−iω2

etc2(t)σ
2
+

+
∑
i

φ(r⃗i, t)Ψ
†(r⃗i)

]
|g⟩1|g⟩2|vac⟩,

(37)

with c1(0) = 1 and c2(0) = 0. Since any deterministic
propagation phase can be reabsorbed into a local basis
rotation, we can quantify the fidelity of the state-transfer

process in terms of the excitation probability P
(2)
e (t) =

|c2(t)|2 and define F = maxt P
(2)
e (t), given that the first

emitter is initially fully excited, P
(1)
e (0) = 1 [22, 30].

After integrating out the photonic components, we ob-
tain a coupled set of equations for the emitter ampli-
tudes [55],

ċn(t) =

−
N=2∑
m=1

gngm
4

∫ t

0

dsG(t− s, r⃗ n
e , r⃗

m
e )cm(s)ei(ω

n
e t−ωm

e s).

(38)

Provided the emitters are spatially separated, we can
then again replace the full photonic Green’s function by
its continuum approximation in Eq. (16) and define the
local detuning of each emitter as ∆n = ωn

e − ωch(x
n
e ).

This shows that all the considerations done above for
a single emitter, in particular the identification of the
three different coupling regimes, remain valid for multi-
ple emitters as well. In addition, we can numerically in-
tegrate the exact dynamics for multiple emitters within
the single-excitation sector and use it to evaluate the ex-

citation probabilities P
(n=1,2)
e (t) = |cn(t)|2 shown in the

right panels of Fig. 11.
First of all, the simulations in Fig. 11 (a) confirm that

in a conventional lattice with a synthetic magnetic field,
but no synthetic electric field, UB = 0, excitations can
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FIG. 11. Chiral excitation transfer in different configura-
tions. The left panels depict the locations of the two emit-
ters in the lattice, while the right panels show the evolu-

tion of the excited state populations, P
(n)
e (t) = |cn(t)|2. (a)

Excitation transfer via edge channels, where the two emit-
ters are located on the edge (light green sites) at positions
r⃗ 1
e /l0 = (20, 40) and r⃗ 2

e /l0 = (20, 0). The photon propagates
along the edge from emitter 1 to emitter 2. The parameters in
this example are U0/(ℏJ) = 0, g1 = g2 = 0.1ωB/

√
α ≈ 0.4J

and ∆1 = ∆2 = 0.1 × ωB ≈ 0.7J . (b) Excitation trans-
fer via the bulk, where the two emitters are located at po-
sitions r⃗ 1

e /l0 = (20, 36) and r⃗ 2
e /l0 = (20, 5). The pho-

ton propagates through the bulk from emitter 1 to emitter
2. The parameters in this example are U0/(ℏJ) = 0.05,
ℏg1 = ℏg2 = UB/

√
α ≈ 0.2ℏJ and ∆1 = ∆2 = 0. (c) Excita-

tion transfer between two emitters in the bulk, but with the
photon propagating along the edge from emitter 2 to emitter
1. The other parameters are the same as in (b). In all three
simulations we have assumed α = 1/10 and Nx = Ny = 41.

be efficiently transported along the edges and even un-
dergo a full loop without any significant losses into the
bulk modes [21, 22, 25, 30, 32, 34]. However, similar to
the weak-coupling regime discussed above, the photons
emitted into the edge channels have an spatially asym-
metric wavefunction and, thus, are only partially reab-

sorbed by the second emitter, i.e., P
(2)
e ≲ 0.6 (as also

observed in [32]). Further, as illustrated in Fig. 1 (c), the
edge modes have a non-negligible dispersion [36], which
is responsible for a broadening of the wavepacket during
propagation and leads to a dependence of the transfer
process on the distance between emitters. Therefore, the
implementation of high-fidelity state transfer operations
in this configuration requires additional control over the
individual couplings, gn → gn(t), to facilitate the re-

absorption process and to compensate for propagation
effects [21, 22, 30].
In Fig. 11 (b) and (c) we consider an alternative setup

where a sizable synthetic electric field UB ̸= 0 is intro-
duced and the emitters are located in the bulk region
of the lattice. In the situation assumed in Fig. 11 (b),
where the upper emitter is initially excited, the photon
propagates in a straight line through the bulk toward
the second emitter. As discussed in Sec. VA above, un-
der critical-coupling conditions, the photon wavepacket
in this case is highly symmetric and can be reabsorbed by
the second emitter with near perfect fidelity (F ≈ 0.97),
which is also fully reproduced by exact numerical simu-
lations. To demonstrate a two-way connectivity, we also
consider the opposite situation, where the lower emitter
is initially excited. In this case, the photon must prop-
agate along the edge, but nevertheless we observe an al-
most perfect transfer of the excitation. Remarkably, the
broadening effect of the edge mode dispersion on the pho-
ton wavefunction is in fact of minor importance in this
case of a symmetric wavefunction.
Interestingly, in these simulations the transfer along

the edge is faster than a direct transfer through the bulk.
As already mentioned above, this can be attributed to the
much higher group velocity in the edge channel. Indeed,
the propagation time along the edges is almost negligible,
compared to the propagation time in the bulk, which
allows us to estimate the total transfer time by

τT ≈ ∆yPBC

cH
+

2

Γe
, (39)

where we have also included the emission/absorption
time estimated by Eq. (27). Here, ∆yPBC is the effec-
tive distance between the emitter and the receiver un-
der PBC, i.e., by simply ignoring the path along the
edges. For example, for the two configurations consid-
ered in Fig. 11 (b) and (c), we would expect JτT ≈ 430
and JτT ≈ 175. In the first case the agreement with the
exact simulation is almost perfect, while in the second
case we have around ∼ 20% of error as the transfer time
observed in the simulation is around Jt ∼ 220.
While an intrinsic state-transfer fidelity of F ∼ 0.97 is

already impressive, it would not be sufficient for a quan-
tum computing application and one may wonder if even
higher fidelities, F → 1, can be achieved in principle.
From the parameter scan in Fig. 7 it is clear that this
is not possible for the considered purely linear electric
potential. However, additional terms in the local electric
field, for example of the form

ℏϵi = −eExi + ℏωp +
∑
s

as (xi −Xs)
s
, (40)

do not change the overall physics of the transfer as we
are going to discuss in more detail in Sec. VI, but can be
used to adjust the detailed shape of the local density of
states and, therefore, the non-Markovian features.
Simple numerical scans already show that by including

s = 2 terms in this expansions, fidelities F ≃ 0.99 can be
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FIG. 12. Disorder-averaged value of the transfer infidelity
1−F̄ (color scale) as a function of the electric field, U0/(ℏJ),
and the lattice disorder strength, σp/J . The coupling strength
of the two emitters are fixed to the critical-coupling condition
ℏg1 = ℏg2 = UB/

√
α. Emitter 1 is located at r⃗ 1

e /l0 = (10, 17)
while the emitter 2 is located at r⃗ 2

e /l0 = (10, 4). The other
parameters for this simulation are α = 1/10, Nx = Ny = 21,
∆1

e = ∆2
e = 0 and γp/J = 10−5 (this reduced value of the

losses is chosen to highlight the effect of disorder). The dashed
white line indicates the condition ℏσp = U0. For each choice of
parameters, the disorder average is performed over Ndis = 100
realizations.

achieved, and a further improvement is expected from a
more systematic optimization. This must also include the
value of the magnetic flux α as an optimization param-
eter, since the Landau levels of the Harper-Hofstadter
lattice are not completely flat and, even if exponentially
suppressed, residual Bloch oscillations might affect the
state transfer fidelity. This exciting perspectives go be-
yond the scope of the current analysis and will be the
subject of future research.

E. Effect of photon losses and disorder

In view of experimental demonstrations and practical
applications, it is important to assess the robustness of
the state transfer with respect to photon losses and a
static disorder. For this purpose, we extend our study
of the transfer process in Sec. VD introducing a spa-
tial inhomogeneity of the frequency of each site of the
form ϵi = −eExi + ℏωi

p, where the offsets ωi
p are cho-

sen randomly and independently according to a Gaussian
distribution with mean value ωp and standard deviation
σp. Then, using the same approach as in [55], we model
the effect of photon losses with rate γp by an additional
damping term in the dynamics of the photon wavepacket,

∂tφ(r⃗i, t) = . . .− γp
2
φ(r⃗i, t) . (41)

This expression already shows that the effect of pho-
ton loss only introduces an overall exponential damp-
ing of the photon amplitude, but does not affect any
of the topological properties of the system [6]. For
state-transfer applications, it reduces the final transfer

fidelity, P
(2)
e (τT) ≈ e−γpτTP

(1)
e (0), which sets a condition

γp ≪ τT ≲ τrev = cH/Ly for the maximally tolerable loss
rate.

Regarding disorder, in Fig. 12 we show the disorder-
averaged infidelity 1 − F̄ as a function of the inter-site
voltage drop U0 and the strength of the lattice disor-
der, σp. We see that with increasing electric field, the
transfer becomes increasingly robust with respect to lo-
cal frequency disorder. This can be understood from the
fact that for ℏσp ≪ U0 the disorder is not able to ef-
ficiently couple two neighbouring photonic eigenstates,
which are spaced in energy by ∆E ∼ U0. Therefore, un-
der this condition the linear slope of the Landau levels is
preserved along with all the associated transport proper-
ties. This interpretation is confirmed by the simulations
in Fig. 12, where we see that the condition beyond which
the quantum Hall physics is washed out by disorder is
indeed given by the line ℏσp ≃ U0.

Interestingly, the transfer fidelity F̄ starts to slowly de-
crease again for larger values of U0. This effect, however,
is not related to the disorder, but is rather caused by spu-
rious effects due to the lattice geometry and to mixing
between Landau levels whenever the electric field energy
starts to be compatible with the gap between Landau
levels, U0 ∼ ℏωB . In the considered example, we empir-
ically found that values of U0 ≲ 0.1ℏωB are sufficient to
suppress such imperfections.

F. Experimental considerations

Experimental realizations of topological photonic sys-
tems are currently pursued both in the optical and in
the microwave domain. Focusing for concreteness on the
latter case, 2D photonic lattices can be fabricated out of
superconducting LC resonators with frequencies of about
ωp/(2π) ≈ 5 − 10 GHz, tunnel couplings J/(2π) ≈ 100
MHz and quality factors of Q ≈ 104 − 105, which cor-
responds to γp = ωp/Q ≈ 2π × 50 − 500 kHz [25, 77].
By engineering a lattice with Nx = Ny = 20 resonators
along each side, a voltage drop of U0/J ≈ 0.1 and a mag-
netic flux of α = 0.1, we obtain UB/(2πℏ) ≈ 13 MHz.
Therefore, we require a coupling strength of g/(2π) ≈ 40
MHz to reach the critical-coupling regime, which can be
readily achieved with superconducting qubits [25, 77].

For this setup we then obtain a typical transport time
of τT ∼ τrev ≈ 126 J−1, such that γpτrev ∼ 10−2 − 10−3

and the photon is able to undergo hundreds of roundtrips
before it decays. At the same time, the fabrication of su-
perconducting resonator arrays with a frequency disorder
of σp/J ∼ 10−2 − 10−3 have already been demonstrated
[25, 77–80], which means that the condition ℏσp < UB

can also be met. Therefore, we conclude that experimen-
tal realizations of such photonic quantum Hall systems
are well within experimental reach.
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FIG. 13. Chiral state transfer in the randomly generated
potential V (r⃗i) shown in the two left panels. The two emitters
are located along the red equipotential line, with the initially
excited emitter 1 placed at r⃗ 1

e /l0 = (10, 19). In (a) the second
emitter is located at a position r⃗ 2

e /l0 = (10, 1) with the same
local gradient. In this case, a perfect transfer of the excitation
is possible (right panel). In (b) the second emitter is located
at r⃗ 2

e /l0 = (9, 9) in a region with a different local electric
field. In this situation, the transfer probability is strongly
reduced. Other parameters for these plots are α = 1/10,
Nx = Ny = 21, U0/(ℏJ) = 0.1, ℏg1 = g2 = UB/

√
α ≈ ℏJ and

∆̃1 = ∆̃2 = 0.

VI. PHOTONIC QUANTUM HALL
PERCOLATION NETWORKS

As we have already discussed above, many aspects of
photon propagation in the considered quantum Hall lat-
tice can be understood from the fact that the photonic
wavepackets move along equipotential lines. As an im-
mediate consequence, most of the effects that we have
discussed so far for the case of a constant electric field,
can be generalized to generic lattice potentials of the form

ϵi = V (r⃗i) + ℏωp, (42)

where V (r⃗i) describes a smooth, but otherwise arbitrary
profile of the on-site energy offsets. In particular, the
equipotential lines of V (r⃗i) can be curved to connect dif-
ferent parts of the lattice or even intersect each other.
In the following we show how this additional tunability
can be used to realize photonic networks, in which many
emitters can be coupled through fully configurable chiral
channels.

Interestingly, this idea is closely connected to the con-
cept of the quantum Hall percolation network, which was
introduced for electronic systems to obtain an intuitive
explanation of the integer quantum Hall effect [50, 51]. In

these electronic setups the network of equipotential lines
is however provided by natural disorder making it im-
possible to control and use for any technological purpose.
On the contrary, the photonic implementation allows for
almost complete freedom in the design of equipotential
line, which opens up a completely new perspective for
quantum Hall networks.

A. Configurable chiral channels

In a first step, let us generalize the concept of chiral
transfer channels to arbitrary potentials V (r⃗i), assum-
ing, however, that variations are sufficiently smooth. In
this case we can locally expand the potential around the
positions r⃗ n

e of the emitters,

ϵi ≃ ℏωp + V (r⃗ n
e ) + ∇⃗V (r⃗ n

e ) · (r⃗i − r⃗ n
e ). (43)

This simply means that each emitter sees a quantum Hall
lattice with a different frequency offset and an effective

field E ∼ ∇⃗V (r⃗n). Under this assumption, the same
emission and absorption dynamics discussed above is re-
covered if we assume a local density of states as given in
Eq. (19) and we replace the Landau voltage by

UB 7−→ ŨB(r⃗
n
e ) = |∇V (r⃗ n

e )|lB , (44)

and the local emitter detuning by

∆n 7−→ ∆̃n(r⃗
n
e ) = ωn

e − ω̃ch(r⃗
n
e ) . (45)

Here, the channel frequency has been generalized to the
(x, y) space-dependent quantity according to Eq. (17)

ωch(x) 7−→ ω̃ch(r⃗) = ωLL
ℓ=0 +

V (r⃗)

ℏ
+
ŨB(r⃗)

2

2ℏ2ωB
. (46)

Based on this local-field approximation, we can iden-
tify three criteria for reaching a state transfer between
two emitters located at positions r⃗ 1

e and r⃗ 2
e with similar

efficiency as in Sec. V D:

1. The two emitters are resonant and connected by
a generalised equipotential line set by the channel
frequency, ω̃ch(r⃗

1
e ) = ω̃ch(r⃗

2
e ).

2. The coupling gn of each emitter satisfies the local
critical coupling condition, gn

√
α ≈ ŨB(r⃗

n
e )/ℏ.

3. The local synthetic electric field is the same for
both emitters, ŨB(r⃗

1
e ) = ŨB(r⃗

2
e ).

These conditions ensure the resonant emission of a sym-
metric wavepacket, which can be reabsorbed by the sec-
ond emitter under the same critical-coupling condition.
As long as the potential does not vary too abruptly, the
photon moves along the equipotential line with a local
Hall speed cH 7→ c(r⃗) = |∇V (r⃗)|l2B/ℏ proportional to the
potential gradient. The third criterion specifically en-
sures that the transverse width of the emitted wavepacket
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FIG. 14. (a) Sketch of the lattice potential V (x, y) =
eE(|x−X0| − |y − Y0|) for the realization of a chiral beam
splitter. The white arrows indicates the propagation direction
along the specific equipotential line connected to an emitter
located at r⃗e/l0 = (6, 6). (b) Snapshots of the photon density
|φ(r⃗, t)|2 for a photon that is emitted in the critical-coupling
regime. The parameters for this simulation are α = 1/10,
Nx = Ny = 31, U0/(ℏJ) = 0.1, ∆e = 0 and ℏg = U(r⃗e)/

√
α,

X0/l0 = Y0/l0 = 15.

matches that of a spontaneously emitted photon from the
second emitter, thus preserving the symmetry between
emission and absorption.

To illustrate and validate this working principle in
terms of a concrete example, we simulate a state transfer
between two emitters that are coupled to a photonic lat-
tice with the more complicated potential V (r⃗) shown in
Fig. 13 (a). For this scenario, we compare the case where
the two emitters see the same local potential gradient
with the case where the gradient is different. However,
in both situations the emitters are located along the same
equipotential lines and are in local resonance, ∆̃n = 0.
We find that in the first case, where all three conditions
from above are satisfied, the state transfer occurs with
an almost perfect fidelity, despite a very complicated en-
ergy landscape. In the other case both emitters are criti-
cally coupled to the same equipotential line, but they are
located in regions with different field gradients. There-
fore, they are resonant with different channel frequencies
ω̃ch(r⃗

1
e ) ̸= ω̃ch(r⃗

2
e ). In this way the absorption cannot be

maximized and remains always around ∼ 60% value.

B. Beam splitters

In our discussion above we have implicitly assumed
that the spatial variations of the applied potential are suf-

ficiently smooth and that equipotential lines never cross.
In this case the whole lattices separates into a set of dis-
joint 1D channels. In order to achieve higher degrees
of connectivity and non-local operations, we can violate
those assumptions in order to realize beam splitter el-
ements that coherently couple different channels. This
is an essential element for any photonic network and is
also at the core of quantum computational schemes with
linear optics [81, 82], provided that one can tune each
network element to produce the desired output. Beam-
splitter interactions also play a major role in the dis-
cussion regarding the so-called quantum Hall extended
states [52–54] and in the percolation random network
description of the quantum Hall effect [50, 51]. Here,
disorder-induced crossings of equipotential lines or the
tunneling between neighbour equipotential lines give rise
to effective nodes with multiple input and output chan-
nels, however, with random transmission amplitude. In
contrast, in the current synthetic quantum Hall system,
the same processes can be implemented under fully con-
trolled conditions.
As a proof of principle, we illustrate the the implemen-

tation of a 50/50 beam splitter that preserves the shape
of the incoming wavepacket. In this way input and out-
put photons can be critically emitted or absorbed for
high-fidelty state-transfer applications. As illustrated
in Fig. 14 (a), such a beam splitter can be obtained at a
crossing point of different equipotential lines, which exist,
for example, for a potential that is locally of the form

V (r⃗) = eE(|x−X0| − |y − Y0|), (47)

centered in R⃗0 = (X0, Y0). In the three plots in Fig. 14
(b), we plot the propagation of a photonic wavepacket,
which is emitted along the diagonal equipotential line
in the north-east direction towards the crossing point
at r⃗ = 0. This photon is then coherently split into
two symmetric wavepackets, which propagate into op-
posite north-west and south-east directions. Thanks to
the chirality, this process occurs without any backscat-
tering and, furthermore, preserves the symmetric shape
of the outgoing wavepackets. Therefore, the ability of
being fully reabsorbed by other emitters is not degraded
by this operation. This provides a great flexibility for
realizing a variety of connectivity patterns in such per-
colation networks, in particular when beam splitters are
implemented with reconfigurable potentials.
Note that for electronic systems, a closely related

splitting mechanism has been previously analyzed for
quadratic saddle-point potentials, V (r⃗) ∼ x2−y2 [83, 84].
However, in this case curvature effects are always rele-
vant [85], making the dynamics more complicated and
less controlled than for the linear saddle potential given
in Eq. (47). Specifically, we have numerically observed
that the quadratic saddle point does not preserve the
symmetry of the photon wavepacket. Moreover, away
from the contact point, our linear saddle-point potential
has the same gradient in all four branches marked by
the white arrows in Fig. 14 (a), which ensures the con-
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ditions for high-fidelity state-transfer operations. This
once more highlights the intriguing new possibilities of-
fered by highly tunable photonic platforms, where the
potential configurations can be engineered in an optimal
way.

VII. CONCLUSIONS

In summary, we introduced a new chiral quantum op-
tics platform based on two-level emitters coupled to the
bulk of a 2D photonic lattice subject to crossed synthetic
magnetic and electric fields. The presence of the com-
bined synthetic fields forces photons to propagate unidi-
rectionally along an effective waveguide orthogonal to the
electric field. The lateral position of the selected effective
waveguide is controlled by the resonance frequency of the
emitter.

Depending on the strength of the emitter-light
coupling, we identified and characterized three dif-
ferent regimes of light-matter interactions: weak-
coupling (Markovian), strong-coupling (non-Markovian)
and critical-coupling (non-Markovian). The Markovian
weak-coupling regime corresponds to the usual light-
matter coupling regime considered in the chiral quantum
optics literature, and all existing results for generic chiral
setups directly extend to our system. On the contrary,
the strong-coupling and, even more, the critical-coupling
regimes display radically new properties that stem from
the frequency-dependent density of states: the strong-
coupling regime supports atom-photon bound-states in a
chiral continuum, which do not exist in standard setups.
In the critical-coupling regime, the emission process dis-
plays strongly non-Markovian features due to the inter-
play between light-matter interactions and quantum Hall
physics.

The ensuing temporal symmetry of the emitted photon
wavefunction can then be exploited to implement state-
transfer protocols between two emitters with a fidelity
that largely exceeds standard chiral quantum optics con-
figurations, already without any fine-tuned couplings or
time-dependent optimal control schemes. Provided that
conventional pulse control strategies can still be added
to correct for any of the residual absorption errors, this
result can be also optimized by only adding corrections
to the local synthetic electric field potential beyond the
linear term. This second way to improve the state trans-
fer in the critical regime relies only on the reshaping of
the photonic local density of states, fully exploiting the
non-Markovian nature of the light-matter interactions in
this quantum Hall setting. It thus also sets the basis
to develop a new powerful mechanism to realize optimal
state-transfer by engineering the local density of states
of a propagating chiral channel, for which this quantum
Hall setup could give the basics intuition.

For generic, non-uniform synthetic electric field config-
urations, we related the photon propagation to the fun-
damental property of the quantum Hall current to flow

along the equipotential lines of the single particle poten-
tial according to the guiding-center motion. This can be
used as a starting point for implementing new photonic
devices, including frequency-(de)-multiplexing elements,
chiral waveguides with arbitrary paths within the 2D lat-
tice, and beams splitters.
Based on these analytic and numerical findings, we ar-

gue that all these elements can be combined to realize
a full-fledged chiral quantum optical network completely
based on the quantum Hall effect for light. On the one
hand, such networks are of interest for technological ap-
plications, where quantum communication schemes dis-
cussed previously for 1D chiral quantum optical networks
can now be extended to 2D emitter arrays and improved
by the intrinsic non-Markovian dynamics of light-matter
interactions in this system. On the other hand, this sys-
tem is also of a purely fundamental interest, providing
a new platform that extends the edge modes dynamics
to the bulk and where concepts for instance related to
the so-called bulk-edge correspondence or the quantum
Hall percolation theory can be further explored and ex-
panded [6, 51]. Furthermore, adding non-linear quantum
emitters to synthetic photonic quantum Hall systems of-
fers completely new possibilities to access and probe the
physics of the fractional quantum Hall effect and its chi-
ral edge dynamics [16, 86]. Also in this context, the basic
physical processes analyzed in this work will be relevant
for developing schemes to prepare and measure strongly
correlated quantum many-body states in this system.
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Appendix A: Landau photons in electric fields

The mode functions of the lattice in the continuous
limit are solution of the Schrödinger equation [55][

p2x
2m

+
(py + eBx)2

2m
− eEx

]
Φℓk(r⃗) = (ω − ωb)Φℓk(r⃗),

(A1)
where px/y = −iℏ∂x/y, ωb = ωp−J/2 and m = 1/(2Jl20).

By making the ansatz Φk(r⃗) = ϕ(x) exp(iky)/
√
Ly and

completing the square we arrive at[
p2x
2m

+
ℏωB

2

(
x

lB
+ lBk −

UB

ℏωB

)2
]
ϕ(x) = (ω−ωH)ϕ(x),

(A2)
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where ωH = cHk−U2
B/(2ℏωB). The eigenfrequencies are

then given by

ωℓk = ℏωB

(
ℓ+

1

2

)
+ UB

(
lBk −

UB

2ℏωB

)
, (A3)

while the eigenstates are just the displaced harmonic os-
cillator wavefunctions

Φℓk(r⃗) =
exp(iky)√

Ly

φh.o.
ℓ

(
x+ l2Bk − UB/(ℏωB)lB

)
.

(A4)

Here

φh.o.
ℓ (x) =

1√
2ℓℓ!

√
π
Hℓ(x/lB)e

−x2/(4l2B), (A5)

and Hℓ(x) is the ℓ-th Hermite polynomial.
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