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Abstract—Cross-modal retrieval is an important functionality
in modern search engines, as it increases the user experience
by allowing queries and retrieved objects to pertain to different
modalities. In this paper, we focus on the image-sentence retrieval
task, where the objective is to efficiently find relevant images
for a given sentence (image-retrieval) or the relevant sentences
for a given image (sentence-retrieval). Computer vision literature
reports the best results on the image-sentence matching task using
deep neural networks equipped with attention and self-attention
mechanisms. They evaluate the matching performance on the
retrieval task by performing sequential scans of the whole dataset.
This method does not scale well with an increasing amount of
images or captions. In this work, we explore different preprocess-
ing techniques to produce sparsified deep multi-modal features
extracting them from state-of-the-art deep-learning architectures
for image-text matching. Our main objective is to lay down the
paths for efficient indexing of complex multi-modal descriptions.
We use the recently introduced TERN architecture as an image-
sentence features extractor. It is designed for producing fixed-
size 1024-d vectors describing whole images and sentences, as
well as variable-length sets of 1024-d vectors describing the
various building components of the two modalities (image regions
and sentence words respectively). All these vectors are enforced
by the TERN design to lie into the same common space. Our
experiments show interesting preliminary results on the explored
methods and suggest further experimentation in this important
research direction.

Index Terms—deep features, information retrieval, cross-modal
retrieval

I. INTRODUCTION

In a cross-modal retrieval scenario, the elements in a
database may pertain to arbitrary modalities (they could be
images, videos, audio, or text); an interesting use-case arises
when the query is a sentence expressed in natural language,
while the retrieved elements are the images most related to
the given query sentence. In this case, we are referring to
the sentence-image (or simply image-) retrieval scenario. Con-
versely, in the image-sentence (or simply sentence-) retrieval
an image is used as a query to find the most relevant sentences.
These are interesting applications nowadays, where textual and
visual search engines should be flexible, user-friendly, and
easy to query.

Usually, the query objects and the elements to be retrieved
are represented as vectors in a particular common space where
a similarity function is defined. In cases where the query has
the same modality as the retrieved elements, the same mapping

function is sufficient to transform both the query and all the
elements of the database into the same vector space where
nearest-neighbor or range-query searches can be performed.
When instead the query and the retrieved elements pertain
to different modalities, it is not trivial in the general case to
vectorize them so that in the end they lie into the same space.

Recently, AI research gave a huge boost to the multi-modal
processing of images and texts and proposed elegant solutions
for the problem of bringing closer representations from the
visual and textual modalities. In fact, in the last years, the great
advances in AI research brought to life interesting applications
both in computer vision and in natural language processing
worlds. In particular, deep neural networks demonstrated in-
credible performances in the processing of complex structured
and non-structured data and they reached state-of-the-art re-
sults in many language and vision tasks. The joint analysis of
images and texts gave birth to interesting applications, such
as image captioning [1], [2], image-text matching [3]–[6], and
weakly-supervised region-word alignment [7], [8].

Among all these tasks, image-text matching is the most
interesting one in the context of image-sentence retrieval.
Image-text matching neural architectures usually employ two
different feature extraction pipelines able to produce vectors
for the two modalities in a common representation space.
Given a similarity function (e.g., cosine-similarity), they try
to maximize the vector similarity between matching image-
sentence pairs while minimizing it for non-matching pairs.

The matching performance is usually measured using re-
trieval metrics (Recall@K [3]–[6] or NDCG [9], [10]), but
the ranking is performed by sequentially scanning the en-
tire dataset. Although this evaluation procedure is useful for
quantifying the matching capability of the neural network,
it is useless in real cross-modal retrieval scenarios, where
images and sentences can scale up to millions of instances
and the queries need to be solved in few milliseconds. These
issues motivate the research of methods able to produce multi-
modal vectors that can be indexed, possibly using already
existing structures such as inverted indexes, which exhibit high
efficiency as shown in [11].

In this work, we perform an extensive evaluation of the pro-
cedures aimed at transforming non-indexable dense features in
representations suitable for inverted indexes, to pave the way
towards efficient yet effective cross-modal retrieval using deep



features. For this reason, our experiments are directed towards
a detailed evaluation of the effectiveness of the proposed
features, although the long term path for this research is highly
driven by efficiency concerns.

We use the TERN [10] architecture as a visual-textual
feature extractor. The TERN architecture can produce both
global descriptors (a single fixed-sized vector) for images and
sentences, together with fine-grained descriptions (a variable
set of fixed-sized vectors) of image regions and words, all
in the same common space, as shown in Figure 1. This
provides us the opportunity to explore different aggregation
and sparsification techniques: deep permutations [12] or scalar
quantization [13] when processing the global descriptors, and
a variation of the Bag of Words model, that we call Bag of
Concepts, when dealing with images and sentences as sets of
concepts.

II. RELATED WORK

Deep features for Information Retrieval

With the advent of deep learning, many works introduced
new classes of multimedia descriptors for information re-
trieval. In particular, focusing on the image retrieval world,
deep features were found to be valid and cheaper alternatives
to local features like SIFT, ORB, BRIEF, etc.

The basic idea behind image descriptors produced by a
deep neural network is to use the neural activations of the
last layers of an architecture trained on some specific task
(e.g. image classification). The activations from the last layers
carry a highly semantic representation of the image content
that demonstrated very nice behaviors when used for image
retrieval purposes [14]–[16].

Recently, some works [12], [13], [17], [18] tackled the
problem of indexing this kind of features. They kept into
consideration their high-dimensionality and their non-sparse
nature, which poses major challenges when common indexing
methods like inverted lists are employed.

In particular, [12] applied the permutation approach [11] to
deep features, where the vector elements are permuted based
on the activation strength. Differently, [13] tried to apply the
deep permutation idea, together with a scalar quantization
approach, to obtain a surrogate text representation that could
be used in already existing document search engines such as
Elasticsearch.

Bag of Words

Our work goes into the direction of considering images
and sentences as sets of basic elements we generically call
concepts. From this perspective, our work lays its foundations
on the Bag of Words (BoW) model, or Bag of Visual Words
(BoVW) if we are referring to images [19], [20].

In literature, the BoVW model is used in close contact
with local handcrafted features like SIFT, where every image
is represented as a variable-length set of fixed-dimensional
features. BoVW approach creates a codebook of visual words
that enables all the images to be described as sets of codewords
drawn from the built visual codebook. This representation

is immediately suitable for inverted indexes since it natively
produces sparse representations that avoid accessing every
posting list. In [18], the authors tried to adapt the same
Bag of Words ideas to index deep convolutional features, by
clustering global CNN features to obtain a visual dictionary.
The reuse of already existing inverted list approaches is a
common path towards efficient image retrieval. However, these
recent approaches based on deep features do not natively deal
with images as a set of objects, as deep features usually carry
a global description of the image.

Furthermore, these works do not deal with multi-modal rep-
resentations. Searching and retrieving multi-modal elements is
indeed an important feature in modern search engines.

Image-Text matching
This work takes inspiration from recent advances in Com-

puter Vision and Natural Language Processing literature. In
particular, deep learning demonstrated impressive results in
the field of image-text matching [3]–[6]. In particular, self-
attention mechanisms like the transformer encoder [21], [22]
were successful in encoding sequences of words and set of
image regions by understanding their context. Context is very
important for precise matching, as it describes interactions
between objects constituting a multimedia element (e.g. words
inside a sentence or image regions inside a picture) which help
to discriminate different scenarios. We claim that the context
is an essential ingredient even in the cross-modal retrieval
setups, as their performance is strongly linked to the quality of
the matching. These architectures learn contextualized multi-
modal representations by minimizing a hinge-based triplet-loss
function between features produced from both the visual and
the textual pipeline. The similarity between features is often
measured using dot-product or cosine-similarity.

This work is based on the achievements by [10]. They
developed an image-text matching architecture able to produce
global and local descriptions of both images and sentences,
all in the same common 1024-dimensional space (architecture
summarized in Figure 1).

III. TRANSFORMING TERN FEATURE VECTORS

Two routes are possible to reduce and sparsify the outputs
of the TERN architecture (see Figure 1) for use with efficient
data-structures such as inverted indexes. The first one deals
with the sparsification of the v̄i and s̄j global vectors for
images and sentences respectively, using approaches like deep
permutations [12] or scalar quantization [13]. The second pos-
sibility concerns the use of the fine-grained concepts extracted
from the image regions Ii and the sentence words Sj . In order
to handle images and sentences described as sets of elementary
components, we propose to construct a Bag of Concepts model
which can be used to create a sparse description of images and
sentences over a fixed-sized dictionary of reference concepts.
Following, we will describe in detail these two methodologies.

A. Dealing with Global Descriptions
The 1024-d vectors v̄i and s̄j describing whole images and

sentences can be transformed into a suitable vector indexable
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Fig. 1: Overview of the TERN architecture. Please refer to [10]
for more details. The output consists of both global features
summing up whole images and whole sentences, as well as
contextualized concepts lying in the same common space.

with inverted lists by applying the procedures described by
[12], [13]. Inverted lists and surrogate text representation need
and sparse and quantized representations, as they work with
frequencies of appearance of terms in a dictionary. Both the
scalar quantization and the deep permutation approaches try to
obtain such representations from dense vectors of real numbers
produced by neural networks.

Specifically, in the deep permutation approach every feature
vector v ∈ Rn is transformed by sorting the indexes of
the elements of v in descending order with respect to the
corresponding element values. In this way, we can construct
the permutation Πv = [Πv(1), ...,Πv(n)] of the feature vector
v with respect indexes {1, ..., n} such that:

∀i = 1, ..., n− 1, v(Πv(i)) ≥ v(Πv(i + 1)) (1)

where v(j) is the j-th element of v.
So, for example, if we have v = [0.2, 0.4, 0.1, 0.3, 0.6], the

resulting permutation vector would be Πv = [5, 2, 4, 1, 3].
On the other hand, the scalar quantization approach applies

the following transformation to the original feature vector:
v → bsvc, where s is a scale factor and b·c is the floor
operation.

Note that these representations are as dense as the original
feature vectors, while inverted indexes need sparse repre-
sentations to be efficient. For this reason, we sparsify the
vectors obtained with deep permutation and scalar quantization
approaches by keeping only the first z higher values, while
forcing all the others to be zero, as in [13]

In both cases, we measure the similarity between the trans-
formed vectors using the standard cosine-similarity function.

B. The Bag of Concepts model

The TERN architecture provides us a set of concepts
describing images and sentences. In the case of images,
every salient region carries a concept, while for sentences the
concepts are associated with single words. We are given a
variable set of concepts Ii for every image i, and a variable

sequence of concepts Sj for every sentence j. The key idea
is to produce a codebook of concepts so that both images and
sentences can be described as a set of codewords drawn from
a common dictionary.

1) Creating the codebook: The codebook can be produced
by collecting a large amount of visual and textual concepts
from the training set and then performing clustering as in
the standard Bag of Visual Words model. For this reason, we
produce a large set of mixed visual and textual concepts:

C =
⋃
i

Ii ∪
⋃
j

Sj

We downsample C so that |C| ' 100k concepts.
At this point, kmeans is used to produce p clusters. The p

centroids represent our codebook of concepts. Given that the
word and the visual word spaces correspond, it is also possible
to create a common codebook by using only the textual words
from all the sentences. If we follow this methodology, we can
consider the top p most common words appearing in all the Sj
of the training set that are also present in the English dictionary
and which are not stop-words.

2) Inference: Given a codebook, it is possible to produce
the proper encoding for the images and sentences of the test
set using the built dictionary. In the following discussion, we
refer to the set of concepts Ii coming from images, although
the same holds symmetrically for the set of concepts Sj from
sentences. If we use hard-assignment, we can proceed as
follows: given the set of concepts {vk

i }k∈{1..ni} from an image
i, we can encode the image by finding, for every concept vk

i ,
the index of the nearest centroid (using L2 distance). Thus, in
output, we obtain a set of k codewords Ĩi = {ṽki }k∈{1..ni},
where every element ṽki of this set is no more a 1024-d
vector but an integer representing the index of the nearest
centroid. The final representation for the image i is obtained by
computing the histogram hi over the integer values contained
in Ĩi. hi has p buckets and it is therefore a p-dimensional
vector. It is already very sparse, with a maximum number ni

of non-zero elements, where ni << p.
The hard-assignment methodology performs heavy approx-

imations on the original concept vectors, due to the discretiza-
tion phase that transforms a 1024-d vector to a single discrete
codeword. The soft-assignment methodology tries to solve this
problem: soft-assignment is performed by replacing the 1024-
d vector for the k-th concept of the i-th image vk

i with a
p-dimensional vector of distances computed against all the p
centroids. In this way, we preserve the information regarding
all the distances between every concept and all the centroids.
The result of this operation is a matrix Di of L2 distances
with shape ni × p. We convert L2 distances to similarities by
applying the common transformation Si = 1

1−Di
. In order

to produce a fixed-length p vector ai describing the image
we can aggregate the columns of Si, thus constructing ai as
aki = aggrl s

l,k
i , where the function aggr(·) is a symmetric

function. An example of the overall inference procedure in
the case of an image is reported in Figure 2.



≈100k

kmeans
codebook 
creation

Centroids

1k

TERN
Feature Extractor

set of 1024-d 
dense vectors

cell indexes 
frequencies

1000-d sparse discrete vector

67 758189

Concepts

67

189

189

0.5 1.2 0.4 ... 0.1

0.7 0.1 0.3 ... 1.9

2.4 0.2 0.7 ... 0.2

0.0 0.1 2.3 ... 0.1

anchors

per-column 
aggregation 
(e.g. sum)3.6 1.6 3.7 ... 2.30 ... 2 0 1

1000-d dense float vector

re
gi

on
s

Hard Assignment Soft Assignment

region 
vectors

centroid 
vectors

anchors-
regions L2 
distances

Fig. 2: Overview of the Bag of Concept (BoC) model, in
the case of image concepts inference. Both soft and hard
assignment versions of BoC obtain fixed-sized descriptions
from sets of possibly contextualized regions extracted from
the image. Note that hard assignment already produces highly
sparsified and discretized vectors.

In our setup we experiment with both max(·) and sum(·)
aggregation functions. By using sum(·) we are summing
together the similarity contributions for each image concept
with respect to a certain centroid. If all the image concepts are
near a given centroid the sum will be very high, thus informing
that probably that particular concept is highly present in the
image. Instead, if we employ max(·), we gather information
only from the nearest image concept for each given centroid. In
this case, the maximum concept similarity to a given centroid
will be low only if all the concepts are far away from that
specific centroid.

The problem with soft-assignment is that the vector ai is
still dense and hence very inefficient from the point of view of
an inverted index. We can think of sparsifying this vector by
acting on the rows of Si before computing the aggregation:
for every row of Si, we keep only the z higher values, by
setting to zero all the others.

In the end, we use hi and the sparsified ai vectors as
features from the hard and soft-assignment Bag of Concepts
model, and they are compared using cosine-similarity.

IV. EXPERIMENTS

In our experiments, we evaluated the retrieval effectiveness
of the produced features. We experimented both with global
features (transformed using deep permutation or scalar quanti-
zation) and local contextualized features, processed using the

Bag of Concepts model. We measured the retrieval effective-
ness using the MS-COCO and Flickr30K datasets, which come
with 5 human-written captions describing each image. For MS-
COCO, we used the 5k test images from the split introduced
by [7], together with the associated 25k sentences. Regarding
Flickr30K, we sampled 10k images and the corresponding 50k
sentences from the training set, given that Flickr30K was not
used for the training procedure of the TERN feature extractor.

We used the Recall@K metric for evaluating the retrieval
abilities of the collected features. The Recall@K is employed
in many previous image-text retrieval works [3], [4], [10],
and it measures the percentage of queries able to retrieve the
correct item among the first k results.

Concerning deep permutations and scalar quantization ap-
proaches, we followed [13]: we first pre-processed the feature
by applying a c-relu operation, which concatenates the vector
to its opposite, and then we clipped all negative values to zero.
In this way, we obtained a vector containing only positive or
zero integer elements. For the scalar quantization, we used
a scale of 1,000. Regarding the Bag of Concepts setup, we
used a codebook of p=1,000 elements, either by clustering or
by using the most frequent 1,000 words from the training set
present also in the English dictionary.

There are little variants of the Bag of Concepts that worth
exploring. Remember that the TERN architecture produces
contextualized concepts that vary among different scenarios.
If we want to avoid the contextualization effect during the
clustering phase, we can forward regions and words one at a
time inside TERN, so that it is impossible for the network to
discern the different contexts. The de-contextualized scenario
produces region and word features more similar in spirit to
the hand-crafted local features like SIFT, which were highly
de-contextualized. Furthermore, it is possible to exclude the
stop-words during the clustering and/or indexing phases. This
is often performed to avoid the noise produced by not-so-
informative sentence words. The results of these experiments
are reported in Table I.

Results

As it can be noticed from the first 3 rows from Table I,
the application of deep permutations and scalar quantization
does not change the essence of the ranking, as far as they are
not sparsified. The Figures 3a and 3b show how the features
sparsification affects the overall performances on the 10K
images from Flick30K. In particular, Figure 3a shows that the
results begin to diverge from the original TERN performance
only when a massive sparsification is applied. In that case,
the scalar quantization method produces features which are
more resilient to a strong sparsification, both during image-
and sentence-retrieval.

Overall, the Bag of Concepts model can obtain very similar
performances to the values reached by deep permutation and
scalar quantization approaches, when soft-assignment is being
used. Instead, the strong sparsification put in place by the
hard assignment mechanism drastically lowers the overall
effectiveness. Nevertheless, it can be noticed that we can



TABLE I: Recall@K metrics for our experiments on both MS-COCO and Flickr30K datasets

MS-COCO (5K images, 25K sentences) Flickr30K (10K images, 50K sentences)

Image Retrieval Sentence Retrieval Image Retrieval Sentence Retrieval

Model K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10 K=1 K=5 K=10

Global Features

TERN [10] 28.7 59.7 72.7 38.4 69.5 81.3 13.1 30.1 39.5 17.0 37.1 47.8
Deep Permutation 28.7 59.8 72.7 38.5 69.6 81.3 13.2 30.1 39.5 17.1 37.1 47.9
Scalar Quantization 28.7 59.8 72.7 38.4 69.6 81.3 13.1 30.1 39.5 17.0 37.1 48.0

Bag of Concepts - Hard Assignment

No context 3.5 14.0 24.2 4.0 14.7 23.1 0.8 2.9 4.9 1.1 3.9 6.1
With context 7.5 29.9 43.6 8.3 27.3 41.4 1.4 5.5 9.3 1.8 6.2 9.5
No cont., no stop-words 3.4 13.6 23.6 4.0 14.2 22.3 0.8 2.9 4.9 1.1 3.6 5.8
With cont., no stop-words 6.7 27.5 42.0 6.9 25.0 39.0 1.3 5.1 8.8 1.6 5.8 9.1
No cont., no stop-words
(inference)

3.1 12.8 21.8 3.7 12.9 20.9 0.8 2.7 4.5 0.9 3.0 5.0

English dict. 2.7 9.4 16.4 2.8 10.0 16.5 1.1 4.2 7.1 1.3 4.7 7.7

Bag of Concepts - Soft Assignment

MAX-aggr No-cont. 25.4 54.2 67.4 32.0 63.6 76.2 10.1 24.1 32.6 13.2 30.3 40.5
SUM-aggr No-cont. 25.7 54.5 67.4 32.7 64.4 77.0 10.3 24.7 33.1 14.1 32.5 42.5
MAX-aggr W-cont. 26.8 57.0 70.4 35.1 65.1 77.9 10.6 25.5 34.1 14.1 32.4 42.3
SUM-aggr W-cont. 27.2 57.4 70.4 34.9 65.9 78.4 10.7 25.8 34.4 14.6 33.1 43.5
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(c) Re-ranking effect with sparsity=0.99

Fig. 3: (a) and (b): Trend of the Recall@10 metric while increasing the vector sparsity. Sparsity is reported as the fraction
of vector components that are zeroed out ( zp for BoC and z

2d for global features, where p = 1000 and d = 1024 in our
experiments). (c): Reranking results in terms of Recall@10 varying the extended query multiplier Rm. We search for the first
Rm ·10 items using the approximated method and then we rerank them using the original feature vectors. All the charts report
the curves for both image retrieval (IR) and sentence retrieval (SR), and they are collected on the 10K images (50K sentences)
from the Flickr30K dataset.

always improve the overall Bag of Concepts performance
by employing contextualized features. This is an important
finding since it confirms that the context is a fundamental
building block for understanding complex scenes: contextual-
ized representations seem to have an important role even when
considered as unordered sets without any structure, exactly like
in the Bag of Concepts model. Also, it is worth noting that
the exclusion of stop-words both during the clustering and the
indexing phases lowers the overall performances, indicating
that they probably have a not negligible role in the pipeline.

When English words are used instead of the centroids

from the kmeans clusters, we obtain performances worse than
the non-contextualized kmeans case. This happens probably
because these words natively lack context, as they are drawn
from a dictionary and not computed from a representative
training set. In fact, they could not be representative of
the overall distribution of words in the MS-COCO dataset,
although they are chosen among the 1,000 more frequent ones.

In Figure 3c we report the results after the re-ranking of
the first Rm ·K retrieved elements using the original global
feature vectors in output directly from TERN, where Rm is the
extended query multiplier. For example, to build the Recall@5



metrics when Rm = 10 we first retrieve the first 5× 10 = 50
elements using the approximated method, and then we re-order
them by computing the distances using the original feature
vectors. The features used for the approximated search are
sparsified with a sparsity factor of 0.99.

The BoC with soft-assignment features cannot improve the
results obtained by the deep permutation and scalar quantiza-
tion ones, in case the sparsification is not applied (as shown
in Table I). However, Figure 3c demonstrates that in case
the sparsification factor is very high (0.99) the BoC soft-
assignment features are more resilient and can almost bridge
the performance gap with the scalar quantization features when
the reranking multiplier is progressively increased.

These results, in the end, show that the Bag of Concepts
method has some interesting potential for efficient cross-modal
retrieval, and further studies need to be performed in the
direction of matching multi-media elements as complex sets
of concepts.

V. CONCLUSIONS AND FUTURE WORK

In this work, we employed the recently proposed TERN
deep learning architecture as a multi-modal feature extractor.
We leveraged the heterogeneous non-sparse output of this
model to propose different solutions to the problem of generat-
ing indexable features for use in cross-modal retrieval systems.
Though not approaching the efficiency aspects, in this work we
evaluated the retrieval effectiveness that these features exhibit
if we apply common quantization - sparsification techniques
to make them indexable in already existing efficient data-
structures such as inverted indexes.

Experiments revealed that when the sparsification is not
applied, the methodologies that process the global features
still obtain overall better results than the Bag of Concepts
ones. When instead the sparsification is massive (e.g, when
the sparsification factor reaches 0.99), the Bag of Concepts
model with soft-assignment can obtain very competitive results
during the re-ranking phase of the image retrieval scenario.
This demonstrates the stability of the Bag of Concepts model
in the presence of a critical sparsification. Nevertheless, the
Bag of Concepts, especially the sparsified soft-assignment
methodology, deserves more attention as it is bounded to the
concept features produced by the TERN architecture that, as
of now, is not trained for producing exact region - words
alignments.

In the near future, we seek to improve the Bag of Con-
cepts model by including the production of effective concepts
directly inside the TERN training loop. Also, the contextual-
ization problem and the presence of inter-element connections
between image regions and sentence words deserve more
attention as much as indexing is concerned, since as of now the
Bag of Concepts model cannot natively deal with relationships.
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