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Fate of dynamical phases of a BCS superconductor beyond the dissipationless regime
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The BCS model of an isolated superconductor initially prepared in a nonequilibrium state predicts the
existence of interesting dynamical phenomena in the time-dependent order parameter as decaying oscillations,
persistent oscillations, and overdamped dynamics. To make contact with real systems remains an open challenge
as one needs to introduce dissipation due to the environment in a self-consistent computation. Here, we reach
this goal with the use of the Keldysh formalism to treat the effect of a thermal bath. We show that, contrary
to the dissipationless case, all dynamical phases reach the equilibrium order parameter in a characteristic time
that depends on the coupling with the bath. Remarkably, as time evolves, the overdamped phase shows a fast
crossover where the superconducting order parameter recovers to reach a state with a well-developed long
range order that tends towards equilibrium with the damped Higgs mode oscillations. Our results provide a
benchmark for the description of the dynamics of real out-of-equilibrium superconductors relevant for quantum

technological applications.
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I. INTRODUCTION

The recent advances in experimental pump-probe tech-
niques offer new opportunities to study out-of-equilibrium
states of matter with collective modes or phases that are
not accessible with more conventional tools [1-3]. A no-
table example includes the observation of oscillations of the
condensate in superconductors with a frequency determined
by the superconducting gap [4-6]. However, the study of
out-of-equilibrium interacting systems presents a demanding
challenge. From the theoretical point of view, the problem
requires the precise implementation of the Baym-Kadanoff-
Keldysh nonequilibrium quantum field theory [7,8], a strategy
that although well formulated is sometimes difficult to realize
in practice. Nevertheless, some particular cases have been
studied with a good degree of control [9,10]. Diagrammatic
expansions and dynamical mean-field theories for out-of-
equilibrium fermions on a lattice are examples of the cutting-
edge developments [11-17].

The cases of superconductivity on fermionic condensates
of cold atoms are exceptional and have been studied by several
groups during the last years [18-23]. The integrability of
the reduced BCS Hamiltonian in the dissipationless regime
allows for a precise formulation of the time-dependent out-
of-equilibrium dynamics when the microscopic parameters
change with time [24,25]. It has been shown that after a
sudden change of the pairing interaction A the system evolves
towards three distinct stationary dynamical phases [19,25].
After a small change of A, either an increase or a decrease, the
order parameter shows oscillations of frequency 2A,, and a
power law decay (¢ ~'/?) reaching a long time asymptotic value
A. The decay of the oscillations is due to the dephasing
of the excitations and this regime is known as the dephasing
phase (phase I) [26]. The asymptotic value Ay is always
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smaller than the corresponding thermodynamical equilibrium
value due to the proliferation of out-of-equilibrium pair ex-
citations. If the coupling is reduced by a large amount, the
dynamics becomes overdamped and the asymptotic value of
the long-range order parameter becomes zero (phase II). On
the other hand, if the coupling increases above a critical value,
the order parameter shows persistent oscillations as quasi-
particles evolve synchronously driven by the self-consistent
pairing field (phase III).

The case of a periodically driven or pumped superconduc-
tor is also very interesting. The order parameter shows a syn-
chronization phenomena of Rabi oscillations of quasiparticles
states which can be exploited to access all the aforementioned
dynamical phases [27].

Notwithstanding these interesting theoretical findings, the
convergence of theory and experiment in this field is quite
problematic. On one hand, the integrability of the BCS model
implies that an out-of-equilibrium system cannot reach ther-
mal equilibrium, no matter how long the system is allowed
to evolve. On the other hand, real systems do of course relax
and if the relaxation is too fast, 2A -like oscillations will not
be visible. Fortunately, pump-probe experiments performed
in cuprates [6] and in Nb;_,Ti,N [4,5] show that 2A -like
oscillations are visible. Therefore, relaxation times are long
enough to have access to a regime where energy-conserving
out-of-equilibrium dynamics dominates the system response.

It remains the theoretical challenge of describing the in-
teresting crossover from the out-of-equilibrium regime to a
thermal state. An obvious choice is to consider a thermal
bath which can exchange energy with the superconductor. The
theoretical formulation of such a nonequilibrium many-body
problem with dissipation poses a demanding issue. Indeed,
to consider explicitly all the degrees of freedom of a very
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large bath is numerically unaffordable. For a finite thermal
bath spurious oscillations appear and the nonthermalization
problem is not solved.

In order to formulate the problem in a feasible and com-
putationally accessible way, different approximation schemes
have been proposed in the context of pumped s-wave super-
conductors in which the order parameter varies with time.
Recent studies, of the time-resolved angle-resolved photoe-
mission spectroscopy (tr-ARPES) [28] and the optical con-
ductivity [29], have adopted similar approaches. Namely, the
inclusion of inelastic scattering processes that releases the
extra energy via a self-energy in the lesser Green function
leading to proper recovery of thermalization at long times.
However, none of these works computed the self-consistent
dynamics of the order parameter. In these cases that simulate
the effect of light-field pump pulses, the order parameter was
taken as a known function of time that drives the system
out of equilibrium breaking the time invariance and strongly
modifying the system response.

In this work we present a self-consistent calculation of
an out-of-equilibrium s-wave superconductor including re-
laxation due to the coupling of the system to an external
bath. We illustrate the method by considering a BCS su-
perconductor and the simplest nonequilibrium protocol of a
quantum quench of the interaction parameter. We show that
at short or moderate times after the quench, traces of the
Barankov-Levitov dynamical phase diagram (see Ref. [19])
are clearly observed while at long times new equilibrium
states are recovered.

II. THE BCS HAMILTONIAN AND THE PROBLEM
FORMULATION

We consider a single-band s-wave superconductor de-
scribed by the Hamiltonian

Hpcs = Zékc;arcka — A1) ZCILTCT—kLC—kWCk’T’ e))
k,o kK

where cg, (cza) destroys (creates) an electron with momentum
k, energy &, and spin o. Here & = & — u measures the
energy from the Fermi level u. The pairing interaction A(f)
is allowed to be time dependent. We will focus on the effect
of a reservoir on the dynamical phases that are obtained after
a quench of A, but the same formalism can be used to study
periodic drives [27].

Due to the infinite range of interactions, assumed in the
second term of Eq. (1), the mean-field approximation is exact
in the thermodynamic limit. Hence, we consider the BCS
mean-field Hamiltonian which can be written in the Nambu
basis as

Hye = ) W Hi(0Y 2
k

. L T
with Y = (cky, c'_ki) and

H(t) = <_ AE’EI)* __Ag)) 3)

The instantaneous superconducting order parameter is

A@) = 110) Y (g, ()t @) €
k

and (...) denotes the expectation value on the initial state.

The time-dependent perturbation, via a quench in the cou-
pling constant A(#), injects energy into the system that will
never dissipate if we only consider an isolated superconductor.
To describe dissipation effects the self-consistent solution of
the gap equation is written in terms of the Keldysh two-time
contour Green’s functions which explicitly incorporates the
coupling with the environment.

A. The out-of-equilibrium Green’s functions

The calculation is formulated in terms of the Keldysh two-
time contour Green’s functions which in the Nambu spinor
basis are 2 x 2 matrices with matrix elements given by:

G{(t,1)ap = —i6(t — 1) {(Yra (1), Yy (1)),
Gi(t,1)ap = 10t — ) ({(Yra (1), Y5 (1)), )
Gy (1,1 )ap = (Y (t s (1)),

where R, A, and < correspond to the retarded, advanced, and
lesser Green’s functions, respectively. Notice that G‘,?(t, t') =
Gf(t/, I)T, so only one of G:/ R needs to be computed. With
these definitions the self-consistent Eq. (4) for the time-
dependent order parameter becomes

A(r) = —ik(t)ZG,f(t, )1y (6)
k

For a given time dependence of the order parameter A(¢) (not
necessarily self-consistent) and in the absence of coupling
with the reservoir, the retarded and advanced Green functions
are computed by solving the following differential equations
(in matrix notation in the Nambu spinor basis and setting
h=1),

GXOt, 1) = —il,
i0,Gy (1, 1) = Hy ()Gt 1),
i0,Gg (1, 1) = =G, (HH(),

t>t, @)

/

t>tr.

In order to include the dissipation effects we use the
Keldysh equations with self-energies encoding the coupling
to a reservoir. Following Refs. [28] and [29], we use a mech-
anism for dissipation that associates to each pair of states k 1,
—k | its own reservoir. The effect of the bath on the retarded
Green function is dictated by Dyson equation [30,31],

GR@. 1) :GII:(())(t,t/)—i-/dtl/dtsz(o)(t,tl)
x ZR(t1, )G (12, ). (8)

In the limit of a wide-band reservoir with identical coupling
for each k, the retarded self-energy becomes k independent
(see Sec. IIB) and assuming time translational invariance
in the bath, the solution of the Dyson equation in the time
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domain results
GR(t,1) = GYVt,1)e =2, )

The parameter y describes the effects of inelastic scat-
tering producing a finite lifetime v =1/y and a level
broadening (~y).

We emphasize that these equations are valid for an arbi-
trary time dependence A(f). To make the computation self-
consistent one needs to use A(r) from Eq. (6). The lesser
Green’s function is given by [28,30,31]

G,?(t,t’)=fdtlfdtsz(t,tl)Z;(tl,tz)Gé(tz,t’),
(10)

where, as shown in Sec. II B, the lesser self-energy X (¢, 12)
can be written as a diagonal matrix X (t;, 1) =I1X=(#, 1)
with

d .
2, n) =iy / %f(w)e*lw(h*fz)

1 Y
= a1
2wt — t + 10T
Here f(w) is the Fermi function evaluated at the bath tem-
perature and the last equality stands for the zero temperature
limit.

B. Lesser self-energy to include dissipation

In our computations to each pair of states k 1, —k | we
associate a heat bath described by a time-independent free-
particle Hamiltonian H, = ) to E(dzad[(,, where dgg creates
an electron in state |£) of the reservoir with energy E; and spin
o. Thus, the time translational invariance in the bath allows
us to deal with self-energies in the frequency space. In the
Nambu basis H), takes the form of Eq. (3) with A(z) = 0 and
the retarded self-energy X can be written as

) =Y Viel’gf ()
4

% 0
=D Wl 5 L) a2
4

O+ E,+i0T

where Vi, is the coupling between superconducting quasipar-
ticles and reservoir and g’g (w) is the retarded Green’s func-
tion corresponding with Hj,. For simplicity, in the following,
we drop the k label from all quantities by assuming a k-
independent coupling Vi, = V.

Therefore the nonzero matrix elements of retarded self-
energy read

2
ZR(CU)H = Z Vil

i
——— = Aw)— = 13
D I T
and XX (w),, = — XX (—w)},. In the following, we use the
wide-band approximation to neglect A(w) and assume that
the level broadening y is an energy-independent parameter of
our model, which defines the time scale for dissipation. As a

consequence,
M (w) = —ily /2, (14)

and the solution of the Dyson equation for retarded Green
function is given by Eq. (9). On another hand, the lesser
self-energy is

(@) = ) Vil (@) = iy f(o, (15)
¢

where g7 (w) =if(w)A¢(w) is the lesser Green’s function
associated to Hp, A¢(w) is the spectral function, and f(w) =
0(—w) is the Fermi function at zero temperature. The self-
energy in time domain can then be written as Eq. (11).

We should emphasize that, in our framework, we are not re-
stricted to a specific model of the fermionic reservoir. The key
point here is to consider a relaxation mechanism, described
by a single particle Hamiltonian, in the wide-band limit which
ultimately constitutes the Markov approximation (retardation
in the bath is not included). To include non-Markovian effects
is an interesting direction for future investigations.

C. The equilibrium state

For a time-independent BCS Hamiltonian [Eq. (1) with a
time-independent pairing interaction A] the present formalism
allows us to study the effect of inelastic scattering at equilib-
rium. Since this is a source of pair breaking, the coupling to
the bath has some important consequences that are known but
usually obtained with different methods and which we recover
here with Keldysh Green functions.

In equilibrium the time invariance is preserved and the
retarded Green function with dissipation is given by Eq. (9)
where G,If(o)(t, 1) = Gf(o)(t —1t") only depends on t —1¢'.
Thus, in the frequency domain the poles are shifted away from
the real axis with an imaginary component —iy describing the
levels broadening.

In the zero temperature limit, the self-consistency [c.f.
Eq. (6)] for the superconducting order parameter becomes

A 2E,
1= —Z—arctan <—k), (16)
T E, y

k

where Ej = +/ §k2 + A? is the undressed excitation energy (see
Appendix A for details). As can be deduced from Eq. (16),
the inelastic scattering reduces the equilibrium value of the
superconducting order parameter and the critical tempera-
ture 7, is given by the well-known expression In(7,/T°) =
V(1/2+y/T.) — ¥ (1/2) where T? is the critical temperature
for y = 0 and ¥ (x) is the digamma function [32]. Finally, it
is worth mentioning that the level broadening introduced here
leads to the widely used phenomenological density of states
p(w) for tunneling experiments that incorporates a Dynes
parameter y,

Ve +iy) — A2

where py is the normal phase density of states [33,34].

,0(60)=/00Re|: ©r } (17)
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D. Out-of-equilibrium dynamics

The equal time lesser Green function at zero temperature
has to be computed using Egs. (9) and (10) leading to

eVt t t
Gi(t) = _”2 / dn / dt GYO(t, 1)
vs —00 —00

oY (1+12)/2

x Gy V(ta, t)t (18)

| —tp +i0*’
where we have shortened the notation using a single time
variable as the argument of G . For the sake of computational
efficiency it is better not to use the integral form Eq. (18) but
to calculate the time derivative of G,

G (1) = —yGi (1) + Ii(t) — i[He(1), G (0], (19)

where

. t GR(O) tt
Ik(t) — 1‘/ dt/( k ( ) ) +

t—t +i0t

GXO@, )\ _yen
e 2,
27 J_o t—t —i0t

(20)

In equilibrium, the second term on the right hand side of
Eq. (19) exactly cancels the first one and as G; commutes
with the Hamiltonian, the stationary state is recovered. The
effect of the bath is to introduce memory in the system, so in
order to solve for the Green function, instead of a differential
equation local in time [as Egs. (7) are] one needs to solve
an integrodifferential equation which depends on the past
evolution through Eq. (20).

III. RESULTS

We now present results corresponding to a quench of
the coupling parameter: A(t) = 6(—t)Ao + 0(t)As. Equation
(19) is integrated using a fourth order Runge-Kutta method
with small time steps in order to ensure the convergence
of superconducting order parameter A(z). The lesser Green
function at equilibrium for ¢ < 0 is the initial condition for
Eq. (19) (see Appendix A). To move forward in time ¢ we
first integrate the third Eq. (7) in ¢’ from ¢ to t — 10/y. This
is used to construct the memory kernel Egs. (20) at time ¢
needed to propagate forward in time the lesser Green function
with Eq. (19). In each time step the new value of A(¢) is
calculated and reinserted in the Hamiltonian of Eq. (3). As
we are interested in the low temperature regime, in order to
optimize the computing time we used the zero temperature
expression given in Eqgs. (11) and (18) and calculated the
equilibrium value of A(r — 00) using Eq. (6).

In the following we parametrize the quantum quench not
by the change of interaction constant but the ratio Ag/Ay,
where Ap and Ay are the equilibrium superconducting order
parameters—satisfying Eq. (16)—for A and A, respectively.
Note that a constant value of Ag/Ay for different y values
implies different changes in A. We analyze moderate and large
quenches corresponding to the possibility to reach, in the dis-
sipationless regime, phase I and phase II or III, respectively.

Figure 1 shows the superconducting response for moderate
values of the quench parameter Ag/A and different values
of y. Panels (a), (b), and (c) correspond to an increase of the
coupling constant (Ag/A s = 0.4) with y decreasing from top

o= L
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0 10 20 30 0 10 20 30
tA; tA

FIG. 1. Time dependence of superconducting order parameter
for Ag/Ay =0.4 (a)—(c) and Ay/As =4 (d)—(f). Upper, middle,
and bottom panel correspond with y = 0.2A;, ¥ =0.1Af, and y =
0.05A¢, respectively. In the inset of panels (a) and (d) we show
A(t) in the dissipationless regime (y = 0) for Ayg/A; = 0.4 and
Ao/Ay = 4, respectively (see Ref. [19]).

to bottom. In the absence of dissipation the order parameter is
known [18,19,35] to oscillate with the Higgs-mode frequency
2A and stabilize at long times at a value Ao, < Ay. This is
shown in the inset of panel (a). The effect of the bath is (i) to
damp the oscillations and (ii) to introduce a slow drift so that
A is replaced by the T = 0 equilibrium value A .

In panels (d), (e), and (f) the results for a decrease of the
coupling constant are shown. The order parameter decreases
rapidly at short times and “bounces back” leading to the Higgs
oscillations. Also in this case the asymptotic value in the
absence of dissipation is A, < Ay as shown in the inset
of panel (d). Again, the effect of the bath is to damp the
oscillations and to introduce a drift toward A, with a time
scale that becomes slower as y is decreased.

The behavior for large quenches are shown in Fig. 2. In
panels (a), (b), and (c) the order parameter increases driving
the system to the synchronic regime (phase III) when y =0
as shown in the inset of panel (a). To make the simulations
affordable the characteristic time 1/y was chosen of the same
order of the simulation window (A < 30) or smaller. For
these parameters, thermalization takes place at times such that
the synchronic (observed at long times in the dissipationless
case) and the dephasing phases can hardly be distinguished.

Panels (d), (e), and (f) of Fig. 2 show the results for a
large decrease of the coupling constant corresponding to the
overdamped situation for the isolated system (phase II). After
the quench, the order parameter decreases to an exponentially
small value and remains small during a time interval which
is controlled by the parameter y. During this time interval the
system thermalizes transferring energy to the bath without any
noticeable effect. Remarkably, at some point the number of
excitations becomes small enough and a fast increase of the
superconducting order parameter is observed. From there on,
the oscillatory evolution of A(¢) towards its asymptotic value
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FIG. 2. Time dependence of superconducting order parameter
for Ag/Ay = 0.05 (a)—(c) and Ag/A; = 8 (d)—(f). Upper, middle,
and bottom panel correspond with y = 0.2A;, y =0.1A;,and y =
0.05A¢, respectively. In the inset of panels (a) and (d) we show
A(t) in the dissipationless regime (y = 0) for Ag/A; = 0.05 and
Ao/ Ay = 8, respectively (see Ref. [19]).

A takes place in which the amplitude of oscillations decay at
arate eV,

To get more insight on this behavior we studied the total
energy Er = (Hyp) and the kinetic energy Ex as a func-
tion of time. In terms of the lesser Green function Ex(t) =
D oko Eie () = =i Y 4 &G ()11 — G (t)22] where ny, is
the expectation value of the number operator. On the other
hand, the interaction energy in the mean-field approximation
is given by E;(t) = —A(t)*/A(t) and Er(t) = Ex(t) + Ei(t).
Figure 3 compares the evolution of kinetic and total energy
with A(#) for the parameters of Fig. 2(d). Notice that at
very short times after the quench (tAy < 0.5) the kinetic
energy is larger than the total energy indicating a residual

-101 2

'Nq\
~ “~
S -107 | 14
S <
b
E:
113 L —— . . 0
0 10 20 30

FIG. 3. Kinetic energy (dash-dotted line, green on line), super-
conducting gap (dashed line, red online) and total energy (solid
line) as a function of time for Ay/A; =8 and y = 0.2A, as in
Fig. 2(d). The dotted line is the function 7e~?" — 110.5 highlighting
the exponential behavior of E; ~ Ex in an intermediate region where
A(t) ~ 0.

interaction energy E;(¢). In this first short transient Ex () and
A(t) decrease exponentially and A(f) goes to zero on the
scale of the figure while the interaction energy (not shown)
approaches zero from below. AtzAy ~ 1 the net effect of the
quench is an excess of total energy constituted primarily of
kinetic energy. As time evolves the excess kinetic energy is
dissipated to the bath decreasing as e~’. In this regime the
system behaves as a collection of free electrons with an out-
of-equilibrium (nonthermal) distribution. Around tA; ~ 10
coherent superconductivity sets in again and Ex increases as a
result of the condensation of Cooper pairs and the total energy
decreases displaying a shallow shoulder. The system rapidly
becomes a superconductor again with a well-developed long
range order which is energetically more favorable. For longer
times the total energy evolves towards its final equilibrium
value. The whole process resembles very much heating by
the quench followed by cooling by the bath, however, one
should keep in mind that only when the superconductor attains
equilibrium with the bath a temperature can be defined (zero
in our case).

IV. CONCLUSIONS

In summary, we have revisited the problem of supercon-
ducting quenches incorporating the effect of the environment
through a thermal bath at 7 = 0. In all cases the quench
implies an excess energy in the system with respect to the final
ground state. In the absence of dissipation this energy remains
“stored” in the system and the order parameter reaches a
stationary value smaller than the equilibrium value or shows
persistent oscillations. Clearly the effect of the bath is to
absorb the excess energy driving the system to an equilibrium
state.

Our results were obtained using a k-independent relaxation
time, an approximation that could be justified considering that
all processes leading to the out-of-equilibrium dynamics take
place within a small energy window around the Fermi energy.
Nevertheless an extension to include a k-dependent relaxation
is straightforward: Both the equilibrium value A ; and out-of-
equilibrium dynamics are obtained replacing y by y in all
expressions.

For t > 7 = 1/y the superconducting order parameter
reaches its thermal equilibrium irrespective of the strength
of the quench A(t — o0) = Ay, as expected. As mentioned
above, in dissipationless weak coupling BCS systems, a small
quench excites the Higgs mode that, due to the dephasing,
decays with a power law t~!/2 [4,26]. In contrast, in the strong
coupling limit, the exponent increases to reach the value 3/2
[36]. It has also been shown that for isolated systems in the
strong coupling limit with nonlocal pairing interaction, the
synchronic phase is much more stable and the Higgs mode
becomes undamped both for an increase and a decrease of
the coupling parameter [35]. In addition, the dependence of
the decay rate with the dimensionality of the system has been
studied from the weak to strong coupling regimes, giving rise
to other power law decays [37].

However, all these asymptotic properties manifest at long
times. Therefore, even for small values of y the exponential
decay may dominate, making it very challenging to conclude
on the dephasing time exponent or the undamped character
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of the Higgs mode in condensed matter systems. Fermionic
cold atoms, with a high degree of coherence and tunable
interactions, may offer new opportunities for the experimental
study of the physics described above.

The heart of quantum information processing is to exploit
nonlinear effects that appear when coupled superconductors
elements are excited by external drives far from equilibrium
states [38]. Of paramount importance is to gauge the role of
the environment on these manipulations. Our computations set
a framework for studying such dynamics which will play a key
role on the future design of quantum technological devices.
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APPENDIX: LESSER GREEN FUNCTION AND GAP
EQUATION AT EQUILIBRIUM

In this section we present derivation of equilibrium lesser
Green function from the proposed self-energy Eq. (11) by
using Eq. (18). A similar procedure was carried out in the Ap-
pendix of Ref [28] where approximate expressions for the triv-
ial y — 0 limit were used while here we evaluate the integral
exactly for all y values. The equilibrium expressions of re-
tarded and advanced Green functions are given by

. —iE(t—t') _ iEx(t—t")
etk (e N e (Al)
ukezEk(t t)+v2 —iE(t—t")
1
Sk ,v,%:—l—s—k (A2)
Ex 2 Ex

and Ay is the order parameter before quantum quench which is set to be real without loss of generality. After introduce these

expressions in Eq. (18) the components of G, (¢) are given by:

G, () =

dl]

dl2

e i+1)/2

1—t2+10+

- iyugvge vt [ !
Gy () = LHUke / dn f i
2w —00 —00

(u]%eiEk(ll_tz) 4 v’%e_iEk(tl —lz))’ (A3)

eV (1 +12)/2

PR sin(Ex(t; — 12)),
1— b

(A4)

Gy (1) = G (t)12, and G (t)22 = G (t)1; after the interchange u,% < v,%. By introducing the change of variables T = (¢; +

t;)/2 and T = t; — 1, the Green functions read

et 26-1) E u? — v?) sin(Ext
Gi() = _ve / dTeVT/ e cos( .k':'—) i( X k)- +( kT) (AS)
27'[ — 00 —2(t-T) T+ lO T+ lO
[
and and
iyugvge ™" /f . szT) sin(E,T) : I
G (), = —— dTe” dt————. < iy Age .
e )T L T rior Gi =1 — /_ _dTeTSiIQE G ~ 1))
(A) (A10)
Thus, since
2-T) . Finally, after computing these integrals we obtain the equilib-
/ dt M = 2SiQ2E(t — T)), (A7) rium lesser Green function
—2(t—T) T+ 0+ .
where Si represents the sine integral, and G ()= I - arctan S —Ao
P = 7By v J\—Ae &
24-T) E
/ gD o (A8) (Al1)
—2(t-T) T+ i0+

we can write

I iyge”

G,f(t)nzz— < Er / dTe"TSiQE(t — T)) (A9)

which has been used as the initial condition for the differential
Eq. (19) at t = 0. Therefore, the superconducting gap Ay =
—iko ), Gi=(t)|, is obtained via the gap equation (16) with
A = Ap.
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