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Onset of criticality in hyper-auxetic polymer
networks
Andrea Ninarello1,2,3, José Ruiz-Franco1,2,3 & Emanuela Zaccarelli 1,2✉

Against common sense, auxetic materials expand or contract perpendicularly when stretched

or compressed, respectively, by uniaxial strain, being characterized by a negative Poisson’s

ratio ν. The amount of deformation in response to the applied force can be at most equal to

the imposed one, so that ν=− 1 is the lowest bound for the mechanical stability of solids, a

condition here defined as “hyper-auxeticity”. In this work, we numerically show that ultra-

low-crosslinked polymer networks under tension display hyper-auxetic behavior at a finite

crosslinker concentration. At this point, the nearby mechanical instability triggers the onset of

a critical-like transition between two states of different densities. This phenomenon displays

similar features as well as important differences with respect to gas-liquid phase separation.

Since our model is able to faithfully describe real-world hydrogels, the present results can be

readily tested in laboratory experiments, paving the way to explore this unconventional phase

behavior.
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The mechanical response of a material subjected to uniaxial
strain in the direction orthogonal to the deformation is
quantified via the Poisson’s ratio ν, defined as the negative

ratio between transverse and longitudinal deformation. For the
most common three-dimensional materials ν is positive, so that
these expand (contract) in response to a compressive (exten-
sional) strain. This situation is schematically illustrated in
Fig. 1(a). On the contrary, auxetic materials are characterized by
negative values of ν, meaning that they become thicker perpen-
dicularly to the deformation axis, as shown in Fig. 1(b). Auxetic
behavior has been so far reported in a large variety of systems,
including foams, polymers, fibers, tendons, and crystals1–7.
Recently, a strong research interest has been devoted toward
auxetic metamaterials in which the elastic properties can be tai-
lored by geometrical design8–10 or by pruning methods11. Besides
geometrical reasons, a negative ν can also be obtained by
exploiting critical behavior and phase transitions, as in the case of
ferroelastic materials in the vicinity of the Curie point12,13.

Within linear elasticity theory14, the appearance of a negative ν
can be related to a decrease of the bulk modulus K with respect to
the shear modulus G, namely to an isotropic softening of the
material. A vanishing K echoes the divergence of the isothermal
compressibility occurring at a gas-liquid critical point. However,
the presence of a finite shear modulus, as found in polymer
networks, such as hydrogels, may induce a negative ν. Pioneering
evidence of a negative Poisson’s ratio has been reported for these
systems close to the so-called Volume Phase Transition15–17: in
this case, a variation in temperature changes the affinity of the
polymer to the solvent, favoring monomer-monomer aggrega-
tion, in full analogy with the gas-liquid critical point, but with the
additional constraint of network connectivity. Another thermo-
dynamic parameter that influences the network properties with-
out affecting monomeric interactions is pressure, or tension.
Indeed, theoretical works have addressed the occurrence of
auxeticity in two-dimensional models of networks under
tension18,19.

It is important to notice that these studies have flourished
about twenty years ago, but the interest in hydrogel and microgel
networks has increased again in the last few years, thanks to
advances in chemical and in silico synthesis. In particular, it
became recently possible to tune the amount of branching points
(crosslinkers) to yield ultra-low-crosslinked networks20–23. In
parallel, numerical efforts have been able to realize fully-con-
nected, disordered networks with arbitrary density and cross-
linker concentrations24,25.

In this article, we numerically investigate the elastic properties
of polymer networks under tension and demonstrate that auxe-
ticity naturally emerges in the ultralow-crosslinked limit. Com-
bining stress-strain and equilibrium simulations, we show that
low-density polymeric networks exhibit a nonmonotonic beha-
vior of K, as well as ν, the latter becoming increasingly negative
with reducing crosslinker concentration c. This phenomenology is
found for both ordered diamond-like and disordered hydrogel
realizations, indicating that there is no need of a specific topology
to observe auxeticity in polymer networks. Remarkably, we do
not find that this behavior continuously evolves down to c→ 0.
Rather, it hits a mechanical critical point that we name “hyper-
auxetic” point, at a finite c= c* ~ 0.35% where ν=− 1. Owing to
the fact that K and G would become negative, this value denotes
the lowest limit of mechanical stability, even though this condi-
tion is not yet fully understood7,26,27. At this point, we detect the
onset of a coexistence between two different states: a low density
and a high density one. These results call for an analogy with the
well-known gas-liquid phase transition in attractive fluids, but
with two important differences: (i) the lack of attraction between
the monomers due to the good solvent conditions of the polymer
networks and (ii) the presence of critical-like density fluctuations,
which do not seem to obey Ising-like statistics within the present
numerical resolution.

Results
Auxetic behavior of ordered and disordered hydrogels. We start
by calculating the elastic properties of diamond networks (Diam)
for different values of the crosslinker concentration c for negative
pressures starting from P= 0. Although the diamond network is a
simplified model28, it can still describe some relevant phenomena
in experiments at a qualitative level29,30. For each studied state
point, we independently evaluate three moduli: the bulk modulus
K is obtained from equilibrium NPT runs, whereas the Young
modulus Y and the Poisson’s ratio ν are estimated from strain-
stress simulations, as described in the Methods section. We report
ν in Fig. 1(c) for hydrogels with different c, while the corre-
sponding K and Y are shown in Fig. S1 of the Supplementary
Information. All moduli display a similar behavior: they initially
decrease, then reach a minimum at intermediate values of pres-
sures, and finally, increase again for very negative P. The minima
become more and more pronounced for lower and lower c,
remaining visible at all c for ν and K, while disappearing for Y
when c≳ 3%. Remarkably, we find that the different networks
display a positive value of ν both for P= 0 and for very large
negative pressures, while auxetic behavior is observed for c≲ 5%
in a finite range of tensions, that become smaller and closer to
zero pressure as c decreases. We denote the minimum value
reached by ν as νmin and its corresponding pressure as Pmin (see
inset of Fig. 1).

So far we exclusively discussed ordered networks. However, in
real-world realizations, hydrogels are intrinsically disordered and
frequently made of chains whose length is exponentially
distributed31,32. Being able to prepare hydrogels with these
features, as described in Methods, we find that disordered
networks (Dis) show the same phenomenology as ordered ones
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Fig. 1 Auxetic behavior of ordered and disordered hydrogels. Illustration
of (a) standard (ν > 0) versus (b) auxetic (ν < 0) behavior. Here, the red
arrows indicate the uniaxial deformation (stretching) that is applied on the
initial state of the system, represented by the dark cube that is identical in
both cases. Following external strain, the system deforms perpendicularly in
the directions indicated by the black arrows, leading to two different final
states, represented by the light polyhedra; (c) calculated Poisson’s ratio ν
as a function of negative pressure P for different values of crosslinker
concentration c= 1, 3, 5, 7.5% both for ordered (Diam, full symbols) and
disordered (Dis, empty symbols) networks. Inset: zoom of c= 1%, where
the minimum values of pressure and Poisson’s ratio, Pmin and νmin,
respectively, are indicated for the Diam-1% case. Pressure is given in units
of kBT/σ3 as described in Methods. Source data are provided as a Source
Data file.
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when subjected to tensions, with auxeticity also emerging for c≲ 5%
(see Fig. 1). Interestingly, we observe lower values of νmin for
disordered hydrogels with respect to ordered ones at the same
crosslinker concentration, as shown in the inset of Fig. 1. In
particular, we find νmin ≈− 0.8 for the Dis-1% network. We ascribe
this effect to the higher structural heterogeneity characterizing
disordered systems, independently of the specific network topology.
Indeed, the same qualitative phenomenology is observed for all
examined independent realizations (see Fig. S2). Since the
preparation procedure is based on the self-assembly of patchy
particles24,25, we cannot easily obtain disordered networks with
smaller values of c, due to the nearby occurrence of phase
separation. Thus, for the lower degree of crosslinking, we focus only
on diamond networks, having shown in Fig. 1 that there is no major
qualitative effect of the underlying topology on auxeticity, in line
with previous results for ordered or partially ordered topologies8–11.

Hyperauxeticity and mechanical instability. By further
decreasing c for Diam-N we still observe a progressive decrease of
νmin. To have a better understanding of the mechanical behavior
of the system, we report in Fig. 2(a) the negative transverse (λ⊥)
vs the longitudinal strain λk

� �
(see Methods for definition) for

c= 0.35% at different values of pressure. We clearly see that, for
P= 0, the slope, that is precisely our numerical estimate of ν, is
positive. Then, by progressively reducing P, ν becomes negative,
down to νmin ≃− 1 within numerical uncertainty. At this point,
the system has reached the limit of mechanical stability, so that
state points with ν <− 1 are not allowed. We therefore consider
c*≃ 0.35% as the critical fraction of crosslinkers at which a
mechanical critical point is encountered and define state points
with ν=− 1 as hyper-auxetic. Interestingly, we find that, upon
further increasing tension, the slope starts to increase again, as
shown in Fig. 2(a). The behavior of ν vs P is reported for three
ultra-low values of c respectively above, at, and below c* in
Fig. 2(b). These findings indicate that the system reaches a hyper-
auxetic condition also for c < c*. This phenomenology thus occurs
for ultra-low-crosslinked networks in general, with the system
reaching νmin=− 1 at a small, finite negative pressure.

Critical-like nature of the transition. The behavior discussed so
far close to hyperauxeticity may echo what happens close to a
thermodynamic second-order phase transition, such as the gas-
liquid one, where a homogeneous system becomes thermo-
dynamically unstable due to the divergence of the isothermal
compressibility. To avoid this, the system thus separates into two
phases characterized by a different density. It is now interesting to
investigate by which mechanism ultralow-crosslinked hydrogels

deal with the presence of the mechanical instability and which
similarities or differences with respect to the gas-liquid scenario
occur. To this aim, we report the behavior of the density fluc-
tuations with respect to time for the Diam - 0.35% system at
P= Pmin in Fig. 3(a), detecting the onset of critical-like fluctua-
tions. It is evident that, close to the mechanical instability, the
system fluctuates between two states, an expanded and a com-
pressed one, respectively illustrated in the corresponding snap-
shots of Fig. 3(b, c). We thus separately calculate the elastic moduli
of the two states and find that the bulk modulus is much smaller
in the expanded case (KEXPANDED ~ 1.4 × 10−6kBT/σ3) as com-
pared to the compressed one (KCOMPRESSED ~ 5.0 × 10−6kBT/σ3).
A similar behavior was also detected for the Young modulus with
the compressed state having it significantly larger than the
expanded one. However, the Poisson’s ratio does not change so
much, being ν≃− 1 for the expanded state and− 0.84 for the
compressed one, as shown in Fig. S3. These data also confirm the
absence of relevant anisotropic effects or preferential directions
within our system and suggest that a hyper-auxetic behavior is
found in both states. Hence, the mechanism of a density jump is
the one allowing the system to avoid the mechanical instability in
full analogy with gas-liquid phase separation.

Fig. 2 Hyper-auxeticity. (a) Negative transverse strain (λ⊥) as a function of longitudinal strain (λ∥) for the Diam-0.35% system for different values of
pressure. The dashed straight line has negative unitary coefficient well-approximating the data for P= Pmin=− 8.19 × 10−5kBT/σ3 (hyper-auxetic point);
(b) Poisson’s ratio ν as a function of negative P for diamond hydrogels with c= 0.30%, 0.35%, 0.5%. Source data are provided as a Source Data file.
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Fig. 3 Density fluctuations and associated elastic properties. (a) Density
fluctuations as a function of time for the Diam - 0.35% network for
P= Pmin=− 8.19 × 10−5kBT/σ3 and corresponding simulation snapshots of
the compressed (b) and expanded states (c) among which the system
fluctuates. Source data are provided as a Source Data file.
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Such an analogy is evident when looking at the density
fluctuations as a function of time for different pressures around
Pmin for the Diam - 0.35% network that are shown in Fig. 4(a).
We now examine what happens as a function of c and plot the
behavior of the (negative) pressure against density in Fig. 4(b) for
all studied diamond networks. It is important to note that, in the
present model, the crosslinker concentration plays the role of
temperature in phase-separating fluids: as c becomes smaller, P
becomes progressively flatter and a critical-like point is observed
for these putative equation of states, indicated by a red diamond
in the figure, which depend on a geometric rather than a
thermodynamic control variable. For c ≤ c*, a clear discontinuity
in density is observed, signaling a first-order-like transition
between the two states. To get better microscopic insights of this
behavior, we report the average bond length lbond as a function of
P in Fig. 4(c). From a geometrical perspective, lowering the
pressure towards more negative values has the effect of stretching
the chains, as demonstrated by the growth of lbond. However, it is
important to note that this behavior arises only when P ≈ Pmin, i.e.
when ν starts to increase again beyond its minimum value. Since
it is well-known that entropy plays a fundamental role for phase
behavior of polymer systems33, we also quantify the effect of
entropy by calculating the average single-chain entropy sl within a
Langevin-approximation (see Methods and Ref. 25). Relying on
this controlled approximation, we detect a decrease of sl by
roughly one order of magnitude going from the compressed to
the expanded state, as shown in Fig. 4(d). The entropy further
shows critical-like fluctuations close to Pmin, as shown in Fig. S4.

On the other hand, when we monitor the average total potential
energy et, we find no remarkable change with pressure and,
importantly, no critical fluctuations, as shown in Fig. S5(a). We thus
focus on the non-bonded potential energy enb, pertinent only to
non-bonded particles, shown in Fig. S5(b), which instead manifests
critical-like fluctuations. This correspondence is confirmed by the
scatter plots, reported in Fig. S5(c) and (d), of total energy and non-
bonded energy with density, respectively. Clearly, correlation is
completely absent between et and ρ, while enb is correlated with
density, similarly to the single-chain entropy as discussed in the SI.

Density distributions and comparison with Ising statistics. We
now examine in more detail the nature of the density fluctuations
and report the distribution of the density PðρÞ in Fig. 5(a) for
different negative pressures close to the onset of the mechanical
instability for the Diam - 0.35% network. We notice that, close to

the transition, the system displays a bimodal distribution, that is
highly asymmetric. This is even more evident from the fact that
data are reported on a log-log scale to improve visualization. In
particular, we find the presence of a broad high-density peak and
a narrow low-density one. Aiming to build a correspondence with
thermodynamic phase separation, we next calculate the order
parameterM, equivalent to the one used to describe the gas-liquid
transition, that is composed by density and energy
fluctuations34,35. Since we found that for the present system the
total potential energy is not correlated with density, we define
M= ρ+ senb, where we only consider the non-bonded potential
energy and s is a mixing parameter34. In Fig. 5(b), we plot the
distribution of the order parameter PðMÞ with zero average and
unit variance for P= Pmin and different values of s. We find that
the presence of the mixing term is able to reduce the asymmetry
of the original PðρÞ, but still not completely. In particular, the
heights of the two peaks become comparable for s= 0.9, but the
difference in their variance is retained at all studied s.

In order to compare with the expected 3D Ising universal
distribution, we apply the single histogram reweighting techni-
que, as discussed in the Methods. This is shown in Fig. 5(c) for
state points close to the mechanical instability at two different
values of c. The resulting PðMÞ for ultra-low-crosslinked
hydrogels are characterized by a slightly asymmetric shape, not
perfectly centered in zero with rather broad peaks. We thus find a
qualitative disagreement with the Ising behavior, independently
of c, that might be due either to an intrinsic difference of the
network system with respect to associating molecules or to
insufficient sampling. Assuming true the first case, we may
speculate that the presence of the network connectivity may bias
the way in which the density fluctuates as compared to unbound
particles. Alternatively, the deviation may be attributed to the fact
that, in the present simulations, c cannot be varied in a
continuous way, as normally done with temperature close to
the gas-liquid critical point, thus hindering a proper exploration
of the critical properties of the transition. However, we note that
we found deviations from the Ising expectations for all examined
c values, moving either below or above c*, finding no systematic
improvement. Future work will be needed to properly address
this issue.

Discussion
The present results, obtained by means of extensive simulations
to calculate the elastic properties of ultra-low crosslinked polymer
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networks at negative pressures, report the emergence of auxetic
behavior for c≲ 5% independently of the specific geometry of the
network. It is important to note that, when we started our
investigations at not-too-small values of c and detected the onset
of auxeticity, we expected to find a continuous behavior of the
system until approaching the limit of stability (ν=− 1) at P= 0.
This was indeed suggested by looking at the c-dependence of Pmin

and νmin, that is reported in Fig. S6: while νmin decreases loga-
rithmically, Pmin is found to obey a quadratic power-law behavior
for all examined networks which spans a range of more than three
decades in c. Instead, surprisingly, we found that the limit of the
mechanical stability of the system, and the associated hyper-
auxetic behavior (ν=− 1), occurs at a finite crosslinker con-
centration, c*≃ 0.35%, even for a regular network such as the
diamond one. Hence, for even smaller values of c, the network,
being unstable, undergoes a transition between two states, a
compressed and an expanded one. Such a transition is also
accompanied by large density fluctuations reminiscent of critical
ones in gas-liquid phase separation, as shown in Fig. 4(a).

We then examined in more detail the nature of this phase
transition, that is clearly distinct from the widely investigated
Volume Phase Transition (VPT) of thermoresponsive hydrogels.
Indeed, the latter occurs due to the change of the underlying
polymer-solvent interactions at a characteristic temperatures.
Previous studies on the VPT of hydrogels have already focused on
the associated critical properties, that were tentatively attributed
to the Ising university class36–38. Instead, the present work
focuses on networks in good solvent conditions, where the
monomer affinity to the solvent does not change and the
underlying interactions are always dominated by excluded
volume. Thus, the phase transition observed in the present work
is the consequence of changing the network connectivity down to
very low c, which generates a non-trivial interplay with steric
interactions under a small tension. To this aim, it is instructive to
focus on the values of the pressure at which ν reaches its mini-
mum for c*, i.e., Pmin ~ 10−4kBT/σ3, while the system volume V
fluctuates around ~ 106− 107σ3. This implies that the product PV
is roughly comparable to the scale of the non-bonded particle
energy ~ 0.02NkBT and about 3− 4 orders of magnitude smaller
than the total energy scale of the system ~ 20NkBT (see Fig. S5),
where N ≈ 104 is the total number of monomers in our simula-
tions. These considerations confirm that the present phase

transition is dominated by fluctuations of non-bonded energy and
of entropy, with a negligible contribution of the total energy. The
important role of (infinite) connectivity and the different inter-
actions with respect to a standard attractive system (e.g. a
Lennard-Jones fluid) may thus be the reasons why the critical-like
fluctuations of the present ultra-low-crosslinked hydrogels are
not found to obey Ising universality class. Further numerical and
theoretical work on this issue will be needed in the future. While
the former should aim, in particular, to probe the critical fluc-
tuations in a more extensive time and length window as well as to
vary c in a more continuous fashion (e.g. by developing appro-
priate crosslinker insertion/deletion methods), the latter should
be devoted to provide an additional description of the mechanical
instability, taking into account the connectivity, similarly to what
discussed for the Volume Phase Transition39.

Finally, it is important to note that these observations are
relevant for ultra-low-crosslinked polymer networks, that are
nowadays within experimental reach20,40,41. Indeed, for example,
Poly(N-isopropylacrylamide) (PNIPAm) microgels are synthe-
sized even in the absence of crosslinkers, taking advantage of
(rare) self-association of NIPAM monomers, which gives rise to
an effective c in the system that is close to zero20,42. It should thus
not be difficult to realize this also for hydrogels. Given that
experimental realizations are necessarily disordered, our numer-
ical predictions suggest that disordered networks should display a
slightly larger value of c*, not too far from 1% (see Fig. 1), with
respect to the diamond case, which would actually favor the
experimental observation of this mechanical critical point and a
thorough exploration of its vicinity both from above and from
below c*. Notably, our results are based on hydrogel simulations,
but it would be interesting to apply our analysis also to ultra-low-
crosslinked microgels. In this respect, the microfluidic approach
to microgels synthesis appears to be particularly promising,
because it allows to prepare microgels of sizes of the order of
100μm43,44. Furthermore, a specific method to calculate their
elastic properties, known as capillary micromechanics, was
already established, making these ideal model systems to test our
numerical predictions. We thus hope that the present results will
stimulate novel experimental activity on ultra-low-crosslinked
polymeric materials, aiming to verify their peculiar hyper-auxetic
behavior and the occurrence of such an unusual phase transition,
where mechanical and thermodynamic instabilities appear to be
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strongly intertwined, opening up a new research direction in
statistical and soft matter physics.

Methods
Model. We perform Molecular Dynamics simulations of polymer networks made
of monomers interacting via the Kremer-Grest potential. Excluded volume for all
particles are given by the Weeks-Chandler-Andersen potential45:

VWCA rð Þ ¼ 4ϵ σ
r

� �12 � σ
r

� �6h i
þ ϵ if r ≤ 21=6σ

0 if r > 21=6σ

8<
: ð1Þ

where σ is the monomer diameter, which sets the unit of length, and ϵ controls the
energy scale. Defining m as the mass of the particles, the unit time of our simu-
lations is defined as τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
. Chemical bonds between connected monomers

are modeled by a FENE potential VFENE rð Þ46:

VFENE rð Þ ¼ �ϵkFR
2
0 ln 1� r

R0σ

� �� �
if r < R0σ ð2Þ

where kF= 15 is the spring constant and R0= 1.5 is the maximum extension of the
bond. We consider both ordered (diamond-like) and disordered topologies. In the
former case, we prepare systems made up of 8 unit cells, each containing 8
crosslinkers, that are placed on the lattice atom positions and are connected
through chains of equal length47,48. For each crosslinker concentration c, the
network is composed of N= 64/c monomers forming chains of equal length
l= (1− c)/(2c), thus by varying l we change c in a controlled way. To produce
disordered networks, we use the method recently developed in Ref. 24,49, which
exploits the self-assembly of binary mixtures of patchy particles with valence f= 2
(monomers) and f= 4 (crosslinkers). We let the system equilibrate at low enough
temperature (T= 0.03) through the oxDNA simulation package50 until 99.9% of
the bonds are formed by exploiting a recently devised swap algorithm51. Then, we
select the largest cluster from which we remove dangling ends and replace patchy
interactions with the bead-spring ones (Eqs. (1) and (2)). We obtain systems with
final crosslinker concentrations c ~ 1, 3, 5% with deviation from the nominal values
smaller than 5%. For c ~ 1% we consider three independent network realizations to
assess the dependence of results on the specific topology.

For both ordered and disordered networks we perform NPT simulations using
LAMMPS simulation package52 with a Nosé - Hoover thermostat and barostat.
Temperature is set to 1.0 throughout the manuscript and is measured in units of
energy, i.e. fixing also kB= 1, where kB is the Boltzmann constant. We thus perform
simulations at different (negative) pressures employing a timestep δt= 0.003τ.

Calculation of elastic moduli. We perform two kinds of simulations: (i) via
equilibrium simulations in which the box is allowed to fluctuate anisotropically we
calculate the bulk modulus K from volume fluctuations as K ¼ kBT

hVi
hV2i�hVi2; (ii)

via stress-strain simulations we simultaneously calculate Y and ν. In particular, we
first apply a longitudinal extensional strain λk ¼

�
Lk � L0k

�
=L0k , where L0k and L∥

are the initial and final box lengths along the deformation axis, respectively. The
range of deformation values encompasses λk 2 0; 0:3½ �, at which the response is in

the linear regime, and we use a fixed strain rate _λ ¼ 0:01τ�1. The box is allowed to
fluctuate transversally to the deformation in order to guarantee a constant average
P. Then, once the system acquires the desired strain, the stress σ∥ along the
deformation axis is calculated from the virial stress tensor and averaged over 106τ,
yielding Y= σ∥/λ∥. The Poisson’s ratio is instead extracted from transversal fluc-
tuations through the relation ν=− ∂λ⊥/∂λ∥, where λ? � λ2 þ λ3

� �
=2 and λ2, λ3

are the components of the strain orthogonal to the deformation axis. For each
network and each state point, results for Y and ν are averaged over 20 independent
deformations in which the same configuration is deformed with different initial
velocities taken from the Maxwell-Boltzmann distribution. This procedure is
repeated for each configuration by deforming the network over all three directions
independently, which are then averaged in order to improve the statistics of the
results. Results for K and Y are given in units of kBT/σ3.

Langevin approximation for single-chain entropy. In general, the entropy of a
chain with n bonds of length b can be written as53

s n; rð Þ ¼ kB lnWn rð Þ þ An; ð3Þ
where r ¼ �rx ; ry ; rz� is the end-to-end vector of the chain,Wn rð Þ is the end-to-end
probability density and An is a temperature-dependent parameter that can be set to
zero. In the limit of systems that are submitted to a very large deformation or in a
dilute regime, i.e., for r ~ nb, the end-to-end probability reads as54

Wn rð Þ � exp � r
b
L�1 r=nb

� �h i L�1 r=nb
� �

sinhL�1 r=nb
� �

" #�n

; ð4Þ

where β= 1/kBT and L�1 r=nb
� �

is the inverse Langevin function, defined as
L r=nb
� � ¼ coth r=nb

� �� nb=r55. Thus, the entropy of a single chain can be

expressed as:

sl n; rð Þ ¼ kB � r
b
L�1 r=nb

� �h i
ln

L�1 r=nb
� �

sinhL�1 r=nb
� �

 !�n" #
þ An ; ð5Þ

where, in our case, b is the minimum value of the FENE interaction potential. We
use this equation to calculate the single chain entropy of each chain in the network
and then average over all chains to obtain the average chain entropy sl that is
reported in Fig. 4(d) and in the SI.

Ising Universality class. A universality class groups phenomena arising in dif-
ferent physical systems, that, although being described by diverse microscopic
models, exhibit an asymptotic large-scale limit that is characterized by the same
invariant critical exponents56. In particular, the universality class defined by the
three-dimensional Ising model describes the phenomenology of second-order phase
transitions as diverse as the ferromagnetic Curie point or the gas-liquid criticality.
We thus attempt to compare the critical behavior of ultra-low-crosslinked networks
to the expected behavior of a system belonging to the 3D Ising universality class,
relying on the asymptotic expression of the probability distribution of the order
parameter PIsing Mð Þ that can be conveniently approximated as57:

PIsing Mð Þ / exp � γM2 � 1
� �2

aγM2 þ c
� �h i

; ð6Þ
where a= 0.158, c= 0.776, and γ is adjusted to provide unit variance to the
distribution.

Histogram reweighting technique. We employ histogram reweighting in order to
better identify the putative critical point of our phase transition, since this tech-
nique provides a powerful tool to reconstruct the probability distribution of a given
observable at a state point P P0; c0ð Þ from equilibrium distributions of close enough
state points, as long as thermodynamical control variables vary continuously. This
is not the case for our system, for which c assumes discrete values in the ordered
system and cannot be finely controlled in the disordered system, as a result of the
self-assembly procedure of the network. We are thus forced to perform histogram
reweighting only in P and, to this aim, we perform numerous, long-time NPT
simulations at each c around Pmin. During the simulations, we record the behavior
of the density ρ and of the non-bonded particle energy enb as a function of time.
Then, our single histogram reweighting method, reported in Fig. 5(c), relies on the
following expression:

P V; enb; P
0� � ¼ P V ; enb;P

� �
exp P � P0ð ÞV½ � : ð7Þ

Thus, for each P0, we calculate the histogram reweighting factor exp P � P0ð ÞV½ �.
We use this expression to obtain the distribution of the order parameter M=
ρ+ senb, as discussed in the main text. This is calculated for all the values of ρ and
enb in P V; enb; P

0� �
by varying the mixing parameter s. The set of M values is then

rescaled to have a zero mean and a unit variance and compiled into the histogram
P Mð Þ. This last is finally scaled onto the Ising curve for each given c by minimizing
the mean squared error between the two distribution by varying P0 .

Data availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. Source data are provided with this paper.

Code availability
The simulation code is available from the corresponding author upon reasonable request.
Most simulations reported in this work have been obtained using a precompiled code
properly referenced in the manuscript.

Received: 29 July 2021; Accepted: 21 December 2021;

References
1. Lakes, R. Foam structures with a negative poissons ratio. Science 235,

1038–1040 (1987).
2. Evans, K. E. & Caddock, B. D. Microporous materials with negative poisson’s

ratios. ii. mechanisms and interpretation. J. Phys. D: Appl. Phys. 22, 1883–1887
(1989).

3. Evans, K. E., Nkansah, M., Hutchinson, I. & Rogers, S. Molecular network
design. Nature 353, 124–124 (1991).

4. Gatt, R. et al. Negative poisson’s ratios in tendons: An unexpected mechanical
response. Acta Biomaterialia 24, 201–208 (2015).

5. Hu, H. Auxetic textile materials - a review. Journal of Textile Engineering &
Fashion Technology 1 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28026-z

6 NATURE COMMUNICATIONS |          (2022) 13:527 | https://doi.org/10.1038/s41467-022-28026-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


6. Rysaeva, L. K., Baimova, J. A., Lisovenko, D. S., Gorodtsov, V. A. & Dmitriev,
S. V. Elastic properties of fullerites and diamond-like phases. Phys. status solidi
(b) 256, 1800049 (2018).

7. Greaves, G. N., Greer, A., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern
materials. Nat. Mater. 10, 823–837 (2011).

8. Larsen, U., Signund, O. & Bouwsta, S. Design and fabrication of compliant
micromechanisms and structures with negative poissons ratio. J.
Microelectromechanical Syst. 6, 99–106 (1997).

9. Theocaris, P. S., Stavroulakis, G. E. & Panagiotopoulos, P. D. Negative
poissons ratios in composites with star-shaped inclusions: a numerical
homogenization approach. Arch. Appl. Mech. (Ing. Arch.) 67, 274–286 (1997).

10. Hanifpour, M., Petersen, C. F., Alava, M. J. & Zapperi, S. Mechanics of
disordered auxetic metamaterials. The European Physical Journal B 91 (2018).

11. Reid, D. R. et al. Auxetic metamaterials from disordered networks. Proc. Natl
Acad. Sci. 115, E1384–E1390 (2018).

12. Dong, L., Stone, D. S. & Lakes, R. S. Softening of bulk modulus and negative
poisson ratio in barium titanate ceramic near the curie point. Philos. Mag.
Lett. 90, 23–33 (2010).

13. Kou, L. et al. Auxetic and ferroelastic borophane: A novel 2d material with
negative possion’s ratio and switchable dirac transport channels. Nano Lett.
16, 7910–7914 (2016).

14. Landau, L. & Lifshitz, E. Theory of elasticity (volume 7 of a course of
theoretical physics) pergamon press (1970).

15. Hirotsu, S. Softening of bulk modulus and negative poisson’s ratio near the
volume phase transition of polymer gels. J. Chem. Phys. 94, 3949–3957 (1991).

16. Li, C., Hu, Z. & Li, Y. Poisson’s ratio in polymer gels near the phase-transition
point. Phys. Rev. E 48, 603–606 (1993).

17. Hirotsu, S. Static and time-dependent properties of polymer gels around the
volume phase transition. Phase Transit. 47, 183–240 (1994).

18. Wojciechowski, K. Two-dimensional isotropic system with a negative poisson
ratio. Phys. Lett. A 137, 60–64 (1989).

19. Boal, D. H., Seifert, U. & Shillcock, J. C. Negative poisson ratio in two-
dimensional networks under tension. Phys. Rev. E 48, 4274–4283 (1993).

20. Bachman, H. et al. Ultrasoft, highly deformable microgels. Soft Matter 11,
2018–2028 (2015).

21. Virtanen, O. L. J., Mourran, A., Pinard, P. T. & Richtering, W. Persulfate
initiated ultra-low cross-linked poly(n-isopropylacrylamide) microgels possess
an unusual inverted cross-linking structure. Soft Matter 12, 3919–3928 (2016).

22. Scotti, A. et al. Deswelling of microgels in crowded suspensions depends on
cross-link density and architecture. Macromolecules 52, 3995–4007 (2019).

23. Scotti, A. et al. Exploring the colloid-to-polymer transition for ultra-low
crosslinked microgels from three to two dimensions. Nature Communications
10 (2019).

24. Gnan, N., Rovigatti, L., Bergman, M. & Zaccarelli, E. In silico synthesis of
microgel particles. Macromolecules 50, 8777–8786 (2017).

25. Sorichetti, V. et al. Effect of chain polydispersity on the elasticity of disordered
polymer networks. Macromolecules 54, 3769–3779 (2021).

26. Xinchun, S. & Lakes, R. S. Stability of elastic material with negative stiffness
and negative poisson’s ratio. phys. stat. sol. (b) 244, 1008–1026 (2007).

27. Nicolaou, Z. G. & Motter, A. E. Mechanical metamaterials with negative
compressibility transitions. Nat. Mater. 11, 608–613 (2012).

28. Rovigatti, L., Gnan, N., Tavagnacco, L., Moreno, A. J. & Zaccarelli, E.
Numerical modelling of non-ionic microgels: an overview. Soft matter 15,
1108–1119 (2019).

29. Keidel, R. et al. Time-resolved structural evolution during the collapse of
responsive hydrogels: The microgel-to-particle transition. Sci. Adv. 4,
eaao7086 (2018).

30. Hoppe Alvarez, L. et al. Deformation of microgels at solid–liquid interfaces
visualized in three-dimension. Nano Lett. 19, 8862–8867 (2019).

31. Higgs, P. & Ball, R. Polydisperse polymer networks: elasticity, orientational
properties, and small angle neutron scattering. J. de. Phys. 49, 1785–1811
(1988).

32. Grest, G. S. & Kremer, K. Statistical properties of random cross-linked
rubbers. Macromolecules 23, 4994–5000 (1990).

33. Rubinstein, M. & Colby, R. H.Polymer physics, vol. 23 (Oxford university
press New York, 2003).

34. Wilding, N. B. & Bruce, A. D. Density fluctuations and field mixing in the
critical fluid. J. Phys.: Condens. Matter 4, 3087–3108 (1992).

35. Debenedetti, P., Sciortino, F. & Zerze, G. Second critical point in two realistic
models of ewater. Science 369, 289–292 (2020).

36. Li, Y. & Tanaka, T. Study of the universality class of the gel network system. J.
Chem. Phys. 90, 5161–5166 (1989).

37. Onuki, A. Theory of phase transition in polymer gels. In Responsive Gels:
Volume Transitions I, 63-121 (Springer Berlin Heidelberg, 1993).

38. Habicht, A., Schmolke, W., Lange, F., Saalwächter, K. & Seiffert, S. The non-
effect of polymer-network inhomogeneities in microgel volume phase
transitions: Support for the mean-field perspective. Macromol. Chem. Phys.
215, 1116–1133 (2014).

39. Dimitriyev, M. S., Chang, Y.-W., Goldbart, P. M. & Fernández-Nieves, A.
Swelling thermodynamics and phase transitions of polymer gels. Nano Futures
3, 042001 (2019).

40. Gao, J. & Frisken, B. J. Cross-linker-FreeN-isopropylacrylamide gel
nanospheres. Langmuir 19, 5212–5216 (2003).

41. Scotti, A. et al. Flow properties reveal the particle-to-polymer transition of
ultra-low crosslinked microgels. Soft matter 16, 668–678 (2020).

42. Virtanen, O., Mourran, A., Pinard, P. & Richtering, W. Persulfate initiated
ultra-low cross-linked poly (n-isopropylacrylamide) microgels possess an
unusual inverted cross-linking structure. Soft matter 12, 3919–3928 (2016).

43. Seiffert, S. Impact of polymer network inhomogeneities on the volume phase
transition of thermoresponsive microgels. Macromol. Rapid Commun. 33,
1135–1142 (2012).

44. Voudouris, P., Florea, D., van der Schoot, P. & Wyss, H. M. Micromechanics
of temperature sensitive microgels: dip in the poisson ratio near the LCST. Soft
Matter 9, 7158 (2013).

45. Weeks, J. D., Chandler, D. & Andersen, H. C. Role of repulsive forces in
determining the equilibrium structure of simple liquids. J. Chem. Phys. 54,
5237–5247 (1971).

46. Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: A
molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990).

47. Claudio, G. C., Kremer, K. & Holm, C. Comparison of a hydrogel model to the
poisson–boltzmann cell model. J. Chem. Phys. 131, 094903 (2009).

48. Jha, P. K., Zwanikken, J. W., Detcheverry, F. A., De Pablo, J. J. & De La Cruz,
M. O. Study of volume phase transitions in polymeric nanogels by theoretically
informed coarse-grained simulations. Soft Matter 7, 5965–5975 (2011).

49. Ninarello, A. et al. Modeling microgels with a controlled structure across the
volume phase transition. Macromolecules 52, 7584–7592 (2019).

50. Poppleton, E., Romero, R., Mallya, A., Rovigatti, L. & Ŝulc, P. Oxdna.org: a
public webserver for coarse-grained simulations of dna and rna
nanostructures. Nucleic Acids Res. (2021).

51. Sciortino, F. Three-body potential for simulating bond swaps in molecular
dynamics. Eur Phys J E 40 (2017).

52. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
computational Phys. 117, 1–19 (1995).

53. Flory, P. J. Statistical thermodynamics of random networks. Proc. R. Soc. Lond.
A. Math. Phys. Sci. 351, 351–380 (1976).

54. Treloar, L. R. G. The physics of rubber elasticity. (Oxford University Press,
USA, 1975).

55. Jedynak, R. Approximation of the inverse langevin function revisited.
Rheologica Acta 54, 29–39 (2015).

56. Binney, J. J., Dowrick, N. J., Fisher, A. J. & Newman, M. E. The theory of
critical phenomena: an introduction to the renormalization group (Oxford
University Press, 1992).

57. Tsypin, M. & Blöte, H. Probability distribution of the order parameter for the
three-dimensional ising-model universality class: A high-precision monte
carlo study. Phys. Rev. E 62, 73 (2000).

Acknowledgements
We thank F. Goio Castro, L. Rovigatti and F. Sciortino for useful discussions. We
acknowledge support from the European Research Council (ERC Consolidator Grant
681597, MIMIC), from the European Union’s Horizon 2020 research and innovation
programme (Grant 731019, EUSMI) and from Sapienza University of Rome through the
SAPIExcellence program. The authors gratefully acknowledge the computing time granted
by EUSMI on the supercomputer JURECA at the Jülich Supercomputing Centre (JSC).

Author contributions
EZ designed research. AN, JRF and EZ performed research and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28026-z.

Correspondence and requests for materials should be addressed to Emanuela Zaccarelli.

Peer review information Nature Communications thanks Andrea Scotti and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28026-z ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:527 | https://doi.org/10.1038/s41467-022-28026-z | www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-022-28026-z
http://www.nature.com/reprints
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28026-z

8 NATURE COMMUNICATIONS |          (2022) 13:527 | https://doi.org/10.1038/s41467-022-28026-z | www.nature.com/naturecommunications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Onset of criticality in hyper-auxetic polymer networks
	Results
	Auxetic behavior of ordered and disordered hydrogels
	Hyperauxeticity and mechanical instability
	Critical-like nature of the transition
	Density distributions and comparison with Ising statistics

	Discussion
	Methods
	Model
	Calculation of elastic moduli
	Langevin approximation for single-chain entropy
	Ising Universality class
	Histogram reweighting technique

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




