UNIVERSITA' DEGLI STUDI DI PISA

DIPARTIMENTO DI INGEGNERIA DELLA INFORMAZIONE
ELETTRONICA, INFORMATICA, TELECOMUNICAZIONI

TESI DI DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA,
INFORMATICA E DELLE

TELECOMUNICAZIONI

XVI CICLO

QUALITY EVALUATION OF NATURAL LANGUAGE
SOFTWARE REQUIREMENTS: METHODS,
TECHNIQUESAND TOOLS

Prof. Stefania Gnes

Il candidato

Giuseppe Lami

| tutori

Prof. Luca Simoncini

Acknowledgments

Acknowledgments

Thanks to my tutors Stefania Gnesi and Luca Simoncini for their continuous support
and incitement.

The GUI of the QUARS tool has been designed in cooperation with Gianluca
Trentanni. Gianlucatook care of the QUARS GUI development.

The version of the QUARS tool described in this thesis has been realized in the
framework of my Affiliation with the Software Engineering Institute of the Carnegie
Mellon University of Pittsburgh, PA (U.S.A.). Several improvement hints have been
gathered during my stays at the Softwar e Engineering Institute. Special thanks for the
encouragement in my effort for improving the QUARS tool to Mario R. Barbacci,
Dennis Goldenson and Robert Ferguson of the Softwar e Engineering I nstitute.

Thanks to Fabrizio Fabbrini, Alessandro Fantechi, Mario Fusani and Isabel John for
the fruitful work made togheter in the last years.

Table of Contents

Table of Contents

1

a1 a 0o 18 o1 o] o I ST PR URR 1
1.1 SOftWar € ENGINEEIINGccvoiiiiiiiiiiiiieeieeee et 1
1.2 SOftWAr€ QUALITY ..ocueeeeeieceeee et nne e nee e 5
1.3 Purpose and Scope of thiSTRESIS......ccccevieviceeeeseee e 10

RequirementS ENGINEEN NGooiiiiiie et 13
2.1 ReqUIremMentS ENGINEEI NG ...cccooeiiriirieieieieeee ettt 13
2.2 What iSA REQUITEMENT ... e 15
2.3 The RequirementS DOCUMENTcccoveiiieerieie e eee sttt 17

Resear ch Directions. the ESCAPE Projectcooevvieeveeve e 23
3.1 AULOMOLIVE SOFtWEI © ... 23
32 TheESCAPE PrOJECLcooiiiiieiiieti sttt 25

3.2.1 Assessment PuUrpOSE @Nd SCOPEceerveruerueeeerieriesiestesiesiesseseesee s seeseessessesseenens 27
3.3 ASSESSMENT ACHIVITIES. ...ttt 28
3.4 OULCOIMES ...t b e b e n e s e sr e reene s 29

34.1General CoNSIAEr ALIONS.......ccciirririiiireeiee et 32

3.4.2 RequirementsS ENgineering in PractiCe........ccovvirereneneeeeeese e 32

pagei

Table of Contents

3.4.3 Other OULCOMIES......c.eeieiitiieisie et 34
3.4.3.1 Facing the New Challengesin the Automotive Software............ccccue.ne... 34
34.3.2 Platformsvs. Ad HOC SOIULIONS.........ccooeiiiinirienieeeeeeeee e 35
34.3.3 TheModularity-related ISSUES..........ccooviiririnirereeeeee s 36

3.5 RESEAICH DIFECLIONS......eeivieceeiest et 36
4. TheQuality of NL ReQUIrEMENLScccuieiieciececie ettt 39
4.1 Quality Characterisitcsof NL RequirementsS........cccovvveieevieecciee e 39
4.2 Methodsfor NL Requirements Quality Evaluation..........c.ccoceeeieieninenennns 42
4.3 A NL Requirements Quality MOGE...........ccooreiiiiiiniiceeeeee e 45

4.4 The Liguistic Approach to the NL Requirements Consistency and Completeness

EVAIUBLION ...ttt e e a b 51
5. TheTool QUARS. ...ttt b e b e e eb e e s are e sae e sareenbeeenns 56
5.1 INErOUUCTION ...ttt 56
5.2 Linguistic Techniques for Defects Detectionccccccveveecceevee e, 58
53 Design of an Automatic Tool for NL requirements evaluation....................... 60
5.3.1 SYNEAX PAI SEY ...ttt sttt s b et nse e snbe e nbe e anneeneas 61
5.3 2 LEXICAI PAISEN ..ottt 62
5.3.31NAICALOr S DELECLON ...t 62
5.3 4 VIBW DEITVALON ...ttt ss e n e sne e 63

pageii

Table of Contents

5.3.5 DICLIONAITES.....cuieeeiciirtiteee ettt 63
5.3.6 INPUt AN OQULPULcoceiieiee et s eere e nree s 63
54 Functional description of QUARS ... 64
5.4.1 EXPressiVenesS ANAIYSIScoeiiiiiiiineeieee sttt 65
54.1.1 Lexical-based analySIS......cccccueieiieiiiiiisierie et 65
54.1.2 Syntax-based ANAIYSIS......ccccveieiieiecie e 68
54.2 Consistency and Completeness SUPPOItcccecveeveeiieeneesieeesiee e 69
5.4.3 Tallorability ISSUES........coiiiiieieceee e 72
544 M ELTICS BN TVALION. ...t 75
55 CONCIUSIONS.....coiiiiiiiiteieiete e n e en e 76
6. Application of the Linguistic Techniquesto Use Case AnalysiS.........cccoceeevevueenene. 79
6.1 INEFOTUCTION.eiiiiiciiceee et sr e e 80
6.2 USE CASES ..ottt 80
6.3 Quality evaluation Of USE CaSES.......cccuviriiierieriesie sttt 82
B.3. L ARM L e r e n e n e nne e 83
B.3.2 SYTWO ..ottt b e s ae e s e e e b e e san e e ne e e e e e nneenane e 84
6.4 ACNIEVADIE MELIICS ... 86
6.5 A CASESIUAY ...eoeeieeiieieeeie et 88

pageiii

Table of Contents

6.6 A Reation-based Appraoch for the Analysisof Use Cases.........c.cceeveveeuenen. 91
6.6.1 An example of Derivation of RElations.........ccccccevivivieicievee e, 94

6.7 Applying the Relational APProach...........coceeeeieiineneseeeeee e 97
6.9 Conclusionsand FUtUr@ WOIKScocueieieriieneseseseseeeeee e 100

7. Representation and Verification of Use Casesfor Product Lines...........cccueu...e. 104
4% L 1 gL 8 oo [F i o o FO ST TPTS U P TSRS P PSPPI 104
7.2 PLUGC NOEAEIONeiiiiicieieie et snenne s 107
7.3 PUC derivation from PLUC ... 109
731 Specification of tNE PLUC ..o 109
7.3.2 Derivation and Verification of aPUCcccocvireininiininencenenens 111

T4 CONCIUSIONS ...ttt b et b et s e sb s ne bt r e s b e 113

8. CONCIUSIONS ...t b et e e s resnesrenne s 116
0. REFEIBNCES. ...ttt bbbt e e r e enenne s 120

pageiv

Chapter 1. “Introduction”

1. Introduction

The research activity | performed in the last tree years for my PhD. course belongs to
the software engineering area and addresses some aspects of the software qualty
evaluation. In this chapter some introductory, general considerations about software
engineering and softwar e quality are provided. The purpose and scope of this doctor al
thesisare provided too.

1.1 Softwar e Engineering

The Software Engineering term was invented in early ‘70s. In that time truly large
softwar e systems wer e attempted to be built commercially. The people on these large
projects quikly realized that building large software systems was significantly
different from building small systems. There were fundamental difficulties in scaling
up the techniques of small-program development to large software development.
Large software projects were universally over budget and behind schedule, this
situation was called “ software crisis’. Software Engineering was an attempt to apply
engineering principles to the software development with the aim to provide software
developers with a disciplinated development approach and repeatable practices for
the whole softwar e development. [90],[97]

page 1

Chapter 1. “Introduction”

Sommer ville defines softwar e engineering as[97]:

“an engineering discipline which is concerned with all aspects of software production
from the early stages of system specifications through to maintaining the system after
it has gone into use”

In thisdefinition there are two key phrases:

“engineering discipline’: engineers make things work. They apply theories, methods
and tools where these are aprropriate but they use them selectively and always try to
discover solutions to problems even when there are no applicable theories and
methods to support them. Engineers also recognize that they must work to
organizational and financial constraints, so they look for solutions within the
constraints.

“all agpects of software production”: software engineering is not just concerned with
the technical processes of software development but also with activities such as
software projects management and with the development of tools, methods and
theoriesto support software production.

Due to the peculiar nature of the software (software is essentiallly a design activity,
the mere production of single instances of a product, differently from other
engineering disciplines, isalmost irrelevant), it is necessary a dual emphasis for facing
the softwar e challenges: the emphasis was put not only on the product (what is done)
but also on the process (how things are done), because the awar eness that high-quality
processes should lead to high-quality products was achieved.

In order to make the development predictible, repeatable, measurable and efficient,
the whole software development process was considered as composed of different
single interdependent phases. it was called “ software life-cycle’. Different software
life-cycles models have been defined, but they differ from each other mainly for the
sequence and the number of times the main phases are perfomed. The main software
development phases common to all the software life-cycle models are: Requirements
Gathering & Analysis, Architectural Design, Detailed Design, Coding and Unit
Testing, Softwar e I ntegration, System Integration, Acceptance Testing.

In the following, some of the most popular life-cycle paradigms ar e described.

page 2

Chapter 1. “Introduction”

Water-fall life-cycle modd: it was the first to be proposed in the early 70s and it is
widely used even today. The basic idea is to perform the main steps of the software
development in sequence. The advantages of this model are: the progress in the
development are masureable, it makes possible to estimate the duration of the sigle
steps on the basis of the experience applying stepsin past projects, it allows the reuse
of software artifact in other projects. The original water-fall model has also
disadvantages because it disallowed iteration, it was inflexible, monolithic, it was
difficult to perform estimations, and maintenance and it didn’t behave well in case of
requirements changing over time. For this reasons, the original water-fall model was
modified in “water-fall with feedbacks’ known also asthe “V-Model”. In figure 1.1
the V-Moddl life-cycle is schematically shown.

Requirements

gathering and analysis

2

Architectural Design

v

Detailed Design

Acceptance testing

f

System integration

*

Software integration

S

Codingand Unit
Testing

/'

A 4

Opearation

v

Maintenance

Figure 1.1: the V-Model softwar e life-cycle

Rapid-prototyping model: in this approach some initial prototypes are build and used
to develop requirements specification. Once the requirements are known the water-
fall model is adopted. The prototypes are discarded once the design begins, they
should not be used as a basis for implementation. Figure 1.2 shematically shows the
rapid-prototyping model.

page 3

Chapter 1. “Introduction”

Rapid Prototype Requirements
I Change
Verification x
7' B Design € 1
N
Verification (.
P
] 1
1 1
I

[| Implementation [«------~ g
]
Test

|| Opearation

|

Retirement

Figure 1.2: The Rapid Prototyping Model

Spiral life-cycle model: The spiral lifecycle model is the combination of the classic
waterfall model and an element called risk analysis This model is appropriate for
large software projects. The model consists of four main parts, or blocks, and the
process is shown by a continuous loop going from the outside towards the inside. This
showsthe progress of the project.

Planning: This phase is where the objectives, alternatives, and constraints are
determined.

Risk Analysis. What happens here is that alternative solutions and constraints are
defined, and risks are identified and analyzed. If risk analysisindicates uncertainty in
the requirements, the prototyping model might be used to assist the situation.

Engineering: Here the customer decides when the next phase of planning and risk
analysis occur. If it is determined that the risks are to high, the project can be
terminated.

Customer Evaluation: In this phase, the customer will assess the engineering results
and make changes if necessary.

In Figure 1.3 the scheme of the Spiral model is provided.

The very new concept introduced by Software Engineering was the interdependence
of all the phases of the software life-cycle and the equal relevance of each of them for
the success of the the whole proj ect.

page 4

Chapter 1. “Introduction”

Determine objactives, Evaluate alternatives;
alternatives identify, resolve risks
constraints

Rizk ;
____;a_nalysm

Rizk. analyziz

Rizk
analyziz

o
REVIEW

Requirements plan __Simulations [models benchmarks
Life cycle plan Operation
PEIE PIEN P et
raduckd o S
Development |Fequirement BHEAN design

plan |validation Caode
Integration

and test plan E&I%’?;Ti " Unit test
or1-f : :
Flan next phag?“\——_a erilication Integratio Develop, verify

tes _
Service| AZEgPaNCe nextlewvel product

Figure 1.3: the Spiral life-cycle model

At thesametimeit became clear that the more the process was supported by tools and
appropriate organizational infrastructuresthe more the improvementsin the software
field speeded-up. Softwar e development environments wer e build, they are computer-
based toolsthat are intended to assist the softwar e development process. Development
methods impose structure on the softwar e activity with the goal of making the activity
systematic and ultimately more likely to be successful.

1.2 Software quality

The more the software is spreaded in almost all the fields of human life, the more the
concept of software quality became relevant [7]. In order to satify the needs of the
users, being simply correct is not sufficient for software. Correctness is just one of
properties the softwar e has to fullfil to be suitable for its purpose. This consideration
leaded to the concept of software quality.

The concept of quality referred to software is complex and variabile according to the
different perspectives approached. It is possible to identify the following per spectives
from which softwar e quality can be seen:

page 5

Chapter 1. “Introduction”

Trascendental perspective: it derives from a perception of the quality of a software
product as a whole that it isn’t measurable but everyone can recognize when interacts
with it. The trascendental quality can’t be decomposed because it is an overall
property. It is not possible to achieve a precise and quantitative evaluation of this
kind of quality. [77]

User perspective: it can be defined as the extent a softwar e product satisfies the needs
and expecteations of an user in a operational context. This perception of the quality is
necessarely based on what the software is required to do. Therefore, quality
measurement has to be based on the availability and knowledge of the operational
profiles (i.e. how the software product will be used during the usual operation).

Developer perspective: it can defined as the extent the software product satisfies the
formalized requirements. In this case, the software quality can be measured (e.g. in
terms of number of defectsand cost for their correction).

Product perspective: the quality of the software derives from the inherent properties
of the product itself. The overall quality, in this case, can be seen asthe composition of
several particular qualities. The measurement of the quality is made indirectly
through the calculation of metrics that are supposed to measure (or estimate) the
different qualities.

Value-based per spective: in this case the quality concept of a software product can be
defined in terms of the trade-off between costs and benefits. This is the usual way the
quality isevaluated by an acquirer.

For giving the software quality a common framework the standard 1SO/IEC 9126 was
defined. This standard provides a quality model for ftware, composed of quality
characteristics, sub-characteristics and metrics. [59],[60],[61],[62]

Software product quality should be evaluated using a defined quality model. The
quality model should be used when quality goals for software products and
intermediate products are set. Software product quality should be hierarchically
decomposed into a quality model composed of characteristics and subcharacteristics
which can be used as a checklist of issuesrelated to quality.

page 6

Chapter 1. “Introduction”

The whole quality of software hasbeen, in the | SO/IEC 9126 standard, decomposed in
treelevels:

Internal quality: is the totality of characteristics of the software product from an
internal view. Internal quality is measured and evaluated against the internal quality
requirements. Details of software product quality can be improved during code
implementation, reviewing and testing, but the fundamental nature of the software
product quality represented by internal quality remains unchanged unless redesigned.

External Quality is the totality of characteristics of the software product from an
external view. It is the quality when the software is executed, which is typically
measured and evaluated whiletesting in a ssimulated environment with smulated data
using external metrics. During testing, most faults should be discovered and
eliminated. However, some faults may still remain after testing. As it is difficult to
correct the softwar e ar chitecture or other fundamental design aspects of the software,
the fundamental design usually remainsunchanged throughout testing.

Qualityin Use isthe user’s view of the quality of the software product when it is used
in a specific environment and a specific context of use. It measures the extent to which
users can achieve their goalsin a particular environment, rather than measuring the
properties of the softwar e itself

The metrics are the means to evaluate the quality characteristics of a software
product in a quantitative way [42]. To measure internal, external quality and quality
in use of a software product different metrics are required. The ISO/IEC 9126
standard defines tree cathegories of metrics:

Internal metrics. can be applied to a non-executable software product (such as a
gpecification or source code) during designing and coding. When developing a
software product the intermediate products should be evaluated using internal
metrics which measure intrinsic properties, including those which can be derived
from simulated behaviour. The primary purpose of these internal metricsisto ensure
that the required external quality and quality in use is achieved. Internal metrics
provide users, evaluators, testers, and developerswith the benefit that they are ableto
evaluate softwar e product quality and address quality issues early before the software
product becomes executable.

page 7

Chapter 1. “Introduction”

External metrics. use measures of a software product derived from measures of the
behaviour of the system of which it is a part, by testing, operating and observing the
executable software or system. Before acquiring or using a software product it should
be evaluated using metrics based on business objectivesrelated to the use, exploitation
and management of the product in a specified organisational and technical
environment. External metrics provide users, evaluators, testers, and developers with
the benefit that they are able to evaluate software product quality during testing or
operation.

Quality in use metrics. measure the extent to which a product meets the needs of
specified users to achieve specified goals with effectiveness, productivity, safety and
satisfaction in a specified context of use . Evaluating quality in use validates software
product quality in specific user-task scenarios. Quality in use isthe user's view of the
quality of a system containing softwar e, and is measured in terms of the result of using
the software, rather than properties of the software itself. Quality in use is the
combined effect of internal and external quality for the user.

Software product quality should be evaluated using a defined quality model. The
quality model should be used for setting quality goals for software products and
intermediate products. Softwar e product quality should be hierarchically decomposed
into a quality model composed of characteristics and subchar acteristics which can be
used as a checklist of issuesrelated to quality [70].

It isnot practically possible to measure all internal and external subcharacteristics for
all parts of a large software product [9]. Similarly it is not usually practical to
measure quality in use for all possible user-task scenarios. Resources for evaluation
need to be allocated between the different types of measurement dependent on the
business objectives and the nature of the product and design processes.

In figure 1.4 the ISO/IEC 9126 quality model for internal and external quality is
graphically shown. For more details and the definitions of the quality characteristics
and sub-characteristics, please refer to the standard [59]. This quality model
categorises software quality attributes into six characteristics (functionality,
reliability, usability, efficiency, maintainability and portability), which are further
subdivided into subcharacteristics. The subcharacteristics can be measured by
internal or external metrics[52].

page 8

Chapter 1. “Introduction”

External and
Internal
quality

|functi;3nality| [reliaEJility | | usat;ility | | effici.ency | Hnaintai'nabilitb/ |porta'bility|

-{ suitability] -[maturity] +nderstandabi|it Timebehavior] -{ Analysability ’ -[adaptability

-[accuracy] -[Fault toleranceJ -[learnability] Stfﬁoz;?:n J -[changeabilityJ -[|n5ta||ab|l|ty]
-[interoperability] -[recoverability -[operability J cifrfr:;:?:rf(}:/e J -[stability -[Co-existence J

~| security] { Rdlal.)mty] ~| attractiveness| testability J {replaceablllty

compliance

Functionality Usability Mamtamablllty Portability
compliance compliance compliance compliance

Figure 1.4. Qualty model for Internal and External software quality

Figure 1.5 shows the quality model for quality in use. The attributes of quality in use
are categorised into four characteristics. effectiveness, productivity, safety and
satisfaction (Figure 1.5). Quality in useis the user’s view of quality. Achieving quality
in use is dependent on achieving the necessary external quality, which, in turn, is
dependent on achieving the necessary internal quality

L Quality in Use J
L Effectiven&sjt Productivity J [Safety J [Satisfaction J

Figure 1.5: The Quality in Use quality model

page 9

Chapter 1. “Introduction”

The I SO/IEC 9126 standard is generally recognized as the principal reference for the
quality of software products. The view of the quality of software products as
composed of (sub-)characterisitcs to be measured by means of metrics contained in
the I SO/IEC 9126 standard is the same view of quality | took during my work.

1.3 Purpose and Scope of thisThesis

Software is “all or part of the programs, procedures, rules, and associated
documentation of an information processing system” [ISO/IEC 2382-1: 1993] [56].
The quality of software is composed, as said in Section 1.2, of several characteristics
and can’t be faced asa whole.

The purpose of thisthesisisto contribute to the definition of techniques and methods
to evaluate and improve the quality of the software and to the provision of automatic
tools that can make them practically usable. | concentrated my research activity on
one of the components of a software product scarcely supported by methods and
automatic tools. the requirements documents written in natural language (NL). |
started my research work with an investigation of the demands and needs in the
requirements area and then | used the outcomes of that investigation to target the rest
of my work.

The scope of this PhD thesisis composed of the following points:
the definition of a quality model for NL requirement

theidentification of feasible and effective techniques for performing NL requirements
analysis aiming at pointing out defects

theimplementation of a tool to automatize thisanalysis
the investigation of the applicability of the defined approach in the practice

In the following chapters these points are treated and the achieved outcomes are
described and discussed.

page 10

Chapter 1. “Introduction”

page 11

Chapter 1. “Introduction”

page 12

Chapter 2. “Requirements Engineering”

2. Requirements Engineering

In this chapter some introductory considerations about what the Requirements
Engineering process is, are provided. The outcomes of this process are treated,
playing particular attention to one of them: the requirements specification document
that isthe object of the research activity described in the next chapters.

2.1 Requirements Engineering

The Requirements Engineering for software is concerned with the acquisition,
analysis, specification, validation and management of software requirements. It is
widely acknowledged within the software industry that software projects are critically
vulnerable when these activities are performed poorly. This has led to the widespread
use of the term ‘requirements engineering’ to denote the systematic handling of
requirements. Software requirements are one of the products of the requirements
engineering process.

Softwar e requirements express the needs and constraints that are placed upon a
software product that contribute to the satisfaction of some real world application.
The application may be, for example, to solve some business problem or exploit a
business opportunity offered by a new market. It is important to understand that,

page 13

Chapter 2. “Requirements Engineering”

except wher e the problem is motivated by technology, the problem is an artifact of the
problem domain and is generally technology neutral. The softwar e product alone may
satisfy thisneed (for example, if it isa desktop application), or it may be a component
(for example, a speech compression module used in a maobile phone) of a software-
intensive system for which the satisfaction of the need is an emergent property. In
fundamental terms, the way in which the requirements are handled for stand-alone
products and components of softwar e-intensive systemsisthe same.

One of the main objectives of requirements engineering is to discover how to partition
the system; to identify which requirements should be allocated to which components.
In some systems, all the components will be implemented in software. Others will
comprise a mixture of technologies. Almost all will have human users and sometimes
it makes sense to consider all components of the system to which requirements should
be allocated (for example, to save costs or to exploit human adaptability and resource
fulness).

Because of this requirements engineering is fundamentally an activity of systems
engineering rather than one that is specific to software engineering. In this respect,
the term ‘software requirements engineering’ is misleading because it implies a
narrow scope concerned only with the handling of requirements that have already
been acquired and allocated to softwar e components.

One of the fundamental tenets of good software engineering is that there is good
communication between system users and system developers. It is the requirements
engineer who is the conduit for this communication. They must mediate between the
domain of the system user (and other stakeholders) and the technical world of the
softwar e engineer. Thisrequiresthat they possesstechnical skills, an ability to acquire
an under standing of the application domain, and the inter-personal skillsto help build
consensus between heter ogeneous groups of stakeholders[87].

The process of requirements engineering is composed of four main phases. [17], [97]

Requirements Elicitation: in this phase the software requirements are elicited by
taking information from the potential stakeholders, by analysis the domain and by
considering the existing standards of interests,

page 14

Chapter 2. “Requirements Engineering”

Requirements analysis and negotiation: in this phase the €elicited requirements, that
can be still expressed in a non structured way, are analysed to identify faults,
inconsistencies, incompleteness. For doing that several constraints are taken into
account (businees, technical, schedule, regulatory and other constraints). After a
negotiation among the different parties involved in the software project an agree
version of the requirementsis achieved.

Requirements Specification: the agree requirements are moved in a document
meeting therequired structure, quality and verifiability.

Requirementsvalidation: the requirements docuement is validated

If, after the validation, the document is not accepted the four steps are repeated (see
figure 2.1).

Informal statement of
recuiremenis

User needs *

Dormnain i formation

Siandards

Decivion poini: decey

5 ——‘\
decumend or reenler spiral //—_ —

Requirements elicitation ch'uch]Tcni:: il alysis
and negohation

Requirements du:ucumrnl | / / ﬁﬂrtﬁ \ \ Agreed
and validation report \ \ \ J / / - T,
Requirements validation Requirements specification
Qy
Drraft requirements
dacument

Figure 2.1: Therequirements engineering process

2.2 What is a Requirement

page 15

Chapter 2. “Requirements Engineering”

At its most basic, a requirement is a property that must be exhibited in order to solve
some problem of the real world. Hence, a requirement is a property that must be
exhibited by a system developed or adapted to solve a particular problem. The
problem may be to automate part of a task of someone who will use the system, to
support the business processes of the organisation that has commissioned the system,
to correct shortcomings of an existing system, to control a device and many more. The
functioning of users, business processes and devices are typically complex. By
extension, therefore, the requirements on a system are typically a comple combination
of requirements from different people at different levels of an organisation and from
the environment in which the system must operate [49].

Requirements vary in intent and in the kinds of properties they represent. A
distinction can be drawn between product parameters and process parameters. Product
parameters are requirements on the system to be developed and can be further
classified as:

? 7ZFunctional requirements on the system such as for matting some text or modulating
a signal. Functional requirements are sometimes known as capabilities.

? ZNon-functional requirements that act to constrain the solution. Non-functional
requirements are sometimes known as constraints or quality requirements. They can
be further classified according to whether they are (for example) performance
requirements, maintainability requirements, safety requirements, reliability
requirements, electro-magnetic compatibility requirements and many other types of
requirements.

A process parameter is essentially a constraint on the development of the system (e.g.
‘the software shall be written in Ada’). These are sometimes known as process
requirements.

Requirements must be stated clearly and unambiguously and, where appropriate,
guantitatively. It is important to avoid vague and unverifiable requirements that
depend for their interpretation on subjective judgement (‘the system shall bereliable’,
‘the system shall be user-friendly’).

Two examples of quantified requirements are: that a system must increase a call-
center’sthroughput by 20%; and a requirement that a system shall have a probability

page 16

Chapter 2. “Requirements Engineering”

of generating a fatal error during any hour of operation of less than 1 * 108 The
throughput requirement is at a very high level and will need to be used to derive a
number of detailed requirements. The reliability requirement will tightly constrain
the system architecture[16, 97].

An essential property of all requirements is that they should be verifiable. It may be
difficult or costly to verify certain requirements. For example, verification of the
throughput requirement on the call-center may necessitate the development of
simulation software. The requirements engineering and V&V personnel must ensure
that the requirements can be verified within the available resour ce constraints.

Some requirements generate implicit process requirements. The choice of verification
method is one example. Another might be the use of particularly rigorous analysis
techniques (such as formal specification methods) to reduce systemic errors that can
lead to inadequate reliability.

Process requirements may also be imposed directly by the development organization,
their customer, or a third party such as a safety regulator. Requirements have other
attributes in addition to the behavioural property that they express. Common
examples include a priority rating to enable trade-offs in the face of finite resources
and a status value to enable project progress to me monitored. Every requirement
must be uniquely identified so that they can be subjected to configuration control and
managed over the entire system life cycle.

2.3 The Requirements Document

Good requirements engineering requires that the products of the process - the
deliverables - are defined [90], [99]. The most fundamental of these in requirements
engineering is the requirements document. This often comprises two separate
documents:

A document that specifies the system requirements This is sometimes known as the
requirements definition document, user requirements document or, as defined by

page 17

Chapter 2. “Requirements Engineering”

IEEE std 1362-1998 [55], the concept of operations (ConOps) document. This
document serves to define the high-level system requirements from the stakeholders
per spective(s). It also serves as a vehicle for validating the system requirements. Its
reader ship includes representatives of the system stakeholders. It must therefore be
couched in terms of the customer’s domain. In addition to a list of the system
requirements, the requirements definition needs to include background information
such as statements of the overall objectives for the system, a description of its target
environment and a statement of the constraints and nonfunctional requirements on
the system. It may include conceptual models designed toillustrate the system context,
usage scenarios, the principal domain entities, and data, information and work flows
[103].

A document that specifies the software requirements This is sometimes known as the
softwar e requirements specification (SRS). The purpose and readership of the SRSis
somewhat different than the requirements definition document. In crude terms, the
SRS documents the detailed requirements derived from the system requirements, and
which have been allocated to software. The nonfunctional requirements in the
requirements definition should have been elaborated and quantified. The principal
readership of the SRS can be assumed to have some knowledge of software
engineering concepts. This can be reflected in the language and notations used to
describe the requirements, and in the detail of models used to illustrate the system.
For custom softwar e, the SRS may form the basis of a contract between the developer
and customer [72, 102].

Requirements documents must be structured so as to minimize the effort needed to
read and locate information within them [10], [86], [99]. Failure to achieve this
reduces the likelihood that the system will conform to the requirements. It also
hinders the ability to make controlled changes to the document as the system and its
requirements evolve over time. Standards such as |EEE std 1362-1998 [55] and |EEE
std 830-1998 [54] provide templates for requirements documents. Such standards are
intended to be generic and need to be tailored to the context in which they are used.

Care must also be taken to describe requirements as precisely as possible.
Requirements are usually written in natural language but in the SRS this may be
supplemented by formal or semi-formal descriptions. Selection of appropriate
notations per mits particular requirements and aspects of the system architecture to be
described more precisely and concisely than natural language. The general ruleisthat

page 18

Chapter 2. “Requirements Engineering”

notations should be used that allow the requirements to be described as precisely as
possible. This is particularly crucial for safety-critical and certain other types of
dependable systems. However, the choice of notation is often constrained by the
training, skills and preferences of the document’s authors and readers.

Natural language has many serious shortcomings as a medium for description. Among
the most serious are that it is ambiguous and hard to describe complex concepts
precisely. Formal notations such as Z or CSP [100], [101] avoid the ambiguity
problem because heir syntax and semantics are formally defined. However, such
notations are not expressve enough to adequately describe every system aspect.
Natural language, by contragt, is extraordinarily rich and able to describe, however
imperfectly, almost any concept or system property. A natural language is also likely
to be the document author and readerships only lingua franca. Because natural
language is unavoidable, requirements engineers must be trained to use language
simply, concisely and to avoid common causes of mistaken interpretation. These
include:

? 7dong sentences with complex sub-clauses;

? Z2he use of termswith more than one plausible inter pretation (ambiguity);

? 7Zbresenting several requirements as a single requirement;

? ZAnconsistency in the use of terms such asthe use of synonyms.

To counteract these problems, requirements descriptions often adopt a stylized form
and use arestricted subset of a natural language. It is good practice, for example, to
standardize on a small set of modal verbsto indicate relative priorities. For example,
‘shall’ iscommonly used to indicate that a require ment is mandatory, and ‘should’ to
indicate a requirement that is merely desirable. Hence, the requirement ‘The
emer gency breaks shall be applied to bring the train to a stop if the nose of the train
passesasignal at DANGER’ ismandatory.

The requirements documents(s) must be subject to validation and verification
procedures. The requirements must be validated to ensure that the requirements
engineer has understood the requirements. It is also important to verify that a

page 19

Chapter 2. “Requirements Engineering”

requirements document conforms to company standards, and is understandable,
consistent and complete. Formal notations offer the important advantage that they
permit the last two properties to be proven (in a restricted sense, at least). The
document(s) should be subjected to review by different stakeholders including
representatives of the customer and developer. Crucially, requirements documents
must be placed under the same configuration management regime as the other
deliverables of the development process[10], [95].

The requirements document(s) are only the most visible manifestation of the
requirements. They exclude information that is not required by the document
reader ship. However this other information is needed in order to manage them. In
particular, it is essential tha requirements are traced.

One method for tracing requirementsisthrough the construction of a directed acyclic
graph (DAG) that records the derivation of requirements and provides audit trails of
requirements. As a minimum, requirements need to be traceable backwards to their
source (e.g. from a software requirement back to the system requirement(s) from
which it was elaborated), and forwards to the design or implementation artifacts that
implement them (e.g. from a software requirement to the design document for a
component that implements it). Tracing allows the requirements to be managed. In
particular, it allows an impact analysis to be performed for a proposed change to one
of therequirements.

Modern requirements management tools help maintain tracing information [50]. They
typically comprise a database of requirements and a graphical user interface:

? 720 store the requirement descriptions and attributes;

? 720 allow the trace DAGsto be generated automatically;

? 720 allow the propagation of requirements changesto be depicted graphically;

? 720 generate reports on the status of requirements (such as whether they have been
analysed, approved, implemented, etc.);

? 720 gener ate requirements documents that conform to selected standards;

page 20

Chapter 2. “Requirements Engineering”

? 7and to apply configuration management to the requirements.

It should be noted that not every organisation has a culture of documenting and
managing requirements. It is common for dynamic start-up companies which are
driven by a strong ‘product vison’ and limited resources to view requirements
documentation as an unnecessary overhead [88], [96]. Inevitably, however, as these
companies expand, astheir customer base grows and astheir product startsto evolve,
they discover that they need to recover the requirements that motivated product
features in order to assess the impact of proposed changes. Hence, requirements
documentation and management are fundamental to the any requirements
engineering process.

page 21

Chapter 2. “Reguirements Engineering”

page 22

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

3. Research Directions: the ESCAPE Project

In this chapter the outcomes of an experience in softwar e process assessment | held in
the framework of the ESCAPE project are described. This experience has been
conducted with the aim to evaluating the capability of the software development
process of the FIAT Auto's software suppliers. The outcomes, of this project, in
particular those related to the Requirements Elicitation and Analysis processes, have
been useful for understanding the industry’s demands and needs in the field of
requirements engineering. My participation in the ESCAPE project has been a
unvaluable opportunity to achieve a deep and direct knowledge of the software
development process of many highly mature companies Europe-wide and to
concentrate my research effort towards those areas resulting particularly critical in
terms of source of errors and troubles for software projects. In the following the way
the ESCAPE project has been conducted and the outcomes of interest are described.

3.1 Automotive software

The past four decades have withessed an exponential increase in the number and
sophistication of electronic systems in vehicles. The growth of electronic systems has
had implications for vehicle engineering and the resulting demands on power and
design have led to innovations in electronic networks for automobiles [75]. Just as

page 23

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

L ANs connect computers, control area networks (CANS) connect a vehicle' s electronic
equipment and facilitate the sharing of information and resources among the
distributed applications. A typical vehicle can contain several CANSs, operating at
different transmission rates, to manage a car’s “comfort electronics’ (like seat and
window novement), or to run more real-time critical functions (like cruise control,
antilock brakes and engine management). Other applications that use electronics to
control a system (the so-called X-by-wire solutions), rather than mechanical or
hydraulic means, are responsible for an ongoing revolution in vehicle electronics
ar chitecture and require more specialized and reliable control networks. Multimedia
devices in automobiles and interconnecting facilities over the Internet demand
networks with extensive bandwidth, while other applications require wireless
configurations [71]. Vehicles are becoming more like PCs, allowing for a number of
plug-and-play devices and creating the potential for significant growth in automotive
application software [104]. With more than 85% of the functionality in the modern
motor vehicle already controlled by software, both the motor vehicle manufacturer
and the software supplier need to take action to face quality ssues related to the
management of softwar e projects.

Suppliers have not been slow to take action. A number of companies are already using
process assessment techniques as a basis to identify areas for improvement in their
processes both to meet their business needs and the demands of their customers.
Thereis a general under standing that action has to be taken if they are to continue to
make business.

The motor vehicle manufacturers, as a general trend, have also started to take pro-
active action to address the situation in a number of ways,; by focusing on software
capability of the supplier in the supplier evaluation process, making provision for
contractual demands with respect to software quality; performing supplier software
capability assessments both before and during contract performance; and asking for
the supplier to implement process improvement plans, when needed.

To set up a methodology supporting the management of software projects and
suppliers, Fiat Auto started the ESCAPE (Electronics Software Capability
Evaluation) Project, in co-operation with the System and Softwar e Evaluation Centre
(SSEC - an independent organism of the Italian National Research Council that
performs evaluation and certification activity in Information Technology) [20],[26],
[28], [29], [30], [31], [32],[33], [34], [35] with the following main goals.

page 24

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

To improve the softwar e suppliers selection process.

To provide Fiat Auto with methods to determine the risks associated to a software
supplier.

To improve the software development process of suppliers, helping them to detect
possible weaknesses and risks in specific processes, to define improvement paths and
to providetoolsfor verifying theresults of improvement actions

To achieve a better control on the software development project and on the quality of
the resulting product.

3.2 The ESCAPE Project

The need to evaluate the Process Capability of the Suppliers of FIAT Auto was
discussed between the SSEC and FIAT Auto in year 2000. The main goals and reasons
for undertaking this evaluation were:

Toderive a“ capability” and “risk” level for each software supplier.

To improve the supplier selection process of FIAT Auto by using criteria based on the
derived supplier “capability” and “risks’.

To improve the control of the supplier’s software development process and of the
quality of the resulting products.

Toidentify weaknesses and strengths of the supplier’s softwar e process.

To identify possible improvement opportunities in the relations between the customer
and suppliers.

With the aim to achieve the above targets, the ESCAPE project was started by FIAT
and, in the framework of this project, cooperation with SSEC was established.

page 25

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

The first step of the ESCAPE project was to decide the reference model to use to
perform the suppliers evaluation. The traditional reliance on Quality Systems
Standards such as 1SO9001 [57] and QS9000 [91] has not provided sufficient
confidence in the software area. The motor vehicle manufacturers, like othersin the
defence and aerospace industries, have now turned to international standards for
softwar e process assessment, based on 1SO 15504 [59] and/or the Capability Maturity
Model (CMM), as a means to identify and control risk and to assess the software
capability of suppliers [85], [47], [68]. Some claimed features of the 1SO 15504
standard proved to be crucial in selecting the approach to perform the software
capability assessments[19]:

Softwar e-oriented approach

Applicability over a wide range of application domains, businesses and sizes of
organizations

Output as process profiles at different levels of detail

Comparability, reliability and consistency of results

Independence of organizational structures, life cycle models, technologies and
development models

Adaptability of the assessment scope to cover specific processes of interest

Re-usability of assessment results, both for process improvement and capability
determination

Another important factor that supported the decision to use SPICE as the assessment
methodology is the launch of an initiative by the Procurement Forum
(www.procurementforum.orq) with the principal European Car Makers, their
assessors and representative bodies to address the problems related to software
assessments in automotive. In the framework of this initiative, a Special Interest
Group has been founded with the aim to design a special version of the SPICE model
(called Auto-SPICE) tailored on the needs and peculiarities of the automotive business
area. In fact, the focus on software capability determination by means of software

page 26

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

process assessment has already in use provided significant business benefits, but at the
same time has highlighted the scale of the potential problem, particularly with
suppliers of safety-critical embedded software system components. Whilst the
immediate short-term benefits are clear for the motor vehicle manufacturer, in the
near term, without consensus on commonality of approach, suppliers face multiple
assessments from multiple manufacturers using different model and consuming
resources that put additional pressure on delivery times. Therefore the choice of
SPICE as the Reference Model to adopt for the Supplier’s software process
assessment has been corroborated by the existence of this European trend towards the
use of the SPICE Model isin act in automotive.

FIAT Auto and the SSEC are part of this Special Interest Group and are currently
participating in the works.

3.2.1 Assessment purpose and scope

The assessment purpose is to evaluate the softwar e process capability of suppliersin
order to improve the general project management during the development phases. In
order to achieve a trade-off between performing a wide and comprehensive
assessment that should provide many indications on the way a supplier conducts its
own software development process and the need to respect budget limitations, FIAT
Auto identified some critical areas concerning software with the aim to concentrate
the assessment effort on them. The principal critical areasthat was been identified are
listed below:

Relationships between the customer (FIAT Auto) and suppliers
Extent of Requirement Analysis (by the supplier’s side)

System design capability (where the system is intended as the ECU - Electronic
Control Unit)

Softwar e design capability

System integration and testing capability

page 27

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

Project management capability

Consequently, the scope of the assessment has been defined matching the criticalities
identified by FIAT Auto with the processes in the SPICE reference model. The final
scope of the assessments is composed of five processes that in the bllowing are
indicated accor ding to the SPICE terminology:

CUS 3: Requirements Elicitation Process

ENG 1.1: System Requirements Analysisand Design Process
ENG 1.3: Softwar e Design Process

ENG 1.7: System Integration and Testing Process

MAN 2: Project Management Process

3.3 Assessment Activities

The first step in the ESCAPE project was the selection of the suppliersto involvein
the assessments and in each assessment the selection of the project (or process
instances) to be considered in order to collect evidences of the process capabilities. The
general policy followed gave priority to including those companies that are currently
involved in new projects with FIAT Auto, and those projects with FIAT Auto that are
enough advanced to provide sufficient evidence at assessment time.

The activities strictly related to the assessment were divided into four main phases.

Preliminary meeting: an introductory meeting was held at Fiat Auto at the beginning
of the operational phase with representatives from the companies involved in the
assessments, with the purpose of presenting the SPICE approach, of reviewing the
assessment pur pose, agreeing the scope and discussing the constraints, introducing the
assessment activities and a provisional assessment plan. At this stage, particular care
was taken on informing the suppliers that process assessment does not disclose

page 28

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

sensitive information about the techniques used in software development nor details
on proprietary software and algorithms. In fact, the assessment method intends
investigate only on knowledge, experience, skill, confidence, benefits, resources
allocation and management.

Assessment preparation: each assessee was sent a questionnaire - to fill and return
before the on-site visit - to gather preliminary information on the processes.
Furthermore, some documents describing the purpose and the topics to be
investigated and the way the assessment should be conducted was sent too, to help the
assessee to prepare for the assessment. These preliminary activities allow to save time
during the on-site visit and to make of the assessment mor e effective and efficient. At
this stage, a non-disclosur e agreement was signed by the assessment team members.

On-site activities: during the on-site visit (that was taken about 3-4 working days), and
initial briefing was held aiming at recalling the assessment purpose, scope, constraints
and model. Then, information was gathered by means of presentations, document
analysis and interviews. To better assure assessment repeatability and results
compar ability, checklists wer e developed to be used as guidelinesfor the assessors.

Results derivation: after the on-site visit the gathered data was validated and analysed
and, for each assessed process, each process attribute was rated. Then, these ratings
were used to derive the capability profiles and the capability levels of the assessed
processes. Finally, a detailed report of the whole assessment was prepared including
the detailed ratings and the final capability profiles. These results, dong with the
indication of improvement oppor tunities wer e sent to the company and to the sponsor
(FIAT Auto).

3.4 Outcomes

In this section the results in terms of Capability Profiles of the processes assessed are
presented. For confidentiality reasons the name of the Companies where the
assessments have been conducted has been omitted and the projects have been
indicated asPi (withi =1, ..., 10).

page 29

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

The figure 3.1 shows the detailed capability profiles of all the processes assessed. The
capability pro file is the collection of the rating achieved by each process attribute of
the Spice Model. According to the SPICE terminology and rules, an attributeisrated
in a four-value scale (N=Not Achieved, P = Partially Achieved, L = Largely Achieved,
F = Fully achieved). Furthermore, the bold red line deter mines the achieved capability
level of the correspondent process.

Each grey column means that the correspondent process was, for some reason,
excluded from the scope for that project.

page 30

Chapter 3. “Demands and Needsin the Softwar e | ndustry: the ESCAPE

Project”
P1 P2 P3 P4 P5 P6 P7 P8 P9 p1o |Capabilty
Level

Cus3 |paa2 N N N N N N N N N 4

PA 41 N N N N N N N N N

PA3.2 P P P P L L P L L 3

PA 3.1 P P L P P P P P P

PA2.2 L L P P L F L F L 2

PA 2.1 L L L L L F F F L

PA 1.1 F F L F F F F F F 1
ENGL.1 [pA42 N N P N N L N N N 4

PA 4.1 N N P N P P N N N

PA3.2 L L L L L L P L L 3

PA3.1 P p L p P L N p P

PA2.2 F F L L L F P F F 2

PA 2.1 L L L F F F = F F

PA1.1 E E E E E E L E E 1
ENGL.3 [PA42 N N P N P L L N N 4

PA 4.1 N N L N P P N P N

PA 3.2 L L L L L F L F L 3

PA 3.1 P P L L L L L L P

PA22 L F F F L F F F F 2

PA 2.1 L L F F F F F F F

PA1l E E E E E E E E E 1
ENGL.7 |[PA42 N N P N P L N N N 4

PA 4.1 P P P N P P P P N

PA 3.2 F L L L L F L L L 3

PA 3.1 L P L P L F P P P

PA2.2 L L L L L F F F F 2

PA2.1 L L F L F F F F L

PA 1.1 F F F F F F F F F 1
MAN2 [PA42 N N N N N L N N N 4

PA 4.1 N N N N N P P N P

PA32 P P P P P L L P L 3

PA 3.1 P P P L P F L L L

PA22 P P P P L L F = F 2

PA 2.1 P p L L P F L F F

PA11 L L E E E E E F E 1

Figure 3.1. The complete capability profile of the process assessed

From the data above some general indications may be derived on the process
capabilities of the automotive softwar e suppliers belonging to the sample consider ed.
In fact, as the Figure 3.2 shows, the average ratings of the assessed processes provide
some high level indications.

The average capability level achieved by the technical processes (ENG.1.1, ENG.1.3
and ENG.1.7) is higher than for the other processes. From this outcome it is possible
to infer that the weaker areas are not related to the capability to perform the technical
tasks (see the capability level of the engineering processes) but are related mainly to
the managerial issues and the relations with the customer .

page 31

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

T T T T
Cus.3 ENG.1.1 ENG.1.3 ENG.1.7 MAN.2

Figure 3.2. Averageratings

3.4.1 General Considerations

From the assessmentsresults, some general issues emerge. The principal issueswill be
discussed below together with their consequences and the related improvement
opportunities. These issues identify also resear ch directionsto provideanswersto real
needs of the automotive industry

3.4.2 Requirements Engineering in Practice

The overview of the requirements engineering process given in section 2.1 described it
asif it was a linear sequence of activities. Thisis an idealised view of the process. In
this section some reasons, emerged from the outcomes of the ESCAPE project, why a
linear process is seldom practicable in the context of real software projects are
examinated.

There is a general pressure in the software industry for ever-shorter development
cycles, and this is particularly pronounced in highly competitive market-driven
sectors. Moreover, most projects are constrained in some way by their environment
and many are upgrades to or revisons of existing systems where the system
architecture is a given. In practice, therefore, it is almost always impractical to
implement requirements engineering as a linear, deterministic process where system
requirements are elicited from the stakeholders, baselined, allocated and handed over

page 32

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

to the software development team. It is certainly a myth that the requirements for
large systems are ever perfectly understood or perfectly specified [97].

Instead, requirements typically iterate toward a level of quality and detail that is
asufficient to permit design and procurement decisions to me made. In some proj ects,
this may result in the requirements being baselined before all their properties are
fully understood. This risks expensive rework if problems emerge late in the
development process. However, requirements engineers are necessarily constrained by
project management plans and must therefore take steps to ensure that the
requirements quality is as high as possible given the available resour ces. They should,
for example, make explicit any assumptions that underpin the requirements, and any
known problems. Even where requirements engineering is well resourced, the level of
analysis will seldom be uniformly applied. For example, early in the analysis process
experienced engineers are often able to identify where existing or off-the-shelf
solutions can be adapted to the implementation of system components. The
requirements allocated to these need not be elaborated further, while others, for
which a solution is less obvious, may need to be subjected to further analysis. Critical
requirements, must always be analyzed rigorously. In almost all cases requirements
under standing continues to evolve as design and development proceeds. This often
leads to the revision of requirements late in the life cycle. Perhaps the most crucial
point of understanding about requirements engineering is that a significant
proportion of the requirements will change. This is sometimes due to errors in the
analysis, but it is frequently an inevitable consequence of changein the ‘environment’:
the customer’s operating or business environment; or in the market into which the
system must sell, for example.

Whatever the cause, it isimportant to recognise the inevitability of change and adopt
measures to mitigate the effects of change. Change has to be managed by ensuring
that proposed changes go through a defined review and approval process, and by
applying careful requirements tracing, impact analysis and version management.
Hence, the requirements engineering processis not merely a frontend task to software
development, but spans the whole development life cycle. In a typical project the
activities of the requirements engineer evolve over time from elicitation to change
management.

page 33

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

Another practice common to all the companies we interact in the framework of the
ESCAPE project is the use of natural language for expressing requirements. In
particular, the generally used language is English.

3.4.3 Other outcomes

In this section other outcomes emerged from the analysis of the outcomes of the
ESCAPE project are described. They are mainly waeknesses found in the software
processes of the companies assessed, these weaknesses are described along the
consequences and identified improvement opportunities.

3.4.3.1 Facing the New Challenges in the Automotive Software

A few years ago the automotive development environment was still almost totally
oriented to the system (intended as mechanics and electro-technical issues). In the last
few years electronics and softwar e have pervaded the automobilesand the automotive
companies have to face this new challenge. The answer to the demand for an extensive
use of electronic and software solutions is still inadequate, as it comes from an
environment (including both customers and suppliers) that is not enough prepared for
thetransition - for historical, cultural and technical reasons.

Consequences.

The companies (at the top management level) are aware of these problems and are
introducing (or have already introduced) new development process models with
considerably high costs.

Several problems usually arise (consistently with the low capability level achieved by
the CUS.3 process) about the mutual and unique under standing and agreement of the
requirements.

The customer, which has the most difficult task (since it has to maintain a
comprehensive point of view on the whole automobile product), is not completely
aware of itsrole in the acquisition process and of the importance of its co-operation in
it.

page 34

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

A similar situation may be found also within the supplier’s organization between the
departments dealing with the system and those dealing only with software
components. This is most true in those companies that produce “traditional”
components with embedded software.

I mprovement opportunities:

To define reliable, available and competent interfaces between customer and supplier
in order to facilitate their relations.

To increase the effort for identifying and managing the risks related to interpretation
problems and poor involvement of one of the partnersin the acquisition process.

To encourage initiatives among carmakers and software suppliers aimed at the
definition of common schemes and standards (as for example Auto-SPI CE).

3432 Platforms vs. Ad Hoc Solutions

Automotive software is embedded in subsystems delivered in very large numbers (by
the millions), with hard constraints in terms of resource optimization (e.g. memory
size, computing power). Furthermore, the automotive software suppliers deliver their
products to aimost all the European carmakers, but they have to differentiate quality
and performance characteristics of the products, to meet quality and cost
requirements of the different carmakers.

Consequences:

The supplier tries to impose its own platforms, i.e. products based on the same
architecture but with adaptable components. This kind of solution allows the supplier
to save many resour ces.

The customer tries to get ad hoc designed software with the aim to maintain the full
owner ship of both the project and the marketing policies and reduce the dependence
from a particular supplier.

page 35

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

Code minimization techniques have been taken up again in order to save memory
occupation.

I mprovement opportunities:

Both the customer and the supplier are scarcely aware of the risks related to the
solutions adopted to cope with this problem (both the ad hoc and platform solutions
may present significant drawbacks in the maintenance and upgrading phase). These
risks have to be clearly understood and a trade-off between efficiency and resource
utilization has to be achieved and managed.

3.4.3.3 The Modularity-related I ssues

The eectronic final system is characterized by a strong modularity since it is
composed of integrated subsystems (typically ECUs)

Consequences:

Serious interoperability problems may arise (typically a stand-alone ECU runs
correctly but behaves unpredictably when integrated with the others).

I mprovement opportunities:

To adopt techniques for the requirements and interfaces specification and analysisin
order to be ableto better evaluate and manage their completeness.

3.5 Resear ch Directions

From the outcomes of the ESCAPE project some research opportunities for bridging
some gaps pointed out with the ESCAPE project have been derived.

In particular, some clear indications arose about the requirements analysis.
Requirements are a very important work product because they represent the
principal communication channel between the customer and the supplier. It is arisen

page 36

Chapter 3. “Demands and Needsin the Software Industry: the ESCAPE
Project”

that the analysis of requirements is a crucial step both at the beginning of a project
and during the development and also later. At the beginning of the development it is
necessary evaluate the requirements in order to point out and possibly solve
ambiguities and inconsistency in it for starting the project well. Because the volatility
of customer requirements (they usually change often during the project) it is
important to have the capability to continue their analysis. Testing (mainly the
acceptence testing) is driven by the requirement then the testability of requirement
hasto be evaluated too.

Unfortunately, the outcomes of the ESCAPE project enlighted a lack of a systematic
approach to the analysis of requirements, along with a lack of supportiing automatic
tool (the requirements analysis, when made, is based on human reviews). This
situation encour aged the reasear ch activity | was perfor ming.

page 37

Chapter 3. “Demands and Needs in the Softwar e Industry: the ESCAPE

Project”

page 38

Chapter 4. “The Quality of Natural L anguage Requirements’

4. The Quality of NL Requirements

In this chapter the quality characteristics the Natural Language (NL) requirements
are have to fulfill are discussed. Then some considerations about the different
approaches that can be adopted to evaluate the quality of Natural Language
requirements are presented. Among these approaches the one based on the
application of linguistic techniques has been privileged and a Quality Model for
Natural Language requirements, composed of a set of quality charateristics and the
related metrics, has been defined. The Quality Model presented in this chapter is the
basis of the automatic tool for Natural Language (NL) requirements analysis
presented in chapter 5. Finally, the way consistency and completeness characteristics
of the NL requirements can be addressed by means of linguistic techniques is
discussed.

4.1 Quality Characterisitcs of NL Requirements

During a software development project (mainly when the project leads to the
realization of major systems) a fault in requirements specification can determine
major delays, costs over-runs, commercial consequences including loss of money,
propoerty, layoffs. The achievement of the quality of software requirements is then
the first step towards software quality. The process leading to the quality of

page 39

Chapter 4. “The Quality of Natural L anguage Requirements’

requirements starts with the analysis of the requirements expressed in Natural
Language (NL) and continues with their formalization and verification (for example
by using formal methods).

Despite its inherent ambiguity and informality that determine a difficult proving for
correctness, NL is largely used in the software industry for specifying software
requirements. Besides the inherent problems of NL, there are other problems which
derive from current practices in the industrial SW development process. Due to, for
example the volatility of the requirements during the development process and the
variable levels of linguistic quality due to the different sources they come from [92],
NL requirement specifications are considered as highly risky for software projects
[43].

Anyway, the use of NL for specifying requirements indeed has some advantages such
as, for example, the ease with which they can be shared among the different people
involved in the software development process. In fact, a NL requirement document
can be used in different ways, and in different development phases of the final
product. For example, it may be used as a working document to be provided as input
for architecture designers, testers and user manual editorsor it may bealso used asan
agreement document between customers and suppliers or as an information source
for the project manager [89].

In the following a list, yet not exhaustive, of the characterisitcs good-quality
requirements ar e expected to exhibit is provided:

Cohesiveness: each individual requirements should be cohesive, i.e. it shall specify
only one thing nad all parts of the requirement belong togheter (i.e. all parts of a data
(functional) requirement involve the same data (functional) abstraction, all parts of a
quality requirement involve the same quality factor or sub-factor, ...)

Completeness: both an entire requirements specification should be complete and
contain all relevant requirements and ancillary material, individual requirements
should be complete. This is often a problem because subject matter because subject
matter experts who specify requirements often take certain information for granted
and omit it, even though it isnot obviousto other stakeholders of the requirement.

page 40

Chapter 4. “The Quality of Natural L anguage Requirements’

Consistency: because collections of inconsistent requirements are impossible to
implement, individual requirements should be consistent. The consistency can be
internal (i.e. among the constituents parts of each requirements, e.g. compound
preconditions and postconditions) or external (i.e. between each requirement and its
documented sources such as higher-level goals and requirements, and among
requirements e.g. two requirements should neither be contraddictory nor describe the
same concepts using different words);

Correctness: individual requirements shall be semantically and syntactically correct.
A requirement is semantically correct when it meetsall or part of an actual need of its
relevant stakeholder(s), it is an accurate eleboration of a documented business
objective or an higher —level requirement, or all numbers associated with iit have
correct values. A requirements is syntactically correct when it expresses imperative
sentences (by means of the use of “shall”, “must” verbs rather than “will” or “may”)
and it respectsthe grammatical rules of the used language.

Currency: all requirements shall be updated when requirements changes in order to
avoid they become obsolete. They are also frequently not updated as the architecture
is produced, sometimes resulting in changes in the underlying requirements. Both of
these problems take testing and maintenance much mor e difficult.

External Observability: requirements should not unnecessary specify the internal
architecture and design of an application or component. Thus, individual
requirements should only specify behaviour or characteristics that are extenally
observable.

Feasbility: requirements are of no value if the development team cannot implement
them. Thus, individual requirements should be feasible given all relevant constraints.
It should be possible to implement them given the existing hardware or software
technology, the endeavor’ s budget, schedule and constraints on staffing).

Lack of Ambiguity: individual requirements for an application or component should
never be ambiguous. Even if the requirements is intended to be hoghly reusable and
therefore general, it should be unambiguous although it may have precise flexibility
points. This characteristic is very critical (and often missing) because ambiguous
requirements ar e subject to misinterpretation and are inherently not verifiable. To be
unambiguous a requirement should exibit particular properties as, for example: its

page 41

Chapter 4. “The Quality of Natural L anguage Requirements’

meaning should be objective rather than subjective, it shuold be concise, it should
have an unique interpretation, it should be understandable to the its intended
audiences, it should use specific concrete terms, it should avoid the use of inherently
ambiguous terms, whenever possible and practical it should be specified in a
quantitative manner.

Mandatory: although requirements can and should be prioritized to help negotiate
and schedule them, individual requirements should, by their very nature, be
mandatory. Each individual requirement should be essential for the success of the
application or component, it should be truly required by some stakeholder, typically
the customer or user organization, it should spefify a“what” rather than a*“how”.

Metadata: individual requirements should have metadata (i.e. attribute and
annotations) that characterizes them. This metadata can include (but is not limited to)
acceptance criteria, allocation, assumptions, idnetification, prioritization, rationale,
schedule, status and tracing information.

Relevance: each requirement should be within the scope of the business, application,
or component being specified.

Usability: requirements have many users that use them for different purposes, thus
they should be understandable and usable by all of them (eg. they should be
under standable and usable by the managers who must use them for scope control as
well as costs, schedule and progess metrics, or by the testers who must verify and
validate them).

4.2 Methodsfor NL Requirements Quality Evaluation

Achieving complete and consistent requirements is in general a chimera. The
evaluation of the completeness and consistency has been the object of several worksin
the past and it is still one of the more challeging field in the software engineering.
Several methods, all relying on mathematic notations and formalisms, have been
defined. These methods are known as Formal Methods. They can guarantee a formal
verification of the consistency and completeness of the requirements. Nevertheless the
formal methods are not widely spread in the industry. One of the principal reasons of

page 42

Chapter 4. “The Quality of Natural L anguage Requirements’

this situation isthat the definition, establishment and dissemination within a company
of formal methods require large investments. Furthermore such rigorous methods
should be shared among all the parties involved in a software project, customer
included, asking for a further effort.

It isnot surprising then that NL is, in spite of its inherent inaccuracies, still the most
used technique for representing the requirements.

It is well known that the presence of inaccuracies in requirement documents could
introduce serious problems to all the consequent phases of software development.
Hence, it is important to provide methods and tools for the analysis of the NL
requirement documents|[73], [76], [78].

Unfortunately, the state of the art and practice witnesses a lack of tools and
techniques for the NL requirements analysis. The following list, yet is not exaustive,
includes the most popular practices and tools used in the practice as counter measur es
for mitigating the negative effects of the use of NL in requirements specification:

Tools for analysis: in the litterature few descriptions of tools for NL requirements
exist. One of the most known tool is ARM. This tool, developed by NASA, although
quite smplicistic, is able to perform a lexical analysis for detecting some defects. The
defects are mainly identified by means of special terms and wordings that reveal
particular defects.

Means for espessing NL requirements: in the practice several means and techniques
have been defined in order to mitigate the inherent ambiguity of NL. The most
common is the use of templates of structuring requirements documents or the
adoption of a restricted english (avoiding ambiguous terms and styles) for expressing
the requirements. A way to define requirements that in recent years is going to be
spread in the industry are the Use Case [13], [14]. This way to express requirement
allows a functional description of the requirements and imposes a (light) formalism
based on theNL totherequirements.

Practices for mitigating the effects of the NL inherent ambiguity: because no
technique nor tool can guarantee the absence of ambiguitiesin a NL requirements, in
the practice some counter measur es ar e frequently adopted. For example, joint reviews
of the requirements documents are preformed by customers and suppliers together.

page 43

Chapter 4. “The Quality of Natural L anguage Requirements’

The aim of these joint reviews is to verify that the different developers and the
customer s have the same under standing of each requirement. For doing that the use
of glossaries may be of great help.

Several studies dealing with the evaluation and the achievement of quality in natural
language requirement definition can be found in the literature. We will briefly discuss
some of those we consider to be of particular interest.

Macias and Pulman [78] apply domain-independent NLP techniques to control the
production of natural language requirements. They propose the application of NLP
techniquesto requirements documentsin order to control:

the vocabulary used, which must be fixed and agreed upon,

the style of writing, i.e., a set of pre-determined rulesthat should be satisfied in order
to make documents clear and simple to under stand; they associate an ambiguity rate
to sentences, depending on the degree of syntactic and semantic uncertainty of the
sentence, the information conveyed by requirements, by discovering
under specifications, missing infor mation, unconnected statements.

Finally, they discuss how NLP techniques can help the design of subsets of the
English-grammar to limit the generation of ambiguous statements

Goldin and Berry [46] implemented a tool for the extraction of abstractions from
natural language texts, i.e. of repeated segmentsidentifying significant concepts on the
application field of the problem at hand. The technique proposed is restricted to a
strict lexical analysis of the text.

Hooks [51] discusses a set of quality characteristics necessary to produce well-defined
natural language requirements. This paper presents some common problems which
arise when requirements are produced and looks at how to avoid them. It providesan
in depth survey of the principal sources of defects in natural language requirements
and therelated risks.

Wilson and others [107], [108] examine the quality evaluation of natural language
software requirements. Their approach defines a quality model composed of quality

page 44

Chapter 4. “The Quality of Natural L anguage Requirements’

attributes and quality indicators, and develops an automatic tool to perform the
analysis against the quality model aiming to detect defects and collect metrics.

Other works investigate how to handle ambiguity in requirements. In particular,
Fuchs [44] proposes to solve the problems related to the use of NL in requirements
documents by defining a limited natural language, called Attempt Controlled English
(ACE), able to be easily understood by stakeholders and by any person involved into
the software development process and simple enough to avoid ambiguities allowing
domain specialists to express requirements using natural language expressions and to
combine these with therigour of formal specification languages.

Kamsties and Paech [69] focus especially on the ambiguity evaluation of natural
language requirements. They start from the consideration that ambiguity in
requirementsis not just a linguistic-specific problem and put forward the idea of a
checklist addressing not only linguistic ambiguity but also the ambiguity related to a
particular domain.

Mich and Garigliano [81] put forward a set of measures for semantic and syntactic
ambiguity in requirements. Their approach is based on the use of information on the
possible meanings and roles of the words within a sentence and on the possible
interpretation of a sentence. Thisis done using the functionalities of atool called
LOLITA.

Natt och Dag et alt. [83] recently presented an approach based on statistical
techniques for the similarity analysis of NL requirements aimed at identifying
duplicate requirement pairs. This technique may be successfully used for revealing
inter-dependencies and then may be used as a support for the consistency analysis of
NL requirements. In fact, the automatic determination of clusters of requirements
dealing with the same arguments may support the human analysis, aimed at detecting
inconsistencies and discr epancies, by focusing on smaller sets of requirements.

4.3 A NL Requirements Quality M odel

Thefirst step of a quality evaluation of any entity isto define a Quality M odel against
which it will be evaluated. In our case, a Quality Model against wich NL requirements

page 45

Chapter 4. “The Quality of Natural L anguage Requirements’

could be evaluated from a linguistic point of view in order to identify and possibly
remove ambiguities, inconsistencies and incompletenesses has been defined. The
Quality Model is composed of quality properties to be evaluated by means of quality
indicators.

Due to the inherent ambiguity originating from different interpretations of NL
descriptions, the use of NL as a way to specify the behavior of a system is always a
critical factor.

The Quality Model for NL requirements defined in this thesis has been conceived to
be used as a basis for the development of a tool that, relying on linguistic techniques
for the analysis of NL texts, can be envisaged also to remove interpretation problems
in NL requirements documents. The analysis made by means of NL-based techniques
Is useful to address several interpretation problems related to linguistic aspects NL
requirements. These problems may be grouped into three main categories:

Expressiveness: it includes those characteristics dealing with a incorrect
understanding of the meaning of the requirements. In particular, the presence of
ambiguities in and the inadequate readability of the requirements documents are
frequently causes of expressiveness problems.

Consistency: it includes those characteristics dealing with the presence of semantics
contradictionsin the NL requirements document.

Completeness: it includes those characteristics dealing with the lack of necessary
information within the requirements document.

The application of linguistic techniques to NL requirements, allows their analysis
from alexical, syntactical or semantic point of view. For thisreason it is proper to talk
about, for example, lexical non-ambiguity or semantic non-ambiguity rather than
non-ambiguity in general. For instance, a NL sentence may be syntactically non
ambiguous (in the sense that only one derivation tree exists according to the syntactic
rules applicable) but it may be lexically ambiguous because it contains wor dings that
have not a unique meaning.

Figure 4.1 shows schematically that the quality of NL requirements can be
represented as a two -dimensional space, where the horizontal dimension is composed

page 46

Chapter 4. “The Quality of Natural L anguage Requirements’

of the main target qualities to be achieved (Expressiveness, Consistency and
Completeness) and the vertical dimension is composed of the different points of view
from which the target qualities can be consider ed.

The difficulty level of application of linguistic techniques varies according to the kind
of analysis: in fact, while it is relatively easy to perform lexical analysis, it is much
harder to face semantic problemsin NL requirement documents asthey are. At lexical
level only the single wordings used in the sentences are considered, while at the
syntactical level it taken into account also the syntactical structure of the sentences
(i.e. it hasto take into account also the role that each term plays in the sentneces). At
the semantic level there is the need to derive the semantics of the sentences (i.e. the
meaning of the whole sentences).

Lexical Syntactica | Semantic

Expressiveness Ambiguity

mitigation
Understandability 0
improvement i
Consistency " w@j;ﬁﬂ
(e

Completeness

Figure 4.1. Two-dimensional representation of the NL requirements quality

Linguistic techniques can effectively address the issues related to the Espressiveness
because the lexical and syntactical levels provide means enough to obtain effective
results. For this reason the Quality Model described in this section addresses the
Expressiveness property of NL requirements and it doesn’t take into consideration
the Consistency and Completeness properties. These properties are anyway
considered in thiswork as shown in the section 4.4.

Because, as any other evaluation process, the quality evaluation of NL software
requirements has to be conducted against a Model. The Quality Mode we defined for
the natural language software requirementsis aimed at providing a way to perform a
guantitative (i.e. that allows the collection of metrics), corrective (i.e. that could be

page 47

Chapter 4. “The Quality of Natural L anguage Requirements’

helpful in the detection and correction of the defects) and repeatable (i.e. that provides
the same output against the same input in every domains) evaluation.

The quality model we defined is composed of three high-level quality properties for
NL requirements to be evaluated by means of indicators directly detectable and
measur able on the requirement document.

The higher level properties of the Quality Model are:

Unambiguity: the capability of each Requirement to have a unique inter pretation.

Specification Completion: the capability of each Requirement to uniquely identify its
object or subject.

Understandability. the capability of each Requirement to be fully understood when
used for developing software and the capability of the Requirement Specification
Document to be fully under stood when read by the user.

Indicators are syntactic or structural aspects of the requirement specification
documents that provide information on defects related to a particular property of the
requirements themselves. Tables 4.1, 4.2, 4.3 describe the Indicators related to each
Quality Property along with examples of the keywords to be used for detecting
potential defectsin the NL requirements.

Unanbi guity Property

I ndi cat or Descri ption
Vagueness It is pointed out when parts of the sentence
hol d inherent vagueness, i.e. words having a

non uni quely quantifiabl e neaning

Subj ectivity It is pointed out if the sentence contains
wordi ngs used to express personal opinions or
feeling

Optionality It is pointed out if the sentence contains an

optional part (i.e. a part that can or cannot
consi der ed)

Implicity It is pointed out in a sentence when the

ciihi nnt v thn ahinnt i 6 nonavionall vy Aavnrncen A

Chapter 4. “The Quality of Natural L anguage Requirements’

subj ect or the object is generically expressed

Weakness It is pointed out when a sentence contains a
"weak" verb

Table 4.1 Ambiguity Indicators

Speci fication Conpletion Property

I ndi cat or Descri ption

Under - speci fication It is pointed out when the sentence contains a
word identifying a class of objects without a
nmodi fier specifying an instance of this class

Table 4.2 Specification Completion Indicators

Under standability Property

I ndi cat or Description

Mul tiplicity It is pointed out if the sentence has nore than
one main verb or nore than one subject

Readability The Coleman-Liau Fornula readability netrics:
(5.89*chars/wds- 0. 3*sent ences/ (100*wds) - 15. 8]) .
The reference value of this formula for an easy-
to-read technical docunment is 10, if it is >15
the docunent is difficult-to-read

Table 4.3 Under standability Indicator s

The proposed Quality Model has been defined with the aim to detect and point out
potential syntactic and semantic deficiencies that can cause problems when a NL
requirements document is used or is transformed in a more formal document. The
definition of the criteria used in the Quality Model has been driven by some resultsin
the natural language understanding discipline, by an experience in formalization of
softwar e requirements and also by a depth analysis of real requirements documents
industrial partners provided with. Moreover this quality model has been defined after
a study of the existing related literature and by taking advantage from matured
experience in the field of requirement engineering and software process assessment
according to the SPICE (I1SO/IEC 15504) model (see chapter 3). This quality model,

page 49

Chapter 4. “The Quality of Natural L anguage Requirements’

though not exhaustive, is sufficiently specific to include a significant part of lexical and
syntax-related issues of requirements documents.

The defined quality model does not cover all the possible quality aspects of software
requirements but it is sufficiently specific for being applied (with the support of an
automatic tool) for comparing and verifying the quality of requirement documents.

The sentences recognized as defective according to the quality model described in
Tables 4.1, 4.2, 4.3 are not uncorrected sentencesin terms of English Language rules.
Rather they areincorrect in terms of the above defined expr essiveness characteristics.

The quality model has been derived taking into account its principal purpose: its
should be intended as a starting point for the realization of an automatic tool for the
analysis of NL requirements. The indicators the quality model is composed of are
terms and linguistic constructions characterising a particular defect and being
directly detectable looking at the sentences of a requirements document.

For this reason in Table 4.4 some notes explain how the Indicators beloning to the
quality model can be pointed out by perfoming a linguistic analysis of the
requirements document:

I ndi cat or Not es

Vagueness The occurence of this Indicator is due to the
exi stence of Vagueness-revealing wordings as for
exanple: clear, easy, strong, good, bad, useful
significant, adequate, recent,

Subj ectivity The occurence of this Indicator is due to the
exi stence of Subjectivity-revealing wordings as
for exanple: simlar, simlarly, having in nind,

take into account, as [adjective] as possible,

Optionality The occurence of this Indicator is due to the
exi stence of Optionality-revealing words as for
exanpl e: possi bl y, eventual |y, i f case, i f

possible, if appropriate, if needed,

Implicity The occurrence of this Indicator is determ ned by
t he existence of:

Subj ect or conplenents expressed by nmeans of:
Denpnstrative adjective (this, these, that, those)

page 50

Chapter 4. “The Quality of Natural L anguage Requirements’

or Pronouns (it, they.)or

Terms having the determiner expressed by a
denonstrative adjective (this, these, that, those)
or inplicit adjective (as for exanple previous,
next, following, last...) or preposition (as for
exanpl e above, below. ..)

Weakness The verbs that determne the occurrence of this
i ndicator are the Wak verbs: could, maight, my.

Under - speci fication This Indicator occurs when words needing to be
instantiated are found, for exanple: flow (data
flow, control flow, ..), access (wite access,
rempte access, authorized access, ..), testing
(functional testing, structural testing, uni t
testing, ..), etc.

Multiplicity This indicator occurs when a nultiple sentences is
found

Readabi l ity It correspond to the actual value of the Col enan-

Liau fornul a

Tablke 4.4 Explanatory Notes

4.4 TheLiguistic Approach to the NL Requirements
Consistency and Completeness Evaluation

What is the extent linguistic techniques able to provide an effective support in the
consistency and completeness analysis of NL requirements documents? For answering
this question we investigated the possibility to provide techniques and tools able to
effectively support thiskind of analysis without adopting Formal M ethods.

Consistency and completeness analysis of NL requirements shall begin with the
identification of the items addressing related objects in order to understand if they
contain inconsistencies or/and incompletenesses. Then, it is necessary, as first step of
consistency and completeness analysis, to put togheter all the senteneces dealing with
specific topic. We call such as group of sentences View. Possible topics are:

quality characteristics (attributes) of the product described in the document under
analysis (e.g. security, efficiency, ...);

page 51

Chapter 4. “The Quality of Natural L anguage Requirements’

components of the products described in the requirements document or belonging to
the external environment (e.g. the user interface or the user);

functionalities of the product (e.g. the printing function);

The derivation of a View from a document relies on the availability of special sets of
terms representing key words related to the topic the View isrelated to. We call these
sets of termsV-dictionaries.

The derivation of the Views can be automatically made by using NL understanding
techniques. In the following the defined methodology to derive Views from a NL
requirements document is described. This methodology is based on the existence the
V-dictionaries of interest containing wordings that can be put in relation with a
particular topic.

The construction of these V-dictionaries is done by the user and it relies on his sKill
and on the study of appropriate (technical) documentation.

Once the V-dictionaries of interest have been built, the identification of those
sentences belonging to the related View can be made automatically by relying on the
output of a syntax analysis and on the appropriate V-Dictionary. In fact, those
sentences having the subject or the object expressed by terms belonging to the \-
Dictionary can be tagged as beloniging to that View. In other words the idea is to put
togheter those sentences in the requirements document directly or indirectly dealing
with a particular topic.

The output of this analysis can be used to support the consistency and completeness
analysis of a requirements document, because the person that performs the analysis
can concentrate hiswork on sub-sets of the sentences of the document. That can make
easier the detection of possible problems.

One of the principal advantages in applying the View approach for supporting the
consistency and completeness analysis of a NL requirements document is the
capability to detect misplaced sentences. A misplaced sentece, in this case, is a sentece
dealing with a particular aspect of the system described by the requirements but not
included in the part of the document where that aspect is trated. An example is
provided in Figure 5.9. The figure shows a View derivation made an a exempler

page 52

Chapter 4. “The Quality of Natural L anguage Requirements’

document taken form an industrial project. The View in this case is the “security”
characterisitc, then the graph represents the position of all the sentences dealing with
security over the requirements document. Asthe figureidicates, the View is composed
of nine senteces, then the security requirements are supposed to be within these
senteces. Seven of them belong to Section 3 the other two to Section 2. Section 3 is
titles “ Safety and Security requirements’. The other two security requirements found
in Sectioin 2 represent the added value given by the tool. In fact, if the analyser of a
requirements document would perform a consistency or completeness analysis of the
security requirements it can be expected that his attention was concentrated on
section 3. The derived View says to the analyser that it is necessary to take into
account also the two of section 2 and this could not to be so evident for the user
without the tool.

The technique described above for identifying those sentences belonging to a view is
indeed a difficult and challenging one. In particular, the effectiveness and the
completeness of the Views strictly depends on the associated V-dictionary: the more
the V-Dictionary is precise and complete, the more the effectivenress of the outcomes
increases. Depending on the technique used and on the content of the V-dictionary, it
is possible that the V-Dictionary misses some relevant terms. It could be possible that
some terms generally relating to a View have been omitted or that the document
under analysis contains specific terms that only in its context can be considered
relating to that View.

As an example of use of thistechnique, if the view of interest is related to the security
quality characteristic of the product, it may be possible that in the document such a
sentence occurs: The firewall to be used in the system is Apache. It can be expected that
from there in after the firewall (that is certainly a term relating to security) will be
indicated by means of theterm Apache. Nevertheless, because Apacheisthe name of a
specific tool, we can expect that it could be not included in the V-Dictionary relating to
security. For solving thiskind of problemsa new methodology for enriching the set of
terms based on syntactical analysis of the document under analysis can be
implemented.

This methodology relies on the concept of Subject-Action-Object (SAO) triplet. As
such triple can be easily derived from the output of the syntactic parser.

page 53

Chapter 4. “The Quality of Natural L anguage Requirements’

The idea is to select the SAO triplets having the Action identified by a special verb.
We might start with a ad-hoc V-Dictionary, then consider, for instance, the following
verb categories: Compositional verbs (e.g. to comprise, to compose, to include, ...),
Functional verbs (e.g. to support, to include, to use, ...) and Positional verbs (e.g. to
follow, to precede, ..), and proceed this way: If either the Subject (the Object) of the
SAO belongsto the special set of terms, then also the Object (the Subject) of that SAO
can be consdered as a candidate to be included into the set of terms. This
methodology allows, for instance, to include in the security related \ADictionary the
term Apache w.r.t. the example above.

Following this approach, in order to further enrich the V-Dictionaries, other related
literature (not only the requirements documents) could be analyzed (as for example
related technical documents) in order to identify a larger number of terms for the V-
dictionary.

page 54

Chapter 4. “The Quality of Natural L anguage Requirements’

page 55

Chapter 5.“The Tool QUARS’

5. TheTool QUARS

In this chapter the way the quality evaluation of natural language requirements
documents, against the quality model defined in chapter 4, has been made automatic
is described. For doing that | designed and developed a tool (called QUARS — Quality
Analyzer for Requirements Specification) able to analyze a text document and point
out expressiveness defects. QUARS is able also to support the consistency and
completeness analysis by means of the derivation of the Views. The architecture and
the functional description of the QUARS tool are provided in this chapter along with a
discussion of the strenghts an the improvement opportunities of it.

5.1 Introduction

Natural language (NL) is still the most common way to express requirements. The use
of NL for specifying requirements indeed has some advantages such as, for example,
the ease with which they can be shared among the different people involved in the
software development process. In fact, a NL requirement document can be used in
different ways, and in different development phases of the final product. For example,
it may be used as a working document to be provided as input for architecture
designers, testers and user manual editors or it may be also used as an agreement

page 56

Chapter 5.“TheTool QUARS’

document between customers and suppliers or as an information source for the
project managerement. The principal disadvantage is the risk, because the inherent
ambiguity and informality of the NL, to have different interpretation of a
requirement.

The availability of methods and techniques for performing an analysis of NL
requirements could reduce thisrisk saving the advantages.

The way that usually in the research community the problem of the requirements is
approached is basically moving towards a more formalized way to express them.
Formal methods are mathematical-based representations of the requirements. The
advantages that can be obtained by means of these methods have some costs in terms
of the necessity of skilled people for the definition and also for the use of them.
Furthermore, the communication mechanism between all the stakeolders (customer
included) may be difficult because not all of them can be able to understand and
manage such a requirements formalism.

When a formal method is applied the initial requirements document is always written
in NL and from it the formal specification isderived (seefigure5.1). It isthen evident
that possible defects in terms of ambiguity in the initial NL document can be moved
into the formal version of requirements. The passage from the initial informal
representation of requirements and the (first) formal representation of them is the
most critiacl point when formal methods are adopted. Performing an analysis of NL
requirements to detect and remove ambiguity defects is of interest also to reduce the
gap between the NL representation of requirements and the following representation
made with formal methods.

page 57

Chapter 5.“The Tool QUARS’

Informal
spec. of regs.
(in NL)

| I

Analysis Analysis Verification
Figure 5.1: The requirements formalization process

Formal Spec 1

. <—»Formal Spec 2[¢»
(in X language

5.2 Linguistic Techniquesfor Defects Detection

Starting from the quality model defined in the chapter 4, a feasibility analysis for the
different kinds of defects is made, and what is necessary to implement the automatic
evaluation is described

The principal objective of my research activity has been to provide a concr ete support
for the software practictioners. Because in the practice NL is the most used mean for
expressing requirements and because there is a lack of supporting tools and
techniques for the analysis of thiskind of requirements, my research activity has been
conducted with the aim to develop an automatic tool able to analyze NL requirements
“asthey are’, i.e. without move towards an other formalism.

After the definition of the Quality Model for NL requirementsthe further phase of the
research activity | performed was the design and implementation of and automatic
tool able to detect the lacks of quality in a NL requirements document according to
the Quality Model. Thistool should also provide a support for the completeness and
consistency analysis.

The Quality Model contains a set of Indicators, that are linguistic elements of the
sentences of a NL requirements document that express a potential defect. In order to
make automatic the detection of these indicators within a document, different
linguistic techniques can be used.

page 58

Chapter 5.“TheTool QUARS’

The techniques that can be used may belong to two different cathegories:

L exical techniques

Syntactical techniques

The lexical techniques rely on the simple reading and recognition of the terms of the
sentences belonging to the requirements document. The kind of analysis that can be
performed by means of the lexical techniques is a morphological analysis, i.e. it is
possible to verify that the single terms occurring in the sentences are correctly written
(according to the english lexicon) or suitably choosen.

The syntactical techniques are more sophisticated as respect the lexical ones. The
syntactical techniques are based on the knowledge of the syntactical relations
accurring among the different terms of a sentence. A syntactical technique can allow
the analysis of a requirements document relying on the knowledge of the syntactic
roles of each item of a sentence and of the relations among them (i.e. it is possible to
know what isthe subject, the related verb and the associated complements).

Some of the Indicators of the Quality Model can be pointed out by applying lexical
techniques other s need the application of syntactical techniquesfor beeing detected.

In the Table 5.1 the correspondence between each Quality Model Indicator and the
necessary technique to be applied to automatize its detection is shown.

I ndi cat or :zzLﬁ?Lue iﬁz;irghza
Vagueness X

Subj ectivity X

Optionality X

Inmplicity X

Weakness X

Under speci fication X

page 59

Chapter 5.“The Tool QUARS’

Mil tiplicity X

Readabi lity X

Table5.1: Quality Model Indicator vs. Linguistic Techniques

The analysis of NL requirements documents should not be limited to the detection of
the Indicators of the reference Quality Model. It should be automatized the derivation
of the information for supporting the consistency and completeness analysis too. As
said in chapter 4, the View derivation is a way to provide the requirements analyser
with a practical supoort for this kind of analysis. The derivation of the Views can be
basically made by means of Lexical techniques, but, for not beeing limited to the mere
detection of a the occurrences of the terms belonging to a domain dictionary the
application of syntactical techniquesis necessary.

5.3 Design of an Automatic Tool for NL requirements
evaluation

In this section the high architectural description of the tool is provided. The
development of the tool has been driven by the objective to be mainly modular,
extesible and usable. The acritectural design matches the fist two characterisitcs. In
Figure 5.2 the high level architectural design is depicted.

f

metrics
Syntax Parser VaSaL]'(e
: wi
Lexical Indicators optional
ﬂ Parser subjective
Detector |=—/ """ .
multiple
Parsed.txt implicit
underspec_
Views derivation
Log

J

Domain .
. Indicator related
dictionarieﬁ% Graphic % " I(c:zlic(t)ironaries

page 60

Chapter 5.“TheTool QUARS’

Figure5.2: High level architectural design

The main components of the tool are the syntax parser, the lexical parser, the view
derivator.

5.3.1 Syntax Parser

This component derives the syntactical structure of each sentence contained in the
requirements document. The used application used to do that is Minipar [82]. This
application associates tags to the terms of the sentence, these tags indicate the
syntactical role of each of them. The relations among the syntactical components of
the sentence are derived too. As an example the sentence:

1. The system shall provide the manual of the user

I's syntactically analysed by the syntax parser in the following way:

> (

1 (the ~ Det2 det)

2 (system ~ N 4 S)

3 (shall ~ Aux4 aux)
4 (provide ~V EO [(gov fin))
5 (the ~ Det6 det)

6 (manual ~N 4 obj)
7 (of ~ Prep 6 nod)
8 (the ~ Det9 det)

9 (user~ N 7 pconp-n)
)

Thisoutcome hasto beinterpreted asfollows:
linel: thetermt he isthedeterminer (tag Det) of thenoun syst emat line number 2

(tag 2)

page 61

Chapter 5.“The Tool QUARS’

line 2: syst emisanoun (tag N) and it is the subject (tag s) of the verb at line 4 (tag
4)

line3: shal | istheauxiliary (tag Aux) of theverb at line 4 (tag 4)

line4: provi de isthe main verb (tag V)

line5: t he isthedeterminer of thenoun at line 6 (tag 6)

line 6: manual isanoun (tagN) playing therole of object (tagobj) of theverb at line
4 (tag 4)
line 7: of isa preposition (tag Pr ep) of theterm at line 6 (tag 6) and it plays therole
of modifier of it (tag nod).

line 8 the is the determiner (tag Det) of the term at line 9 (tag 9).
line9: user isanoun (tag N) playing the role of complement (tag pconp- n) dueto
theterm of at line 7 (tag 7)

The Minipar syntax parser is one of the most spread English language syntactical
parsers. A syntax parser, on the basis of the rules of the English language calculates
one of the possible derivarion treefor the sentence under analysis. Because it could be
possible that, applying the English language rules, more than one derivation tree
exists for the same sentence, the Minipar parser may provide a wrong syntax
recognition of a sentence. This problem iscommon to all the exisitng syntax parser for
English sentences, but Minipar guarantees an higher rate of correctly derived
sentences. about the 85%.

5.3.2 Lexical Parser

This components is based on the identification of the single terms appearing in the
sentences belonging to the requirements document. This component is used to
perform a morphological analysis of the sentences and for supporting those kind of
analysis based on the detection of the occurrences of special terms or wordings in the
requirements document. The lexical analyzer relies on the WordNet English
Dictionary.

5.3.3 Indicators Detector

This original component points out, on the basis of the outcomes of the syntax and
lexical parsers, the occurrences of the indicatorsin the single senteces of the document

page 62

Chapter 5.“TheTool QUARS’

under analysis and writes them in the correspondent log file. This component along
with the View derivator, described in Section 5.3.4 have been fully developed, using
the C++ language, during my PhD cour se.

5.3.4 View Derivator

This original component, acquires, as first step, the structure of the document in
terms of sections and sub-sections partition. Then performs the recognition of a
sentence as belonging to a View. It consider a sentence as belonging to a View
according to the syntactical rules defined on section 4.4. Finally, it counts the number
of sentences recognized as belonigng to a View occurring in each (sub-) section of the
requirements document. These data are graphically represented as output.

5.3.5 Dictionaries

Dictionaries are the passive components of the tool. They contain sets of terms that
are necessary to perform syntactical, lexical analysies and View derivations. The
number and the content of these dictionaries may vary according to the application
domain and user needs.

5.3.6 Input and Output

Theinput of thetool is composed of:

the requirements document to be analyzed. The allowed format of this input file is
simpletext (.txt, .dat, ... format). Thisfileis given to the syntax parser component that
produces a new file containing the parsed version of its sentences according to the
format described in section 5.2.1;

theindicator-related dictionaries. They may contain either thetermsindicating a kind
of defects according to the quality model or the domain dictionaries to be used for the
View derivation. The dictionaries have to bein smpletext format.

page 63

Chapter 5.“The Tool QUARS’

The Output of the tool are:

thelog files containing the indications of the sentences containing defects. A log file for

each kind of analysisis produced.
the calculation of metrics about the defect rates of the analyzed document.

the graphical representation of the Views over the whole analyzed document.

5.4 Functional description of QUARS

In this section the functional description of the tool developed is provided. The way
this description is provided is by means of pctures of the QUARS' s Graphical User
Interface (GUI). The user interface has been developed using the TCL-TK language.

In figure 5.3 the GUI when thetool isin itsin theinitial stateis shown.

AR TR T e ML

sd|E @D L5 | v F0

|~ AP Dicioresies
oubmcirds | sappesarz | maskrezi |
Ml‘l-\.ilg =

prsE by
optionaly
sl fia
orang
prodiabiy

¥ appwpeaie L. .
Ercicany Dictionaries Frame
l';-.-v-!-.-d
[FIn]

HEW R CLESA

Do Sardarecas ol Be

Fir B0 Srach ik Hep
I e T B aL)

Output
Frame
\\| S el
| | |
mrwmmhﬁﬂmwmmm
PG EEe | o |E | B . f[nas ——— [EEOUEEIP L e

Figure 5.3: Principal frames of the QUARS GUI

page 64

Chapter 5.“TheTool QUARS’

It iscomposed of three principal frames:

the Dictionaries frame: the content of the dictionaries is shown here, along with some
function buttonsfor the dictionary handling.

the Input frame: the content of the text file containing the requirements to be
analyzed is shown here. Some function icons and buttons are provided in this frame,
they allow theloading, the hadling and the saving of the input file.

the Output frame: this frame contains the outcomes of the analysis.The principal
fuctionalities of the QUARS tool ae: requirements expressiveness analysis, support
for requirements consistency and completeness analysis, metrics derivation. In the
following they are described in detail.

5.4.1 Expressiveness Analysis

In this section how QUARS performs the expressiveness analysis is described. The
expressiveness analysis aims at detecting defectsin the requirementsthat could lead to
misinterpretation problems. The expressiveness analysis is conducted against the
quality model described in chapter 4. Both lexical-based analysis and syntax-based
analysis are used to implement thiskind of analysis.

5.4.1.1 Lexical-based analysis

With reference to figure 5.4, for performing one of the lexical-based analysies it is
necessary to select the“L” button on thetop tool bar of QUARS (arrow 1).

Once the lexical-based analysis has been selected, in the Dictionaries frame the
dictionaries corresponding to all the available lexical-based analysies are shown
(arrow 2). It is possible to select the kind of analysis of interest by selecting the
correspondent dictionary book-mark in the Dictionaries frame. The primitive
available Dictionaries for the lexical-based expressiveness analysis are: optionality,
subjectivity, vagueness and weakness.

Before starting the analysis the text file containing the requirements has to be loaded.
For doing that the LOAD button in the Input frame has to be selected. A window for

page 65

Chapter 5.“The Tool QUARS’

the selection of a text file over the whole PC file system appears. Once the input file
has been selected, its content appearsin the Input frame.

i =]
{p b e e il
S| @ g L 1
—AuAS Dol oA ari: L3 — DuARS Oupad
AT ' 4
optirakly | sobimotial WERENEE | weskren | -
‘. - | The lime numshen
clgar % ™ ZER AT Tha cyolam abel provida arerevats difs a0 accens sculy
wll s dofoertive bocause it coetains the warding: Bporopriate
Bamy
cohereri The lime number:
uzar Fiarady I 272 ATIALH: The eymem abel provide fectus ofyect fevel aecunly for datatuass
dificult [t
confuzed i ng: Fexilnle
sl
clemly 2 - st . :
acceplzble - DEARS [Lexical] vagueness Statistios jor "SELregemono st Blej:
'd';;;h Fhrnbar of sosluated sentancas: 332
agesta I_| Murnbar of defactivg sertences: 6
ol : (| Defact mte 1% ;]
e | DELETE I FldJ]PDI SAYE I CLEAR I PANT = — =
(finghe [Lesical vegueen | =||-|J|--I|:|r|nn'.nulﬂr-|

~QuARS Sanbanc ex Inpul Fim

He Edl Seack Vs gnabes Heip

DFE FB@E & a2 [0 \

1 \ 2

2 1. Regquremeants ¥or 1he Functions and Pafarmance of the Bystam

1 ATA334: The sysiem shall prmide capahbifty 10 martain gades ard sdp=tments 3

q ATIAANT: The syslem shall prce capabilly 10 remod slucsnt fiom 1raining

5 ATLA351: The sysiam shall pmade capabifty 10 delver aducaboniraining preciucts and madenals, includeg satkty materiake, to the laamser @ bore, urits, traring ceer

G ATIAE3: The sysiem shall proade 1he capebilily to manage and manipulsie the educaliontminng catalog.

7 ATIAAPA: The systam shall mamdain the educetiontraring producd catakng

3 AT1A430: The system shall pimide 3 capahiliy 1o search the educationfiraining products catalog ﬂ
I

| |
SAVE A5 | OLEAR | PRHT

[| RalaD | ZALE |

|H:|.l F i Lowded SEI-eqi-nonces bl |Fhem;-lmhn Ik v el Foamula] 1R 5713 hl.lfuﬁi w40b (b 03 2003 1203)

st | A B O A 7|]| e | e | B | Bire] e Eec | Biee ([Eoe SO ERERL 0o
Figure5.4: Lexical-based Expressiveness anlysis

The analysis starts when the Analysis button is pushed (Figure 5.4 —arrow 3). In the
Output frame those sentences belonging to the file under analysis containing the
particular defect we are investigating on are shown along with the indication of the
individual term that makes the sentence defective (according to the kind of analysis
selected).

page 66

Chapter 5.“TheTool QUARS’

The defective sentences can be now corrected. It is possible to point out each defective
sentence directly on input file. If a sentence in the Output frame is clicked, the same
sentence in the input fileis highlighted in the Input Frame (see Figure 5.5). The user is
now able to modify the defective sentence for correction in the Input frame. After the
defective senteces have been corrected the analysis can be re-donein order to verifiy
that no new errors have been introduced.

AR - yersion 40 .

Pin Edt ‘my fnckws MewesSlom
EWllRSnL|s| viFQ

—RWAAS Do ke L etaad]Yag —QuAAS Dupit
cobrell | wibipciy vegueren | weakiess / 2
e & |ine mimber _

claa 5 < r =3 ; e

wall N Is derfactiva I:ﬂ:am H |:n|'r|a|lrﬂhn wurllg a|::|:| l:rtlrJELEl

many

coherert The

uzar Feredy [72 ATMTSTY Tﬁtq.ral:m Toyect b=vef mecurdy fiov datahane

dificu abjarte

confusad is defrctive hecanse i contains the wonding: flaxible

gl

clomly - 5

accepizie — IARS |Lexical] vagueness Stabstics (on "0 reqs-mope g0 fle) ————
apaquate Mumser of avaluated santerces: 337

agreatiy =] Humbesd of dfacdive sanancas: &

il I= Diefoed rate: 1% ;]
WEW | DELETE | Fslial | SANE | CLESR || FRINT ! .

Eryris Lemical] vapusne | i et Sreience

QuARS Sanbe rcws Inpat Him
He Edl Zeach Yew Anaes Help

CiEME| Iaﬂ!uﬁl-&"“ﬁ Sl Q

S TIA12?9 T 9yn1nm shal :l.pp-m :r':rrm -:vuurrg, based audis
271 ATIALIITTr 2 i d Rase=prrtrhan of the dats

I ATERIEN The ayatem shal provis 1ax|hls object eenl apcuiity for database objecls

73 ATIA1333: The system shal not rsquirs any special equipment to gain access to the system.
| |
[| Ae DA | GHNE | GAVE 45 | [LEAR | PART |

Jrus Fibe Loadest SEHBc o3 od [Aleadabling irdes: CokersaLi s Fomnol] 16 5113 QUSRS wi0b uld 03 20011205
wlhseee T 2o 7 S| s | B | Bise] @l BEes | Ee | B [[Eioe. RGN EIE L
Figure 5.5: Activelink between the Output and the I nput frames

It could be possible that the tool points out a “false positive”. A “false positive” is a
sentence recognized as defective by the tool but consider ed acceptable by the user and
then it doesn’t need any corrective action. In this case the user can activate the
correspondent check button (Figure 5.5 - arrow 1). The “false positive” sentences will
be hidden in the output frame in order to do not display them any more (even if the
tool still considers them defective) (see Figure 5.6). The hidden sentences can be
displayed again by clicking the “Resume Hidden Sentences’ button in the Output
frame.

page 67

Chapter 5.“The Tool QUARS’

i x]
Fin Edt Wy Anshess Mebicsdlogs 7
FHB & oLIsIV PO
QuARS Diclonmme Leacsl| opbonally /deu
cplirall | bl | vegenen | wesires / The liny numher: |
(TiA3QE - Tha cyadarn ahall idanlilly aid svoduca, & anprapnale . sl lraving ovodusts,
wanusly e \ andfov Infonmalion necessany ho e one ar mon crbca cofecifee or tndraduar
possibly N fab
aplionally [k Beb i i 1 0 e e ing: if appropriate
andior
ar'and Thait ligi wimirehier:
prceddy M 2 ATIANAY The symdarn abel provida seundy Tmesawas o ansus ool afonzed s
il apprupnate 1 FCCess & nesdncded andor senstas slomeasion.
il necessary & defertive bagause it comaing the wanling, andiar
if case ’
il neadad . ! 4
i 1R - DedRS [Lesical] epdonality Statisikcs jor "SEFregs oot Bleg -
whan pb”“? - funber of evluated sentences: 332
1 | amber of defaclive s=rtences. 3 _{
WEW | DELETE | Retoan | cevi | CiESA | PANT | i |
Anahee [Lesical optioraliv RraanaHiddan Smhmul

QubAE Benbenes Inpul e
He Edl Cemdy Www fnohuic Hep
oW BBl @] 70]
1 =
2 1. Requiremants for the Functions and Pedormance of the Systam
3 ATIA33A: Thee syelam ahall prinacks capabikly 10 mariain grades snd sdjustments
4 ATLA&17: The syslan shall pmrace capabifty 10 remme stucdent fram fraining
5 ATIA4S1: The system shall prmide capahilty 10 delteer aducation®iraining product= and msiedals, including safty materials, to 1he leamer 8l home, units, training cen
5 ATIAAE3: The sysiam shall prowmde the E*\"‘.‘IME Lo manage ad manipulate the educationtmingy calalog
7 ATIATRS: The syslam shall mairdain the educaionframing producd cabako
3 ATIA330: The sysiem shall prmade @ capahbilty 1o seeich the pducalion’traning producls cafaleg. %
| 4
L0en | AsLOAD | S | SAE 4 | LEAR | FRMT |

[ivend F e Lot SEI-sgqi-wncncra bl | Feacabdiy Indees. Jocke na el Foimul) 167112 [@uaRS w0k huld 03 20031203
o] |G B @S 7| e i | [e Bl] B B | Bl (G EEATERERL o
Figure5.6: Hiding the “false positive’

5.4.1.2 Syntax-based Analysis

With reference to Figure 5.7, for performing the syntax-based expressiveness analysis
the* S’ button on thetop tool-bar of the QUARS GUI (arrow 1).

Once the syntax-based analysis has been selected, in the Dictionaries frame the
possible dictionaries of each type of the available syntax-based analysies are shown
(arrow 2). It is possible to select the type of analysis of interest by selecting the
correspondent dictionary book-mark in the Dictionaries frame. The available
analysiesare: Implicity, Multiplicity and Under specification.

The way the analysis is performed is the same than the lexical-based analysis. The
difference between the two types of analysies is transparent to the user. In fact, for
performing these analysies the tool, first derive the syntactical structure of easch
sentence in the input file. Anyway, the syntactical structure of the sentences is not
displayed. This structure is necessary for detecting the implicity, multiplicity and

page 68

Chapter 5.“TheTool QUARS’

under specification defects in the requirements document. While for the implicity and
multiplicity analysis dictionaries are necessary, the multiplicity analysis, even though
it relies on the syntax structure of the sentences, for its nature, it doesn’t need any
dictionary.

a8 =]
AR Oulpad
|
| The line nember e
fes=t oy B T B Thal fs the [emting peoceies fo e fofomss (o0
procedire i i i testing
process
mianiad Thee: liwir muwmidier:
altack © B Thosa procedires preeiaual eesved shall ha inefudad’ n b documentadon
paper pondaing 2 wnspecifind sorence because the fmym; procedurs
reperd
:Iul:umertm 2 Thae lime number:
mm:m T 1. the develorers afdald papare 2§ docurmania incheding Hioee @ the tesbing et
bt o 3 fit v il BRElEnce Bacaisgs e isrm: h!i.‘[il‘]g
hegquency
] bl The lime nursher:
4 [o an T Regn i s S A S il S e e _-1
e | piienn | peinen | save | ciedA | oPemT i 1
finzheic [SpnEchcjundasncedieation| Ao Hidoan Smhmml

QutAE Sertermes gl i

He Edl Ceady Mew fnshes Hep

Cord| LRl &San| 70 3
1 Tha CM docuwesrtation shall eclude o confiation izt g
1 These persons shall dovelop the system coda those shall deelep the interface

3 The TOE desscripbion shall § receszary a6 & minkuin describe fhe product type and the genaral IT feglores of he TOE

4 The avalumtar shal cordmn tha infomnation pravidad in berms of corfarnance bo al requesmants

5 The evaluator shal coniimm that the TOE descriplion is clear ard intemally consiztent

G That i5 the nesfiig procadianz 10 be Ollowed too

7 iha systam shall i ficiantly and it shal run canrocily as vell

4 Those procedures prewausly removed shall be included in the documeniaban _
ki

L0ed | AaLOAD | SAE | SAE 44 | CLE4F | FRIT |

[iincd File Liaclet s en ces hni | Feemciabdity Indess. [CokemnarrLbaw Foamuls] 16 2245 [3wARS w40kl 03 20031200
ston (100 M @ 8 7| | i | [| e | Bine | Snen | B | Sk ([Eou- LEANEIEES U
Figure5.7: Syntax-based analysies

5.4.2 Consistency and Completeness Support

The functionality of the QUARS tool for supporting the consistency and completeness
analysisisthe View derivation. I n this case, diffently from the expressiveness analysis,
the aim is not the detection of defects in the sentences of the requirements document
under analysis, but the derivation of semantic information that can be of help in this
kind of analysis.

page 69

Chapter 5.“The Tool QUARS’

The semantic information is basically the “argument” a sentence deals with. A View is
essentially a filter for those senteces dealing with a particular argument. The tool
QuARS is ableto graphically show the number of occurences of sentences belonging
to a particular View for each section the requirements document is composed of. The
View derivation relies again on dictionaries. The V-Dictionaries contain domain-
related terms (insead of defect-related terms). A V-Dictionary is the sets of “all” the
terms dealing with a particular View, i.e. those terms that, if contained in a sentence,
indicate that this sentence is dealing with the argument the View isreferring to.

In this section the way QUARS derives thisinformation is described again by means of
picturesof its GUI.

With reference to Figure 5.8, for selecting the View derivation fuctionality of the
QuARS ool the“V” button on the top tool-bar of the GUI hasto be clicked (arrow 1).

Oncethe View derivation functionality has been selected, in the Dictionaries frame the
available dictionaries are shown (arrow 2). Each dictionary in the Dictionaries frame
corrspondsto a particular View that can be derived. It is possible to select the View of
interest by selecting the correspondent V-Dictionary.

Oncetherequirementsfileisloaded, the View derivation can be started.

The output of the View derivation is a table, displayed in the Output frame,the rows
of thistable correspond to the (sub-)sections of the document under analysis. Thefirst
column contains the number of sentences belonging to the View and the second
column thetotal number of sentences of the correpsondent (sub-)section.

These data are graphically shown by means of a M S Excel graph corresponding to the
table.

page 70

Chapter 5.“TheTool QUARS’

:
Fin £t ey Anches Phticerteg 7
1 1
T TR (R e 1
—OuAS Dictonars: M D Taciily = Oupt
sty | - - CUART [Wiews Derkation] sacunly ANALYSS —m—ee s
Section Id |# 0T Wiew's Serdences | #OF Section Senlences
prcgREy :‘:I
areredaton aulhe ! |0 | 160
add-on secutily 2 12 | ED
aliack] |7 |1\
autherticato 1 o 13
alithertication =] 114
EUCECEENTEET E. o |&
back doe 2 T |0 113
HelkLaPadula & o I3
hetve==rriha-line =nty
canadian Trsted corguter produet avaluation criiena
CTCPED :'I
L] i - i I =
W2 | BELETE | Retatn] save | Cieen | FAnT (] = 2
| g e Dention] s Ares.ae Hidder St |

~QuAAS Eank Il il
He Edl Zeach Ve fAnadeke Help
OFHE BE &Gan 20

1 4
2 1. Reqursmants tor e Functions and Pafgrmence of the Syslam

1 ATA33d: The systam shall proside capahbifty 10 marntain gades and sdpetments

4 ATIAAIT: Thee systam shall prvwice capabikly 10 remod student iom 1raining

4 ATLAS1: The sysiam shall pmride capabifty 10 delver aducabondraining procucts and madenals, includeg satety matenak:, to the laamser @t bore, weits, fraring ceer

G ATIAEE: The sysiam shall prmade 1he capsbiliy to manage and mampulsie the educaliontm@inng cadalog.

7 ATISAT: The systam shall maimfain the educstiontraming producd oo ek

3 ATA430: The sy=siem shall pimide & capahiliy 1o seach the educalionfiraining products cxalog ﬂ

I

| |
L0é | Rallal | A | ZAE A8 | DLELR 1 PRHT

|H:|.l File Lowdedt SEI-eqi-inonces b |Fhebc|d:lplmtn ook marrLis Foamala) 169113 hl.lfuﬁ'i w4 0b (bt 03 2003 71203)

ot G0 e) |] | 25| e 2 | | Sl | [Enr SEONEIEAL uw
Figure 5.8: View derivation

In Figure 5.9 the output of the View derivation id depicted. In this case, the View
derived is the security characteristic. In fact, the dictionary in the Dictionaries frame
contains a set of termsdirectly or indirectly correlated to a security issue.

page 71

Chapter 5.“The Tool QUARS’

s ey aloix
o et e Aviehews Mt A Log
FH B & BlLs viPo
QuARE Dicforarmr: [Dol [P————— E ol £|1
wpuily | |E] Film Hedifica %audces Inesricr Fomabs Shumenki Grefeo Froestm 7 =8 = L
“propery D SRY fGRF|w-c- @ 6 UG BBD -0 ¥
accreditation autharty sl =6 2| GO RS = 5oE et et R T S e
ad-on sacurly e e e =ik - i i
iy a e del grafico =] = - |
autkenticata
Sulbertaion i RS by b [Viewes: derivertion | < sosty
authorizs user
hack door i
BellLaFadia a0
bstween-he-ing entry e
canadian Trugled compum 160 -
CTCPEC
1 140 4 | =
KEWE | DEIETE || Reids| | 1
4 'ﬂHIddemnmmI
L] L]
100 o
&
QubAS Eenleraes kg an 4
Be Edi ‘Ceach Viaw Bech| o |
ClaslE| £ Bl | & =
A0 A EE——
1 0] 1= o & :I
2 1. Requremants for the Fur d 2 'L_. o 8 o - o 5 N . o 3
3 ATISFI: The eypetem ehall o e . = = =
4 ATLEATT: The systern shall 13 20 S0eT 1w £ HE0 Lot B |
. L) - wl -
5 ATIA451: The spstem shall a4 1 (R eafio ¢ ookl f Pogkos Jf rogea f J:IE-_ Iraining cer
G ATISET The spstem 08l proom [=s= i
7 ATISA7S: The systern shal maintain the educaiontraineg praduct catalog. g
3 ATIA430: The syabern shall provide a capabiliy Lo search the educationtirsdning products catalag. &
‘] | T
[| Fisl 140 | GHVE | SUVE 45 | CLEAR | FRNT |

|I|'p|.! ik Losded SEHSX frond-3 b hth‘lﬁiy I [Calennard e Famalsy] 165112 huﬁﬂﬁ 4. 0b (hukd 032003 1200)

o] | G20 > @8~ o] e En |] B B E | 2 | @e. | Hw- EEAREAE L uw
Figure5.9: Graphical representation of a View derivation

5.4.3 Tailorability Issues

The tool QUARS has been designed to be highly tailorable according to particular
application domain and different user needs. The main aspect of the QUARS
tailorability is its capability to handle the dictionaries (see Figure 5.10). In fact, it
possible to modify an existing dictionary and make per manent these modifications. It
possible also to create new dictionaries and to delete existing ones. For this purpose a
set of function buttons are available in the Dictionaries frame (Figure 5.10 —arrow 1),
in the following they are described in detail:

New: this functionality allows the creation of a new dictionary. This functionality is
not permitted for the syntax-based analysies because, in that case, the used dictionary
is strictly connected to its analysis routine, and a new syntax-based analysis should

page 72

Chapter 5.“TheTool QUARS’

require a new routine The capability of adding new dictionaries for lexical-based
analysis and View derivation allows the QUARS tool to be adapted to particular
application domain and user needs. In fact, for a particular application domain it
could be necessary, for example, do not use some terminology that in this case could
be a source of ambiguity. The way a dictionary can be modified is the editing of it
directly in the Dictionaries frame. In Figure 5.10 — arrow 2 the QUARS GUI in the
case of creation of a new dictionary is shown.

Delete: this function allows a dictionary to be deleted. This function is not allowed for
syntax-based analysies

RelL oad: Thisfunction allowsto return to the last saved version of a dictionary.

Save: after some modification have been made on a dictionary, this function makes
permanent the resulting new version of the dictionary.

Clear: this function cancel the content of a dictionary, this cancelation becomes
per manent when the Save function is selected.

Print button: thisfunction allows a dictionary to be printed out

page 73

Chapter 5.“The Tool QUARS’

alf]]
Tl GIC W bk MARGE KL
ol % & oLis|v?Q
~BARE Dict [Lmmcal] cptanl RS Ouput
opkwlly | mbaridy | vepmesn | veskraz -
2 I = : Theit B numbss: =i
manimly T G Tast i b deming procedne i e fokmed iop
pabily Testing
aptianaly
arefar Thisg B il
avae reas
prmbably I i cadurs
il appapmas
I e Ca ey =
Meim - .
il meeded RAE Hew Dickmar Wiead ot rokikng Thoos: i dha desting Kl
wien mecesEny Toreate.a i [B ingha b besting
when parsble 11 rakact tha bl of nll-r-nﬂm-y
— o tha rares ol e ih:q-
al mmmmmnmt A ey
% v ’ 3 = | ! tan U pl ol buton o nhhuril.h
- Hha rs chboray
= - =
PR Eerdus] puk s
Ede Edl Sessch e daskes Hen 'lr_-ll—H--HDH'lnu-—-)
O AR @2
| The W documenistion shall inclide 5 corlginsd fl
2 Thesp pamnas shall deselop the system cods {hose 5 3kl
3 Thiss TOE shad ol i o 2 hall I ol e iy e 4 Mo E
4 Thie esvid it o had| canfiem thie infoematban proadad n
% The svalusi o shall canfrm that the TOE descnphinn 15 char and nl-:mnlr conzitent
15 That e 1he Jeshing proced we b be follrased foo
7 b Syt shall un afcknly wne @ shal nn comatly &6 well
al n
L [munw | e | s | N | |
\
Jiope.t il Landed: sentance tot [Anscabsity boien: {CooranLis For] [FEForTE e
o] |G el e ¥ o] o || B B | B | e | S | g [2 B e
LS|
=
-

They |y sl

X I E T 't..-'ua-mhg,nmummwmmm
> a cifisd e mrmc toEting
Tha linp smeshnr-
rea

S b U : pracsdrs

Thsr N sstdiizr:

Ennising a ursgecified st fomc besting

N Tha line messhpr-
Fgt™ Th. AR A

T 11 the ciisiopeis & Wm-;-nkmwmm:mw s i T essbingy Nsd

>

1 The Cid dncumantsion shell ncuds & configurstion fisl

2 Thiss peraon s shidl devwakop 1he &y cooa ihose ahadl daslp tha mific

= Tha TOE deseriribon shall ¥ racescany e @ rdndmarm teedcnbe the pradici ivpe and tha paseral IT kghras ol il TOE
£ The evsduasbor heal comfrmibe oformatan poraded o jemms o confomanee b sl equramesnls.

S Thi evaleabor shal corbom1ha fie TOS dascpdion i o iar end memaly oo sban

E Thai kb tasting pacaduea 1o ba falrsad oo

T Abes my=tem shadl nun sficiently and il shal wn comeci by 3e wel

a

LA 1 Pl 5 SMWE i A E BER B

PRIHT

St [e 0w ilﬂlmlﬂm_lm_lmr_lﬁ_r*
Figure 5.10: The creation of a new dictionary

page 74

Chapter 5.“TheTool QUARS’

544 Metricsderivation

The QUARS tool allows also the calculation of metrics about the defects rate during a
requirements analysis session. Figure 5.11 shows how the GUI of QUARS allows the
user to gather these metrics.

Qomes - venmn i alit]x]
e fm— —
[Eliest ot —
,/,—- QuaRS |Syntactic] Implicity Statietics [on 242 7 fe” gy -—
Fhmber of eysdygled sentences; 333

similar i Mumber of defeclim ==rtences: B
Bedt e Diefect rate 2%
mimilarly NI Fezdability Index: [Caloman-Liag Famnulz) 10,4416

warts \
aasiar
highe
lnmer LS
hsrinig i trifid
Lakang into account
taking into consideration
0 thad
a5 poeczzible 3 g o

S : !—r| = l?u.’-R‘S IL.H“: a!| uuh_]ul:lrfl]'_\ﬂ_\l:\atlmcs [an "SEhmgs-mone-s.bt” fie) ———e— -
HEW | DELETE | Relilen | SAWE | CEmn | FANT | [L

dinspsi [Lesical nbm.iyl AezameHidden Smlm:nl

- QuAAS Sanbencex inpul fim
He Edl Seach Vs Aot Help

15 The PP devwplopeer shall provide a =taiemert of TOE secunty smeronment as part of the PP. ﬂ
16 Tha statamant of TOE sacunily emeonmant shal identify and exgpdain any assumplions about he intended uaage of the TOE and the amimnmeant of uae aof the TOE

17 The stzdement of TOE security ervionment shal identify and explain any known or presumed threats to the assel= agairst which profection will be reguired, either by
18 The statement of TOE fecuiily embonment shal idenlily and explain ang oganisstions) cacaily policies silh which the The spslyator shall coafom (el the mfommati

19 Tha avalugtar shal conimn that tha stelament of TOE sacunby
20 The PP developeer shall pravide a PP infroduction as part of they 1
21 The PP infroduction shal cortein a PP okt ficetion b proa
13 The PP imraductian shal contain a PP oeervisse which summanses the

nt i3 it and intamally cansistant

hawng in mind the carec! templaies.

am viesscripiies Fforalion nacaasany 10 idantify, Gelalogue, rgister, ool coss ke
Pin &Z fomm .
| g

SAE | Dl] FRAT

> —

|Irw File Lot e e sl ’||Fheadabllpludu ok mareLis Foamula] 16 2296 h‘ A5 wWibibuld 03 2003 1200)
T (R S SO I = O - T =L W (o i TN EIE AR 0y

Figure5.11: Metrics calculation

Ralh |

[|

Available metrics are of two types:

Defect rate metrics. for each analysis (both lexical and syntax-based) the number of
defective sentences is counted and the proportion with repect the total number of
sentecesin the requirements document is calculated.

Readability metrics. the ColemanLiau Readability formula (see chapter 4 for
definition) is calculated. This formula, taken from the litterature, gives a measure of

page 75

Chapter 5.“The Tool QUARS’

how a document is easy to be read. The formula is always available in the bottom of
the QUARS GUI (Figure 1l —arrow 1).

The whole metrics collection referred to the current session can be displayed in the
Output frame. For each analysis performed (even on different documents) the related
metrics are maintained (Figure 11 —arrow 2). The collection of metrics can be saved as
alog file by means of the special option in the Metrics& L ogs menu (Figure 11 —arrow
3).

55 Conclusions

In this chapter an automatic tool, called QUARS, for NL requirements analysis has
been presented. In the practice in the software industry the analysis of software
requirements is made by humans with a clerical and borging process that consists in
the reading of requirements documents looking for linguistic defects. QUARS is an
innovative tool that providesthe user with the capability of performing the analysis of
NL requirementsin an automatic way. Thistool, yet in a prototypical stage, has been
used for analyzing requirements documents taken from real industrial projects, in
order to verify its functionalities and get a feedback form the industry on the
effectiveness of the results it provides. The outcomes of these trials are encouraging
because QUARS has been recognized as effective both in terms of performancesand in
terms of relevance of defects detected.

In particular, the tool is easy to be used and easy to be learned (because its GUI
interface), it takes about 2 seconds for performing lexical-based analysis and about 15
seconds for performing syntax-based analysis of a document containing more than
400 requirements.

The tool has been designed to be highly adaptable to different application domainsthe
requirements may belong to. Furthermore, it is able to run with almost all kind of
textual requirements becuase it ask simpletext filesasinput, and it is possible to move
to atext filefrom almost all the formats produced by the commercial text editors.

page 76

Chapter 5.“TheTool QUARS’

The tool QUARS offers many improvement opportunities, in fact, the effectiveness of
the analysis preformed by the tool depends on the completeness and accuracy of the
dictionaries it uses. A methods, based on linguistic techniques, for enlarging the
dictionaries and making them more accurate, has been defined (see section 4.4) and
will be implemented as a functionality of thetool.

In order to better evaluate the impact the use of the QUARS tool on the requirements
processin aindustrial project, an experiment is going to be undertaken in cooper ation
with a software company and the Software Engineering Institute. The experiment
aims at analysing with QUARS all the different versions of the requirements document
of a particular project. The different versions represent the history of the revisons
made on the requirements. The experiment will investigate on how many and what
defects should be detected by QUARS at the first analysis session and then what is the
effort that could be saved if QUARS should be used.

page 77

Chapter 5.“The Tool QUARS’

page 78

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

6. Application of the Linguistic Techniques
to Use Case Analysis

The Use Case formalism is an effective way for capturing both Business Process and
Functional System Requirements in a very simple and easy-to-learn way. Use Cases
are mainly composed of Natural Language (NL) sentences. The use of NL as a way to
specify the behavior of a system is however a critical point, due to the inherent
ambiguity originating from different possible interpretations. In this chapter the use
of methods based on a linguistic approach to analyze functional requirements
expressed by means of textual Use Cases is discussed. The aim is to collect quality
metrics and detect defects related to inherent ambiguity. In a series of preliminary
experiments, a number of tools for quality evaluation of NL text to an industrial Use
Cases documents are applied. The application of linguistic analysis techniques to
support semantic analysis of NL expressed Use Case is also discussed. For doing that
a methodology for extracting semantic infomation from a set of Use Cases has been
defined and described in this chapter.

page 79

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

6.1 Introduction

Use Cases are a powerful tool to capture functional requirements for software
systems. They allow structuring requirements according to user goals [13] and
provide a means to specify the interaction between a certain software system and its
environment.

Graphical object modeling languages have become very popular in recent years.
Among those, UML [65] introduces a set of graphical notation elements for Use Case
modeling. UML Use Case diagrams are easy to understand and constitute a good
vehicle of communication. However, they mainly serve as a sort of table of content for
Use Cases, presenting the connections between actors and Use Cases, and the
dependencies between Use Cases.

System behavior cannot be specified in detail with Use Case diagrams. In his book
[12], Alistair Cockburn presents an effective technique for specifying the interaction
between a software system and its environment. The technique is based on natural
language specification for scenarios and extensions. Scenarios and extensions are
specified by phrasesin plain English language. This makes requirements documents
easy to understand and communicate even to nontechnical people.

Natural language is powerful (the expression power of the English language is said to
be higher than any other language in the world), well known and generally easy to
understand. However, it is also prone to ambiguities, redundancies, omissions and
other defects that can lead to problems when precision and clarity are essential (it is
the case of software requirements specification particularly for embedded, mission-
critical and performance-sensitive systems). Formal requirements specification
languages (such as Z[100], B [2], LOTOS [8], etc.) were invented specifically to tackle
this problem. They add formality and remove ambiguity, but are hard to understand
by nonexperts, which limitstheir practical application to somerestricted domains.

6.2 UseCases

A Use Case [12] describes the interaction (triggered by an external actor in order to
achieve a goal) between a system and its environment. Every Use Case constitutes a

page 80

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

goal-oriented set of interactions between external actors and the system under
consideration. Theterm actor isused to describe any person or system that has a goal
against the system under discussion or interacts with the system to achieve some other
actor’s goal. A primary actor triggers the system behaviour in order to achieve a
certain goal. A secondary actor interacts with the system but does not trigger the Use
Case.

A Use Case is completed successfully when the goal that is associated to it is reached.
Use Case descriptions also include possible extensions to this sequence, eg.,
alter native sequences that may also satisfy the goal, as well as sequences that may lead
to failure in completing the service in case of exceptional behaviour, error handling,
etc. The system istreated as a " black box”: Use Cases capture who (actor) does what
(interaction) with the system, for what purpose (goal), without dealing with system
internals. A complete set of Use Cases specifies all the different ways actors can use
the system, and therefore defines the whole required behaviour of the system.
Generally, Use Case steps are written in an easy-to-under stand, structured narrative
using the vocabulary of the domain. The language used for the description is usually
English. Any other natural language can be used as well, and although our analysis
focuses on English, the same reasoning can be applied to other languages (considering
the obvious differencesin syntax and grammar rules). A scenario is an execution path
of a Use Case, and represents a single path through the Use Case that leads to success
in achieving the goal (the Main Success Scenario). Thus, there exists a scenario for the
main flow through the Use Case, and other scenarios for each possible variation of
flow through the Use Case (e.g., triggered by options, error conditions, security
breaches, etc.). Scenarios may also be depicted in a graphical form using UML
sequence diagrams. Table 6.1 shows the template of a typical Use Case taken from
[13].

In thistextual notation, the main flow is expressed, in the “Description” section, by an
indexed sequence of NL sentences, describing a sequence of actions of the system.
Variations are expressed (in the "Extensions' section) as alternatives to the main
flow, linked by their index to the point of the main flow in which they branch as a
variation.

Developers have always used scenarios in order to understand what the requirements
of a system are and how a system should behave with respect to its environment. For
instance, in the telecommunications domain, the use of UML sequence diagrams
(formerly known as message sequence charts) is very popular. Unfortunately, this

page 81

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

understanding process has rarely been documented in an effective manner. The
performed research is an attempt to improve the understanding process by
identifying possible flaws in the textual scenario descriptions.

USE CASE #

<The name is the goal as a short active verb
phrase>

Goal in Context

<A longer statenent of the goal in context if
needed>

Scope & Level

<What system is being considered black box under
desi gn>
<One of Summary, Primary Task, Sub-function>

Precondi ti ons

<what is expected to be the state of the world>

Success End Condition

<The state of the world upon succesful conpletion>

Fai |l ed End Condition

< The state of the world if goal abandoned>

Primary, Secondary| <A rol e name or description for the primry actor>
Actors <Ct her systens relied upon to acconplish the UC
Trigger <The action upon the systemthat starts the UC
Descri ption Step [Action

1 <the steps of the scenario fromtrigger to
goal delivery, and any cl eanup after>

2 <....>

Ext ensi ons

Step [Branching Action

1 <Condi tion causi ng branchi ng>
<Action or name of sub-UC

Table 6.1 Use Case template

6.3 Quality evaluation of Use Cases

In this section the application of methods and tools for the analysis of NL
requirements documents in order to easily detect linguistic inaccuracies in Use Cases
dealing in particular with problems related to the expressiveness of a document is

discussed.

page 82

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

To thisaim, a set of metrics that can be used to evaluate the quality of requirements
documents, based on Use Cases, according to the categories listed in the previous
section, has been defined. This problem has been addressed starting from the
definition of a set of metrics related to quality characteristics that belong to the
Expressiveness category. The metrics can be derived from the application of three
different automatic tools developed to perform linguistic analysis of NL requirements
documentsi.e.. QUARS [23], [24], [25], [26] ARM [107], [108], SyTwo [102]. This set
of metricsisbased on quality properties and quality indicators used by the considered
tools to evaluate NL requirements. The QUARS tool has been deeply described in
chapter 5, in the following section the other two tools are described.

6.3.1 ARM

The objective of the Automated Requirement Measurement Tool (ARM) isto provide
measures that can be used to assess the quality of a requirements specification
document [107], [108]. ARM is not intended to be used for the evaluation of the
correctness of a specified requirements document. Thistool can be seen, similarly to
QUARS, as an aid for “writing the requirements right,” not “writing the right
requirements’.

In ARM, a quality model smilar to that defined for QUARS is employed; this model
was defined by compiling first a list of quality attributes that requirements
specifications are expected to exhibit, then a list of those aspects of a requirement
specification that can be objectively and quantitatively measured. The two lists were
analysed to identify relationships between what can be measured and the desired
quality attributes. Thisanalysisresulted in the identification of categories of sentences
and individual items (i.e. words and phrases) that are primitive indicators of the
specification’s quality and that can be detected and counted by using the document
text file. The set of primitive indicators then has been refined by using a data base
composed of words and phrases resulting from the analysis of a set of requirements
specifications documents acquired from a broad cross section of NASA projects.
These individual indicators have been grouped according to their indicative
characteristics.

Table 6.2 shows the single sentence categories and, for each of them, the set of related
indicators. The user can supply new domain-dependent quality indicators.

page 83

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

CATEGORI ES
| MPERATI VE CONTI NUANCE | DI RECTI VE |OPTI ON VEAK PHRASES | | NCOVPLETE
shal | bel ow. e.g. can adequat e TBD
must as foll ows: i.e. may as TBS
appropri ate
|
is required|follow ng: for optionally |be able to TBE
Nlto exanpl e
D - .
are l'i sted: figure be capabl e| TBC
' applicable of
C - . . -
are to in tabl e capability not defined
A particul ar: t o/ of
T .
responsi bl e |support: not e: easy to not
Offor det er ni ned
R
will and ef fective but not
S limted to
shoul d as required |as a
m ni mum

nor mal

provi de for

tinmely

Table6.2. Standard ARM Indicators

6.3.2 SyTwo

SyTwo is a tool developed as a Web application performing linguistic analysis of an
English text by means of lexical and syntactical analysis of a text. This tool can
analyse the English text both to check its conformance to the rules of the Simplified
English, and to detect some defects having a specific impact on the quality of

page 84

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

requirements. To this aim, SyTwo, which has been developed as an evolution of
QUARS, partially adoptsits quality model.

SyTwo builds, using a natural language grammar, the derivation trees of each
sentence. During the analysis process, each syntactic node is associated with a feature
structure, which specifies mor pho-syntactic data of the node and application-specific
data, such as errors with respect to the quality model. The output is composed of an
error code, corresponding to a predefined type of defect, and of the indication of the
part of the text the defects originate from.

Furthermore, SyTwo provides the value of the Coleman-Liau metrics for readability
evaluation. SyTwo can point out a syntactically ambiguous sentence, when the
sentence has more than one drivation tree: this implies that the sentence may be
interpreted in different ways. For example the sentence “ The system shall not remove
faults and restore service” may be syntactically interpreted at least in these two
different ways (seefigure 6.1):

The negation not of the auxiliary verb shall is related to the first verb only (remove),
and not to the other verb (restore). In this case, the meaning of the sentenceis that the
system shall not remove the faults and it shall restorethe service.

The negation not of the auxiliary verb shall is related to both the verbs remove and
restore. In this case, the meaning of the sentence is that the system shall not remove
the fault and shall not restore the service

N RN

SUBJ VERB SUBJ VERB
/N | 1NN
Thesysem AUX VERB The svstem X JECVERE
Sha“/ / \\ shall not VERB
P N
VERB and VERB VERB and VERB
AN \ | |
NEG VERB OB: OBJ o8 o8,
L |

. remove faults restore service
not remove faults restore service

Figure 6.1: Two possible derivation trees

page 85

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

SyTwo is also able to capture the syntactical structure of a sentence identifying its
components and their syntactic role. From this information a component of SyTwo,
called Cmap, is able to extract the relations among subjects, verbs and objectsin a
sentence, building the so called * conceptual maps’, which will be shown in section 6.6
to be useful to perform further analysis of requirements documents devoted to point
out semantic problems.

6.4 Achievable Metrics

As any other evaluation process, the quality evaluation of NL software requirements
has to be conducted against a model. The model is directly derivable from the Quality
Models of the tools that are addressed. Starting from these Quality Models, some
metrics, especially related to the Expressiveness category, can be gathered in order to
perform a quantitative evaluation of a requirements document. These metrics are
described in Table 3. The acronyms used in the Type column of Table 3 mean: UN =
Understandability, RE = Readability, TR = Traceability, MA = Maintainability, AM
= Ambiguity, SC = Specification Completion, CS = Consistency.

METRI CS TYPES | FORMULA RATI ONALE
Col eman- Li au RE 5.89* (NI / Nw) - It neasur es t he
Formul a 0. 3*(Ns/ (Nw/ 100)) - 15. 8. difficulty in reading
Wer e: t he docunent
Nl = n. of letters in the

requi renents docunment

Nw = n. of words in the
requi renents docunment

Ns = n. of requirenent
sentences in t he
requi renents docunent

Average nunber of |RE, Nw / Ns Short sentences neke
wor ds per sentence|UN t he requi renents
docunent nor e

readabl e/ under st andab
l e

Conti nuance | ndex |TR, Ncon/ Ns. Wher e: The use of
MA . conti nuances
Ncon= n. of conti-nuances|. .
. i ndi cat es a wel |
in sentences.
structured docunent,
Conti nuances are phrases |but t 00 nmany

page 86

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

as “the followi ng:” that [continuances indicate
follow an inperative verb|nultiple, conpl ex
and precede the|requirenents
definition of |ower |evel
requi rement speci fi -
cation (see Table 2)
Comment Frequency |UN Nc / Ns. VWher e: The coments within
_ t he requi renents
Nc = n. of comrent
sent ences. dpcunent reduce the
risk of
m sinterpretations

Directives UN Nd / Ns. [Directives nmake the

Frequency VWher e: docunent nor e

Nd = n. of directives|understandable.
(see Tabl e 2).
Directives are words or
phrases t hat i ndi cate
exanpl es or ot her
illustrative information

Mul tiplicity UN Nrmul / Ns. Where: | The presence of
Nmul = n. of sentences|multiple sent ences
havi ng nore than one main|makes t he
verb or nmore than one|requirenents docunent
di rect or indirect |more difficult to be
conpl ement that specifies|read and under st ood
its subject.

Vagueness AM NVag / Ns. Where: [The presence of vague
NVag = n. of sentences|sentences i ncreases
including words holding|the | evel of
i nherent vagueness, i.e. |anbiguity of t he
wor ds havi ng a non|requirements docunent
uni quel y quantifiable
neani ng.

Subj ectivity AM Nsub / Ns. Wher e: | The presence of
Nsub = n. of sentences|subjective sent ences
referrings to personal |increases the |evel
opi ni ons or feelings. of anbiguity of the

docunent

Optionality AM Nopt / Ns. Wher e: | The presence of
Nopt = n. of sentences|optional sent ences
containing an optional [increases the |evel
part of anbiguity of the

docunent

Weakness AM Nwea / Ns. Where: | The presence of weak
Nwea = n. of sentences|sentences i ncreases
containing a weak nmin|the | evel of
verb. anbi guity of t he

r oo o nt 2| it

page 87

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

requi renents docunent

Under speci fication|SC Nusp / Ns. VWhere: | The presence of
Nusp = n. of sentences|underspecification
havi ng t he subj ect | makes t he
cont ai ni ng a word|requirenments docunent
identifying a class of|not fully specified
obj ects wi t hout a

specifier of this class.

Implicity UN Ni mp / Ns. VWhere: | The presence of
Nimp = n. of sentences|inplicit sent ences
havi ng t he subj ect | makes t he
generic rat her t han|requirenents docunent
speci fic. prone to be

m sunder st ood

Under -ref erence CO Nur e / Ns. [The presence of these

Wher e: references introduces
Nure = n. of sentences]|inconsistencies in
cont ai ni ng explicit|the requirenents
references to: | docunent
-unidentified sent ences
of t he requirements
docunent itself;
- docunent s not
referenced into t he
requi renents docunent
itself

- entities not defined
nor described into the

requi renents docunent
itself.

Unexpl ai nati on UN Nune / Ns. Were: | The presence of
Nune = n. of sentences|acronyns whi ch are
containing acronyns not |not explicitly and
explicitly and conpl etel y|not conpl etely
expl ai ned within the|explained nmmkes the
requirenents docunent |docunent prone to be
itself. m sunder st ood

Table 6.3 Achievable metrics

6.5 A Case Study

As a case study, a requirements document, taken from an industrial project has been
considered. The document has been analyzed with QUARS, ARM and SyTwo. This
document, provided by Nokia, describes the functional requirements for the user

page 88

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

interface of a new feature (FM radio player) to be included in a line of mobile
terminals. This feature was meant to provide the possibility to use a phone as a built-
in stereo frequency modulation (FM) radio. The first product to include this feature
has been the Nokia M obile Phone model 8310.

The document analysed is composed of about one hundred Use Cases. The outcomes
in terms of the proposed metricsarereported in Table 6.4. The information about the
quality of the analysed document provided by these metrics may be summarized as
follows.

Observing the values obtained from the calculation of the metrics 1, 5and 7, it can be
observed that the terms used in the requirements were not properly selected. In the
following some samples of defective sentences related to these metrics taken from the
analysed Use Cases are proveded:

This procedure is performed by the user to enter the frequency (Implicit sentence:
indicator this).

In addition, the user isnaturally ableto adjust the volume (Vague sentence: indicator
naturally)

The user can switch the radio on by selecting Radi o from the menu (Under-specified
sentence: indicator menu).

The word “menu” has been set as under-specified by the tool users. However, while
generally the sentence must be recognized as under-specified, and it is good to have its
under-specification pointed out by the tool, in this particular case the detection of the
defect may not trigger any improvement actions on the document. Thisis because the
user interface configuration and styling is done independently of (and after)
component development and integration. Therefore, it may be a methodological
choice to leave this defect unsolved until the very end of the software integration
phase.

Metrics Nanme Ref erence val ues Act ual Used t ool
val ue
1 |Vagueness The closer it is to O thel4 QUARS/ Sy Two

[ARM2. 1

nor e unanbi guous t he

vAamiil v At A AAaAaiiea HEPN

page 89

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

requi renents docunent is

2 |Subjectivity The closer it is to O the|O QUARS/ SyTwo
nor e unamnbi guous t he
requi renents docunent is

3 |Optionality The closer it is to 0 the|O QUARS
nor e unamnbi guous t he
requi renents docunent is

4 | Weakness The closer it is to 0 the|O QUARS/ SyTwo/
nor e unanbi guous t he ARMR. 1
requi renents docunent is
5 | Under- The closer it is to O the|19 QUARS
speci fication better speci fied t he

requi renents docunent is

6 |Under-reference The closer it is to O the|O QUARS
nor e consi stent t he
requi renents docunent is

7 |lmplicity The closer it is to 0 the|12 QUARS
nor e under st andabl e t he
requi renents docunent is

8 | Unexpl ai nation The closer it is to O the|O QUARS
nor e under st andabl e t he
requi renents docunent is

9 | Col eman- Li au Typically ranged from 0,4|17.6 Sy Two
Formul a (easy) to 16,3 (difficult)

10 | Aver age nunber [Sinple sentences have afl4,82 QUARS
of wor ds per | nunmber of words less than
sent ence 10 - 12

11 | Conti nuance Optimal range: 0.1 — 0.2 0 ARM 2.1
I ndex

12 | Comment Optimal range: 0.1 — 0.3 0, 04 QUARS
Frequency

13 |Directives Optimal range: 0.1 — 0.3 0, 08 ARM 2.1
Frequency

14 | Ml tiplicity The closer it is to O the(12 QUARS

nor e under st andabl e t he
requi renents docunent is

Table 6.4 Metricsvalues

page 90

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

Thevalues of metrics 9, 10 and 14 indicate that the sentences of the document need to
be simplified in order to decrease the risk to be misinterpreted. Below a sample of a
multiple sentence taken again from the analysed document:

The phone displays the confirmation note Frequency set and goes to the FM Radio
state displaying the selected frequency with the channel number and name if a
channel in that frequency has already been saved earlier.

To avoid the problems associated with the multiplicity this sentence should be split in
mor e than one simpler sentence.

The values of metrics 12 and 13 seem to indicate that the document is poor of extra
information that might make it more understandable. However, the reference values
for these two metrics are derived from the good practices of NL requirements, and
they could be not fully significant for Use Case requirements, because these kinds of
requirements specifications are inherently mor e descriptive.

6.6 A Relation-based Appraoch for the Analysis of Use
Cases

In this section it is discussed how the application of NL based techniques can provide
an effective support to deal with Consistency and Completeness issues of
requirements expressed by means of Use Cases.

To effectively address the Consistency and Completeness aspects of requirements
specifications, we should resort to their formalization [36], [110]. Indeed formal
methods are a powerful mean to evaluate requirements since they provide a
theoretical framework in which their correctness can be verified. Formal methods
require, however, a specific skill and this increases their application cost preventing
their wide application in industries. Here it has been followed a light-weight
application of formal reasoning by means of a study on the relations between actors,
with the purpose of facing consistency and completeness problems in the
requirements documents.

page 91

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

We can observethat a system specification written asUse Cases isstructured in three
semantic layers:

1) the specification is, at its higher level, composed of a set of Use Cases plus other
artefacts and models; each Use Case defines a goal for a primary actor and some
secondary actors, establishing relations among actors.

2) in each Use Case the scenario and its extensions play a major role in specifying the
system behaviour; that is they define the sequential control flow, with exceptions
defined by the extensions.

3) each scenario or extension sentence has its internal, linguistic structure, which
defines a relation among (primary and secondary) actors and the operations they
perform or take part into.

It ison the third layer that the linguistic analysis has an immediate application, but
the structure of the previous layers gives important information as well. Our aim is
the definition of a relational structure combining both the results of the linguistic
analysis on such sentences and the structureimplied by the other layers.

The methods under investigation strictly rely on the structure of the Use Cases and
are based on the “functional” relations, i.e. the relations or dependencies between
actorsof a Use Case-based description of a system.

The methods and tools presented in this chapter also rely on the structure of the Use
Cases and are based on the study of the relations between actors of Use Case-based
description of a system. The method described in this chapter can be placed between a
“lightweight” parsing [84] and a “full-fledged NL” approach [81] and aims at
demonstrating that the extraction of “semantic” information for atext is possible also
without using tools and methods too heavy.

The relations of interest are the “functional” relations, i.e. the relations or
dependencies between two actors. These relations can be determined looking at the
syntactical structure of each sentence of the Use Case scenarios defining a set of items
(quadruples) where each primary actor (the subject of the sentence) has been put in
relation with the secondary actor (the complement) according to the verb. The
canonical form of theserelationsis:

page 92

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

(1) (Actor_1, verb_i, Actor_2, Use Case id).

Each item compliant with (1.) describes an occurrence of a functional relation
between two actors established by the verb and indicates the Use Case in which this
relation occurs.

The functional relations between two actors, in the form (1.), can be extended, by
transitivity, to other actors when two items with the following form exist: (Ai, vi, A,
UCx) and (Aj, vz, Ax, UCy). In thisway, hence, an indirect functional relation between
the actor A and the actor A is also established by transitivity. Starting from this
consideration, chains joining different actors can be built, where each item (Ai, vx, A
,UCx) of the chain issuch that the previousitem hasthe form (Ax, vy, A, UCy) and the
following has the form (Aj, vz, An, UC.).

The collection of all the items derivable from a Use Case based requirements
document is said Relations core. The relations between actors that can be extracted
directly by the NL description.

We can derive specific, non-elementary, relations from the relations core. In the
following some definitions and define some properties based on the elementary
relations (1.) are provided.

Theignoresrelation, denoted by A~B, holdsif no relation (A, verb i, B, Use Case id)
exists.

The relation (1.) between actors can be used to build the Relation Graph. The nodes
of this graph represent the actors and an oriented arc connecting two nodes (A and B)
indicatesthat A drives B. Two nodes are adjacent if an arc from A to B exists. A path
from the node A to the node B on this graph is a sequence of adjacent nodes in a
graph starting from the node A and arriving to the node B. On the basis of the
Relations graph some further relations between actors can be defined:

Theisconnected to relation, denoted by A => B, holdsif at least one path from A to B
existson the graph.

The is chief relation, denoted by A =>> B, holds if B ignores A and A is connected to
B.

page 93

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

The chief graph (derived from the chief relation) is an acyclic graph composed of
nodes (the actors) and oriented arcs connecting two actors, an arc originating from
thenode A and arriving in the node B meansthat A ischief of B.

Nodes of the chief graph having no incoming arcs are said leader nodes and nodes
having no out arc are said executors nodes. An example of Relation and Chief graphs
areprovided in Figure 6.2.

The availability of the functional relations and of the graphs derived from them
enables the capturing of some semantic information on the system to be described. In
particular, this information can be used to support the detection of critical points (in
terms of consistency and completeness) in the interactions between different actors.
These critical points can be revealed by analysing the set of derived direct and
indirect relations.

The derivation of the relations core and the consequent construction of the relation
chains, relations graph and chief graph, can be supported by automatic tools based on
NL processing techniques.

In fact, the basic relations (1.) are detectable by using a syntactical parser able to
identify the different components of a NL sentence. To our purpose, the key
components to be identified are the subject(s), the verb and the complement(s)
associated to the verb. Once this information is achieved, it is possible to define the
relations and to build a data base containing the relations core derivable from the
collection of Use Cases under analysis.

6.6.1 An example of Derivation of Relations

In this section, an application of the relational approach to a sample Use Case
document is presented, with the aim to clarify the concepts discussed above. The
example presented in this section is derived, with few changes, from a sample System
Requirements Document available on the web at the Cockburn’s book [14], which is
provided in Appendix 1. This document, describing a Purchase Request Tracking
System, has the purpose to provide the functional requirements of a basic system for
the official Buyers of the Cmpany, to track what they have ordered from Vendors
against what they have been delivered. The documents is organised as a set of Use
Cases.

page 94

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

The primary actors of thisdocument are:

- Approver: typically the requestor’s manager, who must approve the request.
- Authorizer: person who validates the signature from the Vendor.

- Buyer: person who manages the order, talking with the Vendor.

- Vendor: person or company who sells and delivers goods.

- Requestor: person putting in a request to buy something.

- Recelver: takes care of thearriving deliveries

The document contains fifteen Use Cases describing the behaviour of the system. It
has been dightly modified by adding two new Use Cases to make it more precise and
suitable for the analysis. The Use Cases included into the document are compliant
with the Cockburn’s style, and they include several data such as, for example,
Preconditions, Postconditions, Trigger, Extensions, etc. Each Use Case has been
simplified by reducing the information associated to them. In particular, only the
Primary Actor, the statement of the Goal and the description of the Scenario have
been taken into account.

These data represent the minimum set of information necessary to save the essential
meaning of the Use Case. In Appendix A, the set of the simplified Use Case used for
the experiment is shown.

The outcomes of the application of the relational approach to the smplified Use Cases
of the case study are summarized in a collection of relationsitems between actorsand
a set of relations chainsderived from therelationsitems.

For simplicity let usidentify the actors of the case study by a letter:

A. Authorizer
B. Approver
C. Requestor

page 95

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

D. Buyer
E. Vendor
F. Receiver

Figure 2. contains the relations derived from the case study where each actor is
identified by the corresponding letter along with the corresponding relation graph
and chief graph.

In the following a possible set of relations chains starting from the relation (A, notify,
B, UC3), isprovided:

- (A notify, B, UC3), (B, send, C, UX), (C send, B, UC7).
- (A notify, B, UC3), (B, send, C, UC6), (C, send, B, UCB).
- (A notify, B, UC3), (B, send, C, UC9), (C send, B, UC7).
- (A notify, B, UC3), (B, send, C, UC), (C send, B, UCB).
- (A notify, B, UX3), (B, send, A UCl2).

- (A notify, B, UC3), (B, send, A UCl2), (A change, B,
Uc3) .

- (A notify, B, UC3), (B, send, A UCl2), (A send, C
uco) .

- (A notify, B, UC), (B, send, A UCl2), (A send, D,
UCL16) .

- (A notify, B, UC), (B, send, A UCl2), (A send, C
uc9), (C send, B, UC7).

- (A notify, B, UC), (B, send, A UCl2), (A send, C
uc9), (C send, B, UCB).

- (A notify, B, UC), (B, send, A UCl2), (A, send, D,
UCli6), (D, change, E, UC4).

- (A notify, B, UC), (B, send, A UCl2), (A send, D
UC16), (D, send, C, UC9).

page 96

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

- (A notify, B, UC), (B, send, A UCl2), (A, send, D,
UCi6), (D, send, C, UC), (C, send, B, UC7)

- (A notify, B, UC), (B, send, A UCl2), (A, send, D,
Ucle), (D, send, C, UC9), (C send, B, UC8).

Thetablein figure 6.2 also shows that an ignorerelation between C and A occurs, and
it meansthat C doesn’t influence directly the A’s behaviour.

It isto be noted that the tool QUARS (see chapter 5) can be used to derive the basic
relations and then the relation chains and the different graphs can be built from
them.

Primay verb Secondary| UC
Actor Actor
change
notify
notify
change
send
send
send
send
send
send
send
return
send
send
notify
send 16
send 17

Figure 6.2 Example of relations between actors and related graphs

Relation Graph

Chief Graph

OO O [0[N[D o]~ [W|jw|w

11
12
14
15

M MO@OoIE@Oo®@OOPE> P>
o O OmEmoojo|m|e|o|@|m(w (w (o

6.7 Applyingthe Relational Approach

In this section possible applications and developments of the relational approach to
the Use Casebased requirements engineering is discussed.

Since relations indicate the presence of a verb in the Use Case relating two actors,
they often indicate possible interactions between actors. Hence, relations chains can
be interpreted as interaction schemata. Walkthroughs of these interaction schemata

page 97

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

may be performed in search of undesired, inconsistent and incomplete dynamic
behavior of the system.

These schemata may also form the basis for a formal analysis of interactions, which,
however, are not addressed in this context.

Walkthroughs of interaction schemata may be aimed at detecting relation chains
containing loops, because loops indicate a more complex kind of interaction, and may
point to a possible synchronization problem (such as a deadlock). It ispossible, in this
way, to point out some potential synchronization problemsin a sequence of actions.

Let us consider, for instance, the example of section 4.2. In this case, the relation
chain: (A, notify, B, UC3),(B, send, C, UC6), (C, send, B, UCS8), presenting a loop can
be detected. If we carefully walk through this chain, and we represent this
Inter actions sequence on a time scale (see figure 6.3), it is possible to understand that
some potential synchronization problems may occur .

Problem:
Who has to manage the R1 s refusal ?
A

R1 sends AP1 (he doesn’'t know that AP1 is no

5777 more his Approver) the request change's refusal

AUL1 notifies AP1 that he shall not approve the

477 R1’srequests anymore

t3 —— APl sendsR1 the changed request

t2—— APl decidesto changeaR1' s request

Authorizer AU1 notifies Approver AP1 that he
11 shall approve the Requestor R1's requests

Timescale
Figure 6.3 I nteractions sequence

Infact, if the Approver B1 sendsthe changed request to the Requestor C1 and, before
that C1 tells B1 that this change is refused, Authorizer Al changes the authorization
to B1 and makes B2 the Approver of C1, then who should manage C1'srefusal?

page 98

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

In this case, it is possible to detect an inconsistency in the requirements due to an
incomplete specification of the requirements because the notification of the changed
Approver isnot sent also to the associated Requestors. Thiskind of problems, that are
hidden if we consider only the Use Cases-based requirements document, may be easily
detected by using the relations chains.

Another possibility of exploiting this information isto point out those pairs of actors
that have an higher number of interactions than the others. The pairsthat, in the case
study, have the highest number of different interactions are Approver-Requestor (5
interactions), Authorizer-Approver (4 interactions) and Buyer-Requestor (3
interactions). The indication that can be derived from these data is that the
interactions between these actors are at the core of the functionality of the system,
and therefore should be analysed in more detail in order to point at possible
problems. Also, this information can give an indication to which parts of the system
should be stressed at testing time.

The semantic information that can be extracted from the derived relations and graphs
can help the analysis of correctness and completeness of the requirements by
detecting some gaps in the specification of Use Cases.

In fact, the graphs defined above (and in particular the chief graph) allow some
interesting considerations to be made. The chief relation is not to be intended as
determining a hierarchy in terms of the importance of the role played by the actors.
Thisrelation and the information derivable from the graph is a semantic information
that allowsto enlighten the influence of an actor on the others.

In particular, if anode A of the chief graph is connected with the node B by an arc (A,
B), then it can be argued that the behaviour of B doesn’t influence that of A. This
kind of semantic information about the actors, that cannot be directly derived from
the set of Use Cases, can play a relevant role for the analysis. In particular, it is
possibleto easily detect lacksin the relational structure of the requirements.

In the example shown above, the relation F =>> D occurs. This occurrence enlightens
a gap in the specifications because the buyer should have the capability of having a
relation with the receiver (for instance, to ask the status of an on-going acquisition).

page 99

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

The relational approach can be oriented to achieve a guidance for systematic
construction of the Use Case requirements documents. In fact, building the relations
graphs in paralld with the definition of the Use Cases impels a continuing series of
walkthroughs to check the part of the relations graph completed so far and examine
how remaining relations should be added to the graphs themselves.

We wish, in the end to point at another application of the relational approach, which
spans outside the context of Use Cases. A concept that has gained importance in the
last years, especially in the telecommunication field, is the concept of feature. A
feature is a capability of a system which provides value to the users, but is conceived
as separate from the other features provided by a system to its users. However, at the
system level, features can interact in a complex manner (a problem often referred as
“Feature interaction”), so they cannot be treated as separate in the development of
the system, and especially in the requirements document. A feature may even
prevents other system activities: for instance, in a mobile handset user interface the
“keyguard” feature prevents almost all other user-originated activities (but not
incoming call handling).

The description of a feature by Use Cases can be trivial (in the keyguard example the
scenario might be composed simply of the “ set the keyguard on” activity) and the Use
Cases may be not ableto represent how the system behaviour is affected by a feature.
The knowledge of the influence of the features on the UCs can be important mainly
for the testing of the system because the Use Cases are not enough for representing
the consequences of the features on the functionalities they describe.

For thisreason the relational approach to the Use Case analysis can be of interest to
identify those Use Cases affected by a feature. For example the Use Cases affected by
the keyguard feature can be detected because they have in their scenario a sentence
like“User digit akey”. These UC areinfluenced in case of the keyguard is set on.

6.9 Conclusionsand Future Works

Use Cases allow functional requirements to be captured in an effective way by means
of scenarios. Developer s have always used typical scenarios (often in graphical form)
in order to understand what the requirements of a system are and how a system

page 100

Chapter 6. “ Application of Linguistic Techniquesto Use Case Analysis”

works; Use Cases provide a means to rigorously express requirements along these
lines.

In this chapter an approach to the analysis of Use Case requirements documents
based on the relations between the actors is presented. Starting from the smple
relation between two actors derivable from a scenario sentence, by means of NL
parsing tools, some more complex, derived relations have been defined. These
relations are able to provide semantic information on the content of a requirements
document, supporting the completeness and consistency analysis. The semantic
information on the Use Case requirements documents that can be captured with this
approach is only partial, w.r.t. the semantic of the whole requirements. Anyway, this
information is able to provide a concrete support for the analysis. The use of the
semantic information derivable with the relation-based approach has been discussed
in this chapter. In particular, the knowledge of the functional relations between actors
expressed by the Use Cases allows to perform walkthroughs in the relation core to
detect possible gaps in terms of consistency and completeness. Moreover, a guidance
for a systematic construction of the Use Cases requirements document can be
obtained by the parallel development of graphs and schemata representing the
relations.

A related work to ours is that reported in [94], in which more sophisticated NL
techniques are used to extract concept lattices out of Use Cases, which offer a richer
information to the analysis. Our approach use smpler, low cost NL techniques to
extract useful information: it would be interesting to see whether the benefits
obtained by heavier NL techniques balance their higher costs.

The relation-based approach to the analysis of Use Cases is a promising research
direction because it can be used as a mean to bridge the gap between the use of the
informal NL descriptions typical of requirements documents, and the more formal
artefacts typical of later stages of the development process. In particular, the study of
the relations between actors, though starting from a light formalism as the Use Cases
are, can provide enough information to move towards the application of formal
methods with the support of automatic tools and in a user friendly way. It is planned
to investigate at this regard the annotation of the relation graph with pre-conditions
and post-condition in order to perform simulations of the system and perform a more
refined analysis.

page 101

Chapter 6. “Application of Linguistic Techniquesto Use Case Analysis”

Another subject that is under investigation is the extraction of test cases from Use
Case scenarios. Also in this case, extracting information from the textual descriptions

in the form of relations between actors helpsin the definition of test cases covering the
most intricate interaction schemes.

page 102

Chapter 6. “Application of Linguistic Techniqguesto Use Case Analysis”

page 103

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

7. Representation and Veification of Use
Cases for Product Lines

Capturing the variations characterizing the set of products belonging to a product line
is a key issue for the requirements engineering of this development philosophy. This
chapter describes a way to extend the well-known Use Case formalism in order to
make possible the representation of these variations. The proposed formalism allows
the representation of the constraints the products beloning to a product line shall
respect and provides a way to verify the conformance of a set of related Use Case.
This paradigm has been defined in the perspective to make them suitable for an
automatic representation and verification.

7.1 Introduction

The Product lines and Use Cases ar e two important and well-established paradigms of
modern industrial development. [2,8,10] This introduction briefly describes them,
underlining the reasons why they are becoming so popular.

The need for quality, easy reuse, minimization of costs and times of development of
new products lead to the adoption of the Product Line (also known as Product Family)
approach. A product line can be seen as a set of products with common characteristics

page 104

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

which link them together. While developing a product line it is possible to move from
the family level (which represents those common features) to the product level (which
represents the single product, with all its particular characteristics) by an
instantiation process, and on the contrary from the product level to the family level by
an abstraction process.

One of the main reasons to use a Product Line approach is reuse, which extends far
beyond mere code reuse. Each single product can be developed following the analysis,
design, coding, planning and testing efforts already done for previous products of the
same Product Line. The advantages of reuse come however at some cost:

The architecture of the product line provides a template for every single product of
the family which will be developed: this means that investing a good amount of energy
designing a solid yet flexible architecture will lead to a ssimpler and less error-prone
development of the company’s products. However, this also means that the
architecture needs to be open to deal with issues such as variabilities [7] which
determine additional constraints, costs and efforts.

Thereisa need of tools and processesto help managing variation and making changes
to the products: these kinds of tools and processes need to be more solid than those
used for single products, thus they are more expensive and complex. However, the
tools can be used for every product of the family, and the initial complexity later
favoursan easy development and reuse.

Common software components can and must be developed with higher level of
quality, because they are used in every single product. This implies a reduction of
costs and time for the development of many products, but it also means that common
components must be robust and applicable across a wide range of product contexts,
thusraising their complexity and development costs.

Workers play a role in many products at a time instead that in only one. This
enhances personnel mobility among different projects and rises productivity, but in
order to reach these advantages, training is needed, which implies initial additional
COsts.

Due to the initial costs needed to adopt a Product Line approach, some companies
have been reluctant. However, it was widely documented how the advantages of using
Product lines largely overcome the disadvantages and the initial effort needed to

page 105

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

change the organization of the work inside a company. Also, a reactive, more relaxed
product line approach can be used for those companies which cannot afford the risks
and costs of a mor e proactive approach.

Use cases [3] are an easy, hatural way to express functional requirements of a system.
Their popularity derivesfrom the smplicity of their approach: a well structured, easy
to understand document written in controlled natural language.

Use cases are widely used in modern industrial development, so it seems natural to try
to find an effective way to combine them with the Product Line paradigm. While use
cases are already used in this context, the real challenge is to be able to semi-
automatize them in order to instantiate single products Use Cases from more general
ones.

We have proposed the notation of Product Line Use Cases (PLUC) [1], [6], a version
of the notation of Cockburn’s use cases [4] aimed at express requirements of product
lines. Cockburn’s use cases allow the functional requirements of a system to be
described, by imposing a specific structure on requirements documents, which
separ ates the various cases in which the system can be used by external actors, and for
each case defines scenarios of correct and incorrect usage. The PLUC notation is
based on structuring the use cases as having two levels. the product line level and the
product level. In this way product-related use cases should be derived from the
product line-related use cases by an instantiation process.

In this chapter it described how on this notation has been eleborated by adding the
possibility of expressing constraints over the product-related use cases that can be
derived from a product line use case. The constraints are expressed as Boolean
conditions associated to the variability tags. Using this notation, it is possible to
expressin the requirements document of the product line not only the possible variant
characteristics that can differentiate products of the same family, but also which
combinations of variant characteristicsare “legal” and which are not.

This approach is based on the proposal by Mannion [11] that addresses general
product line model requirements. he presents a way to describe the relationships
between product line requirements, in order to formally analyze them and to extract
information about the internal consistency of the requirements (i.e.: they provide a
valid template for at least one single product) and of the single products derived from
the product line model (i.e.: they satify all product line requirements constraints).

page 106

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

A similar approach has been adopted and it has been applied to the PLUCs, by
transforming the described relationships between PL requirements into relationships
between PLUC tags and between different PLUCSs, and the set of basic relationships
with some composed new ones has been extended.

The information added to PLUC provides on one hand the ability of automatically
checking whether a product-related use case is conformant to the family
requirements; on the other hand, the adoption of constraint-solving techniques may
even allow for automatic generation of product-specific use cases from the family
level use cases document..

7.2 PLUC Notation

Use cases are a way to express functional requirements of a system. A use case defines
a goal-oriented set of interactions between external actors and the system under
consideration. Actors are parties outside the system that interact with the system. An
actor may be a class of users, roles users can play, or other systems. There are two
kinds of actors: primary actors and secondary actors.

A primary actor isone having a goal requiring the assistance of the system.
A secondary actor isone from which the system needs assistance.

A use caseisinitiated by a primary actor to achieve a goal, and completes successfully
when that goal is satisfied. It describes the sequence of interactions between actors
and the system necessary to accomplish the task which will lead to the goal. It also
includes possible alternative sequences which can arise due to errors, alternative
paths, etc. The system is often treated as a black box.

In [1] the classical use case definition given by Cockburn in [4] to product lines has
been extended, adding variability to this formalism. The result are Product Line Use
Cases (PLUC), which are essentially use case which allow variability through the use
of special tags, in order to derive single Product Use Cases (PUC).

page 107

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

In PLUCs variations are implicitly enclosed into the components of the use cases. The
variations are then represented by tags that indicate those parts of the product line
requirements that need to be instantiated for a specific product in a product-related
document. In figure2 a UML description of a PLUC is provided.

1
FamilyRegqDoc Oﬁ
*

FamilyUseCase
Goal_text : string
PrimaryActor : string
Scenario_text : string
Precondition_text : string
Trigger text : stirng

ProductRegDoc

UnchangedProductUseCase I nstantiatedProductUseCase
Goal_text : string InstantiatedGoal_text : string
PrimaryActor : string InstantiatedPrimaryActor : string
Scenario_text : string InstantiatedScenario_text : string
Precondition_text : string InstantiatedPrecondition_text : string
Trigger_text : stirng InstantiatedTrigger_text : string

Figure 7.1: UML description of PLUC

Product line requirements can be considered, in general, as composed of a constant
and a variable part [1, 9]. The constant part includes all those requirements dealing
with features or functions common to all the productsin the product line and, for this
reason, do not need to be modified. The variable part represents those aspectsthat can
be changed to differentiate a product from another. A possible extension of use cases
to express variability during requirements engineering of Product Lines is based on
structuring the use cases as having two levels: the product line level and the product
level. In this way, use cases for a specific product are derived from the generic use
cases by an instantiation process.

For the generic use cases, the variations are represented by tags that indicate those
parts of the product line requirements that need to be instantiated for a specific
product in a product-specific document. For doing that, tags are included into the use
case scenarios (both main scenario and extensions) in order to identify and specify
variations. Thetags can be of three kinds:

page 108

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

Alternative: they express the possibility to instantiate the requirement by selecting an
instance among a predefined set of possible choices, each of them depending on the
occur rence of a condition;

Parametric: their instantiation is connected to the actual value of a parameter in the
requirementsfor the specific product;

Optional: their instantiation can be done by selecting indifferently among a set of
values, which are optional featuresfor a derived product.

The instantiation of these types of variabilities will lead to a set of different product-
related use cases.

This extension of the use cases representation is called PLUC, and two examples are
provided in Figure 3.The example in Figure 3 describes the behaviour of the phones
belonging to the family when a game is played by the user. In both the examples the
variation points are represented by means of tags according to the PLUC formalism.

A PLUC describes the general behaviour which all family members (PUCs) should
have during the accomplishment of a specific task: it acts like a template from which
is possible to derive single PUCs by the instantiation process of its tags, which can be
of many different types, asit will be detailed in the section 7.3.

7.3 PUC derivation from PLUC

In this section the approach to formalize variabilities for specifying the PLUC and a
way to effectively verify the compliance of a PUC to the family constraints are
described.

7.3.1 Specification of the PLUC

The specification of the tags into the PLUC is a critical step for making the PLUC
approach effective in practice. The definition of a method to formalize the three kinds
of tags described in Section 2 (Alternative, Optional, and Parametric) is a necessary
preliminary step for the verification of the compliance of a PUC to the family

page 109

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

congtraints. In fact, the constraints that characterize the products belonging to a
family can be expressed in terms of the relations among the different tags indicating
the variation pointsin a PLUC.

To express the variability tags of the PLUCs in a formal way we have to take into
account all the possible situations which can arise during the writing of a PLUC,
paying particular attention to the variable tags of the PLUC itself.

First of all, we have to define the formalism to be used for expressing those
relationships: propositional calculus is a smple and effective way to describe them at
high level, so we will use propositional connectives between PLUCs components.
According to this formalism the basic symbols used in the following formulas are ‘||’
(the logical OR operator), ‘& &’ (the logical AND operator) , ‘==" (the ‘equal to’
logical operator) and ‘~’ (the logical NOT operator). The operands of the expressions
representing the different tags included in a PLUC are the variabilities to be
instantiated when moving to a PUC.

A formalism to describe the essential set of tagsis described in the following. For each
type of tag a logical expression ableto captureits meaning isdescribed:

The alternative tag indicates mutual excluson, which means that during the
instantiation process one and only one from a set of different values can be assigned to
thetag. Thistype of relationship can be expressed with alogical Exclusiveor.

The optional tag represents a subset of a PLUC steps that can or cannot be present in
an ingtantiated PUC, depending of the value of some other instantiated tag (i.e. if a
mobile phone type contains game C, the PUC called " starting a game" will have a step
"print GAME C on screen”, otherwise this step will not be present in the PUC). The
correct propositional connective to be used for this type of relationship is Bi-
conditional:

abi-cond b iff

[(a==true)& & (b==true)]||[(a==false)& & (b==false)].

The parametric tag indicates that some subsets of PLUCs steps can be chosen in a way
that at least one of them will be chosen to beinserted in a specific PUC, but more than

page 110

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

one is allowed to be chosen (i.e. there can be more than a way to start a game in a
mobile phone interface, and at least one must be present). This relationship is
modelled with alogical or.

It is possible to define some more complex and structured relationships, which can be
used to mor e easily describe some common situations that can be found when a PLUC
isread through.

As we can have tagged steps which have to be present if another tag has a particular
value, we can also have tagged steps which have not to be present if another tag
assumes a particular value. Thisis simply the opposite of the logical Bi-conditional, it
iscalled logical Excludes and it is a mean to include logical not into the set of logical
predicates. given two tagged steps a and b, the following relationship can be
established:

aexcludesb iff not[a and b] or [(not @) and (not b)]

Sometimes we can choose zero or more steps from a subset of PLUC steps. This
situation is modelled by the use of logical Bi-conditional and logical or at the same
time: given a tagged step a and a set of tagged steps (b_1, ... , b_n), we can establish
the following relationship:

aexcludes(b_1, ..., b _n)iff

[a and b_1] or [(not a) and (not b_1)] or ..or [a and b_n] or
[(not a) and (not b_n)].

It is possible to define other new logical relationships, simply using the basic ones
presented.

The constraints that define the borders and the characteristics of a family and that
must drive the specification of a PUC are expressed by means of the formalization of
the tags as seen above. These tags may be considered as the way to represent the
conditions to be satisfied in order to make a variability solution not contradictory with
the family characteristics.

7.3.2 Derivation and Verification of aPUC

page 111

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

In this section the instantiation of the PLUC tags to derive a PUC and the method to
be used for the verification of the compliance of the PUC to the family constraints set
up in thetag description are discussed.

The process of instantiating tags consists of assigning an actual value to each variable
appearing in the tag expressions of PLUCs of interest. The instantiation of the tags
expressing the variabilities of the family corresponds to the definition of the
compulsory characteristics of the PUC we are deriving. In other words, the
instantiation of the tags defines the requirements of a particular product belonging to
the family.

A PLUC consists in a series of steps in which can be found tags indicating variation
points from which different PUCs can be instantiated; the most common relationship
is the relation between subsequent steps, such as those which form the main success
scenario. Logical and can be used to represent this kind of relationship, because every
single step must be evaluated trueto allow the entire PLUC to be evaluated t r ue.

A PUC is compliant to the family if, evaluating the tags expressons with the
instantiation of variables given for that PLUC, all the tags are evaluated true. For
doing that it sufficient the logical operator and. Otherwise, the PUC cannot be
accepted as belonging to the family: an inconsistent PUC has been identified.

if (VO tag&& V1 tag& & ... && Vn_tag)

then ‘PUC is compliant’

else ‘PUC isnot compliant’

From the simplefinal logical expressionsto be used to verify the compliance of a PUC
to the family constraints those components having value false can be identified, and
they arethe single points deter mining the non compliance. Then it issimpleto identify
those instantiation to be modified to achieve the compliance to the family constraints.

It is easy to see that this expression evaluates to false: this means that a PUC with the
variabilities solved with the above values does not describe any valid product of the
family.

page 112

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

The structure of the tags allows those variability instantiations to be easily identified
that determined the non-compliance of the derived PUC with respect to the PLUC. In
thiscase the lack of complianceis dueto the erroneousinstantiation of V4.

7.4 Conclusions

In this chapter a methodology to express, in a formal way, requirements of products
belonging to a product line is presented. It relies on a formalism allowing the
representation of variabilities at the family level, and the instantiation of them in
order to move to a single product. The instantiation of the tags (that can assume
different values from a predefined range) in a PLUC-based requirements document
determines the identification of the Use-Case-based requirements of a particular
product (PUCs) belonging to the family with a configuration of the tags values.

Not all the possible instantiations of tags actually represent valid PUC-based
requirements, because they do no satisfy given family constraints. The proposed
method allows the formalization of these family constraints and the verification of the
compliance to those constraints of a PUC-based requirements document.

One of the principal strenghts of the methodology described in this paper isthe ease of
inserting changes in family requirements expressed by means of PLUCs. In fact, if a
tag is modified, because of the parametric nature of the approach, the effects of the
modification affect only its definition and not its individual occurrences over the
PLUCs. Moreover, if some rew tags have to be added, the effort for doing that is
mainly concentrated on the corresponding formal definition, and, once the new tag
formula has been defined, the updating of the family requirements simply consists in
theinclusion of the tag at the appropriate place of the affected PLUCs.

It isinteresting to note how the described methodology can be used for supporting the
impact analysis of possible new variabilities on the existing (or planned) products
belonging to the family. When a new variable feature is to be added in the product
ling, it is of interest to evaluate its impact on the whole set of the family products. In
particular, for evaluating if the new variability will determine incompatibility with
some of the existing or planned products of the family a preliminary verification can
be made adopting the verification procedure shown in section 3.2.

page 113

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

This approach is promising due to its simplicity and effectiveness for being
implemented in an automatic way. In fact, it gives the advantage of an explicit
identification of the variability points in a product line requirements document by
means of thetags.

This characteristic may strongly facilitate the application of this approach in the
industry because it allows the use of automatic tools for the identification of
variabilities. In fact, suitable languages for expressing the different types of tags and
products for make the verification automatic exist and they can be put together for
building an environment where the proposed methodology can be implemented. That
will be the object of the next steps our research activity will do. Indeed, the extention
of the QUARS tool [5] with the aim to make it able to cover also the analysis of Use
Cases and the automatic guided derivation of PUC belonging to the family is planned.

page 114

Chapter 7. “ Representation and Verification of Use Casesfor Product Lines’

page 115

Chapter 8. “Conclusions’

8. Conclusions

In this PhD. thesis techniques for the analysis of NL requirements are defined and
their implementation is described. The work made in my PhD. cour se has been driven
by a preliminary study of the state of the practice of the requirements process in the
softwar e industry.

In practice, tools and techniques for managing the requirements exist. They are
mainly oriented to provide a framework where the requirements are defined, their
configuration is managed and the distribution among the affected parties is
controlled. There is a scarcity of automatic support for the quality analysis of NL
requirements. Ambiguity analysis and consistency and completeness verification are
activities usually made by single or multiple reviewers smply reading the
requirements documents and looking for defects. This cleriacal activity is boring, and
time consuming and often uneffective.

My research activity has been then oriented towards the definition and
implementation of an original automatic tool able to perform an analysis of NL
requirements in a systematic and automatic way. A quality model for NL
requirements has been first defined and then an automatic tool, called QUARS
(Quality Analyzer for Requirements Specifications), performing a quality evaluation
againgt the defined quality model, has been implemented.

page 116

Chapter 8. “ Conclusions’

This tool allows the requirements engineers to perform an initial parsing of the
requirements for automatically detecting potential linguistic defects that can
determine ambiguity problems at the following development stages of the software
product. Thistool is able also to provide a support for consistency and completeness
analysis by means of the View derivation. A View is composed of those sentences
belonging to a requirements document and dealing with a particular argument, the
availability of Views makes the detection of inconsistencies and incompletenesses
easier because the reviewer has to consider smaller set of sentences where possible
defects can be found with much lesseffort.

Research in the area of NL requirements analysis, experimentations with QUARS with
real requirements documents taken from industrial projects and improvements to be
made on the tool are the topics of my affiliation with the Software Engineering
Institute of the Carnegie Mellon University — Pittsburgh, PA (U.S.A.) that has been
established in early 2003 and is currently active.

The methods and techniques defined for the NL requirements analysis has been
applied to a formalism that is going to be widely used in the industry: the Use Cases.
Use Cases are a formalism, based on the NL language, that allows to capture
functional requirements for software systems. They allow structuring requirements
documents with user goals and provide a mean to specify the interactions between a
certain software system and its environment.

Thelinguistic techniques defined to be applied to pure NL requirements are still valid
for Use Cases, moreover, in this case, they allow a more precise analysis for
consistency and completeness because the semantic data necessary for performing this
kind of analysis can be derived in a mor e effective way.

The Use Cases formalism has been enhanced to make it suitable for representing
requirements in the case of the Product Families (or Product Lines) development
paradigm. This new Use Cases notation, called PLUC (Product Line Use Cases),
allows to express the variability pointsin the Product Family requirements by means
of tags expressed in a formal way. The adopted formalism for expressing the
variability allows the verification of the compliance to the Family constraints of a
single product.

In general, the initial approach to the NL requirements analysis offers many
possibility to be applied, not only to the pure NL requirements, but also to other

page 117

Chapter 8. “Conclusions’

formalisms (as the Use Cases). The resear ch results achieved have been the object of
several publications, but there are still many very stimulating research opportunities
in thisfield, that | will addressin the future.

page 118

Chapter 8. “Conclusions’

page 119

Chapter 9. “ References

0. References

1. AbramsM., Jajodia S, Podell H., eds, Information Security — An integrated Collection of
Essays, |[EEE Computer Society Press, January 1995

2. Abrial JR. “The B Book - Assigning Programs to Meanings”. Cambridge University
Press, August 1996.

3. Alspaugh TA, Anton Al. “ Scenario Networks: A Case Study of the Enhanced M essaging
Systent’, 7" International Workshop on Requirements Engineering: Foundation for
SoftwareQuality REFSQ'01, Interlaken, Switzerland, June 2001.

4. Ambriola V, Gervasi V. “Processing Natural Language Requirements”, 12" |EEE Conf.
On Automated Softwar e Engineering (ASE'97), |IEEE Computer Society Press, Nov. 1997.

5. Ben Achour C, Tawbi M, Souveyet C. “Bridging the Gap between Users and
Requirements Engineering: The Scenario-Based Approach” (CREWS Report Series 99-
07), International Journal of Computer Systems Science and Engineering, Special | ssue on
Object-Oriented Information Systems, Vol. 14, N. 6, 1999.

6. Bertolino A., Fantechi A., Gnes S.,, Lami G., Maccari A., “Use Case Description of
Requirements for Product Lines’, REPL’02, Essen, Germany, September 2002.

7. Bohem B.W. et alt., Characteristics of Software Quality, Elsevier North-Holland, 1978.

page 120

Chapter 9. “ References’

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bolognesi T, Brinksma E. “Introduction to the 1SO Specification Language LOTOS'.
Computer Networks, 14 (1), 25-59, 1987.

Buglione L., Misurare il Software, Franco Angeli, 1999.
Byrne, E., “IEEE Standard 830: Recommended Practice for Software Requirements
Specification,” |EEE International Conference on Requirements Engineering, |EEE

Computer Society Press, April 1994, p. 58.

Clements P.C., Northrop L. “ Software Product Lines. Practices and Patterns’. SEI Series
in Softwar e Engineering. Addison-Wesley, August 2001.

Cmap tool on-line: see http://www.yana.net/cmap/

Cockburn A. “Structuring Use Cases with goals’, Journal of Object-Oriented
Programming, Sep-Oct 1997 (part 1) and Nov-Dec 1997 (part I1).

Cockburn A. “Writing Effective Use Cases’. Addison Wedey, 2001.

Conexor tool. See http://www.conexor oy.com/

Davis, A.M., Softwar e Requirements: Objects, Functions and States. Prentice-Hall, 1993.

Dorfman, M., and R.H. Thayer, Software Engineering. |[EEE Computer Society Press,
1997.

Dutoit AH, Peach B. “Developing Guidance and Tool Support for Rationale-based Use
Case Specification”, REFSQ'01, I nterlaken, Switzerland, June 2001.

El-Emam K., Jung H-W, “An evaluation of the ISO/IEC 15504 assessment model”,
Journal of Systems and Softwar e, n. 49, 2001, pp. 23-41.

Fabbrini F., Fantini E., Fusani M., Lami G. "Performing SPICE Assessments. Yet
Another Tool". In Joint ESA - 3rd International SPICE Conference on Process
Assessment and | mprovement 17-21 Mar ch 2003 ESTEC, Noordwijk, The Netherlands.

Fabbrini F., Fusani M., Gervas V., Gnes S, Ruggieri S. “On linguistic quality of Natural
Language Requirements’. In 4 th International Workshop on Requirements Engineering:
Foundations of Softwar e Quality REFSQ’ 98, Pisa, June 1998.

Fabbrini F., Fusani M., Gnes S, Lami G. "The Linguistic Approach to the Natural
L anguage Requirements Quality: Benefits of the use of an Automatic Tool", 26th Annual

page 121

Chapter 9. “ References

23.

24.

25.

26.

27.

28.

29.

30.

31

IEEE Computer Society - NASA Goddard Space Flight Center Software Engineering
Workshop, Greenbdt, MA, USA, November 27-29 2001.

Fabbrini F., Fusani M., Gnesi S., Lami G. “An Automatic Quality Evaluation for Natural
Language Requirements’, Seventh International Workshop on Requirements
Engineering: Foundation for Softwar e Quality, I nterlaken, Switzerland, June 4-5 2001.

Fabbrini F., Fusani M., Gnes S, Lami G. “Quality Evaluation of Software Requirement
Specifications’, Proc of Software & Internet Quality Week 2000 Conference., San
Francisco, CA May 31-June 2 2000, Session 8A2.

Fabbrini F., Fusani M., Gnes S, Lami G. “Software Requirements Verification by
Natural Language Analysis. a CNR Initiative for Italian SME’S’ ERCIM News, Nr. 40,
January 2000.

Fabbrini F., Fusani M., Lami G. "Assessing Software Process. the Rating Dilemma
between M easurement and Human Judgment™ Proc. of the 4rd International Symposium
on Softwar e Process | mprovement, Recife, Brazil, 10-13 September 2002.

Fabbrini F., Fusani M., Lami G." Concepts and Practice of Software Certification” Proc.
of the 5rd International Sympaosium on Softwar e Process | mprovement, Recife, Brazil, 3-5
November 2003.

Fabbrini F., Fusani M., Lami G., Sivera E. " A Methodological Approach to Improve the
Software Acquisition Process in Automotive', The IASTED International Conference on
Software Engineering”, Innsbrick, Austria, February 16-19 2004.

Fabbrini F., Fusani M., Lami G., Sivera E. " Improving the Management of the Software
Acquisition Process. a M ethodological Approach in Automotive", 3rd Annual Conference
on the Acquisition of Software-Intensive System”, Arlington, VA (U.S.A.), January, 26-28
2004.

Fabbrini F., Fusani M., Lami G., Sivera E. "Managing Software Suppliers. An
Experience of Process Assessment in Automotive' Proc. of the 3rd International
Symposium on Softwar e Process | mprovement, Sao Paulo, Brazil, 17/20 September 2001.

Fabbrini F., Fusani M., Lami G., Sivera E. " Performing Process Assessment to Improve
the Supplier Selection Process - An Experience in Automotive" European Software
Process Improvement Conference Eur oSPI 2002, Nuremberg, Ger many, 18-20 September
2002. p. 267-274.

page 122

Chapter 9. “ References’

32.

33.

35.

36.

37.

38.

39.

41.

42.

Fabbrini F., Fusani M., Lami G., Sivera E. " Performing Softwar e Process Assessment in
the Automotive Environment” . In 7th I nternational Conference on Empirical Assessment
in Softwar e Engineering - EASE 2003. April 8-10 2003, Keele, UK.

Fabbrini F., Fusani M., Lami G., Sivera E. " Software Process Assessment as a Mean to
Improve the Acquisition Process of an Automotive Manufacturer” . In Software Process
Improvment CMM& SPICE in Practice, Verlag UNI-DRUCK Ed. ,Munchen, Germany,
2002, pp. 142-154.

. Fabbrini F., Fusani M., Lami G., Sivera E. "The Supplier Selection Process in

Automotive: an Experience in Software Process Assessment” Proc. of the International
Conference Software & System Engineering and their Applications- |CSSEA 2002, Paris,
France, December 3-52002.

Fabbrini F., Fusani M., Lami G., Sivera E. "Using Software Process Assessment to
Manage the Quality of Suppliers: an Experience in Automotive" Fifteenth International
Software & Internet Quality Week Conference, San Francisco, CA 3-6 September 2002.

Fantechi A, Gnes S, Ristori G, Carenini M, Vanocchi M, Moreschini P. “Assisting
Requirement Formalization by Means of Natural Language Trandation’, Formal
Methodsin System Design, vol 4, n.3, pp. 243-263, Kluwer Academic Publishers, 1994.

Fantechi A., Fusani M., Gnes S, Ristori G. “Expressing properties of software
requirementsthrough syntactical rules’. Technical Report. |ElI-CNR, 1997.

Fantechi A., Gnes S, John i., Lami G., Dorr J. “Elicitation of Use Cases for Product
Lines’, Fifth International Workshop on Product Family Engineering, PFE-5, Siena 4-6
November, 2003, to appear on LNCS Springer Verlag, 2004.

Fantechi A., Gnes S, Lami G. “A Relation-based Approach to Use Case Analyss’.
Proceedings of the 9" I nter national Workshop on Requirements Engineering: Foundation
for Softwar e Quality, Velden, Austria, June 16-17 2003.

. Fantechi A., Gnesi S, Lami G., Maccari A. “Application of Linguistic Techniquesfor Use

Case Analysis’. Requirements Engineering Journal, Volume 8, Issue 3, pages 161-170,
Spriger-Verlag, August 2003.

Fantechi A., Gnes S, Lami G., Maccari A. “Linguistic Techniques for Use Cases
Analysis’, Proceedings of the IEEE Joint International Requirements Engineering
Conference - REO2. Essen, Germany, September 9 -13 2002.

Fenton N., Pfleeger SL., Software Metrics. A Rigorous and Practical Approach, 2/e
I nternational Thompson Computer Press, 1997.

page 123

Chapter 9. “ References

46.

47.

49.

51.

52.

53.

55.

. Firesmith D. “ Specifying Good Requirements’, Journal of Object Technology, Val. 2, No.

4, July-August 2003. ETH Zurich.

. Fuchs N.E., Schwitter R. “Specifying Logic Programsin Controlled Natural Language’,

Workshop on Computational Logic for Natural L anguage Processing, Edinburgh, April 3-
5, 1995.

. Gennaro G., Lagelle D., Schabe H.. “ Software Product Evaluation and Certification”,

Proc. Of Data Systemsin Aerospace Conference, Nice (France), May 28 - June 1st 2001.

Goldin L, Berry DM. “ Abstfinder, a prototype Abstraction Finder for Natural Language
Text for Use in Requirements Elicitation: Design, Methodology, and Evaluation”. First
International Conference on Requirements Engineering, 1994.

Hailey V., “A comparison of 1SO 9001 and the SPICE framework”. In “SPICE: The
Theory and Practice of Software Process Improvement and Capability Determination’,
El-Emam K, Drouin JN, Melo W (eds). IEEE CS Press, 1998.

. Halmans G., Pohl K. “Communicating the Variability of a Software-Product Family to

Customers’. Journal of Software and Systems M odeling, Springer, 2003

Harwell, R., et al, “What is a Requirement,” Proc 34 Ann. Int’l Symp. Nat’l Council
Systems Eng., (1993), pp.17-24.

Hofmann, H., Requirements Engineering: A Survey of Methods and Tools, Technical
Report #TR- 93.05, Ingtitute for Informatics, Zurich, Switzerland: University of Zurich,
1993.

Hooks ., “Writing Good Requirements’, Proc. Of the Fourth International Symposium of
the NCOSE, 1994, Val. 2., pp. 197-203.

Horch, John W., Practical Guide to Software Quality Management, Artech-House
Publishers, 1996.

I[EEE Standard 610.12 Glossary of software engineering terminology, in Software
Engineering Standar ds Collection, IEEE CS Press, Los Alamitos, Calif. 1990

I[EEE Std 830-1998. IEEE Recommended Practice for Software Requirements
Specifications.

|EEE 1362-1998 |EEE Guide for Information Technology-System Definition -Concept of
Operation Document

page 124

Chapter 9. “ References’

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

67.

68.

69.

70.

71

I SO/IEC 2382:1999 Information Technology - Vocabulary.

I SO 9001:2000 Quality Management Systems— Requirements TC 176 SC , 2000

I SO/TEC 9126-1: 2001, Softwar e engineering - Product quality - Part 1: Quality model.
ISO/IEC TR 15504 (Parts 1-9), 1998

ISO/IEC TR 9126-2: Softwareengineering - Product quality - Part 2: External metrics.
ISO/IEC TR 9126-3: Softwareengineering - Product quality - Part 3: Internal metrics.
ISO/IEC TR 9126-4: Software engineering - Product quality - Part 4: Quality in Use.

ISO/IEC TR2 15504. “Information Technology — Software Process Assessment: Part -
Part 97, SO, Geneva, Switzerland, 1998.

ISO/TS 16949- Quality Management Systems - Automotive Suppliers - Particular
Requirements for the Application of 1SO 9001:2000 for Automotive Production and
Relevant Service Part Organizations, 2002.

Jacobson |, Booch G, Rumbaugh J. “The Unified Modelling Language Reference
Manual” . Addison-Wesley, 1999.

Jazayeri M., Ran A., van der Linden F. “Software Architecture for Product Families:
Principles and Practice’, Publishers. Addison-Wesley, Reading, Mass. and L ondon, 1998.

John I., Muthig D. “Tailoring Use Cases for Product Line Modeling”, REPL’02, Essen,
Germany, September 2002.

Jung H-W, Hunter R., “The relationship between 1SO/IEC 15504 process capability
levels, 1SO 9001 certification and organization size: an empirical study”, Journal of
Systems and Software, n. 59, 2001, pp. 43-55.

Kamsties E, PeachB. “ Taming Ambiguity in Natural Language Requirements”, ICSSEA
2000, Paris, December 2000.

Kan, Stephen, H., Metrics and Models in Software QualityEngineering, Addison-Wedey
Publishing Co., 1995.

Kassakian J. G., “Automotive Electrical Systems. The Power Electronics Market of the
Future’, Proc. Applied Power Electronics Conference (APEC2000), | EEE Press, 2000, pp.
3-9.

page 125

Chapter 9. “ References

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Kotonya, G., and |. Sommerville, Requirements Engineering: Processes and Techniques.
John Wiley and Sons, 1998.

Krogstie J., Lindland O.1., Sindre G. “Towards a Deeper Understanding of Quality in
Requirements Engineering”. In 7" International CAiSE Conference, vol. 932 of Lecture
Notesin Computer Science, pages 82-95, 1995.

Lami G. “Towards an Automatic Quality Evaluation of Natural Language Software
Specifications’. Technical Report. B4-25-11-99. | EI-CNR, 1999.

Leen G., Hefferman D., Dunne A., “Digital Networks in the Automotive Vehicle’, IEE
Computer and Control Eng. Journal, Dec. 1999, pp. 257-266.

Lehner F. “Quality Control in Software Documentation Based on M easurement of Text
Comprehension and Text Comprehensibility”. Information Processing & Management,
val; 29, No. 5, pp 551-568, 1993.

MacCall J.A., Richeards P.K., Walters G.F., Factors in Software Quality, Voll. I, I, I11:
Final Tech. Report, RADC-TR-77-369, Rome Air Deveopment Center, Air Force System
Command, GriffisAir Force Base, NY 1977.

Macias B, Pulman SG. “Natural Language Processing for Requirement Specifications’. In
Redmill and Anderson, Safety Critical Systems, Chapman and Hall, 1993.

Mannion M., Camara J. “ Theorem Proving for Product Line Mode Verification”, Fifth
International Workshop on Product Family Engineering, PFE-5, Siena 46 November,
2003, to appear on LNCS Springer Verlag, 2004.

Meyer B. “On formalism in specifications’. |EEE Softwar e. January 1985, pages 6-26.
Mich L., Garigliano R., “Ambiguity measures in Requirements Engineering”’, Proc.
I nter national Conference on Software- Theory and Practice- |CS2000, 16th IFIP World
Computer Congress, Beijing, China, 21-25 August 2000, Feng Y., Notkin D., Gaudel M.,
Publishing House of Electronics Industry, Beijing, 2000, pp. 39-48.

Minipar: http://www.cs.umanitoba.ca/~lindek/minipar.htm

Natt och Dag J, Regnel B, Carlshamre P, Andersson M, Karlsson J. “Evaluating
Automated Support for Requirements Similarity Analysis in Market-Driven
development”. Seventh International Workshop on Requirements Engineering:
Foundation for Software Quality, Interlaken, Switzerland, June 2001.

page 126

Chapter 9. “ References’

85.

86.

87.

88.

89.

90.

1.

92.

93.

95.

96.

. Nuseibeh B.A. and Easterbrook S.M. “ Requirements Engineering: A Roadmap”, In A. C.

W. Finkelstein (ed) " The Future of Software Engineering”. (Companion volume to the
proceedings of the 22nd International Conference on Software Engineering, | CSE'00).
|EEE Computer Society Press.

Paulk M., “Top-Level Standards Map: 1SO 12207, 1SO 15504 (Jan 1998 TR) Software
CMM v1.1 and v2’, Draft C (available at http://www.sei.cmu.edu/pub/cmm/Misd/standar ds-
map.pdf), Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
1998.

Pfleeger, S.L., Software Engineering-Theory and Practice. Prentice-Hall, 1998.

Pohl, K., “The Three Dimensions of Requirements Engineering: A Framework and Its
Applications,” Information Systems 19, 3 (1994), pp. 243-258.

Pohl, K., “ Process-centered Requirements Engineering”, Resear ch Studies Press, 1999.

Power N. “Variety and Quality in Requirements Documentation” Seventh International
Workshop on Requirements Engineering: Foundation for Software Quality, Interlaken,
Switzerland, June 4-5 2001.

Pressman, R.S. Software Engineering: A Practitioner’s Approach (4 edition). McGraw-
Hill, 1997.

Quality System Requirements (QS9000 Third Edition) Version 03.00, Daimler Chrydler,
Ford Motor Company and General Motors Quality Publications, March 1998.

Regnell B., Beremark P., Eklundh O. “A Market-Driven Requirements Engineering
Process. Results From an Industrial Process Improvement Programme’, Requirements
Engineering, 3(2), 1998, pp. 121-129.

Richards D., Boettger K., Aguilera O. “A Controlled Language to Assist Conversion of
Use Case Descriptionsinto Concept Lattices’, LNAI 2557.

. Rolland C., Proix C., “A Natural Language Approach for Requirements Engineering”.

AISE'92, LNCS 593, Springer-Verlag, 1992.

Rosenberg L., Hammer T.F., Huffman L.L. , Requirements Testing and Metrics‘, 15th
Annual Pacific Northwest Software Quality Conference, Utah, October 1998.

Siddiqi, J., and M.C.Shekaran, “Requirements Engineering: The Emerging Wisdom,”
|EEE Software, pp.15-19, 1996.

page 127

Chapter 9. “ References

97. Sommerville, |. Softwar e Engineering (5tedition), Addison-Wesley, 1996.

98. Sommerville, |., and P. Sawyer, Requirements engineering: A Good Practice Guide. John
Wiley and Sons, 1997

99. Sommerville, 1., and P.Sawyer, “Viewpoints. Principles, Problems, and a Practical
Approach to Requirements Engineering,” Annals of Software Engineering, 3, N. Mead,
ed., 1997.

100. Spivey JM . “ The Z Notation: A Reference Manual”, 2" edn., London Prentice-Hall,
1992.

101. Suhl C. “RT-Z: An Integration o Z and timed CSP”. In Integrated Formal Methods
(IFM"99). Springer-Verlag, 1999.

102. SyTwo on-line. See: http://www.yana.net/sytwo/index.html

103. Thayer, R.H., and M.Dorfman, Software Requirements Engineering (2nd Ed). IEEE
Computer Society Press, 1997.

104. The Motor Industry Software Reliability Association “ Develbopment Guidelines For
Vehicle based Software”, , 1994. Published by MIRA. | SBN 0952415607

105. Van der Linden F. “Software Product Families in Europe: The ESAPS & Café
Projects’ |EEE Software, Vol 19, n. 4, July/August 2002.

106. Welch B. “Practical Programmingin Tcl and Tk” second edition Prentice Hall 1997.

107. Wilson W.M., Rosenberg L.H., Hyatt L.E. “Automated quality analysis of Natural
L anguage Requirement specifications’. PNSQC Confer ence, October 1996.

108. Wilson WM., Rosenberg L.H. Hyatt L.E. “ Automated Analysis of Requirement
Specifications”. Proceedings of the Nineteenth International Conference on Software
Engineering (ICSE-97), Boston, MA, May 1997.

109. Wing J.M., Woodcock J., Davies J. (eds.)) FM’99 — Formal Methods, vol. | and 11
LNCS 1708, 1709, Springer.

110. Zowghi D, Gervas V, McRae A. “Using Default Reasoning to Discover
Inconsistencies in Natural Language Requirements”, Proc. of the 8th Asia-Pacific
Softwar e Engineering Conference, December 2001.

page 128

Page: 80
[AM1]How about: “a use case describes the interaction (triggered by an external actor in order to
achieve a goal) between a system and its environment” ?

