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Abstract Within the framework of isogeometric analysis, colloca-
tion methods have been recently proposed as an interesting strong
form alternative to standard Galerkin approaches, characterized by
a significantly reduced computational cost, but still guaranteeing
higher order convergence rates. In this chapter we provide a con-
cise introduction to isogeometric collocation methods and propose
a brief review of some of the most important results obtained so far
in this context.

1 Introduction

The main aim of Isogeometric analysis (IGA), introduced ten years ago
by Hughes et al. (2005), is to bridge the gap between Computer Aided
Design (CAD) and Finite Element Analysis (FEA). Accordingly, the ba-
sic IGA paradigm consists of adopting the same basis functions used for
geometry representations in CAD systems - such as, e.g., Non-Uniform Ra-
tional B-Splines (NURBS) - for the approximation of field variables, in
an isoparametric fashion. This leads to a cost-saving simplification of the
typically expensive mesh generation and refinement processes required by
standard FEA. Moreover, thanks to the high-regularity properties of its
basis functions, IGA has shown a better accuracy per-degree-of-freedom
and an enhanced robustness with respect to standard FEA in a number of
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applications ranging from solids and structures (see, e.g., Auricchio et al.,
2010b; Borden et al., 2012; Caseiro et al., 2014; Cottrell et al., 2006, 2007;
de Falco et al., 2011; Dhote et al., 2014; Elguedj et al., 2008; Hughes et al.,
2008, 2014; Lipton et al., 2010; Morganti et al., 2014; Reali, 2006) to fluids
(see, e.g., Akkerman et al., 2007; Bazilevs et al., 2007; Bazilevs and Hughes,
2008; Buffa et al., 2011; Liu et al., 2014; Gomez et al., 2010), opening also
the door to geometrically flexible discretizations of higher-order partial dif-
ferential equations in primal form (see, e.g., Auricchio et al., 2007; Gomez et
al., 2008; Kiendl et al., 2009).

It is well known that an important issue related to IGA concerns the
development of efficient integration rules, able to reduce assembly costs in
particular when higher-order approximations are employed. The fact that
element-wise Gauss quadrature, typically used for standard FEA and origi-
nally adopted for Galerkin-based IGA, does not properly take into account
the inter-element higher continuity of the IGA basis functions leads to sub-
optimal assembly costs, significantly affecting the performance of IGA meth-
ods. Ad hoc quadrature rules have been proposed by Hughes et al. (2010),
Auricchio et al. (2012b), and Schillinger et al. (2014a), but the development
of a general and effective solution for Galerkin-based IGA methods is still
an open problem.

Aiming at optimizing the computational cost, still taking advantage of
IGA geometrical flexibility and accuracy, isogeometric collocation schemes
have been recently proposed by Auricchio et al. (2010a, 2012a). The fun-
damental idea consists of the discretization of the governing partial differ-
ential equations in strong form, adopting the isoparametric paradigm and
making use of the higher-continuity properties of the IGA shape functions.
Detailed comparisons with both IGA and FEA Galerkin-based approaches
have shown IGA collocation advantages in terms of accuracy versus com-
putational cost, in particular when higher-order approximation degrees are
adopted (Schillinger et al., 2013). In general, IGA collocation features look
particularly desirable in all those situations where evaluation and assembly
costs are dominant, as in the case of explicit structural dynamics where the
computational cost is dominated by stress divergence evaluations at quadra-
ture points for the calculation of the residual force vector (Auricchio et al.,
2012a; Schillinger et al., 2013).

Within the IGA collocation context, several promising significant studies
have been recently published, including phase-field modeling (Gomez et al.,
2014), contact (De Lorenzis et al., 2014b), and hierarchical local refinement
(Schillinger et al., 2013). Moreover, IGA collocation has been very suc-
cessful in the context of structural elements. In particular, Bernoulli-Euler
beam and Kirchhoff plate elements have been proposed by Reali and Gomez
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(2014), and shear-deformable structural elements have been considered in
a number of papers. Mixed formulations both for Timoshenko initially-
straight planar beams (Beirão da Veiga et al., 2012) and for curved spatial
rods (Auricchio et al., 2013) have been proposed and studied. Isogeomet-
ric collocation has been moreover successfully applied to the solution of
Reissner-Mindlin plate problems in Kiendl et al. (2014a). Finally, a new
single-parameter formulation for shear-deformable beams, recently intro-
duced by Kiendl et al. (2014b), has been solved also via IGA collocation.

It is therefore clear that, thanks to its interesting and promising features,
IGA collocation has attracted and is increasingly attracting a good deal
of interest among Computational Mechanics researchers. This chapter is
aimed to people who desire to get acquainted with the basic concepts of
IGA collocation, and its goal is to provide a concise introduction, as well as
to propose a brief review of some of the most important results obtained so
far in this context.

2 Basics of NURBS-Based IGA Collocation

In this section, we aim at introducing the basic concepts of NURBS-based
IGA collocation. After some preliminaries on B-Splines and NURBS, we
introduce the idea of collocation in a very simple 1D setting, presenting
also some theoretical and numerical results.

2.1 B-Spline and NURBS preliminaries

In the following, we briefly introduce the basic definitions and notations
about B-Splines and NURBS. For further details, readers are referred to
Piegl and Tiller (1997), Cottrell et al. (2009), and references therein.

A B-Spline basis function of degree p is generated starting from a non-
decreasing sequence of real numbers referred to as knot vector

Ξ = {ξ1, ..., ξm+p+1} (1)

where m is the number of basis functions (equal to the number of the as-
sociated control points). A univariate B-Spline basis function Ni,p (ξ) can
be then constructed using the following Cox-de Boor recursion formula:
Starting from p = 0, where

Ni,0 (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(2)
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the basis functions for p > 0 are obtained from

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (3)

where the convention 0/0 = 0 is assumed. Given the multiplicity k of a
knot, the smoothness of the B-Spline basis is Cp−k at that location, while
it is C∞ everywhere else. In so-called open knot vectors, the first and the
last knots have multiplicity k = p + 1 and the basis is interpolatory at the
ends (see, e.g., Figure 1).
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Figure 1. Cubic B-Spline basis functions formed from the open knot vector
Ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}.

A B-Spline curve can be then constructed as the linear combination of
the basis functions

C (ξ) =

m∑
i=1

Ni,pPi (4)

where the coefficients Pi ∈ Rds of the linear combination are the so-called
control points, being ds the dimension of the physical space (see, e.g., Figure
2).

Multivariate B-Splines are generated through the tensor product of uni-
variate B-Splines. If dp denotes the dimension of the parametric space, dp
univariate knot vectors are needed:

Ξd =
{
ξd1 , ..., ξ

d
md+pd+1

}
(5)

where d = 1, ..., dp, pd is the polynomial degree in the parametric direction d,
and md is the associated number of basis functions. Denoting the univariate
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Figure 2. A 2D piecewise cubic B-Spline curve generated from the basis
functions of Figure 1 (solid line), along with its control points (black dots),
and control net (dotted line)

basis functions in each parametric direction ξd by Nd
id,pd

, the multivariate
basis functions Bi,p (ξ) are obtained as

Bi,p (ξ) =

dp∏
d=1

Nd
id,pd

(
ξd
)

(6)

where the multi-index i =
{
i1, ..., idp

}
denotes the position in the tensor

product structure, p = {p1, ..., pd} indicates the polynomial degrees, and
ξ =

{
ξ1, ..., ξdp

}
is the vector of the parametric coordinates in each para-

metric direction d. B-Spline surfaces and solids are obtained, for dp = 2
and dp = 3, respectively, from a linear combination of multivariate B-Spline
basis functions and control points as follows

S (ξ) =
∑
i

Bi,p (ξ) Pi (7)

where the summation is extended to all combinations of the multi-index i.
NURBS basis functions in Rds are obtained from a projective transfor-

mation of their B-Spline counterparts in Rds+1. Univariate NURBS basis
functions Ri,p (ξ) are given by

Ri,p (ξ) =
Ni,p (ξ)wi∑m
j=1Nj,p (ξ)wj

(8)

5



whereNi,p are B-Spline basis functions and wi are the corresponding weights
(i.e., the (ds + 1)-th coordinates of the B-Spline control points in Rds+1).
Finally, multivariate NURBS basis functions are obtained as

Ri,p (ξ) =
Bi,p (ξ)wi∑
jBj,p (ξ)wj

(9)

and NURBS surfaces and solids are constructed as

S (ξ) =
∑
i

Ri,p (ξ) Pi (10)

2.2 IGA collocation in 1D

In this section, we introduce the basic ideas of IGA collocation in a very
simple 1D setting. We also discuss the choice of collocation points and
propose some theoretical results. We then conclude the section presenting
some numerical tests.

Formulation. Let f , a0, a1, be real functions in C0[a, b], with a < b given
real numbers. Let g0, g1 ∈ R be scalars and BC0,BC1 : C1[a, b] → R be
linear operators. We are interested in the following simple one-dimensional
model differential problem. Find a real function u ∈ C2[a, b] such that{

u′′(x) + a1(x)u′(x) + a0(x)u(x) = f(x) ∀x ∈ (a, b)

BCi(u) = gi i = 0, 1
(11)

where u′, u′′ represent the first and second derivatives of u, respectively (we
note that in the following we will indicate the derivative operator of order
i also as Di, i ∈ N). We assume that (11) has one and only one solution
u, and that the boundary condition operators BCi are linearly independent
on Ker(D2), that is, on the space of linear functions.

To discretize problem (11) via IGA collocation, we proceed as follows.
Given n ∈ N, let Vn+2 ⊂ C2[a, b] be a NURBS space of dimension n+ 2 on
the interval [a, b], associated with a spline space Ŝn+2 ⊂ C2[0, 1] on the para-
metric interval [0, 1]. With standard assumptions on the one-dimensional
geometrical map F , we consider DF > 0 on the parametric domain [0, 1].
Given, for all n ∈ N, τ1 < τ2 < ... < τn assigned collocation points in [a, b],
we obtain the following discrete problem: Find un ∈ Vn+2 such that{

u′′n(τj) + a1(τj)u
′
n(τj) + a0(τj)un(τj) = f(τj) j = 1, .., n

BCiun = gi i = 0, 1
(12)

It is to be remarked that this formulation gives rise in general to a non-
symmetric (but diagonally dominant) system matrix.
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Collocation points and theoretical results. The discrete problem (12)
is defined once a strategy for the selection of the n collocation points is set.
Such a selection is of paramount importance, because it directly influences
the stability and convergence properties of the collocation scheme.

In the IGA collocation literature, the images of so-called Greville abscis-
sae (see de Boor, 2001) have been widely adopted as the default choice for
collocation points. Greville abscissae are n points easily defined from the
knot vector as

ξi = (ξi+1 + ξi+2 + ...+ ξi+p)/p (13)

and are well known in the CAD literature for a number of properties, among
which the fact that they typically give a stable interpolation (except in
some cases when high degrees are combined with particular non-uniform
meshes1).

The selection of points guaranteeing a stable interpolation is a funda-
mental issue for a collocation scheme, since it is proven in Auricchio et al.
(2010a) that this implies optimal convergence (i.e., of order p − 1) in the
W 2,∞-norm (or, equivalently, in the H2-norm).

Unfortunately, such a proof is valid only in 1D and cannot be extended
to higher dimensions. However, as we will also see in the following sections,
extensive numerical testing has shown that the convergence rates obtained
in 1D are attained also in higher dimensions.

Moreover, optimal convergence rates are not recovered in the L∞- and
W 1,∞-norms (or, equivalently, in the L2- and H1-norms), where it has been
numerically shown (see, e.g., next section) that orders of convergence p and
p− 1 for even and odd degrees, respectively, are attained.

It is important to note that, despite not being optimal in the L2- and
H1-norms (except in the case of the H1-norm for p even) as it happens
instead for Galerkin methods, the obtained orders of convergence are in-
creasing with p, whereas the cost of collocation is much lower than that
of Galerkin approaches of the same order, especially as p increases. This
makes IGA collocation very competitive with respect to Galerkin on the
basis of an accuracy-to-computational-cost ratio, in particular when higher
degrees (e.g., p > 3) are adopted. More details in this sense will be given
later in the framework of 3D elasticity, and interested readers are referred
to the comprehensive study reported in Schillinger et al. (2013).

1An alternative that is proven to be always stable is given by the so-called Demko abscis-

sae (Demko, 1985), which can be computed by an iterative algorithm (see Auricchio et

al., 2010a, for more details and for a discussion on their use within IGA collocation).
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Numerical results. We now present some numerical experiments in 1D
confirming the convergence rates previously discussed.

In particular, we consider the following model problem defined on the
domain [0, 1]:{
−u′′ + u′ + u = (1 + 4π2) sin(2πx)− 2π cos(2πx), ∀x ∈ (0, 1)

u(0) = u(1) = 0
(14)

which admits the exact solution:

u = sin(2πx) (15)

This problem is numerically solved using the collocation method outlined
in the previous sections, adopting Greville abscissae as collocation points.
In Figures 3-5, we report log-scale plots of the relative errors for different
degrees of approximations in L∞-, W 1,∞-, and W 2,∞-norms, respectively.
The obtained results show that in the first two norms an order of conver-
gence p is attained for even degrees, while an order p−1 is attained for odd
degrees. Instead in the W 2,∞-norm, we observe the expected optimal order
of convergence, i.e., p− 1, for all approximation degrees, in agreement with
the predictions of the theory2.

More results, considering the influence of a nonlinear parameterization,
of different choices of collocation points like Demko abscissae, and of Neu-
mann boundary conditions, may be found in Auricchio et al. (2010a).

Spectral approximation. One of the most important results of Galerkin
IGA, with a fundamental impact on the solution of structural dynamics
problems, is its capability of approximating higher modes, without introduc-
ing spurious “optical branches” in the numerical spectrum (see Cottrell et
al., 2006; Reali, 2006; Hughes et al., 2008, 2014). The same capabilities are
present also in IGA collocation, as it has been shown in Auricchio et al.
(2010a). To this end, the following 1D eigenvalue problem is considered{

u′′ + ω2u = 0 ∀x ∈ (0, 1)

u(0) = u(1) = 0
(16)

2In Figures 3-5, we have not included results for p = 2, since this case is not covered by

the theory of Auricchio et al. (2010a). However, the results obtained are in complete

agreement with the ones observed for higher degrees, i.e., order p for the L∞- and

W 1,∞-norms and p − 1 for the W 2,∞-norm (see also the numerical results of next

section).
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Figure 3. 1D model problem. Relative error in L∞-norm for different
degrees of approximation.
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Figure 4. 1D model problem. Relative error in W 1,∞-norm for different
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Figure 5. 1D model problem. Relative error in W 2,∞-norm for different
degrees of approximation.

for which the exact frequencies ωn are given by

ωn = 2πn with n = 1, 2, 3, . . . (17)

Problem (16) is solved using the collocation method with Greville abscis-
sae and, in Figure 6, we report the results in terms of normalized discrete
spectra, obtained considering a linear parameterization and using differ-
ent degrees of approximation (1000 d.o.f.’s have been used to produce each
spectrum). It is possible to observe the good behavior of all spectra, which
converge for an increasing degree p as it happens with Galerkin IGA (for
more details on eigenvalue problems solved via IGA collocation, see Auric-
chio et al., 2010a).

3 NURBS-Based IGA Collocation for Linear
Elastostatics

In this section, we extend the previously introduced IGA collocation meth-
ods to the multi-dimensional case, considering in particular linear elasto-
statics as model problem. Accordingly, in the following, we present the
basic equations of linear elastostatics and introduce an IGA collocation for-
mulation to solve them. Several numerical tests are proposed to show the
behavior of the proposed formulation, as well as to compare its perfor-
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Figure 6. 1D eigenvalue problem with linear parameterization using Gre-
ville abscissae. Normalized spectra for different degrees of approximation.

mance with that of Galerkin IGA and FEA on the basis of the accuracy-to-
computational-cost ratio.

3.1 Linear elastostatics

Let Ω ⊂ Rds represent an elastic body B subjected to body forces f ,
to prescribed displacements g on a portion of the boundary Γg, and to
(possibly zero) prescribed tractions p on the remaining portion Γp, being
Γ = Γg

⋃
Γp the boundary of the domain, with Γg

⋂
Γp = ∅. Suitable

regularity requirements are assumed to hold for f , g, and p.
The small-strain linear elastostatics problem in strong form is defined as

∇ ·
(
C∇Su

)
+ f = 0 in Ω (18)

complemented by the Dirichlet boundary conditions

u = g on Γg (19)

and by the Neumann boundary conditions(
C∇Su

)
· n = p on Γp (20)
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where, u (x) is the unknown displacement field (x being the position vec-
tor), ∇ is the standard nabla operator and ∇S is its symmetric part, C is
the fourth-order elasticity tensor, and n is the unit outward normal to the
boundary of the domain.

3.2 IGA collocation for elastostatics

As in Auricchio et al. (2012a), Schillinger et al. (2013), and De Loren-
zis et al. (2014b), herein, we choose to interpret the collocation method in
a variational sense and to directly apply it in the isogeometric framework.
The elasticity problem in variational form, based on the principle of virtual
work, reads ∫

Ω

(
C∇Su

)
: ∇SwdΩ =

∫
Ω

f ·wdΩ +

∫
Γp

p ·wdΓ (21)

for every test function w ∈
[
H1 (Ω)

]ds
satisfying homogeneous Dirichlet

boundary conditions, i.e.,

w = 0 on Γg (22)

Integrating eq. (21) by parts and rearranging terms leads to∫
Ω

[
∇ ·
(
C∇Su

)
+ f
]
·wdΩ−

∫
Γp

[(
C∇Su

)
· n− p

]
·wdΓ = 0 (23)

Note that, should the test function not satisfy eq. (22), we could re-
lease the Dirichlet boundary conditions on the solution u and introduce a

Lagrange multiplier λ ∈
[
H−1/2(Γg)

]ds
to enforce the boundary conditions

weakly. The variational form of the elasticity problem would then read:

Find (u,λ) ∈
[
H1(Ω)

]ds × [H−1/2(Γg)
]ds

such that∫
Ω

(
C∇Su

)
: ∇SwdΩ =

∫
Ω

f ·wdΩ +

∫
Γp

p ·wdΓ +

∫
Γg

λ ·wdΓ

+

∫
Γg

µ · (u− g) dΓ (24)

for every test function pair (w,µ) ∈
[
H1(Ω)

]ds × [H−1/2(Γg)
]ds

. Note
that additional terms pertaining to the Dirichlet boundary have appeared
above. If the solution u is sufficiently smooth (e.g., if u ∈ [H2(Ω)]ds),

then by elliptic regularity, it holds that
(
C∇Su

)
· n ∈

[
L2(Γg)

]ds
and λ ≡
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(
C∇Su

)
· n. Consequently, if u is sufficiently smooth, we have∫

Ω

(
C∇Su

)
: ∇SwdΩ =

∫
Ω

f ·wdΩ +

∫
Γp

p ·wdΓ +

∫
Γg

[(
C∇Su

)
· n
]
·wdΓ

(25)
for every weighting function w ∈ [H1(Ω)]ds , and integration by parts leads
to eq. (23). Therefore, if the solution is sufficiently smooth, the test function
w does not need to satisfy homogeneous Dirichlet boundary conditions in
order for eq. (23) to be applicable.

Using the isoparametric approach, we seek an approximation uh to the
unknown exact solution field u of the elastostatic problem in the form

uh =

n∑
a=1

Ra (x) ûa (26)

where Ra are the NURBS basis functions described in Section 2.1 and repre-
senting the geometry of the problem, while ûa are the unknown displacement
control variables. Substitution into eq. (23) yields∫

Ω

[
∇ ·
(
C∇Suh

)
+ f
]
·wdΩ−

∫
Γp

[(
C∇Suh

)
· n− p

]
·wdΓ = 0 (27)

We now need a suitable choice for the test function w, which, in a
collocation method, is selected as the Dirac delta, that can be formally
constructed as the limit of a sequence of smooth functions with compact
support converging to a distribution (Auricchio et al., 2010a, 2012a) and
satisfying the so-called sifting property, i.e.,∫

Ω

fΩ (x) δ (x− xi) dΩ = fΩ (xi) (28)

∫
Γ

fΓ (x) δ (x− xi) dΓ = fΓ (xi) (29)

for every function fΩ continuous about the point xi ∈ Ω and for every
function fΓ continuous about the point xi ∈ Γ. In the following, the Dirac
delta will be indicated as a Dirac delta “function” following conventional
terminology.

Let us assume that ds = 2, m1 and m2 are the numbers of control points
in the two parametric directions, and n = m1m2 is the total number of
control points. Thus 2n scalar equations are needed to determine the un-
known displacement control variables. Analogously to the previous section,
we choose n collocation points τkl, k = {1, ...,m1}, l = {1, ...,m2} located
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at the images of the (tensor product) Greville abscissae of the knot vectors.
The collocation points for k = 1,m1 and l = 1,m2 are located at the bound-
ary Γ. Separate sets of equations are needed for the patch interior and for
the boundaries.

In the patch interior Ω, we write 2 (m1 − 2) (m2 − 2) scalar equations by
choosing as test functions the Dirac delta functions centered at the interior
collocation points τkl, k = {2, ...,m1 − 1}, l = {2, ...,m2 − 1}. The resulting
equations read [

∇ ·
(
C∇Suh

)
+ f
]

(τkl) = 0 τkl ⊂ Ω (30)

i.e., they are the collocated strong form of the equations at τkl.
No equations are needed at the Dirichlet boundary, as we impose a priori

that uhi (τkl) = gi (τkl) on Γg.
To enforce Neumann boundary conditions, each τkl ⊂ Γp is associated

with a collocation equation that sets the value of the boundary traction.
This corresponds to choosing as test functions the Dirac delta functions
centered at the collocation points located at the Neumann boundary. Here
a distinction is needed between the collocation points located at the edges
(k = 1,m1 and l = 2, ...,m2 − 1, or l = 1,m2 and k = 2, ...,m1 − 1), and
those located at the corners of the domain (k = 1,m1 and l = 1,m2 ).
For collocation points located on edges within the Neumann boundary, the
equations are[(

C∇Suh
)
· n− p

]
(τkl) = 0 τkl ⊂ edge ⊂ Γp (31)

i.e., they are the collocated strong form of the Neumann boundary condi-
tions at τkl. For collocation points located at corners where two Neumann
boundaries meet, it has been shown in Auricchio et al. (2012a)3 that the
appropriate equations are[(
C∇Suh

)
· n′ − p′

]
(τkl)+

[(
C∇Suh

)
· n′′ − p′′

]
(τkl) = 0 τkl ≡ corner ⊂ Γp

(32)
where n′ and n′′ are the unit outward normals of the edges meeting at the
corner, and p′ and p′′ are the respective imposed tractions.

It is important to remark that, in a recent paper by De Lorenzis et al.
(2014b), it has been shown that the above approach to impose Neumann
boundary conditions may lead to spurious oscillations in cases implying solu-
tions of reduced regularity, when non-uniform meshes are adopted. There-

3In addition, interested readers may find in Auricchio et al. (2012a) a detailed discussion

on the conditions to be imposed in more complicate situations like at the interfaces of

multi-patch geometries.
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fore alternative methods are needed, and in the same paper two possible
(simple) alternative strategies to cure this issue are presented.

3.3 Numerical results.

We now present some numerical experiments showing the behavior of
the proposed collocation formulation. In particular, we propose: i) a plane
strain test, to show the fact that the convergence rates observed in 1D are
attained also on mapped geometries in higher dimensions; ii) a two-material
two-patch plane strain traction test, to show the fact that constant strain
states are represented exactly (also in the case of multi-patch analysis); and
iii) a 3D test on an elastic block, on which a performance comparison among
IGA collocation and Galerkin IGA and FEA is carried out.

Plane strain clamped quarter of an annulus. As a first test, we
consider a plane strain quarter of an annulus, as sketched in Figure 7, with
internal and external radii equal to R1 = 1 and R2 = 4, respectively. The
domain can be exactly represented by a single quadratic NURBS patch.

Figure 7. Plane strain clamped quarter of an annulus. Problem geometry.

The whole domain boundary is assumed to be clamped and we assign a
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manufactured solution in terms of displacement components, reading:{
u = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y),

v = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y).
(33)

The manufactured solution satisfies the prescribed boundary conditions and
the load is computed from it by imposing equilibrium.

The problem is solved by IGA collocation using Greville abscissae and
in Figure 8 we present the results in terms of relative solution error in the
L2-norm versus the square root of the total number of control points. It is
possible to observe that the convergence rates observed in the 1D case (i.e.,
p and p− 1 for even and odd degree p, respectively) are attained.
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Figure 8. Plane strain clamped quarter of an annulus. Error plot versus
the square root of number of control points for different degree NURBS.

Two-material two-patch plane strain traction test. We now con-
sider a rectangular domain Ω, as sketched in Figure 9, subjected to a uniform
traction. The domain is assumed to consist of two material subdomains.

The idea is to reproduce a solution homogeneous in the y direction (and
piece-wise homogeneous in the x direction), such that the numerical results
should be able to exactly reproduce the analytical solution. To obtain such
a solution, it is necessary to properly calibrate the elastic constants. Ac-
cordingly, considering the standard plane strain equations for each material,
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Figure 9. Two-material two-patch plane strain traction test. Problem
geometry and boundary conditions.

we require the transverse strain (i.e., the strain in the transverse direction
with respect to the traction direction) to be the same in both materials,
obtaining the following relation

E1

E2
=
ν1 (1 + ν1)

ν2 (1 + ν2)

where the subscripts indicate the material numbers.
The problem under investigation is of particular interest also because it

presents several noteworthy boundary conditions situations (e.g., it intro-
duces a boundary point – point B in Figure 9 – with a combination of a
traction-free boundary condition and an interface between different materi-
als).

As material properties we assume ν1 = 0.2, ν2 = 0.25, and E2 = 1000,
resulting in E1 = 768. With these choices, the exact displacement of point
A (indicated in Figure 9) can be easily computed to be

uA = 2.1875 · 10−3 vA = 3.125 · 10−4

We numerically solve the problem by IGA collocation using two conform-
ing NURBS patches (i.e., a patch for each material). The analytical solution
is matched up to machine precision by the numerical one computed using
a single element per patch, illustrating the good behavior of the proposed
numerical scheme for the case under investigation.
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Figure 10 shows the horizontal and vertical displacement fields (obtained
using p = q = 2 and 3 × 3 control points per patch, i.e., one element per
patch), which are linear in the two coordinate variables within each material,
as expected. We also highlight that, as desired, a perfectly homogeneous
solution is obtained in the y direction.

We may also notice that the management of a conforming multi-patch
situation is very simple in the proposed collocation method, since it is based
on constructing the discrete equilibrium relation for each patch and, then,
summing the equations associated to collocation points shared by multiple
patches (see Auricchio et al., 2012a, for more details).

3D elasticity test and comparison with Galerkin. We finally present
the results of a 3D test on an elastic block, focusing in particular our atten-
tion on performance comparison among IGA collocation and Galerkin IGA
and FEA. These results have been originally proposed by Schillinger et al.
(2013), where a comprehensive study on the computational costs of IGA
collocation as well as of Galerkin IGA and FEA is reported, including de-
tailed operation counts showing the potential advantages of IGA collocation.
Readers are therefore referred to such a paper for more details.

The considered problem consists of an elastic cube defined over the do-
main [0, 1]3, fully clamped on its boundary and loaded by a body force giving
rise to a manufactured solution u1 = u2 = u3 = sin(2πx1) sin(2πx2) sin(2πx3).
Material parameters are selected to be E = 1 and ν = 0.3.

Numerical results in terms of L2- and H1-norm relative errors versus
number of degrees of freedom per parametric direction are reported in Fig-
ures 11 and 12, respectively. It is possible to see that, for IGA colloca-
tion, the same convergence rates observed in 1D are attained. For Galerkin
IGA and FEA, instead, optimal convergence rates are attained, as expected
from the theory. In terms of convergence constants, the best results are al-
ways guaranteed by Galerkin IGA, whereas IGA collocation presents slightly
worse or similar results with respect to Galerkin FEA in the L2-norm, and
better results in the H1-seminorm (except for the cubic case that, inter-
estingly enough, in collocation is always underachieving, in particular with
respect to the quadratic case).

Having in mind accuracy-to-computational-cost ratio as a measure of
the efficiency of a numerical method, we also report results in terms of
L2- and H1-norm relative errors versus computational times. The obtained
results, reported in Figures 13 and 14, show that for degrees p > 3 IGA
collocation guarantees the best overall performance, heavily outperforming
Galerkin approaches in the H1-seminorm. Such results are also supported
by the operation counts provided in Schillinger et al. (2013). In particular,
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Figure 10. Two-material two-patch plane strain traction test. Horizontal
(top) and vertical (bottom) displacement fields.

19



it is worth to remark that, as highlighted in the above-mentioned paper, the
superiority of IGA collocation is best illustrated in Figure 14, where with
p = 4 IGA collocation achieves an error level of 10−5 in the H1-seminorm in
less than 20 seconds, whereas both Galerkin approaches require more than
500 seconds to reach that accuracy.

Figure 11. 3D elasticity test. Relative error in L2-norm versus number of
degrees of freedom per parametric direction for IGA collocation (IGA-C) as
well as Galerkin IGA (IGA-G) and FEA (FEA-G).

4 A Brief Overview on Other Results and
Applications

In this section, we give a brief overview on further results and interesting
applications in the field of IGA collocation. Since the aim of the present
chapter is just to give a basic and concise introduction to IGA collocation,
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Figure 12. 3D elasticity test. Relative error inH2-seminorm versus number
of degrees of freedom per parametric direction for IGA collocation (IGA-C)
as well as Galerkin IGA (IGA-G) and FEA (FEA-G).

this section is not meant as a complete and self-consistent review, and read-
ers are referred to the cited individual papers for more information and
details.

Explicit dynamics. Probably, the most promising application of IGA
collocation is explicit dynamics. In fact, in explicit dynamics analyses, the
speed is almost entirely dependent on the cost of quadrature, because the
computational cost is dominated by stress divergence evaluations at quadra-
ture points for the calculation of the residual force vector. Accordingly, ex-
plicit codes used extensively for crash dynamics and metal forming, such as
LS-DYNA, rely almost exclusively on fast low-order quadrilateral and hex-
ahedral elements with one-point quadrature. Unfortunately, those elements
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Figure 13. 3D elasticity test. Relative error in L2-norm versus computa-
tional time for IGA collocation (IGA-C) as well as Galerkin IGA (IGA-G)
and FEA (FEA-G).

typically require stabilization (whose parameters usually need fine-tuning by
computationally expensive and time-consuming sensitivity studies) against
mesh instabilities such as hourglass modes.

In this context, isogeometric collocation can be viewed as a one-point
quadrature scheme that is rank sufficient and is therefore free of mesh in-
stabilities. Hence, IGA collocation methods eliminate the need for ad hoc
hourglass stabilization techniques and the relative parameter tunings, and
can be seen as a very promising fast and accurate higher-order alterna-
tive (further considerations on the advantages of IGA collocation in explicit
dynamics can be found in Auricchio et al., 2012a, and Schillinger et al.,
2013). In addition, IGA collocation methods show great promise for the
development of higher-order accurate time integration schemes due to the
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Figure 14. 3D elasticity test. Relative error in H2-seminorm versus compu-
tational time for IGA collocation (IGA-C) as well as Galerkin IGA (IGA-G)
and FEA (FEA-G).

convergence of the high modes in the eigenspectrum (cf. the spectral results
in Section 2.2).

However, as in IGA Galerkin, classical row-sum mass lumping techniques
limit accuracy of standard explicit schemes to second order only, indepen-
dently of the approximation degree (Cottrell et al., 2006). In Auricchio et
al. (2012a), a predictor-multicorrector scheme has been proposed to conve-
niently recover higher-order convergence rates in space within an explicit
framework. Such a method is however only second-order in time. Moving
from four-stage Runge-Kutta integration methods, similar results have been
obtained also within a fourth order scheme in time (and preliminary results
have been recently presented in Reali et al., 2014).
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Local refinement. As we have seen, standard NURBS-based IGA col-
location is based on tensor-product NURBS, which are used within the
isoparametric paradigm for the representation of both geometry and field
variables. Once the (tensor-product) geometry representation is fixed, also
the distribution of the collocation points (e.g., Greville abscissae) is fixed
and affected by the tensor-product structure. Therefore, when local refine-
ment is needed, it is necessary to resort to alternative locally-refinable shape
functions.

In Schillinger et al. (2013), this has been achieved resorting to hierar-
chical B-Splines and NURBS. However, in that paper, it has been shown
that the plain use of those shape functions is not enough to get a work-
ing locally-refinable method, because linear independence problems may
arise in transition regions between different levels. The proposed solution
is to use hierarchical NURBS spaces in combination with the concept of
weighted IGA collocation (practically applying the weighting concept only
in transition regions). The resulting method is simple and efficient, and
an accurate description can be found in Schillinger et al. (2013) along with
several numerical tests proving its effectiveness. Among them, one of the
most significant ones is a 3D advection-diffusion benchmark consisting of a
cylinder that rotates around its axis with a tangential velocity aθ = ωr and
a radial velocity ar = 0, with a flow of constant axial velocity az, which
results in a helical plume of the concentration that emerges from the fixed
local inflow boundary condition u = 1. In Figure 15, we report the problem
definition, the adopted hierarchical mesh (defined by an automatic adap-
tive refinement procedure based on a gradient-based error indicator), and
the corresponding solution. A uniform discretization that yields a plume
resolution with the same small element size as in the adaptive mesh re-
quires a globally refined mesh with 1,095,200 degrees of freedom, whereas
the presented adaptive mesh requires only 104,017 degrees of freedom.

Contact. When dealing with the simulation of practical structural me-
chanics problems involving interactions between multiple patches with non-
conforming discretizations, the enforcement of contact constraints is a fun-
damental issue to be properly addressed. IGA contact is now an established
research field in the Galerkin context, where it has been shown that the
higher continuity typical of IGA shape functions can have beneficial effects
(see, e.g., the recent review by De Lorenzis et al., 2014c, and references
therein). More recently, the problem of frictionless contact has been suc-
cessfully tackled also in the framework of IGA collocation by De Lorenzis et
al. (2014b), who have proposed a two-half-pass algorithm. In that paper,
several demanding examples have been considered in order to prove the

24



Figure 15. Advection-diffusion in a rotating cylinder with hierarchical
weighted collocation. Problem definition (top left); adopted hierarchical
mesh (middle left); solution (bottom left); and finest elements at the differ-
ent steps of the adaptive procedure (right).

good behavior of IGA collocation in contact problems. In particular, we
mention here the remarkable fact that the contact patch test is passed up
to machine precision with IGA collocation, something that does not happen
for standard node-to-surface algorithms with Galerkin formulations.

Structural elements. The peculiar features of IGA collocation has been
also widely applied for the development of structural thin elements like
beams and plates. In particular, Bernoulli-Euler beam and Kirchhoff plate
elements have been proposed by Reali and Gomez (2014). Also shear-
deformable structural elements have been considered and, in the case of
three-field (i.e., displacements, rotations, shear stresses) mixed formula-
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tions for Timoshenko initially-straight planar beams (Beirão da Veiga et
al., 2012) and for curved spatial rods (Auricchio et al., 2013), the structure
of IGA collocation leads to mixed methods which are locking-free indepen-
dently of the approximation degrees for the three fields. Such a unique
property has been proven analytically and extensively tested numerically.
Following those positive results, isogeometric collocation has been then suc-
cessfully applied also to the solution of Reissner-Mindlin plate problems, in
both primal and mixed forms Kiendl et al. (2014a). Finally, an interest-
ing new single-parameter formulation for shear-deformable beams, recently
introduced by Kiendl et al. (2014b), has been solved also via IGA colloca-
tion, and preliminary results on its plate counterpart have been shown in
Kiendl et al. (2014c).

Phase-field modeling. IGA collocation has been finally employed as a
fast, accurate, efficient, and geometrically flexible tool for phase-field mod-
els by Gomez et al. (2014). In particular, the considered model problem
has been the Cahn-Hilliard equation, which is a central model in nonlinear
interface dynamics and pattern formation, derived about fifty years ago as
a model for phase separation of immiscible fluids by Cahn and Hilliard.
Since then, it has been applied to a variety of physical problems, including
planet formation, microstructure evolution of binary mixtures, and phase
separation of polymer blend. The Cahn-Hilliard equation is also one of the
simplest equations that can model stable co-existence of two phases and,
as such, is the basis for various multiphase flow theories (interested readers
are referred to the related references cited in Gomez et al., 2008, 2014).
In the context of the numerical solution of the Cahn-Hiliard equation, IGA
collocation proposes itself as a successful combination of the geometrical
flexibility of Galerkin FEA and IGA approaches and the accuracy, efficiency,
and simplicity of pseudo-spectral collocation methods. Several significant
numerical examples are reported in Gomez et al. (2014), and two of them
are shown in Figure 16. Given these positive results and the proven poten-
tial of phase-field modeling within the IGA framework (see, e.g., Gomez et
al., 2008; Borden et al., 2012), this appears to be one of the most promis-
ing fields for the implementation of IGA collocation, in particular for what
concerns the context of fracture mechanics (cf. De Lorenzis et al., 2014a,
and Schillinger et al., 2014b).

5 Conclusions and further current developments.

The aim of this chapter was to give a concise introduction to the recently
introduced and more than promising family of isogeometric methods based
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Figure 16. Phase-field modeling via IGA collocation. Spinodal decomposi-
tion on a square domain (left) and nucleation on a mapped domain (right).
See Gomez et al. (2014) for details and parameter values.

on the collocation concept. Accordingly, the basic ideas of the approach
have been first introduced in 1D along with some theoretical results, and
then extended to higher dimensions in the framework of linear elastostatics
problems. Moreover, several significant numerical tests have been shown, in
order to confirm the good behavior and potential of the method, also on the
basis of the accuracy-to-computational-cost ratio and in comparison with
Galerkin approaches.

We have finally given a brief overview of further results and interest-
ing applications of IGA collocation, including local refinement, contact,
structural elements, and phase-field modeling. In addition to the above-
mentioned applications, some promising preliminary results have been also
recently obtained in dealing with the incompressibility constraint via mixed
methods (Morganti et al., 2014), in the nonlinear elastic and inelastic regimes
(De Lorenzis et al., 2014a), as well as in the field of Computational Fluid
Dynamics (Evans et al., 2013).

As it can be seen, due to its special features, IGA collocation has shown
so far a lot of potential in many fields of Computational Mechanics and
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is attracting more and more attention among researchers. However, there
are many issues that still have to be addressed and fully understood (e.g.,
a complete and sound mathematical analysis of the method is yet to be
developed), and the door is definitely open for many further improvements
and applications.
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