
Effective Fault Treatment for Improving the Dependability of

COTS- and Legacy-based Applications

A. Bondavalli∗,
Dipartimento di Sistemi e Informatica,

Universitá di Firenze,
Via Lombroso 6/17, 50134 Firenze, Italy

a.bondavalli@dsi.unifi.it

S. Chiaradonna
ISTI-CNR

Via A. Moruzzi 1, Loc. S. Cataldo, 56124 Pisa, Italy
Silvano.Chiaradonna@cnuce.cnr.it

D. Cotroneo, L. Romano
Dipartimento di Informatica e Sistemistica

Universitá di Napoli Federico II
Via Claudio 21, 80125 Napoli, Italy

(cotroneo, lrom)@unina.it

Abstract

In this paper, we present a complete architecture suitable for improving the de-
pendability of a wide class of distributed systems consisting of COTS components
and Legacy systems. The paper advocates the need for careful diagnosis and damage
assessment, and for precise and effective recovery actions, specifically tailored to the
affecting fault and/or to the extent of the damage in the affected unit. In our pro-
posal, threshold-based mechanisms are exploited to trigger alternative actions. The
design and implementation of the resulting solution is illustrated with respect to a
case study. This consists of a distributed architectural framework which replicates an
application built from COTS components and Legacy systems. Replication and voting
are used for error detection and masking. Dependability analysis has been conducted
via combined use of direct measurements and analytical modeling.

Keywords: Legacy Systems & COTS Components, Fault Diagnosis & Treatment,

Fault Injection, Modeling & Evaluation, Performability.

1 Introduction

We are witnessing the construction of complex distributed systems, which are the result

of the integration of a large number of components, including COTS (Commercial Off-

The-Shelf) components and Legacy systems. While there is agreement about the meaning

∗

Contact author

1

of the term COTS, it is worth defining what we mean by Legacy system. By Legacy

system it is intended here a software program for which maintenance actions consisting in

modifications to the source code are either impossible or prohibitively costly. This may

be due to a variety of reasons, including:

• the component is written in a programming language which has become obsolete,

as compared to the rest of the technologies used by the enterprise to develop its

business applications. As an example, a COBOL program is a Legacy system in an

enterprise environment where web oriented technologies are being massively used;

• the component is not well documented. As an example, it has been modified over

the years by different people, who are not available anymore and/or who have not

adequately reported in the software documentation the modifications they have per-

formed.

COTS- and Legacy-based distributed applications are being used to provide services,

which have become critical in our everyday life. It is thus paramount that such systems

be able to survive failures of individual components, i.e. they must provide some level of

(reduced) functionality also in the presence of faults. To this aim, effective fault toler-

ance strategies, specifically tailored to COTS- and Legacy-based applications, need to be

revisited. More precisely, mechanisms and strategies to implement fault tolerance func-

tions have to be tuned, to account for the differences between COTS and legacy-based

applications and traditional safety-critical systems. Several proposals have been made,

which allow to build dependable systems by integrating COTS and legacy components, as

detailed in section 2. These proposals mainly concentrate on error processing, typically

by replication (in a variety of flavors), possibly supported by facilities such as distributed

membership of replicas, and/or reflective programming. However, little attention has been

paid to the problem of maintaining system health, and of preserving tolerance capabilities.

Although diagnosis has been extensively studied, its application to COTS- and Legacy-

based systems raises a variety of issues which have not been addressed before. Such issues

stem from a number of factors, which are briefly described in the following:

• First, the designer (system integrator) has limited control over individual components

and subsystems, since for most of them the internal design is not known.

2

• Second, COTS and legacy components are heterogeneous, whereas the targets of

traditional diagnosis, typically the components of safety critical systems, are – to a

large extent – homogeneous.

• Third, diagnostic activities must be conducted with respect to components which

are large grained, whereas traditional applications (such as safety critical control

systems) typically consist of relatively fine grained components.

• Fourth, repair or replacement of system units is costly and in some cases not possible

at all.

In a COTS- and Legacy-based infrastructure, diagnosis must thus be able to assess the

extent of the damage in individual components, so to carefully identify fault treatment and

system reconfiguration actions, which are most appropriate, and when such actions are to

be performed. To this aim, it is paramount that data about error symptoms and failure

modes be carefully gathered and processed. One shot-diagnosis is inadequate: an approach

is needed, which collects streams of data and filters them by observing component behavior

over time. Several heuristics, based on the notion of threshold, have been proposed and

have effectively been applied for diagnosis in many fields [20, 21, 22, 23], and in particular

to highly available information & communication systems, as discussed later. Such kind

of diagnosis has been applied to real-time systems [22, 34]. For such systems the collection

and processing of data streams must not disrupt the real-time properties. A thorough

analysis of how to effectively manage these data, fulfilling the requirements, is in [13].

In our past research, we addressed issues related to goals and constraints of a diagnostic

sub-system based on the concept of threshold, which must be able to: i) understand the

nature of errors occurring in the system, ii) judge whether and when some action is nec-

essary, and iii) trigger the recovery/reconfiguration/repair mechanisms/staff to perform

the adequate actions to maintain the system in good health [13].

The novel contribution of this paper is a methodology and an architectural framework

for handling multiple classes of faults (namely, hardware-induced software errors in the ap-

plication, process and/or host crashes or hangs, and errors in the persistent system stable

storage) in a COTS- and Legacy-based application by using an evidence-accruing fault tol-

erance manager to choose and carry out one of multiple fault recovery strategies, depending

upon the perceived severity of the fault. A case study system has been implemented and

3

benchmarked using a performability benchmark. In particular, the study focused on the

best threshold values for the number of faults needed before triggering specific recovery

mechanisms. The effectiveness of the suggested approach is evaluated through combined

use of direct measurements on the system prototype and analytical modeling. The use

of a fault injection on a real system prototype allowed us to derive realistic fault models

(by tracking error propagation through individual system layers), and to extract relevant

system parameter values (which were used to populate an analytical model of the system).

The rest of the paper is organized as follows. Section 2 provides an overview of relevant

previous work. Section 3 describes the conceptual architecture of the replication frame-

work, i.e. the main components and their interactions, emphasizing the fault treatment

approach that we propose. Section 4 specializes the conceptual architecture of the replica-

tion framework taking into account the characteristics of a specific application which we

used as a case study. Section 5 describes the Stochastic Activity Network (SAN) model

that was used to evaluate the system. Section 6 presents the results on parameter tuning

and overall system dependability that were obtained via combined use of direct measure-

ments and analytical modeling. Section 7 concludes the paper with final remarks and

lessons learned.

2 Related Research

This section provides an overview of the research conducted in the field of fault tolerant

distributed systems which include COTS components and Legacy systems. The analysis

clearly indicates that most projects proposed replication-oriented architectural frameworks

focusing on error processing, but addressed fault-treatment only to a limited extent.

A great deal of research has been conducted on providing support for dependability

to existing distributed applications. These proposals differ from one another in many

aspects, including the nature of the fault tolerance mechanisms (hardware, software, or a

combination of the two), and the level of transparency to the application level (application

aware/unaware approach).

Many projects have been undertaken, both in the academia and in the industry, which

provide fault tolerance to CORBA applications, by incorporating fault tolerance facilities

in the ORB and/or in additional software layers. AQuA [3], Eternal [31], IRL [5], and

4

OGS [12] are examples of such projects. AQuA provides replication groups, which com-

municate using connection groups [3]. The Eternal system adds fault tolerance to CORBA

applications by replicating objects and incorporating a number of mechanisms to maintain

replica consistency [31]. The IRL relies on a multi-tier scheme and on a set of protocols,

mechanisms and services which allow a CORBA system to handle object replication [5].

OGS provides an active replication scheme implemented as a CORBA service, which is

based on a group communication facility [12]. In addition to the proposals related to

CORBA, several research studies have been conducted on providing support for depend-

ability to existing applications via distributed architectural frameworks which do not rely

on any specific middleware product. Among these, it is worth mentioning Chameleon [4],

FRIENDS [8], and DELTA-4 [10]. Chameleon provides fault tolerance through a wide

range of software implemented error detection and error recovery mechanisms for both ap-

plications and Chameleon entities. The FRIENDS system provides mechanisms for build-

ing fault tolerant applications through the use of libraries of meta-objects. The Delta-4

project provides an open, fault-tolerant, distributed computing architecture.

In [7], the authors present a middle-tier based architectural framework for leverag-

ing the dependability of legacy applications, transparently to the clients. The conceptual

architecture of such a framework is -to a large extent- independent of the specific charac-

teristics of the target application, as well as the enabling technologies. A prototype was

deployed using CORBA technology.

Despite such a large body of research, distributed systems made of COTS components

and Legacy systems exhibits some characteristics which need further investigations. In

particular, the analysis clearly indicates that most proposals, although effective in lever-

aging the dependability of the target applications, addressed fault-treatment only to a

limited extent. In particular, accurate fault diagnosis, which allows more effective fault

treatment actions, can play a key role for further improving the dependability of COTS-

and Legacy-based applications. Diagnostic techniques applied to such systems have to

carefully assess component status or the extent of component damage, so to carefully

identify the need for reconfiguration, and for treatment actions. One-shot collection of a

syndrome, typical of traditional diagnostic models, is not possible; data on components

behavior have to be collected, and filtered over time. In the literature, some of such ap-

proaches have been proposed mainly for the identification of the nature of hardware faults

5

(transient, intermittent or permanent). These can be broadly classified in two categories:

i) techniques designed to support human intervention [18, 19], to be applied off-line to

error logs, and ii) algorithm-based, automatic mechanisms to be used on-line. Techniques

in the latter category are all based on a notion of thresholding the error frequency to di-

agnose components hit by a permanent fault [20, 21, 22, 23]. A more extended description

of the two categories and of the various proposed solutions is in [9]. Among the heuristics

based on the concept of threshold, the α-count family of mechanisms [21, 9] appears to

be particularly interesting for our purposes, due to the clear and simple mathematical

characterization and to the thorough analysis already conducted.

Very briefly, the α-count processes information about erroneous behavior of each system

component, giving a smaller and smaller weight to error signals as they get older. A score

variable αi is associated to each not-yet-removed component i to record information about

the errors experienced by that component. αi is initially set to 0, and accounts for the

L-th judgement as follows:

• αi(L) = αi(L − 1) + 1 if channel i is perceived as faulty during execution L,

• αi(L) = K · αi(L − 1) (0 < K < 1) if channel i is perceived as correct during execution L.

When αi(L) reaches a given threshold αT , component i is diagnosed as failed and a sig-

nal is raised to trigger further actions (error processing or fault treatment). Proper tuning

of the values of parameters K and αT is crucial for the effectiveness of the mechanism. The

optimal tuning of these parameters depends on the expected frequency of errors and on

the probability of correct judgements of the error signaling mechanism. The analysis per-

formed in [9] has clearly shown the trade-offs between delay and accuracy of the diagnosis

and thoroughly discussed ways to tune these parameters for maximizing performance.

3 Replication Framework and Fault Treatment Strategy

In this section, we describe the conceptual architecture of the replication framework, i.e.

the main components and their interactions, emphasizing the fault treatment approach

that we propose. The role of individual components is -to a large extent- independent

of the specific characteristics of the target application (i.e., the COTS- and Legacy-based

application which is replicated), whereas crucial system settings (such as the values of the

thresholds and the number and the nature of the recovery actions) must take into account

6

Service
Proxy

Ensemble Replica group

Service
Interface

Middle tier

Administrator

Client

Service
Manager

Admin
Interface

Channel 1

CORBA ORB

Replica
Manager

Gateway

Recovery
Manager

ENSEMBLE
MULTICAST

Adjudicator

DPE

Voter

Score
Keeper

TBM Channel 2

Channel 3

Figure 1: Overall System Architecture

application and environment factors, including fault assumptions and failure propagation

mechanisms. Section 4 describes the deployment of the proposed architecture with respect

to a specific case study application.

The architectural framework, depicted in Figure 1, is a three-tier system. The first tier

consists of a client which uses the services provided by the third tier, consisting of a repli-

cated COTS- and Legacy-based application (individual replicas are referred to as channels

in the rest of the paper). The middle tier is in charge of handling distribution and fault

tolerance related activities. The objective is to contrast the effects of faults hitting the

back-end channels. This goal is achieved by replicating the legacy and COTS based ap-

plication according to a Triple Modular Redundancy (TMR) scheme. Since the replicated

legacy and COTS components are identical, they could exhibit common mode failures. In

order for replication to be effective, a key issue, that is limiting the probability of common

mode failures, must thus be addressed. To this end, diversity has to be enforced when

the legacy systems and COTS components are integrated in the replication framework.

This goal is best achieved if different mechanisms/settings/components are enforced at

multiple architectural levels. Section 4.3 illustrates possible measures with respect to our

case study application. The middle tier is in charge of handling distribution and fault tol-

erance related activities, and in particular: error detection, data filtering, error diagnosis,

error masking, and fault treatment. It mediates the service by hiding replication to the

users and providing management facilities (distribution of service requests, voting upon

individual results, and redundancy management). In particular, the Middle Tier handles

state modifications by broadcasting them to all active replicas. Connectivity between the

7

OS
Level
Errors

APP
Level
Errors

Data
Level
Errors

Service
Interface

Service
Failures DPE

Channel i

Channel 1

Channel n

TBM

R1

Rn

R2

α1

α2

αn

Other
Errors

Recovery
Actions

Figure 2: Error accumulation and recovery actions

individual components is provided by CORBA [11], specifically VisiBroker version 4.1. In

the following the main components of the middle-tier are briefly described.

Adjudicator - The Adjudicator consists of two main components; i.e., the Voter and

the Data Processing & Exchange (DPE). The Voter is in charge of selecting a presumably

correct result out of those provided by the channels (error masking). It may support several

adjudication strategies, but in this study it is configured to perform majority voting. Based

on the results of voting, the adjudicator provides error detection information to the DPE.

The DPE filters the error detection data produced by the voter, and delivers it to the

Threshold Based Mechanism (TBM) component.

Score Keeper - The Score Keeper includes the TBM, which is in charge of performing

diagnostic activities (fault diagnosis) and of triggering recovery actions, individually tai-

lored to specific kinds of errors (fault treatment). As to diagnosis, the TBM monitors the

status of the channels and decides whether it is useful to keep individual channels online

or it is more convenient to perform some recovery actions. This is a crucial activity, since

excluding replicas or performing heavy and costly recovery actions, at the very first occur-

rence of an error is too a simplistic approach, which may well have a negative impact on

the performability of the overall system. The specific algorithm implemented by the TBM

is called α-count, and it is described in detail in [9]. Multiple instances of α-count monitor

each channel and are used to choose among a number of alternative recovery actions. This

is illustrated in figure 2.

Recovery Manager – The Recovery Manager is in charge of performing the recovery

actions triggered by the Score Keeper. The basic idea is to trigger the least costly and

8

most effective recovery action based on an estimate of the nature of the fault affecting the

channel, in order to limit error accumulation and ultimately contrast the propagation of

failures from the back-end to the service interface. Figure 2 illustrates the abstract and

conceptual way errors do accumulate in one channel and how the specific recovery actions

(detailed in section 4.3) are triggered by the components of the diagnostic subsystem. Note

that, in many cases, given two recovery actions Ri and Rj (Rj has a greater cost than

Ri), the execution of Rj also fixes inconsistent states which could be cured by Ri. Due to

this consideration, recovery actions are triggered according to a least costly first strategy.

This is achieved by piloting the actions using multiple α-counts for each channel.

Replica Manager – The Replica Manager coordinates and supervises all activities nec-

essary for ensuring that individual replicas are consistent. To this end, it uses the facilities

provided by the Gateway object, which handles data exchanges between the Voter and the

COTS-based application. The Gateway performs two key activities: i) purifies the data

from application-specific and platform-related dependencies, thus avoiding that system

failures occur due to interaction problems (interaction faults are typically caused by mis-

matches or incompatibilities between the legacy applications and the COTS platforms and

software components), and ii) provides reliable multicast support. Limiting the probability

of interaction faults is a key issue.

Service Manager – The Service Manager is in charge of configuring all other compo-

nents. It provides functions to customize the behavior of individual objects (such as the

specific adjudication strategy which must be used for building the reply to be sent to the

client), and to set system configuration parameters (such as the number of threads in the

thread pools).

Service Proxy – The Service Proxy encapsulates the services provided by the legacy

application and exports them via the Service Interface, thus making such (enhanced)

services available to the clients.

4 Deployment Scenario with Respect to a Case Study Ap-

plication

In this section, we specialize the general architecture of the replication framework, which

was illustrated in the previous section, taking into account the characteristics of a specific

application which we used as a case study. In particular, a Failure Mode Error Analysis

9

was conducted in subsection 4.2 which allowed to identify effective fault treatment actions,

i.e. recovery actions tailored to specific classes of faults affecting the target application.

4.1 Case Study Application

The application used as a case study is a distributed one, which encompasses a legacy

component consisting of legacy code written in C, which uses a COTS DBMS, namely

PostgreSQL for stable storage facilities, as shown in figure 3. The main objectives of the

resulting system are:

• to make the application available to remote users which are given the possibility

to access the services (perform query and updates operations) through a CORBA

infrastructure;

• to make it a long running service, available for long time of continued (apart from

outages due to recovery and maintenance) operations;

• to leverage the dependability of the service, beyond the level originally provided by

the legacy component.

The DBMS is seen as a black box which exposes an X/Open XA compliant interface.

The application runs on a Unix-like kernel, on top of a commodity PC or a workstation.

Services can be grouped in two main categories, namely Queries and Updates. The legacy

application reads data from the database to the application level cache, which is imple-

mented as a linked list of nodes which stores temporary data (result sets) to/from the

database, as illustrated in Figure 3. The nodes of such a list consist of an el field which

holds the stored value, and a ptr field which points to the next node in the list. The

application allocates new memory as it needs some. The address of the first node of the

list is stored in a pointer variable. Such a pointer is allocated in the process stack area,

whereas the list nodes are allocated in the process heap area. The data base physical files

are stored on disk.

4.2 Faults and Failure modes

The following types of faults have been considered:

10

Application level Cache

Application Node

Legacy Server

COTS Operating
System

COTS
Hardware

Storage Node

COTS DBMS

COTS Operating
System

COTS
Hardware

Persistent
Data

Figure 3: Case-study legacy application

• Hardware faults - These are faults stemming from instabilities of the underlying

hardware platform, which manifest as errors at the software level [14]. We limit our

attention to intermittent and transient faults, since these are by far predominant [15];

• Software aging faults– Software aging is a phenomenon, usually caused by resource

contention, which can lead to server hangs, panic, or crashes. Software aging mech-

anisms include memory bloating/leaks, unreleased file locks, accumulation of unter-

minated threads, shared-memory-pool latching, data corruption/round off accrual,

file-space fragmentation, thread stack bloating and overruns [1]. Recent studies [24]

have shown that software aging is a major source of application and system unavail-

ability.

Logic level faults, i.e. erroneous coding of the application’s functional specifications,

are not considered. This is not a simplistic assumption. Indeed, this choice is motivated by

the fact that logic level faults in COTS components are rapidly detected (and fixed) due to

the availability of a large number of installations, which provide a large amount of field data

about component failures. As to legacy components, although a large installed base is not

available, logic level faults have been detected and fixed during the years long operation.

In fact, in the typical scenario, legacy software has been thoroughly tested and debugged,

and the vast majority of such faults, which manifest as a violations of the application’s

functional specifications, have been detected and fixed over the years. Conversely, software

aging faults may still be present in the code base. As a result, the legacy program may

exhibit memory leakage problems. A memory leak can go undetected for years if the

application and/or the system is restarted relatively often (which might well have been

11

CPU

Software Level

Memory

EAX

EBX
0x8004853e

0x8004853a

0x80048542

...
while (ptr!=0) {
 write(ptr->el);

...
 ptr=ptr->next;
}

Software Component

Hardware Level

0x80048542

0x0

*ptr=CorrectValue

*ptr=FaultyValue

ptr=0x80048542

ptr=0x80048342

Figure 4: Propagation of Hardware Faults to Application Level.

the case of the legacy application). Communication errors are not considered either. Such

errors occur when data gets corrupted while traversing the network infrastructure. Indeed,

unless “leaky” communication protocols are adopted, it is fairly unlikely that this kind of

errors remains undetected and is not handled by the network protocol facilities (a leaky

protocol is a protocol that allows corrupted information to be delivered to the destination).

A thorough analysis has been performed to understand how hardware faults and soft-

ware aging faults propagate from lower levels of the system to the application level. The

approach taken for such a Failure Mode Error Analysis (FMEA) has been to conduct

a fault injection campaign. An additional -and a fundamental- benefit of the measured

based campaign has allowed to extraction of values for populating the parameters of the

analytical model of the system which has been built to facilitate an end to end analysis of

the system behavior.

Propagation of hardware faults to the software level is illustrated in Figure 4. The

Figure illustrates how a transient hardware fault hitting a memory location or a CPU

register may lead to the corruption of the nodes of the application level cache of the case

study legacy component. Since these faults manifest at the application level as wrong

values of the el or ptr field, we were able to evaluate the effects of hardware faults

by injecting faults at the software level. Injections were performed using the NFTAPE

tool [16] and the GNU debugger (GDB).

We performed the following experiments:

1. Data corruption. The injection consisted of modifying the value of the i − th el

field. At the application level, this kind of fault resulted in a corrupted entry being

written to the database (in the case of an update) or exposed to the system external

interface (in the case of a query). In the case of an update, the error thus propagated

12

to the stable storage.

2. Un-aligned Pointer. The injection modified the value of the i − th ptr field with

a new value in the process address space. The effect of this injection was that the

application returned one or more random records before it eventually crashed. Again,

in the case of an update, the error propagated to the stable storage. More precisely,

the sublist starting from record i-th became erroneous, being some of its records not

up to date.

3. Aligned Bridging Pointer. The injection modified the value of the i−th ptr field with

a new value which is the address of the (i + k)− th node. Although the application

did not crash, this kind of fault resulted in a query or update which operated on a

wrong number of records. At the application level, this kind of fault resulted (in the

case of an update) in a truncated list being written to the physical database (i.e. in

possibly several items being deleted from the database) or (in the case of a query)

in a truncated list being read from the database.

4. Aligned Looping Pointer. The injection modified the value of the i−th ptr field with

a new value which is the address of the (i−k)− th node (0 < k < i). In other words,

the performed injection induced a loop in the list. This caused the application to

loop infinitely as soon as a query or an update was issued. It is worth noting that

the error did not propagate to the stable storage. However, it led to an application

hang due to the fact that the application entered an infinite query/update loop.

As to software aging faults, injections were performed using GNU debugger (GDB)

scripts, which forced the target application to behave as a “resource hog”, i.e. to re-

quest system resources (such as memory, file locks, and thread mutexes) which were never

released. We performed the following experiments:

1. Memory leak. The injection forced the application to skip memory deallocation in-

structions. This resulted in a larger and larger amount of memory being allocated

to the faulty application. Initially, this led to an overload condition for the hosting

node and manifested as a performance fault, that is a timeout failure of the appli-

cation. Eventually, the Operating System denied the allocation of further resources

13

to the application. This resulted in a crash failure of the application, since a signal

was generated by the Operating System and the application was killed.

2. Blocked thread. Two kinds of injections were performed: i) we forced the application

to skip mutex unlock functions, and ii) we forced a loop in a thread’s code. Both

experiments resulted in progressive depauperation of system resources, which led to

performance faults.

4.3 Experimental Testbed and Settings

4.3.1 Recovery Actions

The FMEA described in subsection 4.2, as well as research conducted in the field of software

aging and rejuvenation [1], has suggested three recovery actions for the legacy subsystems,

each one tailored a specific class of errors:

1. Restart of the application (R1) - This action can cure inconsistent application level

states (such as corrupted data structures), but it has no effect on errors which have

propagated to the OS and the system stable storage.

2. Reboot of the host computer (R2) - A reboot restarts the operating system and

all the service software (obviously, in such a case also the application software is

restarted). This action can thus fix erroneous OS as well as service software states

(such as locks due to badly handled race conditions). Again, it has no effect on errors

which have propagated to the system stable storage.

3. Restoration of the data base (R3) - Since multiple copies of the data exist, attempts

can be done to correct errors in the system stable storage. Details about the restora-

tion procedure are provided later in this section.

Whereas the Restart of the application and Reboot of the host computer are self-

explanatory, the Restoration deserves a brief explanation. The restoration procedure is

as follows: the recovery manager reads binary data from the two replicas which are not

been recovered, and compares the flows. If comparison is successful, bits are copied to the

recovering instance. If a disagreement is detected, a third value is read from the recovering

replica. Hopefully, it is possible to determine the correct value via majority voting. If this

is not the case, we assume the system has failed, since no valid data is available. It must

14

Figure 5: Fault-treatment logic

be remarked that the restoration procedure just described is of course only one of many

possible algorithms, and it is not claimed here that this is the best alternative (the focus

of this paper is not on database restoration techniques).

We explicitly note that R2 (Application Restart) is in essence an escalation of R1

(hardware reboot), while R3 (Database recovery) is helpful for different failure modes.

4.3.2 Fault Treatment Logic

The resulting fault-treatment logic, which is illustrated in figure 5, makes use of two α

functions and triggers recovery actions according to a least costly first strategy. Any error

detected by the voter is signaled to the first α-count, which increases the score, whereas

each success is used to decrement the score. In the case of an error, if the threshold is not

reached, R1 is performed. When instead the threshold is reached, R2 is executed. The

score of the first α-count is also reset and an error signal is sent to the second α-count,

which increments its score. The score of the second α-count is never decremented (this

choice is consistent with the assumption that normal operation does not correct corrupted

data). Finally, when the threshold in the second α-count is reached, R3 is performed, and

the scores of both α-counts are reset.

To provide reliable multicast support to the Gateway object, the Ensemble group com-

munication facility [28] was used. Ensemble was attached to the Gateway object (at the

one end) and to the server replicas (at the other end). The former task was straight-

forward: it was sufficient to link the Ensemble library to the Gateway code. The latter

task was quite more complex. In fact, the legacy application came with a TCP/IP socket

15

based interface. TCP calls were intercepted and redirected to Ensemble. To this end,

a virtual device driver was integrated in the kernel of the node which hosted the legacy

server. This approach is to a large extent, i.e. apart from implementation level techni-

calities, independent of the specific characteristics of the operating system of the hosting

node. For a thorough description of this technique, with respect to the Sun Solaris oper-

ating system, please refer to [29]. For improved performance, three threads, namely the

GatewayThreads, parallelize the activity of the Gateway object.

4.3.3 Diversity

In order to limit the probability of common mode failures the following measures were

adopted:

• At the hardware level, nodes with different CPUs (specifically, a PowerPC, a SPARC

Ultra, and a Pentium CPU), equipped with different amounts of RAM (specifically

256, 512, and 1024 MBytes) were used.

• At the OS level, use was made of different versions of the Linux kernel (namely

version 2.5 for the PowerPC, 2.2 for the SPARC, and 2.4 for the Pentium), and

–most importantly– the kernels were compiled using different values for usage limits

configuration parameters. In particular, it was made sure that none of the following

parameters had identical values on any two machines: RLIMT CPU, i.e. the maximum

CPU time allowed for the process; RLIMT FSIZE, i.e. the maximum file size allowed;

RLIMT DATA, i.e. the maximum heap size; RLIMT STACK, i.e. the maximum stack

size; RLIMT RSS, i.e. the number of page frames owned by a process; RLIMT NPROC,

i.e. the maximum number of processes that a user can own; RLIMT NOFILE, i.e. the

maximum number of open files; RLIMT AS, i.e. the maximum size of process address

space.

• At the application level, individual nodes were configured with diverse background

loads, i.e. we launched a diverse set of services on each node.

It must be remarked that the measures taken do limit the occurrence of common mode

failures, since they have a direct impact on the failure modes of individual channels, as

described in section 4.2.

16

5 Model of the System

This section describes the model defined for conducting an analysis of the dependability

(or better performability, as will be motivated later) of the system. The model has been

obtained as a set of interconnected Stochastic Activity Networks (SAN) [33] and then

solved by simulation using the MOBIUS tool [26]. A complete description of SAN can

be found in [33]. Very briefly, SAN are a variant of Stochastic Petri Nets (SPN), with

a graphical representation consisting of places, timed and instantaneous activities, input

and output gates. Activities are equivalent to transitions in SPN. The amount of time to

complete a timed activity may be exponentially or non-exponentially distributed. Cases

can be associated to activities (represented graphically as circles on the right side of an

activity) and permit to model uncertainty upon completion of an activity. The use of

gates permits a greater flexibility in specifying enabling conditions and completion rules

than simple SPN.

Instead of developing unnecessary complex and large detailed models of the channels

(accounting for fine-grain components like processes, data structures, OS layer, HW layer,

etc.), we opted for modelling a channel as a relatively simple component, consisting of an

application object, an OS component, and a database object. This approach allows to

represent the three distinct kinds of errors which were identified in 4, namely Application

Level errors (erroneous states of the application software), OS Level errors (erroneous

states of the kernel and basic services), and Data Level errors (erroneous data which is

stored in the data base).

Moreover, intermittent application or OS software aging errors have been assumed to

have an increasing rate according to a lognormal (or Weibull) distribution [25], since this

is consistent with the fact that the extent of the damage of the channels increases with

time (if no recovery action is taken). In addition, transient hardware faults are assumed

to have an exponential rate, characterized by the alternation of periods where normal

fault rate is observed, and period with abnormal, higher rate. The duration of a period

follows an exponential law (with normal periods quite longer than abnormal ones). Hard-

ware faults manifest as application level errors as follows: the effects of hardware faults

last for a number of service requests with a geometric distribution, i.e. at each service

request there is a constant probability pc of removing the effect of the fault. The restart

17

Figure 6: Composed Model of the System

of the application removes the effect of the hardware faults at the application level. The

composed model of Figure 6 represents the hierarchical model of the system. It consists

of ten logically distinct SANs (Recovery, Client, Channel1, Channel2, Channel3,

FailModelChannel1, FailModelChannel2, FailModelChannel3, ResultProviderVoter,

and DiagnosticBlock), connected together through common places by the Join1 opera-

tion.

The submodel Recovery mimics system behavior as different types of recovery actions

are taken. During recovery, the system does not serve requests. The Client submodel rep-

resents service requests, the status of the replies to the clients (correct, detected erroneous,

undetected erroneous), and the number of replicated servers which are online. Channel1,

Channel2, and Channel3 represent the three channels and the associated GatewayThread

processes. Submodels FailModelChannel1, FailModelChannel2 and FailModelChannel3

represent the failure behaviour of each channel.

The SAN ResultProviderVoter mimics the activities of the Gateway (which receives

the result sets from the GatewayThreads and delivers them to the Voter), and of the Voter.

The SAN DiagnosticBlock represents the behavior of the TBM.

In the remainder of this section three sub-models are described in detail.

Figure 7 depicts the SAN Recovery. The activity Recovery represents the determinis-

tically distributed time of recovery, depending on the type of recovery action. For example,

the time for reconstructing the database depends on the number of records in the database,

represented by the number of tokens in places nRecords1 1 and nRecords1 0 (for the first

channel), nRecords2 1 and nRecords2 0 (for the second channel), and nRecords3 1 and

nRecords3 0 (for the third channel).

18

Figure 7: SAN “Recovery”

The activity Recovery is triggered by the DiagnosticBlock (which triggers the recov-

ery by putting a token in the place Recovery) and the Client models (which remove a token

from the place busyServer when the current request has been served). The C code in the

output gate Recovered enables the marking changes due to the restoration of the data base

or due to the restart of the application and of the OS of the three channels. The output

gates DBRecovered and DBnotRecovered represent the marking changes for modeling the

success or the failure of the restoration of the database, respectively. The two cases of the

activity vote represent the probabilities of success/failure of the restoration of the database.

These probabilities are a function of the number of correct records in the database, which

is given by the number of tokens in places nCorrRecords1 1 and nCorrRecords1 0 (for

the first channel), nCorrRecords2 1 and nCorrRecords2 0 (for the second channel), and

nCorrRecords3 1 and nCorrRecords3 0 (for the third channel). The output gates Start1,

Start2, and Start3 represent changes in the marking to model the application and the

OS restart in the three channels. Places DBRecoveryPoint, DBRecoveredPoint, and

DBnotRecoveredPoint represent the event of occurrence, of success, and of failure of

the restoration of the database, respectively. The termination of recovery actions results

in a token being punt to decrAlphaI. This activates the DiagnosticBlock model (not

shown), which is in charge of decrementing α-count values. To reduce the simulation

time, this operation is not modeled upon delivery of every single signal from the DPE.

19

Figure 8: SAN “FailModelChannel1”

Instead, we consider time slices corresponding to a reduction in the value of α-count equal

to deltaAlphaI. This parameter has been assumed equal to 0.1 in all simulations. If one

chooses a greater value for this parameter, the simulation would be speeded up, at the cost

of a worse approximation of the α-count mechanism. The behavior of the system during

individual intervals (such as the number of requests which are served) is modeled using

the average values of the request arrival time and of the service execution time. The input

gate isDecr activates the submodel when failures occur (this is represented by a token in

place ifDecrAlphaI).

Figure 8 depicts the SAN FailModelChannel1. The Lognormal and Weibull dis-

tributed activities ApplFail and OSFail represent the times to failure of the application

and of the OS, respectively. After the i-th failure represented by the number of tokens in

the places nApplFail1 (for the application) or nOSFail1 (for the OS), the time to the next

failure is reduced by using a distribution with a mean equal to the original one divided by

2i. When the number of tokens of the places nApplFail1 or nOSFail1 becomes greater

than or equal to a given threshold Ncrash, the application or the OS crash, respectively.

ApplFail and OSFail are restarted with the original distributions after each restart of the

application or of the OS, respectively.

The exponential activities Normal and Burst, represent the alternation of normal peri-

ods, whose expected duration is indicated by the parameter TN , where the transient fault

20

Figure 9: SAN “Channel1”

occurs with rate λN , and of abnormal periods, having expected duration TB , characterized

by a higher rate λB. The rate of the exponential activity HWFail, representing the time

to failure of the application caused by an hardware fault, is λN or λB depending on the

marking of the places NormalHWF and burstHWF. After the restoration of the database all

the places are reset and the activities are restarted.

Figure 9 depicts the SAN Channel1. The activity BroadcastReq, which represents the

deterministic broadcasting time, is activated by the Client if there is no token in the place

toGT. Since the result of a reply can be very large, it is delivered in chunks of data (result

sets). The current size of each result set is represented by the place resSetRecords. The

activity DBServer represents the retrieval and the updating of the result, it is a timed

activity deterministically distributed. This time is a function of the number of tokens in

the places nApplFail1 or nOSFail1. After the i-th failure of the application or of the

OS, the time for providing the remaining result sets is multiplied by the factor 2i, being i

the number of errors. The deterministically distributed activity TimeOutT represents the

timeout for the delivery of a result set. Upon completion of the DBServer activity, the

output gate eachResultSet sets the number of current records (represented by the place

nCurrentReqRecords) and, if an hardware fault has occurred (there is one token in the

place HWFail1), it enables the instantaneous activity hwfail by inserting a token in place

toHWfail. The four cases of activities hwfail, representing the probabilities of the fault

events described in section 4.2 (Data corruption - Case 1, Un-aligned Pointer - Case 2,

Aligned Bridging Pointer - Case 3, and Aligned Looping Pointer - Case 4) are as follows:

21

P (Case1) =
Nrr(Lrec − Laddr)

(NrrLrec + Laddr)
,

P (Case2) =
(1 − P (Case1))(Lmem − Nrr − 1)

Lmem − 1
,

P (Case3) =
(1 − P (Case1))(Nrr − ie + 1)

Lmem − 1
,

P (Case4) =
(1 − P (Case1))(ie − 1)

Lmem − 1
,

where, Nrr is the number of records for each request, Lrec is the number of bytes for each

record, Laddr is the length of an address (in bytes), and Lmem is the number of addresses

for a memory,ie is the index of the corrupted pointer.

The probability of Case 1 is computed as the ratio of the probability that an error

hits a specific record (which is proportional to the size of the memory area containing

data for that record) to the probability that the error falls in the memory area of the

application-level cache (which is proportional to total size of the application level cache).

The probability of Case 2 is the probability that a specific pointer is corrupted by a fault

and points to a non valid memory address (thus leading to a crash). This is given by the

ratio of all possible memory addresses diminished by the total number of valid memory

addresses (Lmem − Nrr − 1) to the total number of non valid memory addresses. The

probability of Case 3 is the probability that a corrupted pointer points to an item which

follows in the record list. In the computation we have also considered the probability

that the corrupted pointer points to null. Formula for Case 4 represents the probabil-

ity that a corrupted pointer points to an item which precedes it in the record list. For

each result set the instantaneous activity IsFail generates the number of correct and

erroneous records (nCorrReqRecords and nErrReqRecords) and the number of records

(nFailRecords) affected by a failure occurred in the meantime. Correct and erroneous

records are randomly chosen by the two cases of the activity IsFail by using the num-

ber of records and correct records in the DB, represented by the places nRecords1 1,

nRecords1 0 and nCorrRecords1 1, and nCorrRecords1 0, respectively. A failure occurs

if a token has been inserted in places timeOut, crash1, dataCorrup, unalPtr, alBridP or

alLooP and the number of tokens in the place ithRecord represents the index of the cor-

rupted pointer described in section 4.2, in the case of fault occurrence. Then, the output

22

gate UpdateDB records relevant information regarding the system stable storage. As soon

as the activity toGT completes, a result set is provided to the ResultProvider (the output

gate IsNextRS inserts one token to the place toResultProvider1 and reduces the number

of tokens to nCurrentReqRecords, representing the current number of records have not

yet delivered to the client). A new result set (if it exists, i.e. there is at least one token in

the place nCurrentReqRecords) can be retrieved (IsNextRS inserts a token to the place

toGT1). Places nFailRS, nCorrRS, and nErrRS represent the number of failed, correct,

and erroneous records, respectively, which are read from the DB for each result set. These

places are reset when the simulation of the handling of a new result is started. The pres-

ence of one token in place lastRes1 means that the system is delivering the last result set

of the current request. The two cases of the activity NextHWF represent the probabilities

that the effect of an hardware fault is removed (token removed from the place HWFail1).

6 System Evaluation

This section describes the results obtained via combined use of direct measurements on the

system prototype and the evaluation of the model of the system. Our analysis consists of

two main parts. The first part shows how to best tune the parameters of the α-counts. The

second part reports some measures of system performability obtained exercising the SAN

model. The concept of performability has been introduced in the seminal work of J. Meyer

[27]. Since then it has attracted widespread attention and has been the topic of a vast

amount of literature which cannot be fully reported here. It is a unified measure proposed

to deal simultaneously with performance and dependability. performability evaluation

involves specifying a performance (reward) variable (which has the generic meaning of what

a system accomplishes during its use) and determining a reward model for the performance

variable, i.e. a reward structure which associates reward rates with state occupancies and

reward impulses with state transitions [27]. Obviously, the accomplishment levels and the

reward structures depend on the system and the measures of interest. In the following we

define the measures specific for our system.

6.1 Performability Metrics and Assumptions

The possible outcomes of a request to a channel are:

• Success - for queries the channel returns the correct value(s) within the timing con-

23

straints (before the Voter timeout expires, for updates, the databases are updated

correctly;

• Timing Errors - The channel returns no value (before the Voter timeout expires);

• Value Errors - The channel returns a wrong value. More precisely: i) it returns a

value different from what is actually stored in the physical database; ii) it stores to

the physical database a value different from the input; iii) it does not perform the

requested operation.

Thus, the events that contribute to define the performability model for the system

performing a mission of finite duration t are the following:

• Success - The channel returns the correct value(s). NS(t) denotes the number of

successes in the interval [0, t].

• Timing query failure - A query fails due to a timeout, but the mission does not fail

because of this event, since correct results to the same query can be obtained once

the system has undergone recovery actions. NTF (t) is the number of failed queries

(due to a timeout) in the period [0, t].

• Unavailable system - the result of query cannot be delivered, since the system is not

available (it is engaged in recovery activities). This event is not a mission failure.

NR(t) indicates the number of queries which cannot be delivered in the period [0, t]

due to recovery activities.

• Recovery failure (rfail) - Failure of the restoration of the database, due to erroneous

copies of a same record stored in at least two databases. This event makes the system

to halt, thus failing to completing the mission.

• Query value failure (qfail) - The system fails to respond to a query by providing

a wrong value. This outcome is due to erroneous copies of a same record of the

result stored in at least two databases. This event represents a mission failure. (the

difference with the previous case is that in the previous case the system halts once

it is aware of the unrecoverable corrupted state, while in the present case a wrong

output is emitted).

24

• Mission success (msucc) - The system terminates successfully the mission at time t.

In performing system evaluation, a time dependent performability measure Y (t) has

been identified as an appropriate indicator to evaluate our proposal, defined as:

Y (t) =























NS(t)G − NTF (t)CTF − NR(t)CR, if msucc,

NS(t)G − NTF (t)CTF − NR(t)CR − CRF , if rfail,

NS(t)G − NTF (t)CTF − NR(t)CR − CQF , if qfail,

where a reward G is accumulated for each correct query, a penalty CTF is paid for each

timing query failure, a penalty CR is paid for each query that cannot be provided during a

recovery, penalties CRF or CQF are paid in the case of database recovery failure or query

value failure, respectively.

From the definition of the performability variable Y (t), the expected effectiveness of

the system E[Y (t)] can be derived as:

E[Y (t)] = E[NS(t)]G − E[NTF (t)]CTF − E[NR(t)]CR − Prfail(t)CRF − Pqfail(t)CQF ,

where Prfail(t) is the probability of observing the recovery failure event (rfail) within

the interval [0, t] and Pqfail(t) is the probability of observing the query value failure event

(qfail)within the interval [0, t].

It is assumed that software and hardware faults times of the channels are statistically

independent and for each fault activation a single bit flip occurs. Service requests form a

Poisson process with rate λr. We assume that the maximum number of records involved

in a service request is Lmax
Q for a query and Lmax

U for an update, and that the distribution

of the number of records of a query LQ is a modified geometric, normalized (truncated)

with respect to Lmax
Q , with parameter pr, defined as: P (LQ = i) = pr(1−pr)i

1−(1−pr)
Lmax

Q
. The

distribution of the number of records involved in an update is defined in a similar way.

6.2 Evaluation Strategy

In order to analyze and evaluate the proposed architecture and to tune the relevant pa-

rameters for the α-counts, we adopted an approach based on combined use of modelling

and prototype-based measurements. This approach appears as the most promising one for

large complex systems [17]. Fault injection experiments and performance measurements

were performed on the prototype to obtain realistic values for the parameters of the an-

25

alytical model. Consistently with the basic assumptions made earlier, both the network

and the CORBA infrastructure and services have been considered reliable. The focus of

our fault injection champaign has been on faults affecting the channels mainly to observe

how faults and errors propagate in the system, as discussed in 4.2. Fault injection was

conducted using the NFTAPE tool [16]. We used different machines for the channels and

different workloads.

The time needed to perform the recovery actions and to service a request were de-

rived from the analysis of the experimental data. The values for these parameters are

summarized in Table 1 where the range of the values observed is reported.

Parameter Description Range

T1 Time to restart the application 0.1 − 0.5
T2 Time to restart the machine 130 − 460
T3 Time to reconstruct the database (about 10GB) 10000− 30000
T4 Time to serve a request (at sustained rate) 0.05 − 0.15

Table 1: Parameter values obtained from measurements on the prototype [sec]

Table 2 reports the main parameters of the SAN model and their reference values.

These values, together with the higher extremes reported in Table 1, were used as default

values in the evaluation of the SAN model. In the analysis a period of 5 years has been

considered. The expected times to first occurrences of application and OS errors have

been set to 15 and 13.7 days, respectively. Then, since Ncrash is set to 10, the crash of

the application or of the OS have a mean of 30 and 27.4 days, respectively. The rates of

the hardware faults during normal and abnormal periods are 1 every 105 days and 1 every

2 minutes, respectively. The expected durations of the normal and abnormal periods is

315 days and 6 minutes. The ratio between the occurrences of the application, OS and

hardware faults is 42%, 46% and 12% (such values are in accordance with experimental

studies conducted by other authors [32, 25, 15]). Whenever possible the reference values

have been chosen from measurements, field experience or published results, other have been

selected driven by reasonableness and authors experience. [SILV] questa frase si mette o

no?????? In any case the validity of the evaluations performed, aiming at comparing

alternatives and at showing that tuning is possible through studies of sensitivity, does not

depend on the precision of the reference values used.

26

Parameter Description Default value

t Duration of the period of the analysis 1.5768E+8
λr Rate of input requests 0.1
pQ Probability of query input request 0.6
pU Probability of update input request 0.4

Lmax
Q Maximum number of records replied to a query request 50

Lmax
U Maximum number of records affected in an update request 30
pr Parameter of the modified geometric normalized distribution rep-

resenting the number of records of a reply
0.1

LIQ Size of the input queue 100
tout Timeout for the delivery of a result set 15
LRS Number of records of a result set 10
KI Decrease ratio of the 1st α-count 0.99
TI Threshold of the 1st α-count 3

KII Decrease ratio of the 2nd α-count 1
TII Threshold of the 2nd α-count 6
N Number of records 107

µA, µO Scale parameters of the lognormal distributions of the times to
errors of application and OS

12

σ2

A, σ2

O Shape parameters of the lognormal distributions of the times to
errors of application and OS

4.2, 4

Ncrash Number of software errors to crash of the application or of the OS 10
λN Rate of the hardware faults during normal periods 1.10231E-7
TN Expected duration of the normal periods 27215640
λB Rate of the hardware faults during abnormal periods 8.33E-3
TB Expected duration of the abnormal periods 360
pc Probability of removing the effect of the hardware failure at each

service request
0.1

Lrec Number of bytes for each record 1024
Laddr Size of an address (bytes) 4
Lmem Number of addresses of the memory 232

G Gain accumulated for each correct query 1
G(t) Gains accumulated at time t (in absence of faults) for G=1 9460800
CR Penalty paid for each query during a recovery 15
CTF Penalty paid for each failed query that can be recovered 10CR

CRF Penalty paid in the case of DB recovery failure CQF /200
CQF Penalty paid when a query fails and the result cannot be recovered 20G(t)

Table 2: Parameters and their default values used in the evaluation (time in seconds)

27

6.3 Parameter setting and tuning

A good performance of the system can be reached if one properly understands how fre-

quently and under which system conditions the restoration procedure should be scheduled.

The procedure is triggered by the second α-count. The fact that the records can be cor-

rupted but cannot be corrected by a service request is represented by setting KII=1. The

recovery follows a majority voting approach and, if the database is not correctly recovered

(upon completion there are still erroneous records) the system halts with a failure. The

probability that the recovery procedure reaches its goals, i.e., that a correct version of

the database can be reconstructed is evaluated as a function of the amount of corrupted

records existing in the three replicas. We assume: i) a uniform distribution of erroneous

data, ii) that corrupted replicas of the same record are perceived as different, and iii)

(conservatively) that all the replicas contain the same number of corrupted records. The

assumption iii) is acceptable in some cases, but does not hold in others. In any case, de-

termining the probability of failure recovery of a database assuming that all channels have

the same maximum number of corrupted records constitutes a worst for the estimated

measure. In the general case such probability is lower, as showed in Figure 10.

Under assumptions i) and ii), a good approximation of the probability pe
k that there

are k erroneous records after executing the recovery procedure is obtained using a binomial

distribution:

pe
k =

(

N

k

)

qk(1 − q)N−k,

where q is the probability of failure of the recovery of a generic record, defined as:

q = q1q2q3 + q1q2(1 − q3) + q1(1 − q2)q3 + (1 − q1)q2q3,

where qi =
Ne

i

N
, i = 1, 2, 3, being N e

i is the number of erroneus records of the i-th channel.

Figure 10 plots the probability of failure of the recovery procedure 1− pe
0 as a function

of the number of corrupted records, under assumption iii), that is all the channels have

the same maximum number of corrupted records nmax, and in a less pessimistic case where

two channels have nmax/2 corrupted records. Given a desired probability of failure for the

recovery procedure, one can now relate the number of corrupted records to the threshold

of the second α-count which is used to trigger the recovery procedure and to the threshold

of the first α-count which is used to trigger the restart of the host computer.

28

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

P
ro

ba
bi

lit
y

of
 B

D
 r

ec
ov

er
y

fa
ilu

re
 (

1-
p 0

e)

Number of corrupted records for DB

Ne
1=N2

e=N3
e=nmax (pessimistic case)

N1
e=nmax, N2

e=N3
e=nmax/2

Figure 10: Probability of failure of the recovery procedure as a function of the number of corrupted
records

Figure 11 reports the number of erroneous records of a replica of the database as a

function of TI for different values of TII as estimated by simulation with our SAN model of

the system. Figure 11 shows that, in the settings chosen, the number of corrupted records

ranges from about 3 for low values of TI and TII to about 800 when TI and TII go to 6.

In more details, at low values of TI the number of corrupted records grows markedly as

TI increases; for TI > 1.5 these variations become smaller. The influence of TI increases

as TII increases. The figure shows that choosing a desired value for 1 − pe
0 results in

specific constraints on the number of the corrupted records. As an example, to get values

of 1−pe
0 ≤ 10−2 the recovery has to be performed when at most 180 records are corrupted.

Figure 11 show that values of TII = 2 and TI in the range [1, 2.8] satisfy the condition

that the number of corrupted records is in the range [0, 180]. Note that many different

combination of values for TI and TII , can satisfy the condition.

6.4 Performability Results

In the following, we analyze the perfomability results obtained for different values of the

α-count parameters and of the cost parameters. Figure 12 reports the expected performa-

bility of the system in 5 years, as a function of TI for several values of TII . Additionally

Nmax
S (t) (defined as the maximum number of correct queries that can be performed in

absence of faults in a period [0, t]) has been plotted. Nmax
S (t) represents the performance

in the nominal case and is the theoretical upper bound for Y (t).

29

 0

 50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

65.554.543.532.521.51

E
xp

ec
te

d
nu

m
be

r
of

 c
or

ru
pt

ed
 r

ec
or

ds

TI

TII=6
TII=4
TII=2
TII=1

Figure 11: Number of corrupted records as a function of TI for different values of TII

-1.2E+07

-1.0E+07

-7.5E+06

-5.0E+06

-2.5E+06

0.0E+00

2.5E+06

5.0E+06

7.5E+06

1.0E+07

65.554.543.532.521.51

E
xp

ec
te

d
P

er
fo

rm
ab

ili
ty

 E
[Y

(t
)]

TI

G=1, CTF=10*CR, CR=15, CRF=CQF/200, CQF=20 G(t)

NS
max(t)

TII=6

TII=4

TII=2

TII=1

Figure 12: Expected performability of the system in 5 years, as a function of TI for several values
of TII

The figure shows that the setting TI = 1 and TII = 1, which represents a system which

does not incorporate the proposed diagnostic mechanisms (in such a system, a database

restoration would be attempted upon occurrence of each failure) is the one which delivers

the worst performability. The figure shows that distinguishing among the recovery actions

brings benefits to the obtained performability. More precisely, the combination TI = 1

and TII > 1, in which R1 and R2 are always executed together while R3 is executed only

when the second threshold is reached, gives better performability than the case when the

three actions are executed all together. The same holds when R2 and R3 are executed

30

together and R1 is kept separated, that is when TI > 1 and TII = 1. The curve marked

TII = 1 in Figure 12 is increasing for increasing values of TI . From the figure it is evident

that the proposed strategy brings significant benefits and can take further advantages

from a careful usage of the identified recovery actions. In the scenario considered the

best expected perfomability is reached in correspondance of the setting TI = 1.5 and

TII = 4. Additionally, also simple-to-determine, non optimal choices for the α-count

parameters bring extremely significant improvements of performability, as compared to

the case TI = 1 and TII = 1 (i.e. the system without our diagnostic mechanisms).

3.0E+06

3.5E+06

4.0E+06

4.5E+06

5.0E+06

5.5E+06

6.0E+06

6.5E+06

7.0E+06

7.5E+06

8.0E+06

8.5E+06

9.0E+06

9.5E+06

65.554.543.532.521.51

E
xp

ec
te

d
P

er
fo

rm
ab

ili
ty

 E
[Y

(t
)]

TI

TII=4, G=1, CTF=10*CR, CR=15, CRF=CQF/200, CQF=20 G(t)

NS
max(t)

NS
max(tF)

E[Y(t)], CR=0, CQF=0

E[Y(t)], CR=0

E[Y(t)], CQF=0

E[Y(t)]

Figure 13: Impact on the performability of the main factors contributing to it as a function of
TI , with TII = 4

Figure 13 reports the impact of the main factors on the performability of the system

in 5 years, as a function of TI , for TII = 4. The curves reported are (from the top):

• Nmax
S (t) as defined earlier,

• Nmax
S (tF), defined as the expected maximum number of correct queries that can

be performed in absence of faults in a period [0, tF] with [tF] the expected time to

failure of the system,

• The expected performability E[Y (t)] for CR = 0 and CQF = 0. This equals the

expected number of successes in the interval [0, t], since the cost of all the other

events is set to 0.

• The expected performability E[Y (t)] for CR = 0. In this case only the cost associated

31

to system failure is considered.

• The expected performability E[Y (t)] for CQF = 0. Here only the cost due to un-

availability during recovery actions is accounted for.

• The expected performability E[Y (t)] including all the costs.

The figure allows to appreciate the contribution of the various factors to the per-

formability. It shows several upper bounds and the two main factors that reduce the

performability: the cost of failure during restoration and the cost of query value failure.

-3E+06

-2E+06

-1E+06

0E+00

1E+06

2E+06

3E+06

4E+06

5E+06

6E+06

7E+06

8E+06

9E+06

1E+07

65.554.543.532.521.51

E
xp

ec
te

d
P

er
fo

rm
ab

ili
ty

 E
[Y

(t
)]

TI

TII=4, G=1, CTF=10*CR, CRF=CQF/200

NS
max(t)

CR=1, CQF=20 G(t)

CR=10, CQF=20 G(t)

CR=15, CQF=20 G(t)

CR=15, CQF=30*G(t)

CR=15, CQF=40*G(t)

CR=15, CQF=40*G(t), CRF=CQF/20

Figure 14: Expected performability of the system in 5 years, as a function of TI for several values
of CR and CQF , with TII = 4

Figure 14 reports the expected performability of the system in 5 years, as a function

of TI for several values of CR and CQF , with TII = 4. The curves allow to appreciate the

interplay of the different costs associated to system events and operations.

Figure 15 shows the expected performability of the system in 5 years, as a function of

TI for several values of KI , and TII = 4. The figure shows that given a valued for KI there

is one corresponding best value for TI . In fact, each curve in the figure has its maximum

in correspondence of a different value for TI . In the case we have considered the absolute

best combination is obtained for KI = 0.9999 and TI = 3.

This analysis allowed us to improve our understanding of the dynamics ruling the

system behavior and gave us hints on how the parameters of the α-counts have to be

set for the system to obtain good performability. The analysis also showed that it is

32

3.5E+06

4.0E+06

4.5E+06

5.0E+06

5.5E+06

6.0E+06

6.5E+06

7.0E+06

65.554.543.532.521.51

E
xp

ec
te

d
P

er
fo

rm
ab

ili
ty

 E
[Y

(t
)]

TI

TII=4, CTF=10*CR, CR=15, CRF=CQF/200, CQF=20 G(t)

KI=0.999999
KI=0.9999

KI=0.99
KI=0.6

Figure 15: Expected performability of the system in 5 years, as a function of TI for several values
of KI , and TII = 4

very useful to distinguish among the identified recovery actions, which have to be applied

individually. It appears instead less important to have a very precise determination of the

threshold values: the differences in the obtained performability levels do not seem to be

particularly relevant. In any case the benefit of the proposed diagnostic and treatment

strategy is evident: the case TII = 1, TI = 1 has been the one where the system performed

by far the worst in all the settings we considered.

7 Conclusions

The novel contribution of this paper is a methodology and an architectural framework

for handling multiple classes of faults (namely, hardware-induced software errors in the

application, process and/or host crashes or hangs, and errors in the persistent system

stable storage) in a COTS- and Legacy-based application by using an evidence-accruing

fault tolerance manager to choose and carry out one of multiple fault tolerance strategies,

depending upon the perceived severity of the fault. A case study system has been im-

plemented and benchmarked using a performability benchmark. In particular, the study

focused on the best threshold values for the number of faults needed before triggering

specific recovery mechanisms. The effectiveness of the suggested approach is evaluated

through combined use of direct measurements on the system prototype and analytical

modeling. The use of a fault injection on a real system prototype allowed us to derive re-

33

alistic fault models (by tracking error propagation through individual system layers), and

to extract relevant system parameter values (which were used to populate an analytical

model of the system). A SAN model of the overall system was developed and thoroughly

evaluated. The model consisted of ten sub-models joined together. We performed several

evaluations by simulation in order to account for non exponential events.

The application used as a case study consists of legacy code, written in C, which uses a

COTS DBMS, for persistent storage facilities. The application runs on Linux, on top of a

commodity personal computer. A careful Failure mode effect analysis has been performed

by fault injection to understand how faults and error propagate, thus identifying the most

promising countermeasures. Special care was devoted to assess the status or the extent

of the damage in the channels, through a diagnostic subsystem based on the concept of

α-count, so to carefully calibrate the use of the fault treatment and system reconfiguration

actions identified: Action 1 (application restart), Action 2 (host restart), and Action 3

(data base restoration). The analysis shows: i) how to set proper values for the parameters,

and ii) the efficacy of the system which calibrates different recovery actions.

ACKNOWLEDGEMENTS

This work has been partially supported by: the Italian Ministry for Education, University and Re-
search (MIUR), within the framework of the FIRB Project “Middleware for advanced services over
large-scale, wired-wireless distributed systems (WEB-MINDS); the Regione Campania, within the
framework of the “Centro di Competenza Regionale ICT” and “Telemedicina” projects; the Na-
tional Research Council, within the framework of “Strumenti, Ambienti e Applicazioni Innovative
per la Societá dell’Informazione”, SOTTOPROGETTO 4.

References

[1] K. J. Cassidy, K C. Gross, and A Malekpour, Advanced Pattern Recognition for Detection
of Complex Software Aging Phenomena in Online Transaction Processing Servers, in proc. of
International Conference on Dependable Systems and Networks, 2002.

[2] P. Narasimhan, and P.M. Melliar-Smith, State Synchronization and Recovery for Strongly
Consistent Replicated CORBA Objects, in proc. of The 2001 International Conference on
Dependable Systems and Networks, 2001.

[3] C. Sabnis, W.H. Sanders, D.E. Bakken, M.E. Berman, D.A. Karr, M. Cukier, AQuA: An
Adaptive Architecture that Provides Dependable Distributed Objects, in proc. of The IEEE
17th Symposium on Reliable Distributed Systems, 1998.

[4] Z.T. Kalbarczyk, R.K. Iyer, S. Bagchi, K. Whisnant, Chameleon: a Software Infrastructure
for Adaptive Fult Tolerance, IEEE Trans. on Parallel and Distributed Systems, vol. 10, pp.
560–579, 1999.

[5] R. Baldoni, C. Marchetti, M. Mecella, A. Virgillito, An Interoperable Replication Logic for
CORBA Systems, in proc. of The 2nd International Symposium on Distributed Object Appli-
cations 2000 (DOA00), 2000.

34

[6] B. Natarajan, A. Gokhale, S. Yajnik, and D.C. Schmidt, DOORS: TowardsHigh-performance
Fault-tolerant CORBA, in proc. of International Symposium on Distributed Objects and Ap-
plications (DOA’00), 2000.

[7] D. Cotroneo, N. Mazzocca, L. Romano, S. Russo, Building a Dependable System from a Legacy
Application with CORBA, Journal of Systems Architecture, vol. 48, pp. 81–98, 2002.

[8] J.C. Fabre, T. Perennou, A metaobject architecture for fault-tolerant distributed systems: the
FRIENDS approach, IEEE Transactions on Computers, vol. 47, pp. 78–95, 1998.

[9] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, F. Grandoni, Threshold-Based Mecha-
nisms to Discriminate Transient from Intermittent Faults, IEEE Transactions on Computers,
vol. 49, pp. 230–245, 2000.

[10] D. Powell, G. Bonn, D. Seaton, P. Verissimo, F. Waeselynck, The delta-4 approach to depend-
ability in open distributed computing systems, in Proc. of the 18th International Symposium
on Fault Tolerant Computing Systems (FTCS 18), 1988.

[11] O.M. Group, Fault-Tolerant CORBA Specification, v1.0, OMG, http://www.omg.org, docu-
ment ptc/00-04-04 2001.

[12] P. Felber, R. Guerraoui, A. Schiper, “The Implementation of a CORBA Object Group
Service”, in Theory and Practice of Object Systems (TAPOS),Wiley&Sons, Vol. 4, No. 2, 1998

[13] L. Romano, S. Chiaradonna, A. Bondavalli, D. Cotroneo, Implementation of Threshold-based
Diagnostic Mechanisms for COTS-based Applications, in proc. of The 21st IEEE Symposium
on Reliable Distributed Systems (SRDS 2002), Osaka, Japan, 2002.

[14] K.K. Goswami, R.K. Iyer,Simulation of Software Behavior Under Hardware Faults, in Proc.
of the 23rd Annual International Symposium on Fault-Tolerant Computing, 1993.

[15] R.K. Iyer, D. Tang, Experimental Analysis of Computer System Fault Tolerance”, in chapter
5 of Fault-Tolerant Computer System Design, D.K. Pradhan, Prentice Hall Inc., 1996.

[16] D. Stott, P. H. Jones, M. Hamman, Z. Kalbarczyk, R. K. Iyer, NFTAPE: networked fault tol-
erance and performance evaluator, in proc. of International Conference on Dependable Systems
and Networks, 2002.

[17] DBench Consortium, Measurements, Deliverable ETIE1, IST-2000-25425 Dependability
Benchmarking (DBench), 2002.

[18] R. K. Iyer, L. T. Young, P. V. K. Iyer, Automatic Recognition of Intermittent Failures: An
Experimental Study of Field Data, IEEE Transactions on Computers, Vol. C-39, pp. 525-537,
1990.

[19] T.T. Y. Lin and D. P. Siewiorek, Error Log Analysis: Statistical Modeling and Heuristic Trend
Analysis, IEEE Transactions on Reliability, Vol. 39, pp. 419-432, 1990.

[20] P. Agrawal, Fault Tolerance in Multiprocessor Systems without Dedicated Redundancy, IEEE
Transactions on Computers, Vol. C-37, pp. 358-362, 1988.

[21] A. Bondavalli, S. Chiaradonna, F. di Giandomenico, F. Grandoni, Discriminating fault rate
and persistency to improve fault treatment, in proc. of Twenty-Seventh Annual International
Symposium on Fault-Tolerant Computing, 1997 (FTCS-27), pp. 354–362.

[22] G. Mongardi, “Dependable Computing for Railway Control Systems,” in Proc. DCCA-3,
Mondello, Italy, 1993, pp. 255-277.

[23] N. N. Tendolkar, R. L. Swann, Automated Diagnostic Methodology for the IBM 3081 Processor
Complex, IBM J. Res. Develop., Vol. 26, pp. 78-88, 1982.

[24] Yennun Huang, Chandra M. R. Kintala, Nick Kolettis, N. Dudley Fulton: Software Rejuve-
nation: Analysis, Module and Applications. FTCS 1995: 381-390

35

[25] R. Mullen, The Lognormal Distribution of Software Failure Rates: Origin and Evidence, in
proc. of The Ninth International Symposium on Software Reliability Engineering, Paderborn,
Germany, 1998.

[26] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H. Sanders,
P. G. Webster, The Mobius framework and its implementation, IEEE Transactions on Software
Engineering, 28(10), pp. 956–969, oct. 2002

[27] John F. Meyer: On Evaluating the Performability of Degradable Computing Systems. IEEE
Trans. Computers 29(8): 720-731 (1980).

[28] Ken Birman, Robert Constable, Mark Hayden, Christopher Kreitz, Ohad Rodeh, Robbert van
Renesse, Werner Vogels,The Horus and Ensemble Projects: Accomplishments and Limitations,
in Proceedings of the DARPA Information Survivability Conference & Exposition (DISCEX
’00), 2000.

[29] D. Cotroneo, A. Mazzeo, L. Romano, S. Russo, Implementing a CORBA-based architecture
for leveraging the security level of existing applications, 8th International Symposium on Dis-
tributed Objects and Applications (DOA 2002), Lecture Notes in Computer Science Series,
LNCS 2519, Springer Verlag, 2002.

[30] A. Bondavalli, S. Chiaradonna, D. Cotroneo, L. Romano, A Fault-Tolerant Distributed
Legacy-based System and Its Evaluation, 1st Latin American Symposium on Dependable Com-
puting (LADC 2003), Lecture Notes in Computer Science Series, LNCS 2847, Springer Verlag,
2003, pp. 303-320.

[31] L.E. Moser, P.M. Melliar-Smith, P. Narasimhan, L. Tewksbury and V. Kalogeraki, “The
Eternal System: An Architecture for Enterprise Applications”, in Proc. of International Enter-
prise Distributed Object Computing Conference ,University of Mannheim, Germany (September
1999), pp. 214-222.

[32] R. Chillarege, S. Biyani, J. Rosenthal, Measurement of failure rate in widely distributed
software Fault-Tolerant Computing, in proc. of Twenty-Fifth International Symposium on Fault
Tolerant Computing Systems (FTCS-25) , pp. 424-433, June 1995.

[33] W. H. Sanders and J. F. Meyer. Stochastic activity networks: Formal definitions and concepts.
In E. Brinksma, H. Hermanns, and J. P. Katoen, editors, Lectures on Formal Methods and
Performance Analysis, volume 2090 of LNCS, pages 315–343. Springer-Verlag, 2001.

[34] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi, E. Jenn,
C. Rabéjac, and A. Wellings. GUARDS: a generic upgradable architecture for real-time de-
pendable systems. IEEE Transactions on Parallel and Distributed Systems, Special Issue on
Dependable Real-Time Systems, 10(6):580–599, 1999.

36

