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Neuroblastoma (NB) is the most common extracranial solid tumor in early childhood (the median age at diag-
nosis is 17 months). This tumor arises in the sympathetic nervous system as a result of genetic alterations occur-
ring in neural crest cells1. Although NB is characterized by clinical and biological heterogeneity, on the base 
of age, tumor stage and genomic rearrangements (MYCN amplification and aneuploidy), the International 
Neuroblastoma Risk Group Staging System (INRGSS) classification divides patients in four groups, ranging from 
very low- to high-risk2. Up to 50% of NB patients have very aggressive tumors, associated with high risk of relapse 
and very poor prognosis with a 5-year event-free survival rate around 40%. Treatment strategies for high-risk 
patients are still far from satisfaction, especially considering the severe side effects of the most used drugs (i.e. 
cisplatin, etoposide, vincristine, doxorubicin and cyclophosphamide)1. Consequently, the search for novel drugs 
to improve NB treatment options still represents an outstanding pharmaceutical issue3.

In this context, Tyrosine Kinases (TKs) represent an interesting target for cancer treatment because of their 
involvement in several altered cellular pathways4. Molecular targeted therapies with Tyrosine Kinase Inhibitors 
(TKIs) are designed to disrupt signalling pathways responsible for the abnormal proliferation of cancer cells. 
Given the importance of this mechanism, several TKIs are currently under preclinical or clinical develop-
ment5. A subclass of TKIs is represented by inhibitors of c-Src kinase, which is involved in cell proliferation, 
migration, invasion and angiogenesis as well as drug resistance development6,7. Since c-Src kinase has a strong 
connection with cancer development, several classes of small molecules (i.e. purines8, anilinoquinazolines9, 
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quinolinecarbonitriles10, benzotriazines11, and thiazole-carboxamides12) have been developed to target this 
enzyme. Some outstanding c-Src inhibitors are: (I) Dasatinib, a dual Src/Abl TKI, FDA approved for chronic 
myeloid leukemia (CML) treatment, (II) Saracatinib13, currently in phase II clinical trials for the treatment of 
solid tumors, such as melanoma, prostate and gastric cancer, (III) Bosutinib14, a dual Src/Abl TKI, FDA approved 
for CML treatment15. Several studies confirmed that hyperactivated c-Src plays a key role in NB cell differentia-
tion, adhesion and survival16–20. This TK was also associated to the progression of aggressive NB forms21,22. As a 
proof of concept of the effectiveness of inhibiting c-Src for NB treatment, recent studies demonstrated that the 
well-known c-Src inhibitor PP2 was able to inhibit cellular growth and to induce aggregation in NB cell lines23. 
Additionally the dual Src/Abl inhibitor Dasatinib was proved to be effective in reducing NB tumor growth in vitro 
and in vivo24.

The development of pyrazolo[3,4-d]pyrimidines as potential anticancer drugs, represents a major research 
focus of our group. This family of compounds showed a good cytotoxicity profile against several cancer cell lines: 
NB25–27, CML28, glioblastoma (GB)29, rhabdomyosarcoma (RMS)30, osteosarcoma (OS)31, prostate cancer (PC)32. 
The activity of pyrazolo[3,4-d]pyrimidines has been related to the inhibition of TKs such as Abl and Src-family 
proteins33. Recently, remarkable results have been obtained in several mouse models of cancer25,28,30. For instance, 
a small library of compounds with increased activity towards SH-SY5Y NB cell line was synthesized. The synthe-
sis was driven by molecular modelling studies based on the X-ray crystal structure of c-Src in complex with one 
of our pyrazolo[3,4-d]pyrimidines. The selected lead compound was able to induce a tumor volume reduction 
greater than 50% in a NB subcutaneous xenograft mouse model25.

Given their unique physicochemical features, albumin nanoparticles and liposomes have showed a great 
potential as drug-carriers able to modify pharmacokinetic and pharmacodynamic properties of compounds. 
Encapsulation of a drug might result in an improved biodistribution, a higher stability, a controlled release, an 
ability to target sites otherwise not accessible, a decreased toxicity, and an enhanced bioavailability34. Oligomers 
built with albumin are widely used as nanoparticles for drug delivery35. This small protein, the most abundant in 
human plasma, presents very interesting features (i.e. biocompatibility, half-life of 19 days, water solubility and 
ability to bind a variety of different entities) and accumulates in malignant and inflamed tissues36. A breakthrough 
for albumin-based nanotechnology was the commercialization of Abraxane©, a solvent-free formulation of pacl-
itaxel, where albumin binds paclitaxel to carry it through the endothelial cells to the tumor area37.

Liposomes are small vesicles characterized by a hydrophilic core surrounded by a phospholipid bilayer mem-
brane whose composition can be adjusted to increase the therapeutic index of the encapsulated drug while min-
imizing its side effects. Liposomes are biodegradable and the Mononuclear Phagocyte System (MPS) uptake is 
strongly reduced when polyethylene glycol (PEG) is included in the membrane composition (Stealth Liposomes). 
Moreover, liposomes can be selectively trapped by the tumor due to enhanced permeation and retention38. Doxil, 
a PEGylated liposome-encapsulated form of doxorubicin, was the first FDA-approved nano-drug. It ensures pro-
longed blood circulation and lower cardiotoxicity when compared to free doxorubicin39.

Although the promising anticancer activity, pyrazolo[3,4-d]pyrimidines are usually characterized by a low 
water solubility profile40,41. Consequently, in this study we have further developed four pyrazolo[3,4-d]pyrimi-
dines (1–4, Fig. 1) previously characterized for their activity against NB by enzymatic, cellular and in vivo assays 
(Table 1)25–27. Several strategies were applied to overcome this issue in recent years (i.e. introduction of hydro-
philic moieties in solvent-exposed positions42, synthesis of prodrugs43 and inclusion in cyclodextrins)40,41.

With the aim of increasing the low water solubility of this class of compounds, in this study we have explored 
albumin nanoparticles and stealth liposomes as possible nanotechnologies.

Results

��������ȏǡͺǦdȐ������������ͷȂͺǤ� The 4-amino substituted pyrazolo[3,4-d]pyrimidine ring represents a 
very interesting scaffold for the synthesis of molecules with antitumor activity. This structure is an isostere of ATP, 
the natural phosphorylating agent that binds TK. In our series of derivatives, the C4 amino function, essential 
for the interaction with the ATP-binding site, is attached to a m-substituted phenyl ring in derivatives 2–4 and a 
benzyl ring in derivative 1. Among the compounds previously characterized, pyrazolo[3,4-d]pyrimidine 1–4 were 
chosen for their ability to inhibit c-Src (with Ki values in the submicromolar range) and for their activity against 
NB cells25–27. Chemical structures of compounds 1–4 are shown in Fig. 1. In vitro ADME properties were also 
taken into account. In fact, the selected compounds demonstrated a very good metabolic stability (greater than 
93% after incubation with human liver microsomes). Unfortunately, this favourable property was also associated 

Figure 1. Structures of pyrazolo[3,4-d]pyrimidines 1–4. 
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with a low aqueous solubility and a medium-low passive permeability through membrane. Enzymatic assays and 
ADME properties of compounds 1–4, as previously described25–27, are reported in Table 1. Characterization of 
compounds 1–4 and assay methods can be found in the supporting material.

������������������������������������������������������Ǥ� To improve the poor solubility in aqueous 
solution and the biodistribution of this family of compounds, albumin nanoparticles (AL-1, AL-2, AL-3 and 
AL-4) and liposomes (LP-1, LP-2, LP-3 and LP-4) were prepared. The albumin-drug nanoparticles, prepared 
by disulphide-bond induced self-assembly, were analyzed by Dynamic Light Scattering (DLS) and results are 
reported in Table 2. The mean diameter ranged between 118.8 nm (AL-3) and 165.6 nm (AL-1). This size param-
eter was associated with high polidispersity indexes (close to 1), which indicated broad size distributions. Indeed, 
morphological analysis by Field Emission Scanning Electron Microscope (FESEM), confirmed the presence of 
aggregates (Figure S1). The tendency to form aggregates was also suggested by ζ -potential values belonging to the 
instability range44. The drug loading was around 6% when a very lipophilic compound, namely 1, was encapsu-
lated. However, it rose up to 50% with compounds 2 and 4, both characterized by a better aqueous solubility than 
compound 1 (Table S1).

Lipid ratio and drug concentration represent two important factors for the encapsulation of drugs in 
liposomes. Liposomes were prepared by the thin layer evaporation method, using the widely used lipids 
DPPC:Chol:MPEG-2000-DPPE Na (molar ratio of 20:10:1). The multilamellar vesicles (MLV) were converted 
by sonication to small unilamellar vesicles (SUV)45,46 to reduce in vivo potential opsonization47,48. The suspen-
sion was filtered through 200 nm filters, to obtain liposomes with a suitable diameter in order to avoid possible 
occlusion of capillaries in vivo49. The mean diameter and ζ -potential were measured by DLS (Table 2). The size 
of nanoparticles ranged between 105 nm and 232 nm (LP-2 and LP-4, respectively), with LP-1 and LP-3 being 
around 151 nm and 131 nm, respectively. The whole set of liposomes presented good values of ζ -potential (from 
− 27.4 mV to − 47.6 mV) and polidispersity index (from 0.2 to 0.4). These data suggested the stability of the 
final suspension. The concentration of drug (1–4) in each liposomal sample was determined by HPLC-UV-MS 
analysis, after the disruption of the liposomes. The entrapment efficacy was excellent: above 85% for LP-2, LP-3 
and LP-4 and 65% for LP-1. The effects of sonication, temperature and lipid composition were analyzed to max-
imize the entrapment efficacy and to reduce the variability associated to the solubility of different compounds 
(Table S2).

������������������������������������������������Ǧ��ͻ�Ǥ� The cytotoxicity of nanoparticles (liposomes: 
LP-1, LP-2, LP-3, LP-4 and albumin: AL-4) was evaluated in SH-SY5Y NB cell line. Taking into account the data 
regarding albumin nanoparticles previously evaluated, the only sample with satisfactory values of ζ -potential, 
PDI and EE% values was AL-4. Consequently, it was selected to perform cellular assays in the human NB cell 
line SH-SY5Y. Pure compounds (DMSO solution), empty liposomes (0.9% NaCl solution, pH 7.4) and albumin 
(PBS solution, pH 7.4) were included as controls. IC50s of these compounds were evaluated at 24, 48 and 72 h, for 

Cpd Aqueous Solubility (µg/mL) LogPb Src (Ki µM) PAMPA (10−6 cm2/sec) MRc (%) Metabolic Stabilityd (%)
1 0,21 6,555 3.7 3.98 46.8 95.8
2 3,71 5,813 0.13 5.27 46.1 96.0
3 0,22 5,678 0.4 5.51 48.9 97.9
4 0,90 5,992 0.01 4.53 49.6 93.5

Table 1.  Compounds 1–4: Activity against Src and ADME propertiesa. aAll the data were previously 
reported, see supporting material for experimental details25–27. bCalculated by Qikprop. cMembrane Retention 
(MR) expressed as percentage of compound unable to reach the acceptor compartment. dExpressed as 
percentage of unmodified drug.

Formulation Sizea (nm)
Polydispersity indexa 

(PDI)
Entrapment 

Efficiencyb (%) ζ-potentiala (mV)
Liposomes 135.2 ±  9.45 0.23 ±  0.01 – − 27.4 ±  1.79
LP-1 151.3 ±  2.06 0.40 ±  0.04 65.0 ±  6.36 − 41.9 ±  5.75
LP-2 105.1 ±  6.39 0.21 ±  0.01 99.1 ±  0.71 − 39.9 ±  0.55
LP-3 131.3 ±  5.14 0.21 ±  0.03 85.2 ±  9.84 − 28.8 ±  0.15
LP-4 232.4 ±  7.35 0.13 ±  0.01 96.3 ±  2.83 − 47.6 ±  0.38
Albumin 9.30 ±  0.15 0.26 ±  0.01 – − 10.3 ±  1.41
AL-1 165.6 ±  6.11 0.97 ±  0.01 6.7 ±  0.91 − 15.2 ±  1.17
AL-2 125.3 ±  3.76 0.68 ±  0.01 51.0 ±  2.88 − 4.47 ±  1.93
AL-3 118.8 ±  3.00 0.58 ±  0.06 24.8 ±  1.23 − 13.4 ±  2.90
AL-4 135.4 ±  15.9 0.55 ±  0.01 52.3 ±  1.82 − 14.9 ±  1.46

Table 2.  Properties of liposomes and albumin nanoparticles. aDetermined by DLS (Nano-Zeta Sizer, 
Malvern Instruments Ltd, Malvern, UK). bFor experimental details, see supporting material.
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different concentrations (0.1, 1.0, 10, 50 µ M) (Table 3). A greater 24 h-activity was obtained for liposomal sam-
ples in comparison with their corresponding drugs. The only exception was pair 3/LP-3 (drug/LP-drug), whose 
analysis revealed a comparable cytotoxicity. Data collected after 48 h showed a reduced difference in cytotoxicity 
within each pair. The activity at 72 h was higher for liposomal samples (LP-1 and LP-4) in comparison with the 
respective free drug (1 and 4). Within the pairs 2/LP-2 and 3/LP-3, a comparable IC50 value between each drug 
and its respective liposomal formulation was found. IC50 (72 h) of AL-4 was 12.03 µ M, further demonstrating the 
lower activity of albumin nanoparticles in comparison with the free drug 4 (IC50 =  8.63 µ M) and the liposome 
LP-4 (IC50 =  1.90 µ M).

����������������������ǦǤ� As all the other liposomal nanoparticles, LP-2, was characterized by DLS to 
assess size and ζ -potential and by cellular assays (SH-SY5Y NB) to determine cytotoxicity (Tables 2 and 3). More 
in detail, Fig. 2 shows the different size distribution by intensity of unloaded liposomes (Fig. 2A) and liposomes 
loaded with 2 (Fig. 2B). The average size resulted smaller for the sample with encapsulated drug, 105.1 ±  6.39 nm 
(LP-2) versus 135.2 ±  9.45 nm (Empty LP). Empty liposomes were tested in SH-SY5Y NB cell line in order to 
exclude any possible cytotoxic activity (Fig. 3A). This was particularly important because, although DPPC and 
DPPE are widely used to produce liposomes, recent studies50 demonstrated that saturated fatty acids might have a 
toxic effect in NB cells. In our assays, however, the obtained curve confirmed that liposomes do not influence sig-
nificantly cell viability, indicating that the amount of saturated fatty acids derived from the liposomal preparation 
is not enough to determine a cytotoxic effect. LP-2 demonstrated an activity comparable with the one of com-
pound 2 at 48 h (Fig. 3B). Additionally, the liposomal formulation at 72 h showed an enhanced cytotoxic effect 
(Fig. 3C). Subsequently, liposomal preparation LP-2 was morphologically analyzed by cryo-Electron Microscopy 
(cryo-EM) (Fig. 4). The result confirmed the presence of a homogeneous population of unilamellar nanopar-
ticles with size around 100 nm. Liposomes were round, smooth and free from drug crystals; while bilamellar, 
multilamellar or giant-liposomes were not observed in the image from cryo-EM. The average thickness of the 
phospholipidic bilayer corresponded to 5.77 ±  1.05 nm (12 measurements performed by ImageJ Software, 1.46r).

Cpd/Formulation IC50 24 h (µM) IC50 48 h (µM) IC50 72 h (µM)
1 21.84 ±  1.70 16.5 ±  1.67 13.54 ±  2.00
LP-1 8.03 ±  0.59 7.14 ±  1.90 6.35 ±  1.44
2 12.6 ±  1.6 2.66 ±  0.015 2.28 ±  0.29
LP-2 6.80 ±  0.98 1.74 ±  0.31 0.94 ±  0.68
3 3.04 ±  0.09 2.65 ±  0.08 1.54 ±  1.07
LP-3 3.50 ±  0.17 1.52 ±  0.94 1.54 ±  0.79
4 13.64 ±  0.94 10.06 ±  0.50 8.63 ±  0.75
LP-4 3.87 ±  0.51 1.91 ±  1.46 1.90 ±  0.46
AL-4 20.04 ±  1.04 12.02 ±  0.97 12.03 ±  0.30

Table 3.  Cytotoxicity in SH-SY5Y NB cells. SH-SY5Y cells were seeded at 105 cells/well density. The cultures 
were maintained at 37 °C in 5% v/v CO2 for 24, 48 and 72 h. IC50s were evaluated by Trypan blue assay and 
calculated by GraphPad Prism 6.0 software using the best fitting sigmoid curve.

Figure 2. Characterization of size distribution by dynamic light scattering. (A) Empty liposomes; (B) LP-2.
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��������������������������������������������Ǥ� Neuroblastoma cells were incubated with normal and 
fluorescent liposomes to evaluate their possible uptake. Fluorescent liposomes were prepared incorporating a 
fluorescent phospholipid (NBD-DOPE) in the lipid mixture. After 4 h of incubation, fluorescent liposomes were 
internalized into neuroblastoma cells (Fig. 5A,B). Z-stack image confirmed the localization of NBD-labelled 
liposome inside SH-SY5Y cells (Figure S2).

In vitro release. To determine the stability in physiological settings and to confirm the release of the drug 
2 from its liposomal formulation LP-2, the release kinetics of 2 was analysed in vitro by measuring the concen-
tration of drug released from liposomes into a physiological medium (BSA 50 mg/mL) at 37 °C (Fig. 6A). The 
cumulative percentage of drug release was determined over a 96 h-period. The results demonstrated the stability 

Figure 3. Viability of SH-SY5Y human NB cells evaluated at 48 and 72 h. (A) Empty liposomes, (B) Free 
compound 2 and (C) LP-2. Compound 2 and LP-2 were tested at the following concentrations: 0.01, 0.05, 0.1, 
0.5, 1.0, 10 and 50 µ M.
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of the sample in physiological conditions at 37 °C. In fact, the percentage of 2 released from LP-2 resulted below 
28% after 24 h and 49% over a 72 h-period. The final percentage of drug released was of 50.5%. In addition, the 
rate of drug release was evaluated during the 24 h (0.96 µ g/h).

Figure 4. Characterization of LP-2: morphological analysis by Cryo-EM. 

Figure 5. Confocal microscopy experiments. Neuroblastoma cells (SH-SY5Y) were seeded on glass coverslip 
and then incubated for 4 h with: (A) control, (B) normal liposomes, (C) fluorescent liposomes. Liposomes are 
visualized in green, cellular membranes in red and nuclei in blue. (D) Z-stack projection, on the right 4X zoom 
of the highlighted regions of the left panel.
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�������������������ͺ��Ǥ� Biodistribution of LP-2 and free drug 2 were evaluated in male Sprague-Dawley 
rats. The concentration of compound 2 was determined after 24 h in the following tissues: plasma, brain, liver 
and adipose tissue (Fig. 6B). The concentration of the active compound was one order of magnitude higher in the 
plasma of rats treated with LP-2, validating the use of liposomes to enhance the plasma-exposure of a drug. In 
fact, the concentration of the free compound 2 was 0.11 µ g/mL and 2.05 µ g/mL in the groups treated with 2 and 
LP-2 respectively. The concentration of compound recovered in the brain was 0.05 µ g/g (group treated with 2) 
versus 0.39 µ g/g (group treated with LP-2). Again, the increase of quantity of compound 2 indicated the improved 
biodistribution of 2 when liposomes are used as drug delivery systems.

����������
With the aim determining if the use of albumin nanoparticles and liposomes could represent a possible strategy 
to improve pharmacokinetic properties of our compounds, four pyrazolo[3,4-d]pyrimidines (1–4), selected from 
our library of compounds, were encapsulate in these nanosystems. Pyrazolo[3,4-d]pyrimidines have demon-
strated a high anticancer activity associated to the inhibition of tyrosine kinases c-Src and Bcr-Abl and we have 
recently demonstrated that pyrazolo[3,4-d]pyrimidines were able to reduce tumor growth in NB xenograft mouse 
model25. Thus, we have decided to focus on NB for this study. Compounds 1–4 were selected on the basis of 
previously reported data regarding activity and in vitro ADME properties25–27. Nanoparticles were characterized 
by DLS regarding their size, polydispersity index and ζ -potential. Particle size has a significant impact on the 
circulation time51. Furthermore, the dimensions of the smallest capillaries need to be taken into account to avoid 
a possible obstruction. Particle size also affects cellular uptake, influencing phagocytosis and endocytosis. In gen-
eral, the larger is the nanoparticle, the faster is the clearance by the MPS. Optimal size to facilitate extravasation 
is about 150 nm or less, i.e. Doxil© has size between 80–100 nm and Myocet© is around 150 nm. In this context, 
this study demonstrated that our liposomes are suitable drug-delivery systems with a diameter that ranges from 
105 nm to 232 nm. Another important feature for nanoparticle dispersion stability is the ζ -potential that indicates 
the degree of electrostatic repulsion between particles. In detail, nanoparticles with ζ -potential values greater 
than +  25 mV or less than − 25 mV typically have high degrees of stability44. Showing a ζ -potential value between 
− 28.65 mV and − 48.00 mV, our liposome systems were confirmed to be stable.

On the other side, albumin systems were characterized by ζ -potentials and PDIs into the range of instability 
(values around − 10 mV and close to 1, respectively). These data suggested that these nanoparticles might form 

Figure 6. In vitro release and biodistribution at 24 h. (A) Release of compound 2 from liposomal system LP-2 
in physiological conditions, with 50 mg/mL of BSA, at 37 °C. (B) Concentration of compound 2 determined 
in plasma, brain, liver and adipose tissue, after the administration of the free drug 2 (black) and the liposomal 
formulation LP-2 (grey). aThe concentration is expressed as µ g/mL for plasma and as µ g/g for brain, liver and 
adipose tissue.
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aggregates (hypothesis confirmed by DLS analysis and FESEM study). However, we decided to proceed with the 
evaluation of the cytotoxicity of the most promising albumin sample, namely AL-4.

Liposomes demonstrated greater 24 h-activity when compared with the appropriate free drug (comparable 
IC50s of LP-3 and 3, represented the only exception). This difference in cytotoxicity might be related to different 
internalization processes. In fact, while the free drug can enter into cells by passive membrane transport, lipos-
omes need to be taken up by different processes (i.e. endocytosis, fusion). At 48 h and 72 h, pairs LP-2/2 and 
LP-3/3 showed similar IC50s. However, LP-1 and LP-4 demonstrated higher cytotoxicity than the respective free 
drug both, in 48 h and 72 h measurements. Cellular assays further demonstrated the unfavourable properties 
of albumin nanoparticles, as the IC50 value was higher than the ones obtained by testing free drug 4 and lipos-
omes LP-4. Given their poor properties (PDI, ζ -potential, EE% and IC50) albumin nanoparticles were not further 
characterized.

LP-2 resulted our most promising liposomal candidate because of the following: (I) IC50 value of 0.97 µ M 
against NB cells, (II) 99% of entrapment efficiency, (III) ζ -potential value of − 39.9 ±  0.55 mV and (IV) size of 
105.1 ±  6.39 nm. Additionally, 2 was the compound previously tested in NB xenograft mouse model25. Thus, LP-2 
was further characterized by cryo-EM, confirming the data obtained by DLS analysis. The sample was indeed 
characterized by a homogenous population of unilamellar liposomes with size around 100 nm. Furthermore, a 
confocal microscopy-based study was performed to elucidate whether the drug is released from liposomes out-
side the cells or inside the cytoplasm, after an internalization of the whole liposomal system. The analysis showed 
the presence of fluorescent liposomes into the cytoplasm of NB cells, suggesting a delivery of the free drug after 
cellular uptake of liposomes.

The release of compound 2 from the liposomal system LP-2 was evaluated with an in vitro assay that allowed 
the quantification of compound 2 likely to be released from liposomes into physiological conditions. The result-
ing monophasic release curve was a typical feature of unilamellar liposomes, accordingly with DLS and cryo-EM 
results. A proof of concept in vivo experiment was then performed to evaluate and compare the biodistribution of 
free compound 2 and liposomes LP-2 in several tissues, at 24 h. Additionally, this study was important to deter-
mine the in vivo stability of our liposomal systems. Data showed a generally improved biodistribution - higher 
concentration - of the drug 2 when liposomes were used as drug-delivery system. Considerably, when LP-2 was 
administered a 20-fold increase in plasma-concentration of free compound 2 was observed. In addition, the 
quantity of compound 2 recovered from the brain tissue after injection of LP-2 was significantly higher than the 
concentration obtained after administration of compound 2.

In conclusion, this study validated the use of stealth liposomes to improve the biodistribution of pyra-
zolo[3,4-d]pyrimidines. Herein we demonstrate that liposomes retain the efficacy of our encapsulated drug 
against SH-SY5Y NB cells and that this cytotoxic activity is likely to be exerted by the release of the active com-
pound in the cytoplasm after uptake of the nanoparticles. Importantly, the liposomal system resulted stable and 
able to release the encapsulated drug in physiological conditions and the biodistribution assay finally proved the 
beneficial properties of LP-2. Further preclinical in vivo studies will allow the determination of the full pharma-
cokinetic profile and the therapeutic efficacy of this novel formulation.

�������
���������Ǥ� Pyrazolo[3,4-d]pyrimidine compounds (1–4), were previously synthesized and character-
ized by our research group25–27. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine semisynthetic, ≥ 99% (DPPC), 
N-(carbonyl methoxypolyethylenglycol 2000)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine sodium salt 
(MPEG-2000-DPPE Na), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine,7-nitrobenzofurazan-labeled (NBD-
DOPE), 4′,6-diamidino-2-phenylindole (DAPI), cholesterol (Chol), human serum albumin (HSA) (lyophilized, 
97%), dialysis tubing cellulose membrane (cut-off 14 kDa), L-cysteine and and D,L-glyceraldehyde and all the 
solvents were purchased from Sigma Aldrich. Nylon syringe filters with pores of 0.2 µ m (Acrodisc 13 mm Syringe 
Filter) and PTFE syringe filters with pores of 0.2 µ m (Acrodisc 13 mm Syringe Filter) were from purchased VWR. 
High purity deionised water was obtained from milli-Q (Millipore, Milford, MA, USA). Wheat germ agglutinin, 
Alexa Fluor 647 Conjugate (WGA) was purchased from Life Technologies. Fetal Bovine Serum (FBS), Dulbecco’s 
Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12), L-glutamine (L-Glu) and Penicillin-Streptomycin 
(Pen/Strep) were purchased from Euroclone.

����������������������Ǧ������������������Ǥ� The albumin nanoparticles were prepared by mixing 100 µ L 
of compound solution in EtOH (1 mg/mL) with 900 µ L of HSA solution in PBS (pH 7.4, 25 mM) (5 mg/mL)52.  
Cysteine was added up to a final concentration of 5 mg/mL, and the resulting solution was kept at 37 °C, for 
45 min. The excess of cysteine was eliminated by dialysis using a cellulose membrane (capacity 60 mL/ft, cut-off 
14 kDa, diameter 16 mm, width 25mm). D,L-glyceraldehyde was added to this solution, to a final concentration of 
5 µ M53. The sample was then filtered through a nylon syringe filter with pores of 0.2 µ m (Acrodisc 25 mm Syringe 
Filter) to obtain a sterile solution of the drug-albumin nanoparticles. The concentration of the compound in the 
final sample was determined by HPLC-UV-MS (HPLC-UV-MS method in the supporting material), after dena-
turation of the protein by acetonitrile and centrifugation (4500 rpm, 15 min, 4 °C).

�����������������������Ǧ������������������Ǥ� The method developed by A.D. Bangham, namely thin 
layer evaporation, was used for the preparation of LP-1, LP-2, LP-3 and LP-4. Lipids DPPC, Chol and MPEG-
2000-DPPE Na (molar ratio 20:10:1) were dissolved in a mixture of CHCl3:MeOH =  3:1 (3 mL, round-bottomed 
flask). A 1 mM solution of each compound (1, 2, 3, 4) in CHCl3:MeOH =  3:1 was prepared. An aliquot was trans-
ferred in the lipid solution to obtain 500 µ M as final concentration of compound. The solvent was removed under 
reduced pressure to obtain a thin layer of lipids (kept under high vacuum overnight). The thin layer was hydrated 
with a 0.9% NaCl solution and the mixture was stirred for 1 hour at a temperature higher than the Tm of the 
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lipids. The suspension was mixed (Vortex, 3 min) and SUV liposomes were formed by sonication for 20 min at 
room temperature. The solution was filtered with PTFE syringe filters with pores of 0.2 µ m (Acrodisc 13 mm 
Syringe Filter), to eliminate liposomes with diameter over 200 nm and potentially precipitated drugs. The drug 
concentration was determined after disruption of liposomes by treatment with ethanol at 40 °C (1:1 =  v/v). The 
compound was extracted and quantified by HPLC-UV-MS (HPLC-UV-MS method in the supporting material).

�������������������������ζǦ���������Ǥ� Size distribution and ζ -potential were determined by Dynamic 
Light Scattering (DLS) (Zeta Sizer Nano ZS90, Malvern Instruments Ltd, Malvern, UK). Measurements were 
performed directly after rehydration of the samples with 1 mM NaCl aqueous solution. Samples stability was 
evaluated by DLS after one week.

������������������������������������������������Ǧ��ͻ�Ǥ� In vitro experiments were carried out using the 
human NB cell line SH-SY5Y. Cells were purchased from American Type Culture Collection (ATCC, Manassas, 
VA, USA) and were cultured in DMEM/F12 1:1 medium supplemented with 10% FBS, 2 mM L-glutamine and 
10000 units/mL Penicillin/Streptomycin at 37 °C in 5% CO2 atmosphere. In order to determine the antiprolifer-
ative effect of drugs (1–4) and nanosystems, SH-SY5Y cells were seeded at 105 cells/well density and treated with 
albumin (PBS solution, pH 7.4) or empty liposomes (0.9% NaCl solution, pH 7.4), compounds encapsulated 
with albumin (PBS solution, pH 7.4) or liposomes LP-1, LP-3 and LP-4 (0.9% NaCl solution, pH 7.4) and free 
compounds 1, 3 and 4 (DMSO solution) at increasing concentrations (0.1 µ M, 1.0 µ M, 10 µ M and 50 µ M). IC50 
determination for LP-2 and compound 2 was performed testing the following concentrations as well: 0.01 µ M, 
0.05 µ M, 0.5 µ M and 5 µ M. The cultures were maintained at 37 °C in 5% v/v CO2 for 24, 48 and 72 h. Cell number 
and viability were evaluated using the Bürker chamber, after treatment with Trypan Blue. IC50 was calculated by 
GraphPad Prism 6.0 software using the best fitting sigmoid curve.

����������������Ǥ� Morphology was observed by Cryo Electron Microscopy. 3 µ L of sample were applied 
on Quantifoil®  holey carbon grids (copper Multi A, Quantifoil®  Micro Tools GmbH, Jena, Germany). Excess 
fluid was blotted from the grid for 2 sec with Whatman filter paper and then plunge frozen in liquid ethane, using 
a plunge freezer, to achieve sample vitrification. Frozen samples were stored in liquid nitrogen until EM imaging. 
Vitrified samples were imaged using a CM200 FEG transmission EM (FEI, Eindhoven, the Netherlands) operated 
at 200 keV and equipped with a F224HD 2048 ×  2048 CCD camera (TVIPS Gauting, Germany). EM images were 
acquired at 27,500×  magnification (pixel size 0,602 nm) at −12, −18 µ m defocus.

Confocal microscopy studies on the cellular uptake. For confocal microscopy experiments, fluores-
cent liposomes, carrying NBD-DOPE in the lipid bilayer, were used. DPPC, Chol and MPEG-2000-DPPE were 
dissolved at a molar ratio of 20:10:1, respectively, CHCl3:MeOH =  3:1 v/v. Then, NBD-DOPE was added to the 
lipid mixture to a final molar ratio of 2% of total lipids. The lipid mixture was dried and placed in a vacuum desic-
cator for at least 24 h to ensure complete solvent removal. Finally, lipid film was rehydrated with NaCl 0.9% solu-
tion to obtain a NBD-DOPE final concentration of 440 µ M. SH-SY5Y cells were maintained in DMEM/F12 1:1 
medium supplemented with 10% FBS, 2 mM L-glutamine and 10000 units/mL Penicillin/Streptomycin at 37 °C 
in 5% CO2 atmosphere. SH-SY5Y cells were plated on glass coverslip at a density of 20000 cells per well in 24-well 
plates. After 24 h, cells were incubated with liposome formulation, and then fixed in 4% paraformaldehyde in PBS 
for 20 min. Nuclei and cellular membranes were stained respectively with a 6 µ M solution of DAPI and 2 µ g/mL 
WGA Alexa Fluor 647 labelled for 10 min. Coverslips were mounted in fluorescence mounting medium (Dako, 
S3023). Samples were visualized on a TSC SP5 confocal microscope (Leica, 5100000750) installed on an inverted 
LEICA DMI 6000CS (10741320) microscope and equipped with an oil immersion Plan Apo 63 ×  1.4 NA objec-
tive. Images were acquired using the LAS AF acquisition software (Leica, 10210). NBD fluorescence was acquired 
in 500–560 nm range and excited with 476 nm argon laser, DAPI was acquired in 420–480 nm range and excited 
with 405 nm UV laser and WGA was acquired in 650–730 nm range and excited with 633 nm laser.

In vitro release. Rates of drug release were studied by dialyzing the nanosystem LP-2 (3.5 mL, 0.4 mM) 
against PBS (20 mL, pH 7.4, 10 mM) with 50 mg/mL of BSA (physiological plasma concentration). The entire 
system was stirred at 37 °C and samples (1 mL, from the PBS-BSA) were collected at different time points (0, 1, 
2, 3, 24, 48, 72 and 96 h) (1 mL of PBS-BSA was added each time to maintain sink condition). Each sample was 
treated with 1 mL of ACN and centrifuged at 4000 rpm for 20 min. Then, the supernatant was recovered, concen-
trated under reduced pressure and analyzed to determine the concentration of compound 2 by HPLC-UV-MS 
(HPLC-UV-MS method in the supporting material).

In vivo�����������������������Ǥ� Male Sprague Dawley rats (Charles River, Milan, Italy) were maintained 
according to ethical EEC regulations for animal research. The animal protocols used were reviewed and approved 
by the Animal Care and Ethics Committee of the University of Siena, Italy. The animals were anesthetized (i.p. 
xylazine hydrochloride, 10 mg/kg, Xilor, Bayer AG, and ketamine hydrochloride 35 mg/kg, Ketavet, Gellini) and 
treated by i.v. injection through the tail vein. The experiment was performed in triplicate. The two groups received 
intravenously LP-2 (500 µ L, PBS, pH 7.4) or 2 (50 µ L in DMSO), corresponding to a bolus of 10 mg/Kg. After 24 h, 
animals were sacrificed and blood and tissues were treated for the quantitative analysis. The blood, previously 
heparinized, was centrifuged at 4000 rpm for 20 min to separate the plasma fraction and then, 500 µ L were col-
lected in a test tube. Tissues were homogenized using a glass/glass Potter-Elvehjem homogenizer. For each sample 
1 mL of ACN (in the presence of the internal standard 1-(2-chloro-2-(4-chlorophenyl)ethyl)-N-(3-fluorobenzyl)-
1H-pyrazolo[3,4-d]pyrimidin-4-amine, 10 µ M) was added to denature proteins and to extract 2. Samples were 
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centrifuged at 4000 rpm for 20 min; the supernatant was recovered, evaporated and analyzed by HPLC-UV-MS 
(HPLC-UV-MS method in the supporting material).
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