
ar
X

iv
:1

90
4.

02
08

3v
1 

 [
m

at
h.

A
P]

  3
 A

pr
 2

01
9

Dynamic perfect plasticity and damage in viscoelastic solids
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Abstract

Abstract. In this paper we analyze an isothermal and isotropic model for viscoelastic media com-

bining linearized perfect plasticity (allowing for concentration of plastic strain and development of shear

bands) and damage effects in a dynamic setting. The interplay between the viscoelastic rheology with

inertia, elasto-plasticity, and unidirectional rate-dependent incomplete damage affecting both the elastic

and viscous response, as well as the plastic yield stress, is rigorously characterized by showing exis-

tence of weak solutions to the constitutive and balance equations of the model. The analysis relies on

the notions of plastic-strain measures and bounded-deformation displacements, on sophisticated time-

regularity estimates to establish a duality between acceleration and velocity of the elastic displacement,

on the theory of rate-independent processes for the energy conservation in the dynamical-plastic part,

and on the proof of the strong convergence of the elastic strains. Existence of a suitably defined weak

solutions is proved rather constructively by using a staggered two-step time discretization scheme.

Keywords: Perfect plasticity, inertia, cohesive damage, Kelvin-Voigt viscoelastic rheology, functions of

bounded deformation, staggered time discretisation, weak solution.

AMS Subj. Classificaiton: 35Q74, 37N15, 74C05, 74R05.

1 Introduction

Plasticity and damage are inelastic phenomena providing the macroscopical evidence of defect formation

and evolution at the atomistic level. Plasticity results from the accumulation of slip defects (dislocations),

which determine the behavior of a body to change from elastic and reversible to plastic and irreversible,

once the magnitude of the stress reaches a certain threshold and a plastic flow develops. Damage evolution

originates from the formation of cracks and voids in the microstructure of the material.

The mathematical modeling of inelastic phenomena is a very active research area, at the triple point

between mathematics, physics, and materials science. A vast literature concerning damage in viscoelastic

materials, both in the quasistatic and the dynamical setting is currently available. We refer, e.g., to [39, 41,

46, 51, 53] and the references therein for an overview of the main results.

The interplay between plasticity and damage has been already extensively investigated, prominently

in the quasistatic framework. The interaction between damage and strain gradient plasticity is addressed

in [19] whereas a perfect-plastic model has been proposed in [1], where the one-dimensional response is

also studied. Existence results in general dimensions have been obtained in [18, 20], see also [21] for

some recent associated lower semicontinuity results. The coupling between damage and rate-independent

small-strain plasticity with hardening is the subject of [10,44,49]. Quasistatic perfect plasticity and damage

with healing are analyzed in [48]. The identification of fracture models as limits of damage coupled with

plasticity has also been considered [24, 25].

The analysis of dynamic perfect plasticity without damage has been initiated in [5]. A derivation of the

equations via vanishing hardening, and vanishing viscoplasticity has been performed in [15, 16]. A gen-

eralization via the so-called cap-model approximation has been obtained in [6]. An approximation of the
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equations of dynamic plasticity relying on the minimization of a parameter-dependent functional defined on

trajectories is the subject of [26], whereas an alternative approach based on hyperbolic conservation laws

has been proposed in [7]. Dimension reduction for dynamic perfectly plastic plates has been carried on

in [40]. Convergence of dynamic models to quasistatic ones has been analyzed in [23, 43].

To our best knowledge, the combination of perfect plasticity, damage, and inertia has been so far tackled

in the engineering and geophysical literature (see, e.g., [27,32,52]), whilst a mathematical counterpart to the

applicative analysis is still missing. The focus of this paper is to provide a rigorous analysis of an isothermal

and isotropic model for viscoelastic media combining both small-strain perfect plasticity and damage effects

in a dynamic setting.

More specifically, our main result (Theorem 2.2) shows existence of suitably weak solutions to the

following system of equations and differential inclusions, complemented by suitable boundary conditions

and initial data

ρ
..
u − div σ = f, σ := C(α)eel + D(α)

.
eel, eel = e(u) − π, (1a)

σ
YLD

(α)Dir(
.
π) ∋ dev σ, (1b)

∂ζ(
.
α) +

1

2
C
′(α)eel : eel ∋ φ′(α) + div (κ|∇α|p−2∇α), (1c)

where u, π, and α denote the displacement, the plastic strain, and the damage variable, respectively, C(·),
D(·), and σ

YLD
(·) are the damage-dependent elasticity tensor, viscosity tensor, and yield surface, and e(u) =

(∇u+∇u⊤) is the linearized strain. The notation Dir stands for the set-valued “direction” (see Subsection

2.5), dev σ identifies the deviatoric part of the stress σ, namely dev σ := σ − tr (σ)Id/d, ζ is the local

potential of dissipative damage-driving force (see (7)), constraining the damage process to be unidirectional

(no healing). Finally φ is the energy associated to the creation of microvoids or microcracks during the

damaging process, κ is the length scale of the damage profile, and ρ the mass density. We refer to Section

2 for the precise setting of the problem, the definition of weak solution to (1a)–(1c), and the statement of

Theorem 2.2.

The analysis of model (1a) presents several technical challenges. Perfect plasticity allows for plastic

strain concentrations along the (possibly infinitesimally thin) slip-bands and calls for weak formulations

in the spaces of bounded Radon measures for plastic strains and bounded-deformation (BD) for displace-

ments. This requires a delicate notion of stress-strain duality (see Subsection 4.1). Considering inertia and

the related kinetic energy renders the analysis quite delicate because of the interaction of possible elastic

waves with nonlinearly responding slip bands, as pointed out already in [8]. Various natural extensions

such as allowing healing instead of unidirectional damage, or mutually independent damage in the viscous

and the elastic response (in contrast to (22b) below), or different damage behaviors in relation to compres-

sion/tension mode leading to a non-quadratic stored energy, or an enhancement by heat generation/transfer

with some thermal coupling to the mechanical part, seem difficult and remain currently open.

The proof strategy relies on a staggered discretization scheme, in which at each time-step we first iden-

tify the damage variable as a solution to the damage evolution equation, and we then determine the plastic

strain and elastic displacements as minimizer of a damage-dependent energy inequality (see Section 4). A

standard test of (1a)–(1c) leads to the proof of a first a-priori estimate in Proposition 5.6. In order to ensure

the strong convergence of the time-discrete elastic strains eel, needed for the limit passage in the damage

flow rule, a further higher order test is performed in Proposition 5.7. The convergence of the elastic strains

is then achieved by means of a delicate limsup estimate (see Proposition 6.2). Due to the failure of energy

conservation under basic data qualification, the flow rule is only recovered, in the limit, in the form of an

energy inequality (see Remark 2.9).

A motivation for tackling the simultaneous occurrence of dynamical perfect plasticity and damaging

is the mathematical modeling of cataclasite zones in geophysics. During fast slips, lithospheric faults in
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elastic rocks tend to emit elastic (seismic) waves, which in turn determine the occurrence of (tectonic)

earthquakes, and the local arising of cataclasis. This latter phenomenon consists in a gradual fracturing of

mineral grains into core zones of lithospheric faults, which tend to arrange themselves into slip bands, sliding

plastically on each other without further fracturing of the material. On the one hand, cataclasite core zone are

often very narrow (sometimes centimeters wide) in comparison with the surrounding compact rocks (which

typically extend for many kilometers), and can be hence modeled for rather small time scales (minutes

of ongoing earthquakes or years between them, rather than millions of years) via small-strain perfect (no-

gradient) plasticity. On the other hand the partially damaged area surrounding the thin cataclasite core can

by relatively wide, and thus calls for a modeling via gradient-damage theories (see [45, 47]).

The novelty of our contribution is threefold. First, we extend the mathematical modeling of damage-

evolution effects to an inelastic setting. Second, we characterize the interaction between damage onset and

plastic slips formation in the framework of perfect plasticity, with no gradient regularization and in the

absence of hardening. Third, we complement the study of dynamic perfect plasticity, by keeping track of

the effects of damage both on the plastic yield surface, and on the viscoelastic behavior of the material.

The paper is organized as follows: In Section 2, we introduce some basic notation and modeling as-

sumptions, and we state our main existence result. Section 3 highlights the formal strategy that will be

employed afterward for the proof of Theorem 2.2, whereas Section 4 focuses on the formulation of our

staggered two-step discretization scheme. In Section 5 we establish some a-priori energy estimates. Finally

Section 6 is devoted to the proof of the main result.

2 Setting of the problem and statement of the main result

We devote this section to specify the mathematical setting of the model, and to present our main result. We

first introduce some basic notation and assumptions, and we recall some notions from measure theory.

In what follows, let Ω ⊂ R
d, d ∈ {2, 3} be a bounded open set with C2 boundary. In our model, the

domain Ω represents the reference configuration of a linearly viscoelastic, perfectly plastic Kelvin-Voigt

body subject to a possible damage in its elastic as well as in its viscous and plastic response.

We assume that the boundary ∂Ω =: Γ is partitioned into the union of two disjoint sets ΓD and ΓN. In

particular, we require ΓD to be a connected open subset of Γ (in the relative topology of Γ) such that ∂ΓΓD

is a connected, (d− 2)-dimensional, C2 manifold, whereas ΓN is defined as ΓN := Γ \ ΓD.

For any map f : [0, T ] × R
d → R we will denote by ḟ its time derivative, and by ∇f its spatial

gradient. We will adopt the notation Rd×d to indicate the set of d × d matrices. Given M,N ∈ Rd×d,

their scalar product will be denoted by M : N := tr(M⊤N) where tr is the trace operator, and the

superscript stands for transposition. We will write devM to identify the deviatoric part of M , namely

devM := M − tr (M)Id/d, where Id is the identity matrix. The symbols R
d×d
sym and R

d×d
dev will represent

the set of symmetric d× d matrices, and that of symmetric matrices having null trace, respectively.

2.1 Function spaces, measures and functions with bounded deformation

We use the standard notation Lp, W k,p, and Lp(0, T ;X) or W 1,p(0, T ;X) for Lebesgue, Sobolev, and

Bochner or Bochner-Sobolev spaces. By Cw(0, T ;X) we denote the space of weakly continuous mappings

with value in the Banach space X. We also use the shorthand convention Hk :=W k,2.

Given a Borel set B ⊂ R
d the symbol Mb(B;Rm) denotes the space of bounded Borel measures on B

with values in R
m (m ∈ N). When m = 1 we will simply write Mb(B). We will endow Mb(B;Rm) with

the norm ‖µ‖Mb(B;Rm) := |µ|(B), where |µ| ∈ Mb(B) is the total variation of the measure µ.

If the relative topology ofB is locally compact, by the Riesz representation Theorem the space Mb(B;Rm)
can be identified with the dual of C0(B;Rm), which is the space of continuous functions ϕ : B → R

m such
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that the set {|ϕ| ≥ δ} is compact for every δ > 0. The weak* topology on Mb(B;Rm) is defined using this

duality.

The spaceBD(Ω;Rd) of functions with bounded deformation is the space of all functions u ∈ L1(Ω;Rd)
whose symmetric gradient

e(u) :=
∇u+ (∇u)⊤

2

(defined in the sense of distributions) belongs to Mb(Ω;R
d×d
sym). It is easy to see that BD(Ω;Rd) is a Banach

space when endowed with the norm

‖u‖L1(Ω;Rd) + ‖e(u)‖
Mb(Ω;Rd×d

sym ).

A sequence {uk} is said to converge to u weakly* in BD(Ω;Rd) if uk → u weakly in L1(Ω;Rd) and

e(uk) → e(u) weakly* in Mb(Ω;R
d×d
sym). Every bounded sequence in BD(Ω;Rd) has a weakly* converging

subsequence. In our setting, since Ω is bounded and has C2 boundary, BD(Ω;Rd) can be embedded into

Ld/(d−1)(Ω;Rd) and every function u ∈ BD(Ω;Rd) has a trace, still denoted by u, which belongs to

L1(Γ;Rd). For every nonempty subset γ of ΓD which is open in the relative topology of ΓD , there exists a

constant C > 0, depending on Ω and γ, such that the following Korn inequality holds true

‖u‖L1(Ω;Rd) ≤ C‖u‖L1(γ;Rd) + C‖e(u)‖
Mb(U ;Rd×d

sym ) (2)

(see [50, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the space BD(Ω;Rd)
we refer to [50].

2.2 State of the system and admissible displacements and strains

At each time t ∈ [0, T ], the viscoelastic perfectly-plastic behavior of the body is described by three basic

state variables: the displacement u(t) : Ω → R
d, the plastic strain π(t) : Ω → R

d×d
dev , and the damage

variable α(t) : Ω → [0, 1]. In particular, we adopt the convention (used in mathematics, in contrast to the

opposite convention used in engineering and geophysics) that α = 1 corresponds to the undamaged elastic

material, whereas α = 0 describes the situation in which the material is totally damaged. The abstract state

q will be here given by the triple q = (u, π, α).
On ΓD we prescribe a boundary datum uD ∈ H1/2(ΓD;R

d), later being considered to be time dependent.

With a slight abuse of notation we also denote by uD a H1(Ω;Rd)-extension of the boundary condition to

the set Ω.

The set of admissible displacements and strains for the boundary datum uD is given by

A (uD) :=
{
(u, eel, π) ∈

(
BD(Ω;Rd) ∩ L2(Ω)

)
× L2(Ω;Rd×d

sym)×Mb(Ω ∪ ΓD;R
d×d
dev ) :

e(u) = eel + π in Ω, π = (uD − u)⊙ νΓH
d−1 on ΓD

}
, (3)

where ⊙ stands for the symmetrized tensor product, namely

a⊙ b := (a⊗ b+ b⊗ a)/2 ∀ a, b ∈ R
d,

νΓ is the outer unit normal to Γ, and H
d−1 is the (d − 1)-dimensional Hausdorff measure. Note that the

kinematic relation e(u) = eel + π in A (uD) is classic in linearized elastic theories and it is usually referred

to as additive strain decomposition.

We point out that the constraint

π = (uD − u)⊙ νΓH
d−1 on ΓD (4)

is a relaxed formulation of the boundary condition u = uD on ΓD; see also [42]. As remarked in [22], the

mechanical meaning of (4) is that whenever the boundary datum is not attained a plastic slip develops, whose

amount is directly proportional to the difference between the displacement u and the boundary condition uD.
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2.3 Stored energy

Let Lsym(R
d×d
sym) denote the space of linear symmetric (self-adjoint) operators Rd×d

sym → R
d×d
sym , being under-

stood as 4th-order symmetric tensors.

We assume the elastic tensor C : R → Lsym(R
d×d
sym) to be continuously differentiable, and nondecreasing

in the sense of the Löwner ordering, i.e. the ordering of Rd×d
sym with respect to the cone of positive semidefinite

matrices. Additionally, we require C(α) to be positive semi-definite for every α ∈ R. Note that, in view of

the pointwise semi-definiteness of C, the possibility of having complete damage in the elastic part is also

encoded in the model. We additionally assume that C(α) = C(0) for every α < 0, and that C′(0) = 0. This

corresponds to the situation in which the damage is cohesive.

The stored energy of the model will be given by

E (q) = E (u, π, α) =

ˆ

Ω

(1
2
C(α)eel : eel − φ(α) +

κ

p
|∇α|p

)
dx with eel = e(u) − π, (5)

where φ : R → R stands for the specific energy of damage, motivated by extra energy of microvoids or

microcracks created by degradation of the material during the damaging process, whereas κ represents a

length scale for the damage profile. When φ′(α) > 0, the damage evolution is an activated processes, even

if there is no activation threshold in the dissipation potential, as indeed considered in (7) below.

For the sake of allowing full generality to the choice of initial conditions, we will assume that devCe =
Cdev e. Note that this is the case for isotropic materials.

2.4 Other ingredients: dissipation and kinetic energy

For the sake of notational simplicity, we consider isotropic materials as far as plastification is concerned.

Let the yield stress σ
YLD

as a function of damage σ
YLD

: [0, 1] → (0,+∞) be continuously differentiable

and non-decreasing. For every π ∈ Mb(Ω ∪ ΓD;R
d×d
dev ) let dπ/d|π| be the Radon-Nikodým derivative of

π with respect to its total variation |π|. Assuming that α : [0, T ] × Ω → [0, 1] is continuous, we consider

the positively one-homogeneous function M 7→ σ
YLD

(α)|M | for every M ∈ R
d×d, and, according to the

theory of convex functions of measures [34], we introduce the functional

R(α, π) :=

ˆ

Ω∪ΓD

σ
YLD

(α)
dπ

d|π| d|π|

for every π ∈ Mb(Ω ∪ ΓD;R
d×d
dev ).

In what follows, we will refer to R as to the damage-dependent plastic dissipation potential. Note

that, by Reshetnyak’s lower semicontinuity theorem (see [2, Theorem 2.38 ]), the functional R is lower-

semicontinuous in its second variable with respect to the weak* convergence in Mb(Ω ∪ ΓD;R
d×d
dev ).

For α continuous and such that
.
α ≤ 0 in [0, T ] × Ω, we define the α-weighted R-dissipation of a map

t 7→ π(t) in the interval [s1, s2] as

DR(α;π; s1, s2) := sup

{
n∑

j=1

R
(
α(tj), π(tj)−π(tj−1)

)
: s1 ≤ t0 < t1 < · · · < tn ≤ s2, n ∈ N

}
. (6)

We will work under the assumption that the damage is unidirectional, i.e.
.
α ≤ 0. Constraining the rate

rather than the state itself, this constraint is to be incorporated into the dissipation potential. For a (small)

damage-viscosity parameter η > 0 , we define the local potential of dissipative damage-driving force as

ζ(
.
α) :=





1

2
η
.
α2 if

.
α ≤ 0,

+∞. otherwise
(7)
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Let the viscoelastic tensor D : R → Lsym(R
d×d
sym) be given and define the overall potential of dissipative

forces

R(q;
.
q) = R(α;

.
u,

.
π,

.
α)

=

ˆ

Ω

(1
2
D(α)

.
eel :

.
eel + ζ(

.
α)

)
dx+

ˆ

Ω∪ΓD

σ
YLD

(α)
d

.
π

d| .π| d|
.
π| where

.
eel = e(

.
u)− .

π. (8)

Let ρ ∈ L∞(Ω), with ρ > 0 almost everywhere in Ω denote the mass density. We will additionally

consider the kinetic energy given by

T (
.
u) =

ˆ

Ω

1

2
ρ| .u|2 dx. (9)

2.5 Governing equations by Hamilton variational principle

We formulate the model via Hamilton’s variational principle generalized for dissipative systems [9]. This

prescribes that, among all admissible motions q = q(t) on a fixed time interval [0, T ] given the initial and

final states q(0) and q(T ), the actual motion is a stationary point of the action

ˆ T

0
L

(
t, q,

.
q
)
dt (10)

where
.
q = ∂

∂tq and the Lagrangean L (t, q,
.
q) is defined as

L
(
t, q,

.
q
)
:= T

(.
q
)
− E (q) + 〈F (t), q〉 with F = F0(t)− ∂ .

qR(q,
.
q) . (11)

This corresponds to the sum of external time-dependent loading and the (negative) nonconservative force

assumed for a moment fixed. In addition to E , R, and T from Sections 2.3 and 2.4, we define the outer

loading F0 as 〈F0(t), q〉 =
´

Ω f · udx, where f is a time-dependent external body load.

The corresponding Euler-Lagrange equations read

∂uL
(
t, q,

.
q
)
− d

dt
∂ .
q
L

(
t, q,

.
q
)
= 0. (12)

This gives the abstract 2nd-order evolution equation

∂2T
..
q + ∂ .

qR(q,
.
q) + E

′(q) = F0(t) (13)

where ∂ indicates the (partial) Gâteaux differential. Let us now rewrite the abstract relation (13) in terms of

our specific choices (5), (7)-(9). We have

the following equation/inclusion on [0, T ]× Ω:

ρ
..
u − div σ = f, σ := C(α)eel + D(α)

.
eel, eel = e(u) − π, (14a)

σ
YLD

(α)Dir(
.
π) ∋ dev σ, (14b)

∂ζ(
.
α) +

1

2
C
′(α)eel : eel ∋ φ′(α) + div (κ|∇α|p−2∇α), (14c)

complemented by the boundary conditions

σνΓ = 0 on [0, T ]× ΓN, u = uD on [0, T ] × ΓD, ∇α · νΓ = 0 on [0, T ]× Γ. (15)

The notation Dir : Rd×d
dev ⇒ R

d×d
dev in (14b) means the set-valued “direction” mapping defined by Dir(

.
π) :=

[∂| · |]( .
π). In particular

Dir(
.
π) =

{ .
π/| .π| if

.
π 6= 0

{d ∈ R
d×d
dev : |d| ≤ 1} if

.
π = 0

6



Relations (14a), (14b), and (14c) correspond to the equilibrium equation and constitutive relation, the plastic

flow rule, and the evolution law for damage, respectively.

The above boundary-value problem is complemented with initial conditions as follows ,

u(0) = u0, π(0) = π0, α(0) = α0,
.
u(0) = v0. (16)

We point out that the monotonicity of C, combined with the unidirectionality (
.
α ≤ 0) of damage implies

that .
αC′(α)e : e ≤ 0 for every e ∈ R

d×d, (17)

namely
.
αC′(α) is negative semi-definite. By the monotonicity of σ

YLD
, the unidirectionality of damage also

yields that .
ασ′

YLD
(α) ≤ 0. (18)

The energetics of the model (14)-(15), obtained by standard tests of (14) successively against
.
u,

.
π, and

.
α, is formally encoded by the following energy equality

ˆ

Ω

ρ

2
| .u(t)|2 dx

︸ ︷︷ ︸
kinetic energy

at time t

+

ˆ

Ω

1

2
C(α(t))eel(t) : eel(t)− φ(α(t)) +

κ

p
|∇α(t)|p dx

︸ ︷︷ ︸
stored energy at time t

+

ˆ t

0

ˆ

Ω
η
.
α2 + D(α)

.
eel :

.
eel dxds+ σ

YLD
(α)| .π|dxds

︸ ︷︷ ︸
dissipation on [0, t]

=

ˆ

Ω

ρ

2
|v0|2 dx

︸ ︷︷ ︸
kinetic energy

at time 0

+

ˆ

Ω

1

2
C(α0)eel(0) : eel(0)− φ(α0) +

κ

p
|∇α0|p dx

︸ ︷︷ ︸
stored energy at time 0

+

ˆ t

0

ˆ

Ω
f · .

u dxds

︸ ︷︷ ︸
energy of

external bulk load

+

ˆ t

0

ˆ

ΓD

σνΓ · .
uD dH

d−1 ds

︸ ︷︷ ︸
energy of

boundary condition

(19)

where the last term has to be interpreted in the sense of (40) below. A rigorous derivation of the energy

equality above will be presented in Subsection 3.1.

2.6 Statement of the main result

Let p > d be given and assume that the data of the problem satisfy the following conditions:

u0 ∈ L2(Ω;Rd) ∩BD(Ω;Rd), v0 ∈ H1(Ω;Rd),

π0 ∈ Mb(Ω ∪ ΓD;R
d×d
dev ),

.
π0 ∈ L2(Ω;Rd×d

dev ), (20a)

(u0, e(u0)− π0, π0) ∈ A (uD(0)), (v0, e(v0)−
.
π0,

.
π0) ∈ A (

.
uD(0)), (20b)

α0 ∈W 1,p(Ω), 0 ≤ α0 ≤ 1,

σ
YLD

(α0)Dir(
.
π0) ∋ dev (C(α0)(e(u0)−π0) + D(α0)(e(v0)−

.
π0)), (20c)

f ∈ L2(0, T ;L2(Ω;Rd)), uD ∈W 2,∞(0, T ;L2(Ω;Rd)) ∩H1(0, T ;H1(Ω;Rd)). (20d)

The regularity requirements in (20) for v0 and
.
π0 and the compatibility condition in (20c) are needed in

order to make some higher-order estimate rigorous, see Subsection 3.2.

We now introduce the notion of weak solution to (14)–(16).
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Definition 2.1 (Weak solution to (14)–(16)). A quadruple

u ∈ L∞(0, T ;BD(Ω;Rd)) ∩H2(0, T ;L2(Ω;Rd))

eel ∈ H1(0, T ;L2(Ω;Rd×d
sym)),

π ∈ BV (0, T ;Mb(Ω ∪ ΓD;R
d×d
dev )),

α ∈
(
H1(0, T ;L2(Ω)) ∩Cw(0, T ;W

1,p(Ω))

is a weak solution to (14)–(16) if it satisfies (16), and the following conditions are fulfilled:

(C1) (u(t), eel(t), π(t)) ∈ A (uD(t)) for every t ∈ [0, T ] (see (3));

(C2) The equilibrium equation (14a) holds almost everywhere in Ω× (0, T );

(C3) The quadruple (u, eel, π, α) satisfies the energy inequality

ˆ

Ω

ρ

2
| .u(T )|2 dx+

ˆ T

0

ˆ

Ω
ρ
.
u · ..

uD dxds

+

ˆ

Ω

(1
2
C(α(T ))eel(T ) : eel(T )− φ(α(T )) +

κ

p
|∇α(T )|p

)
dx

+DR(α;π; 0, T ) +

ˆ T

0

ˆ

Ω

(
D(α)

.
eel :

.
eel + η

.
α2

)
dxdt

≤
ˆ

Ω

ρ

2
v20 dx+

ˆ

Ω

(1
2
C(α0)(e(u0)− π0) : (e(u0)− π0)− φ(α0) +

κ

p
|∇α0|p

)
dx

+

ˆ

Ω
ρ
.
u(T ) · .

uD(T ) dx+

ˆ

Ω
ρv0 ·

.
uD(0) dx

+

ˆ T

0

ˆ

Ω

(
C(α)eel : e(

.
uD) + D(α)

.
eel : e(

.
uD) + f · ( .u− .

uD)
)
dxdt.

(C4) The quadruple (u, eel, π, α) satisfies the damage inequality

ˆ T

0

ˆ

Ω
φ′(α)ϕ− κ|∇α|p−2∇α · ∇ϕ− 1

2
(ϕ− .

α)C′(α)eel : eel − η
.
αϕdxdt

≤
ˆ

Ω
φ(α(T )) − φ(α0)−

κ

p
|∇α(T )|p + κ

p
|∇α0|p dx−

ˆ T

0

ˆ

Ω
η
.
α2 dxdt, (21)

for all ϕ ∈W 1,p(Ω) with ϕ(x) ≤ 0 for a.e. x ∈ Ω.

The main result of the paper consists in showing existence of weak solutions to (14)–(16). Let us

summarize the assumption on the data of the model:

C : R → Lsym(R
d×d
sym) continously differentiable, positive semidefinite, nondecreasing, (22a)

D(·) = D0 + χC(·),D0 positive definite, χ ≥ 0, (22b)

φ : R → R continuously differentiable, nondecreasing, (22c)

σ
YLD

: R → R continuously differentiable, positive, and nondecreasing,, (22d)

C
′(0) = 0, φ′(0) ≥ 0, (22e)

η ∈ L∞(Ω), η ≥ η0 > 0 a.e., (22f)

κ ∈ L∞(Ω), κ ≥ κ0 > 0 a.e., (22g)
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ρ ∈ L∞(Ω), ρ ≥ ρ0 > 0 a.e. (22h)

where χ > 0 is a constant denoting a relaxation time. The structural assumption (22b) is instrumental in

making our existence theory amenable. It arises naturally by assuming C(·) and D(·) to be pure second-order

polynomials of the damage variable α, namely C(α) = α2
C2 (recall (22e)) and D(α) = D0 + α2

D2. By

assuming the two tensors C2 and D2 to be spherical, namely C2 = c2I4 and D2 = d2I4 for some c2, d2 > 0
where I4 is the identity 4-tensor, one can define χ = d2/c2 in order to get (22b). Assumption (22e) ensures

that α stays non-negative during the evolution even if the constraint α ≥ 0 is not explicitly included in the

problem, see Remark 2.4 below.

Theorem 2.2 (Existence). Under assumptions (20) on initial conditions and loading and (22) on data

there exists a weak solution to (14)–(16) in the sense of Definition 2.1. Moreover, this solution has the addi-

tional regularity (u, eel, π) ∈W 1,∞(0, T ;BD(Ω;Rd))×W 1,∞(0, T ;L2(Ω;Rd×d
sym))×W 1,∞(0, T ;Mb(Ω∪

ΓD;R
d×d
dev )).

The proof of Theorem 2.2 is postponed to Section 6, where we present a conceptually implementable,

numerically stable, and convergent numerical algorithm. Instead, we conclude this section with some final

remarks.

Remark 2.3 (Body and surface loads). As pointed out in [6, Introduction], for quasistatic evolution in

perfect plasticity one has to impose a compatibility condition between body and surface loads, namely a

safe load to ensure that the body is not in a free flow. In the dynamic case, under the assumption of null

surface loads, this condition can be weaken for what concerns body loads; see, e.g., [36].

Remark 2.4 (Cohesive damage assumption). We will not include in the model reaction forces to the con-

straint 0 ≤ α ≤ 1. This would be encoded by rewriting (14c) as

∂ζ(
.
α) +

1

2
C
′(α)eel : eel + pR ∋ φ′(α) + div (κ|∇α|p−2∇α) where pR ∈ N[0,1](α) ;

here N[0,1](·) denote the normal cone and pR is a “reaction pressure” to the constraints 0 ≤ α ≤ 1. We

point out that the presence of this additional term in the damage flow rule would cause a loss of regularity

for the damage variable. In order to avoid such problem we will rather enforce the constraint 0 ≤ α ≤ 1 by

exploiting the irreversibility of damage, and by restricting our analysis to the situation in which the damage

is cohesive.

Remark 2.5 (Regularity of Γ). We remark that the C2-regularity of Γ is needed in order to apply [37,

Proposition 2.5], and define a duality between stresses and plastic strains. For d = 2, owing to the results

in [30], it is also possible to analyze the setting in which Γ is Lipschitz. The same strategy can not be applied

for d = 3, for it would require div σ ∈ L3(Ω), whereas here we can only achieve div σ ∈ L2(Ω).

Remark 2.6 (The role of the term η
.
α). The term η

.
α in (14c) guarantees strong convergence of the damage-

interpolants in the time-discretization scheme to the limit damage variable. This, in turn, is a key point

to ensure strong convergence of the elastic stresses, which is fundamental for the proof of the damage

inequality in condition (C4). From a modeling point of view, this might be interpreted as some additional

dissipation related with the speed of the damaging process contributing to the heat production, possibly

leading to an increase of temperature. The microscopical idea behind it is that faster mechanical processes

cause higher heat production and therefore higher dissipation.
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Remark 2.7 (Phase-field fracture). Our cohesive damage with C
′(0) = 0 has the drawback that, while α

approaches zero, the driving force needed for its evolution rises to infinity. This model is anyhow used in

the phase-field approximation of fracture.

E (u, α) :=

ˆ

Ω

(ε/ε0)
2+α2

2
C1e(u):e(u) + Gc

( 1

2ε
(1−α)2+ ε

2
|∇α|2

)

︸ ︷︷ ︸
crack surface density

dx (23)

with withGc denoting the energy of fracture and with ε controlling a “characteristic” width of the phase-field

fracture zone(s). The physical dimension of ε0 as well as of ε is m (meters) while the physical dimension of

Gc is J/m2. In the model (5), it means C(α) = (ε2/ε20+α
2)C1 and φ(α) = −Gc(1−α)2/(2ε) while κ = ε

and p = 2. This is known as the so-called Ambrosio-Tortorelli functional. Its motivation came from the static

case, where this approximation was proposed by Ambrosio and Tortorelli [3,4] and the asymptotic analysis

for ε→ 0 was rigorously proved first for the scalar-valued case. The generalization for the vectorial case is

due to Focardi [28]. Later, it was extended to the evolution situation, namely for a rate-independent cohesive

damage, in [33], see also [11, 12, 14, 38, 41] where inertial forces are incorporated in the description. Note

however that plasticity was not involved in all these references. Some modifications have been addressed

in [13], see also [46] for various other models, and [17, 29, 31, 35] for the linearized and cohesive-fracture

settings.

Remark 2.8 (Ductile damage/fracture). A combination of damage/fracture with plasticity is sometimes

denoted by the adjective “ductile”, in contrast to “brittle”, if plasticity is not considered. There are various

scenarios of combination of plastification processes with damage, that can model various phenomena in

fracture mechanics. Here, we address the case of damage-dependent elastic response and the yield stress.

Remark 2.9 (Influence of damage on the energy equality). We point out that, in the absence of damage,

energy conservation could be recovered. Indeed, it would be possible to prove the energy equality, which

would then ensure the validity of the flow rule (14b) as well. A detailed analysis of an analogous albeit

quasistationary case has been performed in [22, Section 6] in the quasistatic framework. An adaptation of

the argument yields the analogous statements in the dynamic setting.

3 Some formal calculus first

We first highlight a formal strategy that will lead to the proof of Theorem 2.2, avoiding (later necessary)

technicalities. In particular, we first derive the energetics of the model by performing some standard tests

of (14) against the time derivatives (
.
u,

.
π,

.
α). Further a-priori estimates will be obtained by performing a

test of the same equations against higher-order time-derivatives of the maps. Eventually, a direct strong-

convergence argument will be presented.

All the arguments will be eventually made rigorous in Sections 5–6 by means of a time-discretization

procedure, combined with a passage to the limit as the time-step vanishes. The estimates described in

Subsections 3.2–3.3 will be essential to pass to the limit in the time-discrete damage equation.

3.1 Energetics of the model and first estimates

A formal test of the equations/inclusion (14) successively against
.
u,

.
π, and

.
α yields

ˆ

Ω

(
ρ
..
u(t) · .

u(t) + σ(t) : e(
.
u(t))

)
dx =

ˆ

Ω
f(t) · .

u(t) dx+

ˆ

Γ
σ(t)νΓ · .

uD(t) dH
d−1, (24a)
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ˆ

Ω
dev σ(t) :

.
π(t) dx =

ˆ

Ω
σ

YLD
(α(t))| .π(t)|dx, (24b)

ˆ

Ω
η
.
α(t)2 dx =

ˆ

Ω

(
φ′(α(t))

.
α(t)

− 1

2
C
′(α(t))

.
α(t)eel(t) : eel(t)− κ|∇α(t)|p−2∇α(t) · ∇ .

α(t)
)
dx. (24c)

Integrating (24a) in time, by (16), (24b), and by the definition of eel, we obtain

ˆ

Ω

(ρ
2
| .u(t)|2 + 1

2
C(α(t))eel(t) : eel(t)

)
dx−

ˆ t

0

ˆ

Ω

1

2
C
′(α)

.
αeel : eel dxds

+

ˆ t

0

ˆ

Ω
D(α)

.
eel :

.
eel dxds+

ˆ t

0

ˆ

Ω
σ

YLD
(α)| .π|dxds

=

ˆ

Ω

(ρ
2
|v0|2 +

1

2
C(α0)eel(0) : eel(0)

)
dx+

ˆ t

0

ˆ

Ω
f · .

udxds+

ˆ t

0

ˆ

ΓD

σνΓ · .
uD dH

d−1 ds. (25)

In view of (15) and (16), an integration in time of (24c) yields

ˆ t

0

ˆ

Ω

(
η
.
α2 +

1

2

.
αC′(α)eel : eel

)
dxds+

ˆ

Ω

(κ
p
|∇α(t)|p − φ(α(t))

)
dx =

ˆ

Ω

(κ
p
|∇α0|p− φ(α0)

)
dx.

(26)

Thus, summing (25) and (26), by (15) we deduce the energy equality (19).

To see the energy-based estimates from (19), here we should use the Gronwall inequality for the term

f · .
u benefitting from having the kinetic energy on the left-hand side, and the by-part integration of the

Dirichlet loading term. We stress that the last term in (25) can be rigorously defined as in (40). This way,

we can see the estimates

u ∈ L∞(0, T ;BD(Ω;Rd)) ∩W 1,∞(0, T ;L2(Ω;Rd)), (27a)

eel ∈ H1(0, T ;L2(Ω;Rd×d
sym)), (27b)

π ∈ BV (0, T ;Mb(Ω ∪ ΓD;R
d×d
dev )), (27c)

α ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)). (27d)

Unfortunately, these estimates do not suffice for the convergence analysis as the time step goes to 0. In

particular, in relation (35) later on one needs to handle the term ρ
..
uk ·

.
u, which is still not integrable under

(27a).

3.2 Higher-order tests

In this subsection we perform an extension of the regularity estimate in Subsection 3.1, relying on the

unidirectionality of the damage evolution, on the fact that σ
YLD

(·) is nondecreasing, and on the monotonicity

of C(·) with respect to the Löwner ordering. We introduce the abbreviation

w := u+ χ
.
u, εel := eel + χ

.
eel, and ̟ = π + χ

.
π, (28)

and observe that,
..
u = (

.
w− .

u)/χ. Hence, the equilibrium equation rewrites as

ρ

.
w

χ
− div σ = f + ρ

.
u

χ
. (29)
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We first argue by testing the plastic flow rule (14b) against
.
̟. We use the (here formal) calculus

σ
YLD

(α)Dir(
.
π):

..
π =

∂

∂t

(
σ

YLD
(α)| .π|

)
− .
ασ′

YLD
(α)| .π| ≥ ∂

∂t

(
σ

YLD
(α)| .π|

)
(30)

because
.
ασ′

YLD
(α)| .π| ≤ 0 when assuming σ

YLD
(·) nondecreasing and using

.
α ≤ 0, cf. (18). This formally

yields

ˆ T

0

ˆ

Ω
σ

YLD
(α)| .π|dxdt+ χ

ˆ

Ω

(
σ

YLD
(α(t))| .π(t)| − χσ

YLD
(α0)|

.
π(0)|

)
dx

=

ˆ T

0

ˆ

Ω
σ

YLD
(α)| .π|dxdt+ χ

ˆ

Ω
σ

YLD
(α(t))| .π(t)|dx− χ

ˆ

Ω
σ

YLD
(α(0))| .π(0)|dx

≤
ˆ T

0

ˆ

Ω
σ:

.̟
dxdt. (31)

Analogously, testing (29) against
.
w and integrating in time, by (15) we deduce

ˆ T

0

ˆ

Ω

( ρ
χ
| .w|2 + σ : e(

.
w)

)
dxdt =

ˆ T

0

ˆ

Ω

(
f · .

w +
ρ

χ

.
u · .
w
)
dxdt+

ˆ T

0

ˆ

ΓD

σνΓ · ( .uD + χ
..
uD) dH

d−1dt.

(32)

By the definition of the tensor D (see Subsection 2.3), and by (17), we infer that

ˆ T

0

ˆ

Ω
σ : e(

.
w) dxdt =

ˆ T

0

ˆ

Ω

(
C(α)εel :

.
εel + D0

.
eel :

.
εel + σ :

.̟)
dxdt

≥
ˆ

Ω

1

2
C(α(t))εel(t) : εel(t) dx+

ˆ T

0

ˆ

Ω
D0

.
eel :

.
eel dxdt−

ˆ

Ω

1

2
C(α0)εel(0) : εel(0) dx

+
χ

2

ˆ

Ω
D0

.
eel(t) :

.
eel(t) dx− χ

2

ˆ

Ω
D0

.
eel(0) :

.
eel(0) dx+

ˆ T

0

ˆ

Ω
σ :

.̟
dxdt. (33)

Thus, by combining (31), with (32) and (33), we obtain the inequality

1

χ

ˆ T

0

ˆ

Ω
ρ| .w|2 dxdt+ 1

2

ˆ

Ω
C(α(t))εel(t) : εel(t) dx

+

ˆ T

0

ˆ

Ω
D0

.
eel :

.
eel dxdt+

χ

2

ˆ

Ω
D0

.
eel(t) :

.
eel(t) dx+

ˆ T

0

ˆ

Ω
σ

YLD
(α)| .π|dxdt

+ χ

ˆ

Ω
σ

YLD
(α(t))| .π(t)|dx ≤ 1

2

ˆ

Ω
C(α0)εel(0) : εel(0) dx

+
χ

2

ˆ

Ω
D0

.
eel(0) :

.
eel(0) dx+ χ

ˆ

Ω
σ

YLD
(α0)|

.
π(0)|dx

+

ˆ T

0

ˆ

Ω
f · .

w dxdt+

ˆ T

0

ˆ

ΓD

σνΓ · ( .uD + χ
..
uD) dH

d−1dt+
1

χ

ˆ T

0

ˆ

Ω
ρ
.
u · .
w dxdt.

Let us note that we can use (27a) in order to control
.
u in the last term above. As for initial data, we need

here that
.
eel(0) ∈ L2(Ω;Rd×d

sym) and
.
π(0) ∈ L2(Ω;Rd×d

dev ), which follows under the provisions of (20).

Eventually, by (19), and (28) this yields the following additional regularity for the displacement, and for the

elastic and plastic strains

u ∈W 1,∞(0, T ;BD(Ω;Rd)) ∩H2(0, T ;L2(Ω;Rd)), (34a)

eel ∈W 1,∞(0, T ;L2(Ω;Md×d)), (34b)

π ∈W 1,∞(0, T ;Mb(Ω ∪ ΓD;R
d×d
dev )). (34c)
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3.3 One more estimate for the strong convergence of eel’s

The strong convergence of the elastic strains eel is needed for the limit passage in the damage flow rule. The

failure of energy conservation (see Remark 2.9) prevents the usual “limsup-strategy”, but one can estimate

directly the difference between the (presently still unspecified) approximate solution (uk, πk) and its limit

(u, π) punctually as:
ˆ

Q
D(αk)(

.
eel,k−

.
eel): (

.
eel,k−

.
eel) dxdt

+

ˆ

Ω

1

2
C(αk(T ))(eel,k(T )−eel(T )): (eel,k(T )−eel(T )) dx

≤
ˆ

Q

ˆ

Ω

(
D(αk)(

.
eel,k−

.
eel) + C(αk)(eel,k−eel)

)
: (

.
eel,k−

.
eel) dxdt

≤
ˆ

Q

(
(f−ρ ..uk)·(

.
uk−

.
u)−

(
D(αk)

.
eel + C(αk)eel

)
: (

.
eel,k−

.
eel)

+ σ
YLD

(αk)(|
.
π| − | .πk|)

)
dxdt. (35)

The first inequality in (35) is due to the monotonicity of C(·) with respect to the Löwner ordering so that,

due to (17), it holds

∂

∂t

(
1

2
C(αk)(eel,k−eel):(eel,k−eel)

)

=
1

2

.
αkC

′(αk)(eel,k−eel):(eel,k−eel) +C(αk)
∂

∂t

(
1

2
(eel,k−eel):(eel,k−eel)

)

≤ C(αk)(eel,k−eel):(
.
eel,k−

.
eel) . (36)

while the second step in (35) is due to the inequality dev σ: (
.
πk − .

π) ≥ σ
YLD

(αk)(|
.
πk| − | .π|), following

from the plastic flow rule σ
YLD

(αk)Dir(
.
πk) ∋ dev σ, with σ from (14a).

By using weak* upper semicontinuity and the uniform convergence αk → α one checks that the limit

superior of the right-hand side in (35) can be estimated from above by zero (so that, in fact, the limit does

exist and equals to zero). We refer to Proposition 6.2 for the rigorous implementation of the above argument.

4 Staggered two-step time-discretization scheme

This section is devoted to the solution of a discrete counterpart of the system of equations (14)–(16), and

to the proof of a-priori estimates for the associated piecewise constant, piecewise affine, and piecewise

quadratic in-time interpolants.

Fix n ∈ N, set τ := T/n, and consider the equidistant time partition of the interval [0, T ] with step τ .

We define the discrete body-forces by setting fkτ :=
´ kτ
(k−1)τ f(t) dt for all k ∈ {1, . . . , T/τ}. We consider

the following time-discretization scheme:

ρδ2ukτ − div
(
C(αk−1

τ )ekel,τ + D(αk−1
τ )δekel,τ

)
= fkτ , (37a)

σ
YLD

(αk−1
τ )Dir(δπkτ ) ∋ dev

(
C(αk−1

τ )ekel,τ + D(αk−1
τ )δekel,τ

)
, (37b)

∂ζ(δαk
τ ) +

1

2
C
◦(αk

τ , α
k−1
τ )ekel,τ : ekel,τ ∋ φ◦(αk

τ , α
k−1
τ ) + div (κ|∇αk

τ |p−2∇αk
τ ), (37c)

to be complemented with the boundary conditions
(
C(αk−1

τ )ekel,τ + D(αk−1
τ )δekel,τ

)
νΓ = 0 on ΓN (38a)
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κ|∇αk
τ |p−2∇αk

τ · νΓ = 0 on Γ. (38b)

Here, δ and δ2 denote the first and second order finite-difference operator, that is

δukτ :=
ukτ − uk−1

τ

τ
and δ2ukτ := δ

[
δukτ

]
=
ukτ − 2uk−1

τ + uk−2
τ

τ2
,

and where the tensor C◦(α, α̃) and the scalar φ◦(α, α̃) are defined for all α, α̃ ∈ R as

C
◦(α, α̃) :=





C(α)−C(α̃)

α− α̃
if α 6= α̃

C
′(α) = C

′(α̃) if α = α̃,

φ◦(α, α̃) :=





φ(α)−φ(α̃)
α− α̃

if α 6= α̃ ,

φ′(α) = φ′(α̃) if α = α̃ .

Let us note that, if φ(·) is affine, then simply φ◦(αk
τ , α

k−1
τ ) = φ′. Similarly, if C(·) were affine, then

C
◦(αk

τ , α
k−1
τ ) = C

′. We point out that this case would be in conflict with (22e) unless C would be indepen-

dent of damage.

4.1 Weak solutions to the time-discretization scheme

In order to define a notion of weak solutions to (37b), we need to preliminary introduce a duality between

stresses and plastic strains. We work along the footsteps of [37] and [22, Subsection 2.3]. We first define

the set

Σ(Ω) :=
{
σ ∈ L2(Ω;Rd×d

sym) : dev σ ∈ L∞(Ω;Rd×d
dev ) and div σ ∈ L2(Ω;Rd)

}
. (39)

By [37, Proposition 2.5 and Corollary 2.6], for every σ ∈ Σ(Ω) there holds

σ ∈ L∞(Ω;Rd×d
sym).

In addition, we can introduce the trace [σνΓ] ∈ H−1/2(Γ;Rd) (see e.g. [50, Theorem 1.2, Chapter I]) as

〈[σνΓ], ψ〉Γ :=

ˆ

Ω
div σ · ψ dx+

ˆ

Ω
σ : e(ψ) dx (40)

for every ψ ∈ H1(Ω;Rd). Defining the normal and the tangential part of [σνΓ] as

[σνΓ]ν := ([σνΓ] · νΓ)νΓ and [σνΓ]
⊥

ν := [σνΓ]− ([σνΓ] · νΓ)νΓ,

by [37, Lemma 2.4] we have that [σνΓ]
⊥
ν ∈ L∞(Γ;Rd), and

‖[σνΓ]⊥ν ‖L∞(Γ;Rd) ≤
1√
2
‖dev σ‖L∞(Ω;Rd×d

dev
).

Let σ ∈ Σ(Ω) and let u ∈ BD(Ω;Rd) ∩ L2(Ω;Rd), with div u ∈ L2(Ω). We define the distribution

[dev σ : dev e(u)] on Ω as

〈[dev σ : dev e(u)], ϕ〉 := −
ˆ

Ω
ϕdiv σ · udx− 1

d

ˆ

Ω
ϕ tr σ · div udx−

ˆ

Ω
σ : (u⊙∇ϕ) dx (41)

for every ϕ ∈ C∞
c (Ω). By [37, Theorem 3.2] it follows that [dev σ : dev e(u)] is a bounded Radon measure

on Ω, whose variation satisfies

|[dev σ : dev e(u)]| ≤ ‖dev σ‖L∞(Ω;Rd×d
dev

)|dev e(u)| in Ω.
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Let ΠΓD
(Ω) be the set of admissible plastic strains, namely the set of maps π ∈ Mb(Ω∪ΓD;R

d×d
dev ) such

that there exist u ∈ BD(Ω;Rd) ∩ L2(Ω;Rd), e ∈ L2(Ω;Rd×d
sym), and w ∈ W 1,2(Ω;Rd) with (u, e, π) ∈

A (w). Note that the additive decomposition e(u) = e+ π implies that div u ∈ L2(Ω).
It is possible to define a duality between elements of Σ(Ω) and ΠΓD

(Ω). To be precise, given π ∈
ΠΓD

(Ω), and σ ∈ Σ(Ω), we fix (u, e, w) such that (u, e, π) ∈ A (w), with u ∈ L2(Ω;Rd), and we define

the measure [dev σ : π] ∈ Mb(Ω ∪ ΓD;R
d×d
dev ) as

[dev σ : π] :=

{
[dev σ : dev e(u)] − dev σ : dev e in Ω

[σνΓ]
⊥
ν · (w − u)Hd−1 on ΓD,

so that
ˆ

Ω∪ΓD

ϕd[dev σ : π] =

ˆ

Ω
ϕd[dev σ : dev e(u)]−

ˆ

Ω
ϕdev σ : dev edx+

ˆ

ΓD

ϕ[σν]⊥ν · (w − u) dHd−1

for every ϕ ∈ C(Ω̄). Arguing as in [22, Section 2], one can prove that the definition of [dev σ : π] is

independent of the choice of (u, e, w), and that if dev σ ∈ C(Ω̄;Rd×d
dev ) and ϕ ∈ C(Ω̄), then

ˆ

Ω∪ΓD

ϕd[dev σ : π] =

ˆ

Ω∪ΓD

ϕdev σ : dπ.

We are now in a position to state the definition of weak solutions to the time-discretization scheme.

Definition 4.1 (Weak discrete solutions). For every k ∈ {1, . . . , T/τ}, a quadruple (ukτ , e
k
el,τ , π

k
τ , α

k
τ ) is

a weak solution to (37) if (ukτ , e
k
τ , π

k
τ ) ∈ A (ukD,τ ), α

k
τ ∈ W 1,p(Ω) ∩ L∞(Ω) satisfies 0 ≤ αk

τ ≤ 1, the

quadruple solves (37c) and (38), property (37a) holds almost everywhere, and the following discrete flow-

rule is fulfilled

[dev σkτ : δπkτ ](Ω ∪ ΓD) = R(αk−1
τ , δπkτ ), with σkτ := C(αk−1

τ )ekel,τ + D(αk−1
τ )δekel,τ . (42)

Remark 4.2 (The discrete flow-rule). A crucial difference with respect to the results in [6, Proposition 3.3]

is the fact that condition (42) is much weaker than the differential inclusion (37b). This is due to a key

peculiarity of our model, for we consider a viscous contribution involving only the elastic strain, but we still

allow for perfect plasticity. In fact, in our setting (37b) is only formal, as for every τ and k, the map δπkτ
is a bounded Radon measure. In particular the quantity σ

YLD
(αk−1

τ )Dir(δπkτ ) does not have a pointwise

meaning. As customary in the setting of perfect plasticity, the discrete flow-rule is thus only recovered in a

weaker form.

4.2 Existence of weak solutions

Let us start by specifying the discretization of the boundary Dirichlet data as system

u0D,τ := uD(0), u−1
D,τ := uD(0)− τ

.
uD(0), ukD,τ := uD(kτ) for every k ∈ {1, . . . , T/τ}.

As for initial data, we recall (20) and prescribe

u0τ := u0, π
0
τ := π0, α

0
τ := α0, e

0
el,τ = e(u0)− π0.

In order to reproduce the higher-order tests of Subsection 3.2 at the discrete level we need to specify addi-

tionally the following

u−1
τ := u0 − τv0, π

−1
τ := π0 − τ

.
π0, α

−1
τ := α0

τ , e
−1
el,τ = e(u0)− τ(e(v0)−

.
π0).
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In particular, the last condition in (20c) ensures that the discrete flow rule (37b) holds at level k = 0 as well.

In order to check for the solvability of the discrete system (37) we proceed in two steps. For given

αk−1
τ ∈ W 1,p(Ω) ∩ L∞(Ω) with 0 ≤ αk−1

τ ≤ 1 we look for the triple (ukτ , e
k
el,τ , π

k
τ ) given by the unique

solution to the minimum problem

min

{
ˆ

Ω

(1
2
C(αk−1

τ )e : e+
1

2τ
D(αk−1

τ )(e− ek−1
el,τ ) : (e− ek−1

el,τ )− fkτ · u
)
dx

+
ρ

2τ2
‖u− 2uk−1

τ + uk−2
τ ‖2L2(Ω;Rd) + R(αk−1

τ , π − πk−1
τ ) : (u, e, π) ∈ A (ukD,τ )

}
. (43)

where A (·) is defined in (3). The existence and uniqueness of solutions to (43) is ensured by Lemma 4.3

below.

Once (ukτ , e
k
el,τ , π

k
τ ) are found, we determine αk

τ by solving

min

{
ˆ

Ω

(
τζ

(α− αk−1
τ

τ

)
+
κ

p
|∇α|p

+

ˆ α(x)

0

1

2
C
◦(s, αk−1

τ (x)) ekel,τ (x) : e
k
el,τ (x)− φ◦(s, αk−1

τ (x)) ds

)
dx : (44)

α ∈W 1,p(Ω), 0 ≤ α ≤ 1

}
(45)

in Lemma 4.5 below.

Lemma 4.3 (Existence of time-discrete displacements and strains). Let αk−1
τ ∈ W 1,p(Ω) ∩ L∞(Ω), with

0 ≤ αk−1
τ ≤ 1, be given. Then, there exists a unique triple (ukτ , e

k
el,τ , π

k
τ ) ∈ A (ukD,τ ) solving (43).

Proof. The result follows by compactness, lower-semicontinuity, and by Korn’s inequality (2). The unique-

ness of the solution is a consequence of the strict convexity of the functional, and the fact that A (ukD,τ ) is

affine.

Minimizers of (43) satisfy the following first order optimality conditions.

Proposition 4.4 (Time-discrete Euler-Lagrange equations for displacement and strains). Let αk−1
τ ∈W 1,p(Ω)∩

L∞(Ω) be a solution to (37c) satisfying 0 ≤ αk−1
τ ≤ 1. Let (ukτ , e

k
el,τ , π

k
τ ) be the minimizing triple of (43).

Then, (ukτ , e
k
el,τ , π

k
τ ) solves (37a) and (42), div σkτ ∈ L2(Ω;Rd), and [σkτ νΓ] = 0 on ΓN.

Proof. We omit the proof of (37a), as it follows closely the argument in [6, Proposition 3.3]. The proof of

(42) is postponed to Corollary 5.3.

We conclude this subsection by showing existence of solutions to (37c).

Lemma 4.5 (Existence of admissible time-discrete damage variables). Let k ∈ {1, . . . , T/τ}, and assume

that αk−1
τ ∈W 1,p(Ω)∩L∞(Ω), with 0 ≤ αk−1

τ ≤ 1, is given. Let (ukτ , e
k
el,τ , π

k
τ ) be the minimizing triple of

(43). Then there exists αk
τ ∈W 1,p(Ω) ∩ L∞(Ω) solving (37c), and satisfying 0 ≤ αk

τ ≤ 1.
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Proof. We preliminary observe that αk
τ solves (37c) if and only if it minimizes the functional in (45). The

existence of a minimizer αk
τ ∈W 1,p(Ω) follows by the continuity of φ(·) and C(·), by lower-semicontinuity,

and by the Dominated Convergence Theorem. The fact that αk
τ (x) ≤ 1 for every x ∈ Ω is a consequence of

the assumption that 0 ≤ αk−1
τ ≤ 1 in Ω, and of the constraint αk

τ ≤ αk−1
τ . The constraint 0 ≤ αk

τ instead

is satisfied due to the assumptions on C(·) and φ(·) (see Subsections 2.3 and 2.5), and owing to a truncation

argument.

5 A-priori energy estimates

In order to pass to the limit in the discrete scheme as the fineness τ of the partition goes to 0 we establish

a few a-priori estimates on time interpolants between the quadruple identified via the time-discretization

scheme of Section 4. We first rewrite [22, Proposition 2.2] in our framework.

Lemma 5.1 (Integration by parts). Let σ ∈ Σ(Ω), uD ∈ H1(Ω;Rd), and (u, eel, π) ∈ A (uD) with A (·)
from (3), with u ∈ L2(Ω;Rd). Assume that [σνΓ] = 0 on ΓN. Then

[dev σ : π](Ω ∪ ΓD) +

ˆ

Ω
σ : (eel − e(uD)) dx = −

ˆ

Ω
div σ · (u− uD) dx.

Note that the above lemma serves as definition of [dev σ : π](Ω ∪ ΓD), which is a priori not defined for

dev σ ∈ L2(Ω;Rd×d
dev ) and π ∈ Mb(Ω ∪ ΓD;R

d×d
dev ).

We are now in a position of providing, in the following lemmas and corollary, further optimality condi-

tions for triples (ukτ , e
k
τ , π

k
τ ) solving (43).

Lemma 5.2 (Discrete Euler-Lagrange equations for the plastic strain). Let (ukτ , e
k
el,τ , π

k
τ ) be the minimizing

triple of (43), and let σkτ be the quantity defined in (42). Then, there holds

R(αk−1
τ , τδπkτ + π)− R(αk−1

τ , τδπkτ )− [dev σkτ : π](Ω ∪ ΓD) ≥ 0 (46)

for every π ∈ Mb(Ω ∪ ΓD;R
d×d
dev ) such that there exist u ∈ BD(Ω;Rd) ∩ L2(Ω;Rd), and e ∈ L2(Ω;Rd×d

sym)
with (u, e, π) ∈ A (0).

Proof. Considering variations of the form (ukτ , e
k
τ , π

k
τ ) + λ(u, e, π) for λ ≥ 0 and (u, e, π) ∈ A (0) in (43),

by the convexity of R in its second variable we obtain

1

λ

(
R(αk−1

τ , τδπkτ + λπ)− R(αk−1
τ , τδπkτ )

)
≤ R(αk−1

τ , τδπkτ + π)− R(αk−1
τ , τδπkτ ),

which yields

ˆ

Ω
σkτ : edx+

ˆ

Ω
ρδ2ukτ · udx+ R(αk−1

τ , τδπkτ + π)− R(αk−1
τ , τδπkτ )−

ˆ

Ω
fkτ · udx ≥ 0, (47)

for every u ∈ BD(Ω;Rd)∩L2(Ω;Rd), e ∈ L2(Ω;Rd×d
sym), and π ∈ Mb(Ω∪ΓD;R

d×d
dev ) such that (u, e, π) ∈

A (0). In view of Lemma 5.1, and by (37a) the previous inequality implies (46).

Corollary 5.3 (Discrete flow-rule). Let (ukτ , e
k
el,τ , π

k
τ ) be the minimizing triple of (43), let αk

τ be the solution

to (37c) provided by Lemma 4.5, and let σkτ be the quantity defined in (42). Then, (ukτ , e
k
el,τ , π

k
τ , α

k
τ ) solve

the discrete flow-rule (42).

Proof. The assert follows by choosing π = τδπkτ , and π = −τδπkτ in (46).
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Lemma 5.4. For k ∈ {1, . . . T/τ}, let (ukτ , e
k
el,τ , π

k
τ ) be the minimizing triple of (43), and let σkτ be the

quantity defined in (42). Then, there holds

R(αk−1
τ , τδπkτ + π) + R(αk−2

τ , τδπk−1
τ − π)− R(αk−1

τ , τδπkτ )

− R(αk−2
τ , τδπk−1

τ )− τ [dev δσkτ : π](Ω ∪ ΓD) ≥ 0

for every π ∈ Mb(Ω ∪ ΓD;R
d×d
dev ) such that there exist u ∈ BD(Ω;Rd) ∩ L2(Ω;Rd), and e ∈ L2(Ω;Rd×d

sym)
with (u, e, π) ∈ A (0).

Proof. Considering variations of the form (uk−1
τ , ek−1

τ , πk−1
τ )− λ(u, e, π) for λ ≥ 0 and (u, e, π) ∈ A (0)

in (43) at level i− 1, the convexity of R in its second variable yields

R(αk−2
τ , τδπk−1

τ − π)− R(αk−1
τ , τδπk−1

τ )−
ˆ

Ω

(
σk−1
τ : e+ ρδ2uk−1

τ · u− fk−1
τ · u

)
dx ≥ 0, (48)

for every u ∈ BD(Ω;Rd)∩L2(Ω;Rd), e ∈ L2(Ω;Rd×d
sym), and π ∈ Mb(Ω∪ΓD;R

d×d
dev ) such that (u, e, π) ∈

A (0). The assert follows by summing (47) and (48), and by applying Lemma 5.1, and (37a).

Let now uτ , and ūτ be the backward- and forward- piecewise constant in-time interpolants associated to

the maps ukτ , namely

uτ (0) := u0, uτ (t) := uk−1
τ for every t ∈ [(k − 1)τ, kτ), k ∈ {1, . . . , T/τ}, (49)

and

ūτ (0) := u0, ūτ (t) := ukτ for every t ∈ ((k − 1)τ, kτ ], k ∈ {1, . . . , T/τ}. (50)

Denote by uτ the associated piecewise affine in-time interpolant, that is

uτ (0) := u0, uτ (t) :=
(t− (k−1)τ)

τ
ukτ +

(
1− (t− (k−1)τ)

τ

)
uk−1
τ , (51)

for every t ∈ ((k − 1)τ, kτ ], k ∈ {1, . . . , T/τ}, and let finally ũτ be the piecewise quadratic interpolant

satisfying ũ(kτ) = ukτ , and

..
ũτ (t) = δ2ukτ for every t ∈ ((k − 1)τ, kτ ], k ∈ {1, . . . , T/τ}.

Let ατ , π̄τ , ēel,τ , ᾱτ , πτ , eτ , and ατ be defined analogously. The following proposition provides a first

uniform estimate for the above quantities.

Proposition 5.5 (Discrete energy inequality). Under assumptions (20), the following energy inequality holds

true
ˆ

Ω

ρ

2
| .uτ (T )|2 dx+

τ

2

ˆ T

0

ˆ

Ω
ρ|

..
ũτ |2 dxds+

ˆ T

τ

ˆ

Ω
ρ
.
uτ (· − τ) ·

..
ũD,τ dxds

+DR(ατ ;πτ ; 0, T ) +

ˆ

Ω

(1
2
C(ατ (T ))ēel,τ (T ) : ēel,τ (T )− φ(ατ (T )) dx+

κ

p
|∇ατ (T )|p

)
dx

+

ˆ T

0

ˆ

Ω
D(ατ )

.
eel,τ :

.
eel,τ dxds+

ˆ

Ω
η
.
ατ (T )

2 dx

≤
ˆ

Ω

(ρ
2
v20 + ρ

.
uτ (T ) ·

.
uD,τ (t) + ρv0 · δu1D,τ

)
dx

+

ˆ

Ω

1

2
C(α0)(e(u0)− π0) : (e(u0)− π0)− φ(α0) dx+

κ

p
|∇α0|p dx

+

ˆ T

0

ˆ

Ω

(
C(ατ )ēel,τ : e(

.
uD,τ ) + D(ατ )

.
eel,τ : e(

.
uD,τ ) + f̄τ · (

.
uτ −

.
uD,τ )

)
dxds. (52)
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Proof. Fix k ∈ {1, . . . , T/τ}. Testing (37c) against δαk
τ , we deduce the equality

ˆ

Ω
η|δαk

τ |2 dx+

ˆ

Ω

1

2
C
◦(αk

τ , α
k−1
τ )δαk

τ e
k
el,τ : ekel,τ dx

+

ˆ

Ω

(
− φ◦(αk

τ , α
k−1
τ )δαk

τ + |∇αk
τ |p−2∇αk

τ · ∇(δαk
τ )
)
dx = 0. (53)

Taking δukτ − δukD,τ as test function in (37a), we have

ˆ

Ω
ρδ2ukτ · (δukτ − δukD,τ ) dx−

ˆ

Ω
div σkτ · (δukτ − δukD,τ ) dx =

ˆ

Ω
fkτ · (δukτ − δukD,τ ) dx,

which by Lemma 5.1, and by the fact that [σkτ νΓ] = 0 on ΓN (see Proposition 4.4), yields

ˆ

Ω
ρδ2ukτ · (δukτ − δukD,τ ) dx+ [dev σkτ : δπkτ ](Ω ∪ ΓD) +

ˆ

Ω
σkτ : (δekel,τ − e(δukD,τ )) dx

=

ˆ

Ω
fkτ · (δukτ − δukD,τ ) dx.

In view of Corollary 5.3, we obtain

ˆ

Ω
ρδ2ukτ · (δukτ − δukD,τ ) dx+ R(αk−1

τ , δπkτ ) +

ˆ

Ω
σkτ : (δekel,τ − e(δukD,τ )) dx

=

ˆ

Ω
fkτ · (δukτ − δukD,τ ) dx. (54)

For n ∈ {1, . . . , T/τ}, a discrete integration by parts in time yields

τ

n∑

k=1

ρδ2ukτ · δukτ =

n∑

k=1

ρ
(
(δukτ )

2 − δukτ · δuk−1
τ

)
=

1

2
ρ(δunτ )

2 − 1

2
ρv20 +

τ2

2

n∑

k=1

ρ(δ2ukτ )
2 (55)

a.e. on Ω. Analogously, we deduce that

−τ
n∑

k=1

ρδ2ukτ · δukD,τ = τ

n∑

k=1

ρδuk−1
τ · δ2ukD,τ − ρδunτ · δunD,τ − ρv0 · δu0D,τ (56)

a.e. on Ω. Additionally, by the monotonicity of C in the Löwner ordering, and (22b), we have

τ

n∑

k=1

ˆ

Ω
σkτ : δekel,τ dx = τ

n∑

k=1

ˆ

Ω
C(αk−1

τ )ekel,τ : δekel,τ dx+ τ

n∑

k=1

ˆ

Ω
D(αk−1

τ )δekel,τ : δekel,τ dx

≥
ˆ

Ω

1

2
C(αn

τ )e
n
el,τ : enel,τ dx−

ˆ

Ω

1

2
C(α0)(e(u0)− π0) : (e(u0)− π0) dx

− τ
n∑

k=1

ˆ

Ω

1

2
δ[C(αk

τ )]e
k
el,τ : ekel,τ dx+ τ

n∑

k=1

ˆ

Ω
D(αk

τ )δe
k
el,τ : δekel,τ dx, (57)

and
τ

2

n∑

k=1

ˆ

Ω

(
C
◦(αk

τ , α
k−1
τ )δαk

τ − δ[C(αk
τ )]

)
︸ ︷︷ ︸

=0

ekel,τ : ekel,τ dx = 0. (58)
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Thus, multiplying (53) and (54) by τ , and summing for k = 1, . . . , T/τ , in view of (55), (56), (57), and

(58) we deduce

ˆ

Ω

ρ

2
| .uτ (T )|2 dx+

τ

2

ˆ T

0

ˆ

Ω
ρ|

..
ũτ |2 dxdt+

ˆ T

τ

ˆ

Ω
ρ
.
uτ (· − τ) ·

..
ũD,τ dxdt

+ τ

T/τ∑

k=1

R(αk−1
τ , δπkτ ) +

1

2

ˆ

Ω
C(ατ (T ))ēel,τ (T ) : ēel,τ (T ) dx

+

ˆ T

0

ˆ

Ω
D(ατ )

.
eel,τ :

.
eel,τ dxdt+

ˆ

Ω

(
η
.
ατ (T )

2 − φ(ατ (T )) +
κ

p
|∇ατ (T )|p

)
dx

≤
ˆ

Ω

(ρ
2
v20 + ρ

.
uτ (T ) ·

.
uD,τ (T ) + ρv0 · δu0D,τ

)
dx

+

ˆ

Ω

(1
2
C(α0)(e(u0)− π0) : (e(u0)− π0)− φ(α0) +

κ

p
|∇α0|p

)
dx

+

ˆ T

0

ˆ

Ω
C(ατ )ēel,τ : e(

.
uD,τ ) dxds

+

ˆ T

0

ˆ

Ω
D(ατ )

.
eel,τ : e(

.
uD,τ ) + f̄τ · (

.
uτ −

.
uD,τ ) dxds. (59)

Additionally, recalling definition (6), and observing that πτ jumps exactly only in the points τk, k ∈
{1, . . . , T/τ}, by the monotonicity of the maps ατ (see Subsection 2.4), we have

DR(ατ ;πτ ; 0, T ) = τ

T/τ∑

k=1

R(αk−1
τ , δπkτ ). (60)

This concludes the proof of the energy inequality (52) and of the proposition.

Owing to the previous discrete energy inequality, we are now in a position to deduce some first a-priori

estimates for the piecewise affine interpolants.

Proposition 5.6 (A-priori estimates). Under assumptions (20), for τ small enough there exists a constant

C , dependent only on the initial conditions, on f , and on uD, such that

‖ατ‖H1(0,T ;L2(Ω)) + ‖ατ‖L∞(0,T ;W 1,p(Ω)) + ‖eel,τ‖H1(0,T ;L2(Ω;Rd×d
sym ))

+ ‖uτ‖W 1,∞(0,T ;L2(Ω;Rd)) + ‖uτ‖BV (0,T ;BD(Ω;Rd)) + ‖πτ‖BV (0,T ;Mb(Ω∪ΓD ;R
d×d
dev

))

+ ‖ατ‖L∞((0,T )×Ω) + ‖ᾱτ‖L∞((0,T )×Ω) + ‖ēel,τ‖L∞(0,T ;L2(Ω;Rd×d
sym )) ≤ C. (61)

Proof. The assert follows by Proposition 5.5, by the regularity of the applied force f and of the boundary

datum uD, and by applying Hölder’s and discrete Gronwall’s inequalities, for τ small enough.

We proceed by performing at the discrete level the higher-order test with the strategy formally sketched

in Subsection 3.2.

Proposition 5.7 (Second a-priori estimates). Under assumptions (20), for τ small enough there exists a

constant C , dependent only on the initial conditions, on f , and on uD, such that

‖ũτ‖H2(0,T ;L2(Ω;Rd)) + ‖uτ‖W 1,∞(0,T ;BD(Ω;Rd))

+ ‖πτ‖W 1,∞(0,T ;Mb(Ω∪ΓD ;R
d×d
dev

))
+ ‖eel,τ‖W 1,∞(0,T ;L2(Ω;Rd×d

sym ))
≤ C.
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Proof. Fix k ∈ {1, . . . , T/τ}, and consider the map wk
τ := ukτ + χδukτ , where χ > 0 is the constant

introduced in Subsection 2.3. Since δ2ukτ = (δwk
τ − δukτ )/χ, equation (37a) rewrites as

ρ
(δwk

τ

χ

)
− div σkτ = fkτ + ρ

(δukτ
χ

)
. (62)

Now, testing (62) against δwk
τ − (δukD,τ + χδ2ukD,τ ), by Lemma 5.1 we deduce the estimate

1

χ

ˆ

Ω
ρ|δwτ

k |2 dx+ [dev σkτ : (δπkτ + χδ2πkτ )](Ω ∪ ΓD)

+

ˆ

Ω
σkτ : (δekel,τ + χδ2ekel,τ − e(δukD,τ )− χe(δ2ukD,τ )) dx

=

ˆ

Ω
fkτ · (δwk

τ − δukD,τ − χδ2ukD,τ ) dx+
1

χ

ˆ

Ω
ρδukτ · (δwk

τ − δukD,τ − χδ2ukD,τ ) dx

+
1

χ

ˆ

Ω
ρδwk

τ · (δukD,τ + χδ2ukD,τ ) dx. (63)

In view of Lemma 5.1 we have

[dev σkτ : (δπkτ + χδ2πkτ )](Ω ∪ ΓD) = [dev σkτ : δπkτ ](Ω ∪ ΓD) + χ[dev σkτ : δ2πkτ ](Ω ∪ ΓD).

Now, Corollary 5.3 yields

[dev σkτ : δπkτ ](Ω ∪ ΓD) = R(αk−1
τ , δπkτ ), (64)

whereas Lemma 5.4 entails

χ[dev σkτ : δ2πkτ )](Ω ∪ ΓD) = χδ{[dev σkτ : δπkτ ](Ω ∪ ΓD)} − χ[dev δσkτ : δπk−1
τ ](Ω ∪ ΓD)

≥ χδ{[dev σkτ : δπkτ ](Ω ∪ ΓD)}+ R(αk−1
τ , δπkτ ) + R(αk−2

τ , δπk−1
τ )− R(αk−1

τ , δπkτ + δπk−1
τ )

≥ χδ{[dev σkτ : δπkτ ](Ω ∪ ΓD)}+ R(αk−1
τ , δπkτ ) + R(αk−1

τ , δπk−1
τ )− R(αk−1

τ , δπkτ + δπk−1
τ )

≥ χδ{[dev σkτ : δπkτ ](Ω ∪ ΓD)}, (65)

where the second-to-last step follows by the fact that σ
YLD

is nondecreasing (see Subsection 2.4), and the

last step is a consequence of the triangle inequality. By combining (63), (64), and (65), we obtain

1

χ

ˆ

Ω
ρ|δwk

τ |2 dx+ χδ{[dev σkτ : δπkτ ](Ω ∪ ΓD)}+ R(αk−1
τ , δπkτ )

+

ˆ

Ω
σkτ : (δekel,τ + χδ2ekel,τ − e(δukD,τ )− χe(δ2ukD,τ )) dx

≤
ˆ

Ω
fkτ · (δwk

τ − δukD,τ − χδ2ukD,τ ) dx+
1

χ

ˆ

Ω
ρδukτ · (δwk

τ − δukD,τ − χδ2ukD,τ ) dx

+
1

χ

ˆ

Ω
ρδwk

τ · (δukD,τ + χδ2ukD,τ ) dx. (66)

Multiplying (66) by τ , summing for k = 1, . . . , n, with n ∈ {1, . . . , T/τ}, and using again (64) with k = n,

we infer that

τ

χ

n∑

k=1

ˆ

Ω
ρ|δwk

τ |2 dx+ χR(αn−1
τ , δπnτ )− χR(α−1

τ , δπ0τ )

+ τ

n∑

k=1

R(αk−1
τ , δπkτ ) + τ

n∑

k=1

ˆ

Ω
σkτ : (δekel,τ + χδ2ekel,τ ) dx
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≤ τ
n∑

k=1

ˆ

Ω
fkτ · (δwk

τ − δukD,τ − χδ2ukD,τ ) dx+
τ

χ

n∑

k=1

ˆ

Ω
ρδukτ · (δwk

τ − δukD,τ − χδ2ukD,τ ) dx

+
τ

χ

n∑

k=1

ˆ

Ω
ρδwk

τ · (δukD,τ + χδ2ukD,τ ) dx+ τ
n∑

k=1

ˆ

Ω
σkτ : (e(δukD,τ ) + χe(δ2ukD,τ )) dx. (67)

By (22b),

τ

n∑

k=1

ˆ

Ω
σkτ : (δekel,τ + χδ2ekel,τ ) dx = τ

n∑

k=1

ˆ

Ω
C(αk−1

τ )(ekel,τ + χδekel,τ ) : (δe
k
el,τ + χδ2ekel,τ ) dx

+ τ

n∑

k=1

ˆ

Ω
D0δe

k
el,τ : (δekel,τ + χδ2ekel,τ ) dx.

Thus, arguing as in (57), we have

τ

n∑

k=1

ˆ

Ω
σkτ : (δekel,τ + χδ2ekel,τ ) dx ≥

ˆ

Ω

1

2
C(αn

τ )(e
n
el,τ + χδenel,τ ) : (e

n
el,τ + χδenel,τ ) dx

−
ˆ

Ω

1

2
C(α0)(e(u0)− π0 + χ(e(v0)−

.
π0)) : (e(u0)− π0 + χ(e(v0)−

.
π0) dx

+

ˆ

Ω

(
τ

n∑

k=1

D0δe
k
el,τ : δekel,τ +

χ

2
D0δe

n
el,τ : δenel,τ dx− χ

2
D0e(v0) : e(v0)

)
dx. (68)

Eventually, by (67) and (68), and by recalling (60), for every t = kτ,

1

χ

ˆ t

0

ˆ

Ω
ρ| .wτ |2 dxds+ χR(ᾱτ (t),

.
πτ (t)) +DR(ατ ;πτ ; 0, t) +

χ

2

ˆ

Ω
D0

.
eel,τ (t) :

.
eel,τ (t) dx

+

ˆ

Ω
C(α(t))(ēel,τ (t) + χ

.
eel,τ (t)) : (ēel,τ (t) + χ

.
eel,τ (t)) dx+

ˆ t

0

ˆ

Ω
D0

.
eel,τ :

.
eel,τ dxds

≤
ˆ

Ω

(1
2
C(α0)(e(u0)−π0+χe(v0)−χ

.
π0):(e(u0)−π0+χe(v0)−χ

.
π0) +

χ

2
D0e(v0):e(v0)

)
dx

+

ˆ t

0

ˆ

Ω
f̄τ · (

.
wτ −

.
uD,τ − χ

..
ũD,τ ) dxds+

1

χ

ˆ t

0

ˆ

Ω

.
uτ · (

.
wτ −

.
uD,τ − χ

..
ũD,τ ) dxds

+
1

χ

ˆ t

0

ˆ

Ω

.
wτ · (

.
uD,τ + χ

..
ũD,τ ) dxds+ χR(α0,

.
π0)

+

ˆ t

0

ˆ

Ω

(
C(ατ )ēel,τ + D(ατ )

.
eel,τ

)
: (e(

.
uD,τ ) + χe(

..
ũD,τ ))) dxds.

The assert follows by Hölder’s inequality, Proposition 5.6, and the assumptions on σ
YLD

(see Subsection

2.4).

6 Convergence and proof of Theorem 2.2

Proposition 6.1 (Compactness). Under the assumptions of Theorem 2.2, there exist α, eel, π, and u such

that (u(t), eel(t), π(t)) ∈ A (uD(t)) for every t ∈ [0, T ] (see (3)), the initial conditions (16) are satisfied,

and up to the extraction of a (non-relabeled) subsequence, there holds

ατ → α weakly* in H1(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p(Ω)), (69a)
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eel,τ → eel weakly* in W 1,∞(0, T ;L2(Ω;Rd×d
sym)), (69b)

πτ → π weakly* in W 1,∞(0, T ;Mb(Ω ∪ ΓD;R
d×d
dev )), (69c)

uτ → u weakly* in W 1,∞(0, T ;BD(Ω;Rd)) ∩H1(0, T ;L2(Ω;Rd)), (69d)

ατ → α and ᾱτ → α weakly* in L∞((0, T ) ×Ω), (69e)

ēel,τ → eel weakly* in L∞(0, T ;L2(Ω;Rd×d
sym)), (69f)

ũτ → u weakly in H2(0, T ;L2(Ω;Rd)). (69g)

Proof. Properties (69a)–(69d) are a consequence of Propositions 5.6 and 5.7. The admissibility condition

(C1) (see Definition 2.1) follows by the same argument as in [22, Lemma 2.1]. Additionally, by Proposition

5.6 there holds

uτ → u weakly* in W 1,∞(0, T ;L2(Ω;Rd)), (70)

and there exist α̌, α̂ ∈ L∞((0, T ) × Ω), and ê ∈ L∞(0, T ;L2(Ω;Rd×d
sym)) such that

ᾱτ → α̌ and ατ → α̂ weakly* in L∞((0, T )× Ω)

and

ēel,τ → ê weakly* in L∞(0, T ;L2(Ω;Rd×d
sym)).

Additionally by Proposition 5.7 there exists a map û ∈ H2(0, T ;L2(Ω;Rd)) such that, up to the extraction

of a (non-relabeled) subsequence,

ũτ → û weakly in H2(0, T ;L2(Ω;Rd)). (71)

By the compact embeddings ofW 1,∞(0, T ;L2(Ω;Rd)) andH2(0, T ;L2(Ω;Rd)) intoCw(0, T ;L
2(Ω;Rd)),

we deduce

uτ (t) → u(t) weakly in L2(Ω;Rd), (72)

and

ũτ (t) → û(t) weakly in L2(Ω;Rd), (73)

for every t ∈ [0, T ]. To complete the proof of (69) , it remains to show that α̌ = α̂ = α, ê = eel, and û = u.

We proceed by showing this last equality; the proof of the other two identities is analogous. Fix k ∈
{1, . . . , T/τ}, and t ∈ ((k−1)τ, kτ ]. Then, using the fact that

.
ũτ (t) =

(t− (k−1)τ)

τ
δukτ +

(
1− (t− (k−1)τ)

τ

)
δuk−1

τ

for every t ∈ ((k−1)τ, kτ ], we have

ˆ T

0
‖
.
ũτ (t)−

.
uτ (t)‖2L2(Ω;Rd)dt =

N∑

k=1

ˆ kτ

(k−1)τ
‖
.
ũτ (t)−

.
uτ (t)‖2L2(Ω;Rd)dt

= τ2
N∑

k=1

ˆ kτ

(k−1)τ
(1− ατ (t))

2 dt

∥∥∥∥
.
uτ −

.
uτ (· − τ)

τ

∥∥∥∥
2

=
τ2

3

N∑

k=1

τ‖δ2uk‖2L2(Ω;Rd) ≤ Cτ2, (74)

where the last inequality follows by Proposition 5.7. The assert follows then by combining (72), (73), and

(74).
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Proposition 6.2 (Strong convergence of the elastic strains). Let eel be the map identified in Proposition 6.1.

Under the assumptions of Theorem 2.2, there holds

eel,τ → eel strongly in H1(0, T ;L2(Ω;Rd×d
sym)), (75)

and

ēel,τ (t) → eel(t) strongly in L2(Ω;Rd×d
sym)) for a.e. t ∈ [0, T ]. (76)

Proof. For k ∈ {1, . . . , T/τ}, denote by δeel(kτ) the quantity

δeel(kτ) :=
eel(kτ) − eel((k−1)τ)

τ
,

and by ēτel, e
τ
el the forward-piecewise constant and the affine interpolants between the values {e(kτ)}k=1,...,T/τ

(see (49) and (51)). Let δu(kτ), δπ(kτ), ūτ , uτ , π̄τ , and πτ be defined analogously. Note that here we can-

not directly use the values at time t, for this would prevent relation (81) to hold. Here, the pointwise value

of π is simply that of its right-continuous representative.

Fix k ∈ {1, . . . , T/τ}. We proceed by testing the time-discrete equilibrium equation (37a) by δukτ −
δu(kτ). On the one hand, by Lemma 5.1, we have

ˆ

Ω
ρδ2ukτ · (δukτ − δu(kτ)) dx + [dev σkτ : (δπkτ − δπ(kτ))](Ω ∪ ΓD)

+

ˆ

Ω
σkτ : (δekel,τ − δeel(kτ)) dx−

ˆ

Ω
fkτ · (δukτ − δu(kτ)) dx = 0. (77)

On the other hand, Lemma 5.2 yields

[dev σkτ : (δπkτ − δπ(kτ))](Ω ∪ ΓD) ≥ R(αk−1
τ , δπkτ )− R(αk−1

τ , δπ(kτ)). (78)

By combining (77) and (78), we obtain

ˆ

Ω
σkτ : (δekel,τ − δe(kτ)) dx ≤ R(αk−1

τ , δπ(kτ)) − R(αk−1
τ , δπkτ ) +

ˆ

Ω
(fkτ − ρδ2ukτ ) · (δukτ − δu(kτ)) dx.

(79)

In view of the definition of σk there holds

ˆ

Ω
σkτ : (δekel,τ − δeel(kτ)) dx =

ˆ

Ω
C(αk−1

τ )(ekel,τ − eel(kτ)) : (δe
k
el,τ − δeel(kτ)) dx

+

ˆ

Ω
D(αk−1

τ )(δekel,τ− δeel(kτ)):(δe
k
el,τ−δeel(kτ)) +D(αk−1

τ )δeel(kτ):(δe
k
el,τ−δeel(kτ)) dx

+

ˆ

Ω
C(α(kτ))eel(kτ) : (δe

k
el,τ − δeel(kτ)) dx

−
ˆ

Ω
(C(α(kτ)) −C(αk−1

τ ))eel(kτ) : (δe
k
el,τ − δeel(kτ)) dx. (80)

Let now n ∈ {1, . . . , T/τ}. By the monotonicity of C in the Löwner order, arguing as in the proof of (57),

we deduce

τ

n∑

k=1

ˆ

Ω
C(αk−1

τ )(ekel,τ − eel(kτ)) : (δe
k
el,τ − δeel(kτ)) dx

≥
ˆ

Ω

1

2
C(αn

τ )(e
n
el,τ − eel(nτ)) : (e

n
el,τ − δeel(nτ)) dx. (81)
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Multiplying (79) by τ , and summing for k = 1, . . . , T/τ , in view of (80) and (81), we obtain the estimate

ˆ

Ω

1

2
C(ατ (T ))(ēel,τ (T )− ēτel(T )) : (ēel,τ (T )− ēτel(T )) dx

+

ˆ T

0

ˆ

Ω
D(ατ )(

.
eel,τ −

.
eτel) : (

.
eel,τ −

.
eτel) dxds

≤ τ

T/τ∑

k=1

R(αk−1
τ , δπ(kτ)) −DR(ατ ;πτ ; 0, T ) +

ˆ T

0

ˆ

Ω
(f̄τ−

..
ũτ ) · (

.
uτ −

.
u
τ
) dxds

−
ˆ T

0

ˆ

Ω
D(ατ )

.
eτel : (

.
eel,τ −

.
eτel) dxds−

ˆ T

0

ˆ

Ω
C(ατ )ēτel : (

.
eel,τ −

.
eτel) dxds

+

ˆ T

0

ˆ

Ω

(
C(ατ )− C(ατ )

)
ēτel : (

.
eel,τ −

.
eτel)

)
dxds.

By Proposition 6.1 we infer that

lim sup
τ→0

ˆ T

0

ˆ

Ω
D(ατ )(

.
eel,τ −

.
eel) : (

.
eel,τ −

.
eel) dxds

+ lim sup
τ→0

{
ˆ T

0
R(ατ ,

.
πτ ) ds−DR(ατ ;πτ ; 0, T ) +

ˆ T

0

ˆ

Ω
(f̄τ−

..
ũτ ) · (

.
uτ −

.
u
τ
) dxds

−
ˆ T

0

ˆ

Ω
D(ατ )

.
eτel : (

.
eel,τ −

.
eτel) dxds−

ˆ T

0

ˆ

Ω
C(ατ )ēτel : (

.
eel,τ −

.
eτel) dxds

+

ˆ T

0

ˆ

Ω

(
C(ᾱτ )− C(ατ )

)
ēτel : (

.
eel,τ −

.
eτel)

)
dxds

}
.

Since u ∈ H2(0, T ;L2(Ω;Rd)) and eel ∈W 1,∞(0, T ;L2(Ω;Rd×d
sym)), it follows that

uτ → u strongly in L2((0, T ) × Ω;Rd), (82)

and

ēτel → ēel strongly in L2((0, T ) × Ω;Rd×d
sym). (83)

Additionally, by the definition of the affine interpolants,

.
eτel →

.
eel strongly in L2((0, T ) × Ω;Rd×d

sym), (84)
.
πτ → .

π strongly in L1(0, T ;Mb(Ω ∪ ΓD;R
d×d
dev )). (85)

By (69a) and by the Aubin-Lions Lemma, up to the extraction of a (non-relabeled) subsequence,

ατ → α strongly in C([0, T ]× Ω̄). (86)

Since α ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p(Ω)),

ᾱτ , ατ → α strongly in L2((0, T ) × Ω). (87)

Thus, by the Dominated Convergence Theorem, we deduce that

C(ᾱτ )ēτel → C(α)eel strongly in L2((0, T ) × Ω;Rd×d
sym), (88)

(
C(ᾱτ )− C(ατ )

)
ēτel → 0 strongly in L2((0, T ) × Ω;Rd×d

sym), (89)
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D(ατ )
.
eτel → D(α)

.
eel strongly in L2((0, T ) × Ω;Rd×d

sym). (90)

Finally, by the assumptions on f , we have

f̄τ → f strongly in L2((0, T ) × Ω;Rd). (91)

By combining (82)–(91) we conclude that

lim sup
τ→0

ˆ T

0

ˆ

Ω
D(ατ )(

.
eel,τ −

.
eel) : (

.
eel,τ −

.
eel) dxds

≤ lim sup
τ→0

ˆ T

0
R(ᾱτ ,

.
πτ ) ds− lim inf

τ→0
DR(ατ ;πτ ; 0, T ). (92)

Arguing as in [22, Theorem 7.1], since π ∈W 1,∞(0, T ;Mb(Ω ∪ ΓD;R
d×d
dev )) we deduce the uniform bound

ˆ T

0
‖ .
πτ‖

Mb(Ω∪ΓD ;R
d×d
dev

) = τ

T/τ∑

k=1

‖δπ(kτ)‖
Mb(Ω∪ΓD ;R

d×d
dev

) ≤
ˆ T

0
‖ .
π‖

Mb(Ω∪ΓD ;R
d×d
dev

) ds ≤ C. (93)

Hence, by (93) and by the continuity and monotonicity of σ
YLD

(·) (see Subsection 2.4), there holds

lim sup
τ→0

ˆ T

0
R(ᾱτ ,

.
πτ ) ds ≤ lim sup

τ→0

ˆ T

0
R(ατ ,

.
πτ ) ds

≤ lim sup
τ→0

{ ˆ T

0
R(α,

.
πτ ) ds+

∣∣∣
ˆ T

0
(R(ατ ,

.
πτ )− R(α,

.
πτ )) ds

∣∣∣
}

≤ lim sup
τ→0

ˆ T

0
R(α,

.
πτ ) ds+ C lim sup

τ→0
‖σ

YLD
(ατ )−σYLD

(α)‖L∞((0,T )×Ω) =

ˆ T

0
R(α,

.
π) ds, (94)

where the last step follows by (85).

To complete the proof of (75), it remains to show that

DR(α;π; 0, T ) ≤ lim inf
τ→0

DR(ατ ;πτ ; 0, T ). (95)

Let 0 < t0 < t1 < · · · < tn ≤ T . By the definition of DR, we have

DR(ατ ;πτ ; 0, T ) ≥
T/τ∑

j=1

R(ατ (tj), πτ (tj)− πτ (tj−1)) ≥
T/τ∑

j=1

R(α(tj), πτ (tj)− πτ (tj−1))

− τ

T/τ∑

j=1

‖σ
YLD

(ατ (tj))− σ
YLD

(α(tj))‖L∞(Ω)‖
.
πτ‖L∞(0,T ;Mb(Ω∪ΓD ;R

d×d
dev

)).

Now, by (69c) and (86),

lim
τ→0

τ

T/τ∑

j=1

‖σ
YLD

(ατ (tj))− σ
YLD

(α(tj))‖L∞(Ω)‖
.
πτ‖L∞(0,T ;Mb(Ω∪ΓD ;R

d×d
dev

)) = 0.

Thus, by (69c),

lim inf
τ→0

DR(ατ ;πτ ; 0, T ) ≥ lim inf
τ→0

T/τ∑

j=1

R(α(tj), πτ (tj)−πτ (tj−1)) ≥
T/τ∑

j=1

R(α(tj), π(tj)−π(tj−1)).

By the arbitrariness of the partition, we deduce (95), which in turn yields (75).

Property (76) follows arguing exactly as in the proof of (74).
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Let us now conclude the proof of Theorem 2.2.

Proof of Theorem 2.2. Let (u, eel, π, α) be the limit quadruple identified in Proposition 6.1. By Proposi-

tion 6.1 we already know that condition (C1) in Definition 2.1 is fulfilled. For convenience of the reader we

subdivide the proof of the remaining conditions into three steps.

Step 1: We first show that the limit quadruple satisfies the equilibrium equation (14a). In view of (37a) we

have

ρ
..
ũτ − div (C(ατ )ēel,τ + D(ατ )

.
eel,τ ) = f̄τ

for a.e. x ∈ Ω and t ∈ [0, T ], and for all τ > 0. In particular, for all ϕ ∈ C∞
c (0, T ;C∞

c (Ω)) there holds

ˆ T

0

ˆ

Ω
ρ
..
ũτ · ϕ + (C(ατ )ēel,τ + D(ατ )

.
eel,τ ) : e(ϕ) dxdt =

ˆ T

0

ˆ

Ω
f̄τ · ϕdxdt.

By (69e-g) and (91), we infer that

ˆ T

0

ˆ

Ω
ρ
..
u · ϕ+ (C(α)eel + D(α)

.
eel) : e(ϕ) dxdt =

ˆ T

0

ˆ

Ω
f · ϕdxdt,

which in turn yields (14a) for a.e. x ∈ Ω, and t ∈ [0, T ]. In particular, (69g) guarantees that u(0) = u0, and
.
u(0) = v0.

Step 2: The limit energy inequality is a direct consequence of (52), Propositions 6.1 and 6.2, and (95).

Step 3: We now pass to the limit in the discrete damage law. In view of (37c), for every k ∈ {1, . . . , T/τ}
we deduce the inequality

ˆ

Ω

(
φ◦(αk

τ , α
k−1
τ ) + div (|∇αk

τ |p−2∇αk
τ )−

1

2
C
◦(αk

τ , α
k−1
τ )ekel,τ : ekel,τ − ηδαk

τ

)
(ϕ− δαk

τ ) dx = 0

for all ϕ ∈W 1,p(Ω) such that ϕ(x) ≤ 0 for a.e. x ∈ Ω. Thus, summing in k, we conclude that

ˆ T

0

ˆ

Ω

(
φ◦(ᾱτ , ατ )ϕ− |∇ᾱτ |p−2∇ᾱτ · ∇ϕ− 1

2
C
◦(ᾱτ , ατ )ēel,τ : ēel,τϕ− η

.
ατϕ

)
dxdt

≤
ˆ

Ω

(
φ(ατ (T ))− φ(α0)−

κ

p
|∇ᾱτ (T )|p +

κ

p
|∇α0|p

)
dx

−
ˆ T

0

ˆ

Ω

1

2

(
C
◦(ᾱτ , ατ )ēel,τ : ēel,τ

) .
ατ dxdt−

ˆ T

0

ˆ

Ω
η
.
α2
τ dxdt .

Condition (C4) in Definition 2.1 follows then in view of Propositions 6.1 and 6.2.
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