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Abstract
Conformal predictions make it possible to define reliable and robust learning algorithms. 
But they are essentially a method for evaluating whether an algorithm is good enough to 
be used in practice. To define a reliable learning framework for classification from the very 
beginning of its design, the concept of scalable classifier was introduced to generalize the 
concept of classical classifier by linking it to statistical order theory and probabilistic learn-
ing theory. In this paper, we analyze the similarities between scalable classifiers and con-
formal predictions by introducing a new definition of a score function and defining a spe-
cial set of input variables, the conformal safety set, which can identify patterns in the input 
space that satisfy the error coverage guarantee, i.e., that the probability of observing the 
wrong (possibly unsafe) label for points belonging to this set is bounded by a predefined � 
error level. We demonstrate the practical implications of this framework through an appli-
cation in cybersecurity for identifying DNS tunneling attacks. Our work contributes to the 
development of probabilistically robust and reliable machine learning models.
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1  Introduction

1.1 � Context

Conformal predictions (CPs) (Shafer and Vovk 2008) are gaining increasing importance in 
machine learning (ML) since they validate algorithms in terms of confidence of the predic-
tion. Although it is a fairly recent field of study, there has been an astonishing production 
of scholarly papers, from the definition of new score functions to different methodologies 
for constructing conformal sets and, of course, a wide variety of applications. In fact, the 
ferment of scientific research in this field is so active that even the father of this theory, 
V. Vovk,1, continues to actively contribute to the improvement of its knowledge, as in the 
case of Vovk et al. (2017) where he and his colleagues investigate the concept of validity 
under nonparametric hypotheses or the innovative introduction of Venn predictors as in 
Vovk et al. (2022). We refer the reader to the surveys (Angelopoulos and Bates 2023; Fon-
tana et al. 2023; Toccaceli 2022) that largely cover all recent publications and discussions 
on uncertainty quantification (UQ) through CP for machine learning models.

Under canonical CP theory, the definition of a score function is very peculiar to either 
the classifier or the application at hand. For example, Forreryd et al. (2018) defines a spe-
cial conformity measure (corresponding to a score function), based on the residual between 
the calibration points and the classification hyperplane of a SVM model. Other example, 
always SVM-based, can be found in Forreryd et al. (2018), Shafer and Vovk (2008) and 
Balasubramanian et al. (2009), where different definitions of score function (or conformity/
non-conformity measure) are given. One of the strengths of our approach, as will become 
clear later, is the unique definition of such a score function, which, given any classifier, 
allows the conformal prediction framework to be applied in the most natural way. The work 
in Narteni et al. (2023) defines a score function for rule-based models. The softmax func-
tion is used as score function in most image classification problems as in Angelopoulos 
et  al. (2020); Park et  al. (2019); Andéol et  al. (2024), and many other examples can be 
provided (see, e.g., the above cited surveys). As a matter of the fact, those definitions come 
after the setting of the classifier and do not outline a common methodology.

1.2 � Contribution

By focusing on binary classification, our goal is to introduce to the CP community a way 
to link ML classifiers with a natural definition of score function that embeds the conformal 
guarantee by construction.

We exploit the concept of scalable classifiers f
�
(x, �) (Sect. 2.1) introduced in Carlevaro 

et  al. (2023) to develop a new class of score functions that rely on the geometry of the 
problem and that are naturally built from the classifier itself, by inheriting its properties 
(Sect. 3.1). This allows CP theory to derive the relationship between the input space and 
the conformity guarantee explicitly. By introducing the new concept of conformal safety 
region, we provide an analytical form of the specific subsets of the input space in which 

1  V. Vovk. is the author of the groundbreaking book Algorithmic Learning in a Random World Vovk et al. 
(2005), which is the foundation of the theory of conformal prediction. His scientific production is still at the 
top of research in the field, and a constantly updated list of papers on CP by Vovk and his colleagues can be 
found here http://​www.​alrw.​net/.

http://www.alrw.net/
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marginal coverage guarantees on prediction (Sect.  3.2) can be ensured. Controlling the 
misclassification rate (either false positives or false negatives) naturally follows from elicit-
ing the following quantities: the confidence level given by the conformal framework, the 
binary output y ∈ {+1,−1} , the confidence error � ∈ (0, 1) , as well as the new notion of 
conformal safety set S

�
 that satisfies

In short, the paper defines a methodology in which the optimal shape of a classifier is 
derived, where the optimality criterion is embedded in the classifier by the conformal guar-
antee. The proposed methodology thus places itself in the recent and as yet unexplored 
field of set-value classification (Chzhen et  al. 2021), a broad theory that studies predic-
tors that have both good prediction properties and specific performance requirements, two 
points that underlie the proposed research.

The remainder of the article is organized by providing a brief recall of the concepts 
of scalable classifiers and conformal prediction and then delving into the details of the 
definition of scalable score function and conformal safety region. The whole procedure is 
then validated on an application use case related to cyber-security for identifying DNS tun-
neling attacks (Sect. 4).

2 � Background: scalable classifiers and conformal prediction

The background of the theory we would like to propose in this research refers to a new 
interpretation of classical classification algorithms, scalable classifiers, and another rather 
new theory on trustworthy AI, called conformal prediction. Both of these techniques 
belong to the field of reliable AI, searching for the definition of models, procedures or 
bounds that can make a learning algorithm probabilistically robust and reliable.

2.1 � Scalable classifiers

Given an input space X ⊆ Rd , d ∈ N+ , and an output space Y = {−1,+1} , scalable clas-
sifiers (SCs) were introduced in Carlevaro et al. (2023) as a family of (binary) classifiers 
parameterized by a scale factor � ∈ R

where the function f
�
∶ X ×R ⟶ R is the so-called classifier predictor and the notation 

with subscript � refers to the fact that the classifier also depends on a set of hyperparam-
eters � = [�1,⋯ ,�n

�
]⊤ to be set in the model (e.g. different choices of kernel, regulariza-

tion parameters, etc.). To give a meaningful interpretation of this classifier, we refer to the 
class +1 as a “safe” situation we want to target and the other class with −1 as an “unsafe” 
situation. Some examples might be differentiating between a patient’s condition in develop-
ing or not developing a certain disease (Lenatti et al. 2022), or understanding what input 
parameters lead an autonomous car to a collision or non-collision (Carlevaro et al. 2022), 
among many other applications.

SCs rely on the main assumption that for every x ∈ X  , f
�
(x, �) is continuous and mono-

tonically increasing in � , and that lim
𝜌→−∞

f
�
(x, 𝜌) < 0 < lim

𝜌→∞
f
�
(x, 𝜌) , [Carlevaro et al. (2023) 

Pr{y = −1 and x ∈ S
�
} ≤ �.

(1)𝜙
�
(x, 𝜌) ≐

{
+1 if f

�
(x, 𝜌) < 0,

−1 otherwise.
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Assumption 1]. These assumptions imply that, there exists a unique solution 𝜌̄(x) to the 
equation

The proof of this claim is available in [Carlevaro et  al. (2023) Property 2]. In words, a 
scalable classifier is a classifier that satisfies some crucial properties: i) given x , there is 
always a value of � , denoted 𝜌̄(x) , that establishes the border between the two classes, ii) 
the increase of � forces the classifier to predict the −1 class and iii) the target +1 class 
of a given feature vector x is maintained for a decrease of � . Moreover, [Carlevaro et al. 
(2023) Property 3] shows how any standard binary classifier can be made scalable by sim-
ply including the scaling parameter � in an additive way with the classifier predictor. That 
is, given the function f̂ ∶ X ⟶ R and its corresponding classifier 𝜙̂(x)then the function 
f
�
(x, 𝜌) = f̂ (x) + 𝜌 provides the scalable classifier �

�
(x, �) Thus, examples of classifi-

ers that can be rendered scalable are support vector machine (SVM), support vector data 
description (SVDD), logistic regression (LR) but also artificial neural networks. More in 
detail, given a learning set

containing observed feature points and corresponding labels, zi =
(
xi, yi

)
 , and assuming 

that � ∶ X ⟶ V represents a feature map (where V is an inner product space) that allows 
to exploit kernels, some examples of scalable classifier predictors are:

•	 SVM: f
�
(x, 𝜌) = w

⊤
𝜑(x) − b + 𝜌,

•	 SVDD: f�(x, �) = ‖�(x) − w‖2 − R2 + �,
•	 LR: f�(x, �) = 1

2
− 1

1 + e(w⊤�(x)−b)+�
,

where the classifier elements w, b and R can be obtained as solution of proper optimization 
problems. The interested reader can refer to [Carlevaro et al. (2023) Section II c] for a more 
in depth discussion.

Different values of the parameter � correspond to different classifiers that can be con-
sidered as the level sets of the classifier predictor with respect to � . In particular, since we 
are interested in predicting the class +1 which, we recall, encodes a safety condition, we 
introduce

that is the set of points x ∈ X  predicted as safe by the classifier with the specific choice of 
� , i.e. the safety region of the classifier f

�
 for given � . It is easy to see that these sets are 

decreasingly nested with respect to � , i.e.

2.2 � Conformal prediction

Conformal Prediction is a relatively recent framework developed in the late nineties by V. 
Vovk. We refer the reader to the surveys (Angelopoulos and Bates 2023; Shafer and Vovk 
2008; Fontana et al. 2023) for a gentle introduction to this methodology. CP is mainly an 

(2)f
�
(x, �) = 0.

Z
�
≐
{(

xi, yi
)}n

i=1
⊆ X × {−1,+1}

(3)S(𝜌) = { x ∈ X ∶ f
�
(x, 𝜌) < 0 },

𝜌1 > 𝜌2 ⟹ S(𝜌1) ⊂ S(𝜌2).
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a-posteriori verification of the designed classifier, and in practice returns a measure of its 
“conformity” to the calibration data. We consider the particular implementation of CP dis-
cussed in Angelopoulos and Bates (2023), relative to the so-called “inductive" CP: in this 
setting, starting from a given predictor and a calibration set, CP allows to construct a new 
predictor with given probabilistic guarantees.

To this end, the first key step is the definition of a score function s ∶ X × Y ⟶ R . 
Given a point x ∈ X  and a candidate label ŷ ∈ {−1, 1} , the score function returns a score 
s(x, ŷ). Larger scores encode worse agreement between point x and the candidate label ŷ . 
Then, assume to have available a second set of nc observations, usually referred to as cali-
bration set, defined as follows

that are pairs of points x with their corresponding true label y.
We assume that the observations xi ∈ Xc come from the same distribution Pr of the 

observations in the test set Zts = {(xi, yi)}
nts
i=1

= Xts × Yts⊆ X × Y . Additionally, CP 
requires that the data are exchangeable, which is a weaker assumption than that of i.i.d.. 
Exchangeability means that the joint distribution of the data z1, z2,… , zn is unchanged 
under permutations:

Then, given a user-chosen confidence rate (1 − �) ∈ (0, 1) , a conformal set C
�
(x) is defined 

as the set of candidate labels whose score function is lower than the (⌈(nc + 1)(1 − �)⌉∕nc)
-quantile, denoted as s

�
 , computed on the s1,… , snc calibration scores. That is, to every 

point x , CP associates a set of “plausible labels"

The usefulness of the conformal set is that, according with Vovk et al. (1999), C
�
(x) pos-

sesses the so-called marginal conformal coverage guarantee property, that is, given any 
(unseen before) observation (x̃, ỹ) , the following holds

In other words, the true label ỹ belongs with high probability – at least ( 1 − � ) – to the con-
formal set.

3 � Notion of score function for scalable classifiers and conformal safety 
sets

In this section we introduce two concepts: i) a definition of score function for scalable clas-
sifiers (see Definition 1) and ii) the notion of conformal safety region (see Definition 2).

3.1 � Natural definition of score function for scalable classifiers

In this paragraph, we show how scalable classifiers allow for a natural definition of the 
score function, based on their own classifier predictor.

(4)Zc ≐
{
(xi, yi)

}nc

i=1
= Xc × Yc⊆ X × Y,

(z1, z2,… , zn) ∼ (z
�(1), z�(2),… , z

�(n)), for all permutations �.

C
𝜀
(x) = { ŷ ∈ {−1, 1} ∶ s(x, ŷ) ≤ s

𝜀
}.

(5)Pr
{
ỹ ∈ C

𝜀
(x̃)

}
≥ 1 − 𝜀.
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Definition 1  [Score Function for Scalable Classifier] Given a scalable classifier �
�
(x, �) 

with classifier predictor f
�
(x, �) , given a point x and an associated candidate label ŷ , the 

score function associated to the scalable classifier is defined as

with 𝜌̄(x) such that f
�
(x, 𝜌̄(x)) = 0.

We notice that, since f
�
 is a SC predictor, the existence and uniqueness of such 𝜌̄(x) is 

guaranteed (Sect. 2.1) and consequently s is well defined.
In practice, the score function evaluates how much it is necessary to vary the original 

classification boundary f
�
(x, 0) such that the point x falls on the classification boundary of 

the new classifier f
�
(x, 𝜌̄(x)) , starting from class ŷ . Alternatively, it is possible to think of 

the score function as a measure of the “difficulty” of making the classifier predict a certain 
class: very large values for 𝜌̄(x) imply that it is difficult to render f

�
(x, 𝜌̄(x)) positive, or 

equivalently that the class −1 is not conformal (thus, when ŷ = −1 , the score function is 
�̄(x) = −ŷ �̄(x) ). Very negative values of 𝜌̄(x) imply that it is difficult to render the output equal 
to +1 , thus the score function is in this case − ̄�(x) = −ŷ 𝜌̄(x).

Example 1  Scalable SVDD is the most straightforward example of correctly understanding 
such a definition for score function. In this case the score function takes this form

This represents exactly the quantity that needs to be removed ( ̂y = +1 for the point inside 
the sphere, ‖w − 𝜑(x)‖2 − R2

< 0 ) or added ( ̂y = −1 for the point outside the sphere, 
R2 − ‖w − 𝜑(x)‖2 > 0 ) to the radius such that x falls on the boundary of the classifier.

For example, consider two classes of points, “safe” ( +1 , in blue in the following fig-
ure) and “unsafe” ( −1 , in red in the following figure) sampled from two two-dimensional 
Gaussian distributions with respectively means and covariance matrices

where I is the identity matrix. We trained a linear SVDD classifier (Fig. 1a) and plotted 
the respectively score function (Fig.  1b). Exactly the behavior described above can be 
observed: the score function associates values according to the geometry provided by the 
classifier. In this case, points belonging to the boundary of the circumference have score 
function values of 0 (dashed green line) and negative or positive depending on whether 
the point is inside or outside the circumference. It is worth noting that the classifier can 
be interpreted as a level set of the score function, and this interpretation is crucial as will 
become clear in the following.

3.2 � Conformal safety regions

Classical CPs define subsets of the output space that satisfy the probabilistic marginal 
coverage constraint, but it is equally important to understand the relationship between 
the input space and the conformal sets. In other words, it would be meaningful to define 

s(x, ŷ) = −ŷ𝜌̄(x)

s(x, ŷ) = −ŷ
�
R2 − ‖w − 𝜑(x)‖2

�
.

�S =

[
−1

−1

]
, �S =

1

2
I ; �U =

[
+1

+1

]
, �U =

1

2
I
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regions in the input space classified on the basis of the conformal set of their samples 
to identify for which inputs the classifier is most reliable in making a certain prediction. 
For example, one should be interested in finding the region of classification uncertainty 
( C

�
(x) = {−1,+1} ) or the region in which the conformal classifier predicts a specific 

label ( C
�
(x) = {+1} or C

�
(x) = {−1} ) or in which it has no guess at all ( C

�
(x) = ∅).

In particular, since the goal is to find the input values that bring the classification to 
a “safe” situation (i.e., in our notation, y = +1 ) with a certain level of confidence, we 
introduce the concept of conformal safety region.

Definition 2  [Conformal Safety Region] Consider a calibration set Zc = {(xi, yi)}
nc
i=1

 from 
the same data distribution of the test set Zts . Given a level of error � ∈ (0, 1) , a score func-
tion s ∶ X × Y ⟶ R , and its corresponding (⌈(nc + 1)(1 − �)⌉∕nc)-quantile s

�
 computed 

on the calibration set, the conformal safety region (CSR) of level � is defined as follows

In words, a conformal safety region (CSR) is the subset of the input space where 
the conformal set is composed by only safe labels, C

�
(x) = {+1} , which can be inferred 

directly from the definition. Note that the above definition is independent on the choice 
of the score function s. What we will prove in the next is that using the score function 
defined for SCs (Definition 1) it is possible to give an analytical form to Σ

�
.

Example 2  Consider the same configuration as in Example 1 but with covariance matrices 
�S = �U = I and with a probability to sample an outlier for each class pO = 0.1 . Consider 
the LR classifier and its corresponding score function

(6)Σ
𝜀
= { x ∈ X ∶ s(x,+1) ≤ s

𝜀
, s(x,−1) > s

𝜀
}.

s(x, ŷ) = −ŷ(b − w
⊤

𝜑(x)),

Fig. 1   Relationship between the SVDD classifier and the corresponding score function: the absolute value 
of the score function assigns to a sample its distance to the circumference boundary. The color bar on the 
right helps to understand the behavior of the score function: darker colors indicate regions with less con-
formity with the target class, warmer the opposite. The zero value of the score function is obtained exactly 
on the boundary
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which is the same of the SVM since the solution of the equation f
�
(x, �) = 0 is for both 

𝜌̄(x) = b − w
⊤
𝜑(x).

We trained on a training set composed by 3000 samples the LR classifier with cubic 
polynomial kernel (Fig. 2a) and then we computed the score values on a calibration set of 
5000 samples. We computed the quantiles varying � (0.05, 0.1 and 0.5) and we plotted (on 
a test set of 10000 samples) the scatter of the points according to the conformal set. Green 
points belong to the CSR Σ

�
 and it is easily understandable that the smaller � is, the smaller 

Σ
�
 . This behavior is in line with CP theory, since small values of � mean that the conformal 

prediction must be very precise, and this is achievable only if the classifier itself is “very 
confident” of assigning the true label to a sample. Also, it should be noted that the smaller 
� is, the larger the region of uncertainty for the conformal prediction ( C

�
(x) = {−1,+1} , 

in yellow in Figs. 2a, 2b). Again, since for small � high levels of marginal coverage must 
be satisfied, conformal prediction tends to give both labels to a point when it is uncertain. 
Contrarily, for high values of � (Fig. 2c) the conformal sets for uncertain points tend to be 
empty (in black) because the score is too high and no output meets the specifications to 
belong to C

�
 . Finally, it is worth noting that the regions into which the points scatter have 

a well-defined shape: as introduced in Example 1 and as will become clear in the next sec-
tion, these regions correspond to level sets of the score function.

Fig. 2   Scatter-plots of the conformal set varying � for cubic LR. Green and red points correspond to sin-
gleton conformal set ( C

�
(x) = {+1} and C

�
(x) = {−1} respectively) yellow points to double predictions 

( C
�
(x) = {+1,−1} ) and black points to empty prediction ( C

�
(x) = ∅)
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3.3 � Analytical form of conformal safety regions for scalable classifiers

The definition of score we gave for SCs in Definition 1 identifies a particular value of the 
scalable parameter, which is the one corresponding to the quantile s

�
 , that we can define 

formally as

To this value, we can associate a level set S(�
�
) defined as in (3), i.e. the �

�
-safe set

We can prove that non-trivial relationships link S
�
 to the CSR Σ

�
 . But before, let us split Σ

�
 

in two contribution:

where

and

The relationship between S
�
 and Σ

�
 is explored in the following results that provide as final 

and major contribution the fact that S
𝜀
⊆ Σ

𝜀
.

Proposition 1 

Proof 

	�  ◻

Corollary 1

Proof  Trivial, from

	�  ◻

(7)�
�
≐ |s

�
|.

(8)S
𝜀
= { x ∈ X ∶ f

�
(x, 𝜌

𝜀
) < 0 }.

(9)Σ
�
= Σa

�
∪ Σb

�
,

(10)Σa
𝜀
= { x ∈ X ∶ s(x,+1) < s

𝜀
, s(x,−1) > s

𝜀
},

(11)Σb
𝜀
= { x ∈ X ∶ s(x,+1) = s

𝜀
, s(x,−1) > s

𝜀
}.

S
𝜀
= Σa

𝜀
⊆ Σ

𝜀
.

S
�
= Σ

�
only ifΣb

�
= ∅.

Σ
�
= Σa

�
∪ Σb

�
= S

�
∪ Σb

�
.

x ∈ S
𝜀
⟺ f

�
(x, |s

𝜀
|) < 0,

⟺ f
�
(x, |s

𝜀
|) < f

�
(x, 𝜌̄(x)),

⟺ |s
𝜀
| < 𝜌̄(x),

⟺ − s
𝜀
< 𝜌̄(x) and s

𝜀
< 𝜌̄(x),

⟺ − s
𝜀
< −s(x,+1) and s

𝜀
< s(x,−1),

⟺ s(x,+1) < s
𝜀
and s(x,−1) > s

𝜀
,

⟺ x ∈ Σa
𝜀
⊆ Σ

𝜀
.
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Proposition 2

Proof

	�  ◻

We can then summarize all these information in a single theorem that defines the “ana-
lytical form” of the CSR, i.e. that it is possible to express Σ

�
 in terms of a single scalar 

parameter.

Theorem 3  [Analytical Representation of the Conformal Safety Region via Scalable Clas-
sifiers] Consider the classifier (1) and suppose that [Carlevaro et al. (2023) Assumption 
1] holds and that Pr{x ∈ X} = 1 . Consider then a calibration set Zc =

{
(xi, yi)

}nc

i=1
 ( nc 

exchangeable samples), a level of error � ∈ (0, 1) , a score function s ∶ X × Y ⟶ R as in 
Definition 1 with ⌈(nc + 1)(1 − �)⌉∕nc-quantile s

�
 computed on the calibration set. Define 

the conformal scaling of level � as follows

and define the corresponding �
�
-safe set

Then, given the conformal safety region of level � , Σ
�
 , we have 

i)	S
𝜀
⊆ Σ

𝜀
.

ii)	 S
�
= Σ

�
 if s

�
≤ 0.

that is, S
�
 is a CSR.

Proof  Proof follows directly from Propositions (1) and (2) and Corollary (1). 	�  ◻

In its classical definition, conformal prediction is a local property, that is, the conformal 
coverage guarantee is valid only punctually. However, conformal labels map each point in a 
subset of the input space, depending on the size of the respective conformal set. Theorem 3 
then provides a new classifier that maps the samples contained in S

�
 to the target class +1 . 

Once �
�
 has been computed, it is then possible to write

identifying a unique relationship between the target class of the classification and the CSR.

Σb
𝜀
≠ ∅ ⟹ s

𝜀
> 0.

(12)x ∈ Σb
𝜀
⟺ s(x,+1) = s

𝜀
and s(x,−1) < s

𝜀
,

(13)⟺ − 𝜌̄(x) = s
𝜀
and 𝜌̄(x) < s

𝜀
,

(14)⟺ − s
𝜀
< s

𝜀
,

(15)⟺ s
𝜀
> 0.

(16)�
�
= |s

�
|,

(17)S
𝜀
= { x ∈ X ∶ f

�
(x, 𝜌

𝜀
) < 0 }.

S
�
= �

�
(⋅, �

�
)−1(y = +1),
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Example 3  In the same configuration as in Example 2, we trained a Gaussian SVM and 
calculated the score values on the calibration set. Figure 3 shows exactly what Theorem 3 
claims: CSRs are level sets of the score function that correspond to a specific quantile and 
thus to a specific confidence level. Specifically, in this example it is shown the CSR at level 
of confidence 1 − 0.05 = 0.95 that results in a quantile equal to 2.8113 and correspond-
ing conformal scaling �0.05 = −2.8113 . The hyperplane “score” = −2.8113 exactly cuts the 
score function at the level set corresponding to the CSR.

Remark 1  [On the Usefulness of Conformal Safety Regions] The introduction of the con-
cept of CSR brings inevitably to understand how this instrument can be useful in practice. 
First of all it allows to identify reliable prediction regions and quantify uncertainty: in deci-
sion making problems where a certain amount of confidence in the prediction is required 
(like for example in medical applications) CSRs can suggest the best set of input features 
that guides the predictions reliably, minimizing the presence of misclassification samples. 
Moreover CSRs provide an interpretable way to understand the model’s behavior in differ-
ent regions of the input space. This can be useful for the model explanation and for possi-
ble improvements and corrections to the model. Finally, CSRs are very “regulatory compli-
ant”: in applications with regulatory requirements, CSRs ensure compliance by providing a 
clear understanding of where model’s predictions are reliable.

Fig. 3   CSR computed with a Gaussian SVM at � = 0.05 . Scattered CSR Σ
�
 , a, coincides with the analytical 

CSR S
�
 , b that coincides with the level set z = �

�
 of the score function, (c). d is the planar representation on 

x1 − x2 plane of the score function
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In addition, CSRs can provide strong information about the prediction of points 
belonging to them. Indeed, it can be proved that the number of false positives is limited 
by the � error.

Theorem 4  Consider the classifier (1) and the corresponding CSR developed as in Theo-
rem 3 with a level of error � ∈ (0, 1) . Then, it can be stated that

Proof  Since S
𝜀
⊆ Σ

𝜀
:

where the last inequality holds for the marginal coverage property of CP (5). 	�  ◻

The significance of this statement cannot be overstated, as it implies that thanks to 
CSRs, it becomes feasible to identify regions in feature space where the conformal cov-
erage of the target class is assured. Consequently, these regions identify feature points 
with a high degree of certainty, thereby enhancing the reliability, trustworthiness, and 
robustness of (any) classification algorithm, especially with regard to safety considera-
tions. Specifically, the final output of the proposed method is a region, S

�
 , in which with 

high probability the chance of finding the unwanted label is small (and thus as small as 
desired). This means that the scalable classifier together with the conforming predic-
tion can handle the natural uncertainty arising both from the data (to the extent that the 
data are representative of the information they provide, i.e. aleatoric uncertainty) and 
the model (to the extent that it is accurate in modeling, i.e. epistemic uncertainty), pro-
viding “safety” sets that have a volume proportional to � , i.e., to the confidence of the 
prediction (Hüllermeier and Waegeman 2021).This is very much in line with recent and 
ongoing literature in the field of geometric uncertainty quantification, as in Sale et al. 
(2023) where the authors propose the idea of “credal sets” (Abellán et  al. 2006) that, 
as our CSR does, guarantee the correctness of the prediction bounding the input set in 
polytopes. In this regard, the idea of quantifying uncertainty through functions that give 
a measure of distance (such as the score function proposed here) is something that is 
sparking the UQ community, enabling future comparisons with other methods such as 
the “second order UQ” discussed in Sale et al. (2023).

Remark 2  [On the link with Probably Approximate Correct theory] Probably approximate 
correct (PAC) learning is a theory developed in the 1980 s by Valiant (2013) for quantify-
ing uncertainty in learning processes, with a focus on the case of undersampled data. PAC 
learning has been used to define sets of predictions that can satisfy probabilistic guarantees 
with nonparametric probabilistic assumptions (see, for example, Park et  al. (2022)) with 
similarities with our (and in general with CP theory) approach. Specifically, PAC learn-
ing is a broad theory where it is possible to insert the research presented in this paper on 
uncertainty quantification of machine learning classifiers with conformal prediction. For 
example, the confidence bounds on which conformal prediction theory is based (and so is 

(18)Pr
{
y = −1 and x ∈ S

�

}
≤ �.

Pr{y = −1 and x ∈ S
�
} ≤ Pr{y = −1 and x ∈ Σ

�
}

= Pr{y = −1 and x ∈ {x ∶ C
�
(x) = {+1}}}

≤ Pr{y = −1 and x ∈ {x ∶ −1 ∉ C
�
(x)}}

= Pr{y = −1 and y ∉ C
�
(x)}

≤ Pr{y ∉ C
�
(x)} ≤ �,
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our research) are inherited from PAC learning theory. As shown in [Vovk (2012) Prop 2a], 
the concept of (�, �)-validity (i.e. the marginal coverage guarantee of equation (5) together 
with the randomness of the calibration set) is a PAC style guarantee on the (inductive) 
conformal prediction. As reported in our previous work Carlevaro et al. (2023), there are 
nontrivial relationships between the number of samples on the calibration set and proba-
bilistic guarantees on prediction. All these relationships can be read into the PAC learning 
formalism, and future work will focus on this topic.

In the next section we report some numerical examples of Theorem 4, see Fig. 6.

4 � A real world application: detection of SSH‑DNS tunnelling

The dataset chosen for the example application deals with covert channel detection in 
cybersecurity (Aiello et al. 2015). The aim is detecting the presence of secure shell domain 
name server (SSH-DNS) intruders by an aggregation-based monitoring that avoids packet 
inspection, in the presence of silent intruders and quick statistical fingerprints generation. 
By modulating the quantity of anomalous packets in the server, we are able to modulate the 
difficulty of the inherent supervised learning solution via canonical classification schemes 
(Carlevaro and Mongelli (2021); Vaccari et al. (2022)).

Let q and a be the packet sizes of a query and the corresponding answer, respectively 
(what answer is related to a specific query can be understood from the packet identifier) 
and Dt the time-interval intercurring between them. The information vector is composed of 
the statistics (mean, variance, skewness and kurtosis) of q, a and Dt for a total number of 
12 input features:

and an overall size of 10000 examples. High-order statistics give a quantitative indication 
of the asymmetry (skewness) and heaviness of tails (kurtosis) of a probability distribution, 
helping to improve the detection inference. The output space Y = {−1,+1} is generated 
by associating each sample x with the label −1 when “no tunnel” is detected and +1 when 
“tunnel” is detected. In this sense, the idea of safety should be interpreted as an indica-
tion that the system has detected the presence of a “tunnel” or abnormal behavior, i.e., the 
system believes that there is a potential security threat or intrusion. This could trigger vari-
ous security countermeasures, such as blocking incoming traffic or applying filters to the 
connection.

x = [mA,mQ,mDt, vA, vQ, vDt, sA, sQ, sDt, kA, kQ, kDt],

Fig. 4   Trend of the average error as � varies in [0.05, 0.5] for different classifiers. The errors vary in [0, 0.6] 
for SVM, [0, 0.8] for SVDD and [0, 0.6] for LR



6658	 Machine Learning (2024) 113:6645–6661

1 3

Conformal predictions assess the goodness of an algorithm by two basic metrics of 
evaluation: accuracy and efficiency. Accuracy is measured by the average error, over the 
test set, of the conformal prediction sets considering points of both classes (err), only 
class y = −1 points ( err − ) and only class y = +1 points ( err + ). We remind that an error 
occurs whenever the true label is not contained in the prediction set. Efficiency is quanti-
fied through the rate of test points prediction sets with no predictions (empty), two predic-
tions (double) and singleton predictions (single), these ones also divided by class ( single− 
and single+ ). The obtained results (as the classifier varies) are reported in Figs. 4 and 5 for 
accuracy and efficiency, respectively.

The overall metrics computed on the benchmark dataset outline the expected behav-
ior of the conformal prediction, with slight differences between the example classifiers. 
For all values of � , the average error is indeed bounded by � in all cases. Also, err 
increases linearly with � . This means that the classification is reliable. As for the size 
of the conformal set, the overall results point out that for small values of � the model 
produces more double-sized regions, since in this way it would be “almost certain” that 
the true label is contained in the conformal set. Then, the size reduces by increasing 
� , allowing for the presence of more empty prediction sets. The number of singleton 
conformal set remains always sufficiently high (it increases as double conformal sets 
decrease and it decreases as empty conformal set increase) meaning that the classifica-
tion is efficient. Regarding the use of the example classifiers, it is interesting to note 
that LR is the most stable with respect to � and the error conditional on classes: the 
error rate for both classes is nearly linear with � , suggesting that the prediction is reli-
able even conditional on the single class or, better, that the classifier is able to clearly 
separate the classes while maintaining the expected confidence. The same behavior is 
also observed for SVM, although the errors per class deviate more from the average 
error. The error for class “tunnel” is always lower than that for class “no tunnel”, sug-
gesting that the classifier is more likely to minimize the number of false positives, los-
ing in accuracy for true negatives. The opposite behavior is observed for SVDD, which 
instead tries to classify negative instances better, resulting in a lower expected clas-
sification error for class “no tunnel”. The most interesting aspect, however, is that the 
algorithm is less conformal when conditioned on the error of the single class, increas-
ing the spread with respect to the average error as � increases. Conformal prediction 
together with scalable classifiers define then a totally new framework to deal with 
uncertainty quantification in classification based scenarios. The results shown in this 

Fig. 5   Trend of the average size of conformal sets as � varies in [0.05, 0.5] for different classifiers. The size 
varies from 0 (empty) to 1 (full)
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application drastically overcome the ones obtained on the same dataset in Carlevaro 
and Mongelli (2021). The previous approach relied on an iterative procedure to control 
the number of misclassified points that could only be used with a specific algorithm 
(SVDD) and without a-priori confidence bounds, but only on the basis of an smart 
trial-and-error algorithm. The point that the reader should observe is precisely this: 
the presented theory allows dealing with the uncertainty naturally brought by machine 
learning approaches in a simple and probabilistically grounded way, allowing setting 
confidence in prediction by design. Finally, Fig. 6 shows the behavior of the coverage 
error of the CSR with respect to the example classifiers. As stated in Theorem 4, the 
probability that the wrong label −1 is predicted for the points belonging to S

�
 is under-

linear with respect the expected error �.

5 � Conclusions

Scalable classifiers allow for the development of new techniques to assess safety and 
robustness in classification problems. With this research we explored the similarities 
between scalable classifiers and conformal prediction. Through the definition of a score 
function that naturally derives from the scalable classifier, it is possible to define the 
concept of conformal safety region, a region that possesses a crucial property known 
as error coverage, which implies that the probability of observing the wrong label for 
data points within this region is guaranteed to be no more than a predefined confidence 
error of � . Moreover, ongoing studies on the conformal coverage (that is, the proba-
bility of observing the true safe label in the CSR is no less than 1 − � ) suggest that a 
mathematical proof for this property is conceivable. The idea is to exploit the results on 
class-conditional conformal prediction as in Vovk (2012). In addition, future work will 
include the possibility of extending the formulation of scalable classifiers, and thus the 
conformal safety region, to the multi-class and multi-label context.

The exploration of conformal and error coverages introduces a novel and meaningful 
concept that holds great promise for applications in the field of reliable and trustwor-
thy artificial intelligence. It has the potential to enhance the assessment of safety and 
robustness, contributing to the advancement of AI systems that can be trusted and relied 
upon in critical applications.

Fig. 6   Error coverage plot as � varies in [0.05, 0.5] for the example classifiers. The probability varies in 
[0, 0.5] for SVM, [0.05, 0.55] for SVDD and [0, 0.6] for LR



6660	 Machine Learning (2024) 113:6645–6661

1 3

Acknowledgements  The authors would like to thank Anastasios Angelopulos of University of California, 
Berkeley and Sara Narteni of CNR-IEIIT for their thoughtful suggestions about Conformal Prediction.

Author contributions  Alberto Carlevaro: Methodology, Validation, Investigation, Software, Data curation, 
Writing. Teodoro Alamo: Methodology, Validation, Investigation, Writing, Supervision. Fabrizio Dabbene: 
Methodology, Validation, Investigation, Writing, Supervision. Maurizio Mongelli: Methodology, Valida-
tion, Investigation, Data curation, Writing, Supervision.

Funding  Open access funding provided by Consiglio Nazionale Delle Ricerche (CNR) within the CRUI-
CARE Agreement. This work was supported in part by REXASI-PRO H-EU project, call HORIZON-CL4-
2021-HUMAN-01-01, Grant agreement ID: 101070028. The work was also supported by Future Artificial 
Intelligence Research (FAIR) project, Italian Recovery and Resilience Plan (PNRR), Spoke 3 - Resilient 
AI. Moreover T. Alamo acknowledges support from grant PID2022-142946NA-I00 funded by MCIN/AEI/ 
10.13039/501100011033 and by ERDF, A way of making Europe.

Data availability  The datasets generated and analysed during the current study are not publicly available due 
to potentially sensitive data from the CNR-IEIIT’s internal network but are available from the corresponding 
author on reasonable request.

Data availability  The authors prefer not to make the codes available yet. It can be requested from the cor-
responding author upon reasonable request.

Declarations 

Conflict of interest  There are no either Conflict of interest or Conflict of interest to declare.

Ethics approval  Not Applicable.

Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abellán, J., Klir, G. J., & Moral, S. (2006). Disaggregated total uncertainty measure for Credal sets. Interna-
tional Journal of General Systems, 35(1), 29–44.

Andéol, L., Fel, T., De Grancey, F., & Mossina, L. (2024). Conformal prediction for trustworthy detection 
of railway signals. AI and Ethics, 4, 1–5.

Angelopoulos, A. N., & Bates, S. (2023). Conformal prediction: A gentle introduction. Foundations and 
trends®in machine learning, 16(4), 494–591. https://​doi.​org/​10.​1561/​22000​00101

Angelopoulos, A.N., Bates, S., Jordan, M. & Malik, J. (2020) Uncertainty sets for image classifiers using 
conformal prediction. In: International conference on learning representations

Aiello, M., Mongelli, M., & Papaleo, G. (2015). DNS tunneling detection through statistical fingerprints of 
protocol messages and machine learning. International Journal of Communication Systems, 28(14), 
1987–2002.

Balasubramanian, V.N., Gouripeddi, R., Panchanathan, S., Vermillion, J., Bhaskaran, A. & Siegel, R. (2009) 
Support vector machine based conformal predictors for risk of complications following a coronary 
drug eluting stent procedure. In: 2009 36th annual computers in cardiology conference (CinC), (pp. 
5–8) . IEEE

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1561/2200000101


6661Machine Learning (2024) 113:6645–6661	

1 3

Carlevaro, A., Alamo, T., Dabbene, F. & Mongelli, M. (2023) Probabilistic safety regions via finite families 
of scalable classifiers arXiv:​2309.​04627 [stat.ML]

Carlevaro, A., Lenatti, M., Paglialonga, A., & Mongelli, M. (2022). Counterfactual building and evalua-
tion via explainable support vector data description. IEEE Access, 10, 60849–60861. https://​doi.​org/​
10.​1109/​ACCESS.​2022.​31800​26

Carlevaro, A., & Mongelli, M. (2021). A new SVDD approach to reliable and eXplainable AI. IEEE Intell 
Syst. https://​doi.​org/​10.​1109/​MIS.​2021.​31236​69

Chzhen, E., Denis, C., Hebiri, M. & Lorieul, T. (2021) Set-valued classification–overview via a unified 
framework. arXiv:​2102.​12318 [stat.ML]

Fontana, M., Zeni, G., & Vantini, S. (2023). Conformal prediction: A unified review of theory and new chal-
lenges. Bernoulli, 29(1), 1–23. https://​doi.​org/​10.​3150/​21-​BEJ14​47

Forreryd, A., Norinder, U., Lindberg, T., & Lindstedt, M. (2018). Predicting skin sensitizers with confi-
dence–Using conformal prediction to determine applicability domain of gard. Toxicology in Vitro, 48, 
179–187. https://​doi.​org/​10.​1016/j.​tiv.​2018.​01.​021

Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An 
introduction to concepts and methods. Machine Learning, 110, 457–506. https://​doi.​org/​10.​1007/​
s10994-​021-​05946-3

Lenatti, M., Carlevaro, A., Guergachi, A., Keshavjee, K., Mongelli, M., & Paglialonga, A. (2022). A novel 
method to derive personalized minimum viable recommendations for type 2 diabetes prevention based 
on counterfactual explanations. PLOS ONE, 17(11), 1–24. https://​doi.​org/​10.​1371/​journ​al.​pone.​02728​
25

Narteni, S., Carlevaro, A., Dabbene, F., Muselli, M. & Mongelli, M. (2023) Confiderai: Conformal inter-
pretable-by-design score function for explainable and reliable artificial intelligence. In: Conformal and 
probabilistic prediction with applications, (pp. 485–487).

Park, S., Bastani, O., Matni, N. & Lee, I. (2019) Pac confidence sets for deep neural networks via calibrated 
prediction. In: International conference on learning representations.

Park, S., Dobriban, E., Lee, I., & Bastani, O. (2022). PAC prediction sets for meta-learning. Advances in 
Neural Information Processing Systems, 35, 37920–37931.

Sale, Y., Bengs, V., Caprio, M. & Hüllermeier, E. (2023) Second-order uncertainty quantification: A dis-
tance-based approach arXiv:​2312.​00995 [cs.LG]

Sale, Y., Caprio, M. & Hüllermeier, E. (2023) Is the volume of a credal set a good measure for epistemic 
uncertainty? arXiv:​2306.​09586 [cs.LG]

Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction, 9, 371–421. http://​jmlr.​org/​papers/​v9/​
shafe​r08a.​html.

Toccaceli, P. (2022). Introduction to conformal predictors. Pattern Recognition, 124, 108507. https://​doi.​
org/​10.​1016/j.​patcog.​2021.​108507

Vaccari, I., Carlevaro, A., Narteni, S., Cambiaso, E., & Mongelli, M. (2022). eXplainable and reliable 
against adversarial machine learning in data analytics. IEEE Access, 10, 83949–83970. https://​doi.​org/​
10.​1109/​ACCESS.​2022.​31972​99

Valiant, L. (2013). Probably approximately correct: Nature’s algorithms for learning and prospering in a 
complex world. USA: Basic Books Inc.

Vovk, V. (2012) Conditional validity of inductive conformal predictors. In: Hoi, S.C.H., Buntine, W. (eds.) 
Proceedings of the Asian conference on machine learning. Proceedings of machine learning research, 
vol. 25, pp. 475–490. PMLR, Singapore Management University, Singapore . https://​proce​edings.​mlr.​
press/​v25/​vovk12.​html

Vovk, V., Gammerman, A. & Saunders, C. (1999) Machine-learning applications of algorithmic random-
ness. In: Proceedings of the sixteenth international conference on machine learning. ICML ’99, pp. 
444–453. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random world. Berlin, Heidel-
berg: Springer.

Vovk, V., Gammerman, A., & Shafer, G. (2022). Probabilistic classification: Venn predictors (pp. 157–
179). Cham: Springer. https://​doi.​org/​10.​1007/​978-3-​031-​06649-8_6

Vovk, V., Shen, J., Manokhin, V. & Xie, M. (2017) Nonparametric predictive distributions based on confor-
mal prediction. In: Conformal and probabilistic prediction and applications, pp. 82–102

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/2309.04627
https://doi.org/10.1109/ACCESS.2022.3180026
https://doi.org/10.1109/ACCESS.2022.3180026
https://doi.org/10.1109/MIS.2021.3123669
http://arxiv.org/abs/2102.12318
https://doi.org/10.3150/21-BEJ1447
https://doi.org/10.1016/j.tiv.2018.01.021
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1371/journal.pone.0272825
https://doi.org/10.1371/journal.pone.0272825
http://arxiv.org/abs/2312.00995
http://arxiv.org/abs/2306.09586
http://jmlr.org/papers/v9/shafer08a.html
http://jmlr.org/papers/v9/shafer08a.html
https://doi.org/10.1016/j.patcog.2021.108507
https://doi.org/10.1016/j.patcog.2021.108507
https://doi.org/10.1109/ACCESS.2022.3197299
https://doi.org/10.1109/ACCESS.2022.3197299
https://proceedings.mlr.press/v25/vovk12.html
https://proceedings.mlr.press/v25/vovk12.html
https://doi.org/10.1007/978-3-031-06649-8_6

	Conformal predictions for probabilistically robust scalable machine learning classification
	Abstract
	1 Introduction
	1.1 Context
	1.2 Contribution

	2 Background: scalable classifiers and conformal prediction
	2.1 Scalable classifiers
	2.2 Conformal prediction

	3 Notion of score function for scalable classifiers and conformal safety sets
	3.1 Natural definition of score function for scalable classifiers
	3.2 Conformal safety regions
	3.3 Analytical form of conformal safety regions for scalable classifiers

	4 A real world application: detection of SSH-DNS tunnelling
	5 Conclusions
	Acknowledgements 
	References




