
Highlights
Zero-Shot Learning for Requirements Classification:
an Exploratory Study
Waad Alhoshan, Alessio Ferrari, Liping Zhao

• Lack of large, labelled datasets is a main challenge in using any form of
machine learning for automatic requirements classification.

• We propose to use Zero-shot learning (ZSL) for requirements classifica-
tion, which requires no labelled data and no training.

• Our results show that ZSL achieves acceptable performance (F1 from
66% to 80%) for binary and multi-class classification tasks.

• ZSL with generic language models (LMs), and simple label configu-
rations appear to outperform domain-specific LMs and complex label
configurations

ar
X

iv
:2

30
2.

04
72

3v
2 

 [
cs

.S
E

] 
 1

5 
M

ar
 2

02
3



Zero-Shot Learning for Requirements Classification:
an Exploratory Study

Waad Alhoshana, Alessio Ferrarib, Liping Zhaoc

aCollege of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh, 11564, Saudi Arabia

bIstituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale delle
Ricerche (ISTI-CNR), Via G. Moruzzi 1, Pisa, 56126, Italy

cDepartment of Computer Science, University of Manchester, Manchester, M13 9PL, UK

Abstract
Context: Requirements engineering (RE) researchers have been experi-

menting with machine learning (ML) and deep learning (DL) approaches for
a range of RE tasks, such as requirements classification, requirements trac-
ing, ambiguity detection, and modelling. However, most of today’s ML/DL
approaches are based on supervised learning techniques, meaning that they
need to be trained using a large amount of task-specific labelled training
data. This constraint poses an enormous challenge to RE researchers, as the
lack of labelled data makes it difficult for them to fully exploit the benefit
of advanced ML/DL technologies. Objective: This paper addresses this
problem by showing how a zero-shot learning (ZSL) approach can be used
for requirements classification without using any labelled training data. We
focus on the classification task because many RE tasks can be framed as
classification problems. Method: The ZSL approach used in our study
employs contextual word-embeddings and transformer-based language models
(LMs). We demonstrate this approach through a series of experiments to
perform three classification tasks: (1) FR/NFR — classification functional
requirements vs non-functional requirements; (2) NFR — identification of
NFR classes; (3) Security — classification of security vs non-security require-
ments. Results: The study shows that the ZSL approach achieves an F1
score of 0.66 for the FR/NFR task. For the NFR task, the approach yields

∗Corresponding authors: Liping Zhao at liping.zhao@manchester.ac.uk and Alessio
Ferrari at alessio.ferrari@isti.cnr.it

Preprint submitted to Information and Software Technology March 17, 2023



F1∼ 0.72 − 0.80, considering the most frequent classes. For the Security
task, F1 ∼ 0.66. All of the aforementioned F1 scores are achieved with
zero-training efforts. Conclusion: This study demonstrates the potential of
ZSL for requirements classification. An important implication is that it is
possible to have very little or no training data to perform classification tasks.
The proposed approach thus contributes to the solution of the long-standing
problem of data shortage in RE.
Keywords: Zero-shot learning, language models, contextual
word-embeddings, requirements classification, zero-shot text classification,
unsupervised learning, multi-label classification, transfer learning, deep
learning, requirements engineering, AI for requirements engineering, AI for
software engineering
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

In requirements engineering (RE), system and software requirements
specifications are typically written in natural language (NL) [1, 2]. In the last
few years, natural language processing (NLP) techniques based on supervised
machine learning (ML), and, more recently, deep learning (DL), have been
applied to address several RE tasks, driven by the success of these techniques
in a range of domains, including medical diagnosis, credit card fraud detection,
and sentiment analysis [3, 4, 5].

To date, research on ML-based RE has been primarily focused on super-
vised classification approaches [6], as most RE tasks can be framed as text
classification problems solved by supervised learning techniques. Relevant
examples are: classifying requirements into different categories [7, 8, 9]; iden-
tifying requirements from software contracts [10]; discerning requirements
and non-requirements [11]; identifying miscategorised requirements [12]; and
discovering requirements-relevant content from app reviews [13, 14].

However, supervised ML has some major limitations. The most notable one
is that supervised learners need to be trained on a large amount of task-specific,
labelled data before they can be ready for predicting the outcomes on new
data [4, 15]. This problem is exacerbated in domains like RE where collecting
and labelling sufficient training data is often expensive, time-consuming and
error-prone [16, 10]. Labelling data also requires substantial domain- and even

2



project-specific knowledge [12]. Furthermore, labelled data used in previous
studies are frequently unavailable. This happens even for the lively area of
app review analysis, in which most studies have not released their labelled
dataset, according to a recent survey (cf. [13], p. 34). This limitation hinders
RE researchers from exploring different learning techniques.

Another limitation of supervised learning methods is that models can only
classify the data belonging to seen classes (i.e., classes labelled in the training
data), but they cannot classify the data into previously unseen classes (i.e.,
classes not labelled in the training data) [15]. Although this limitation is
inherent in supervised learning, the ability to deal with previously unseen
classes can bring huge benefits to many real-world applications where classes
are artificially defined, with no common consensus, or where classes may
evolve over time, with new classes emerging and old ones becoming obsolete.
One such example is requirements classification where several classification
schemes exist for non-functional requirements (NFRs) [17, 18].

As software applications, their requirements, and the theory of NFRs
itself evolves over time, so do the classification schemes. Consequently, a
dataset labelled using one set of classes (e.g., the PROMISE NFR Dataset
[19]) cannot be reused to train a method that intends to predict a different
set of classes (e.g., based on the latest ISO/IEC/IEEE 29148 standard [20]).
Each time a new classification scheme is used, the datasets must be relabelled
accordingly, incurring expensive data-labelling costs.

To address these problems, different learning paradigms have been pro-
posed in recent years [4]. One such paradigm is transfer learning [21], which
aims to alleviate the problems of data shortages and expensive data labelling
efforts by adapting existing well-trained ML models to different, but related
domains or tasks [22]. However, model adaptation still requires thousands or
tens of thousands of labelled task-specific instances [23].

More recently, zero-shot learning (ZSL) has emerged as a promising
paradigm [15]. ZSL directly applies previously trained models to predicting
both seen and unseen classes without using any labelled training instances
[24, 25].

Expanding on our preliminary study [26], this paper aims to conduct an
in-depth study of using ZSL for requirements classification and to gain insight
into this new paradigm in the context of RE. Whereas our preliminary study
only assessed ZSL on the classification of security and usability requirements
selected from a portion of the PROMISE NFR dataset [19], this paper
substantially extends the previous contribution by evaluating ZSL on different

3



classification tasks, namely differentiation between functional requirements
(FRs) and non-functional requirements (NFRs), identification of different NFR
classes, and classification of security vs non-security requirements. These
tasks are carried out on two datasets: the full PROMISE NFR dataset and
the SecReq dataset [27]. In addition, we have selected four different language
models (LMs) to evaluate ZSL, to allow us to compare the performance of
ZSL under different models.

The remaining paper is structured as follows: Section 2 briefly reviews the
current ML approaches for requirements classification. Section 3 introduces
the zero-shot learning approach used in this paper and its related concepts.
Section 4 defines the research questions for our study and details our study
design. Section 5 analyzes the experimental results, while Section 6 answers
our research questions based on these results. Section 7 examines the validity
threats to our experiments and our mitigation strategies. Finally, Section 8
concludes the paper.

2. Related Work

Most studies in ML-based requirements classification focus on the categori-
sation between functional (FR) and non-functional (NFR, or “quality” [28])
requirements, and on the further categorisation of different NFR classes, such
as security, performance, usability, etc. However, the distinction between FR
and NFR has been a matter of debate in the RE community [29, 16], and
the empirical study by Eckhardt et al. [18] shows that NFRs can include
functional aspects. Furthermore, there is a more fine-grained representation
of FRs and NFRs given by the ISO/IEC/IEEE 29148:2018(E) Standard [20],
which distinguishes between functional/performance, quality, usability, inter-
face, and other classes, thus refining the conceptualisation already elaborated
by the NFR classification from Glinz [17]. Yet, despite the lack of consensus
what NFRs are, and how we should classify and represent them, the differen-
tiation between FRs and NFRs is a common categorisation in RE, and in the
following we will use this distinction, keeping in mind that it is an artificial
construct [18].

ML-based approaches for requirements classification were examined in a
systematic literature review by Binkhonain and Zhao [6]. Here we briefly
review some closely related representative works.

4



2.1. Classification of FRs and NFRs
One of the earliest adoptions of ML to RE was due to Cleland-Huang

et al. [7], who proposed to use a set of indicator terms to identify different
classes of NFR. The approach was supervised, in that it first identified a set
of indicator terms on a set of manually annotated requirements, and then
used this set to classify unseen cases. The approach achieved a recall up to
0.80, but suffered from low precision, up to 0.21. This study also introduced
the PROMISE NFR dataset [19], which has been widely used by the research
community, and it is also one of the benchmarks of our work.

To mitigate the problem of dataset annotation, Casamayor et al. [30]
proposed a semi-supervised method, based on an iterative process similar
to active learning, in which the user provided feedback to the classifier.
Their approach used Naive Bayes (NB) as a classification algorithm and the
PROMISE NFR dataset as the training set. After multiple iterations in
which an increasing number of training examples were used, they obtained
a maximum precision of above 0.80 and a maximum recall of above 0.70 on
most classes, except underrepresented ones.

Another well-known ML approach is provided by Kurtanović and Maalej [8],
who applied Support Vector Machine (SVM) for requirements classification.
They selected relevant features with an ensemble of different supervised classi-
fiers and achieved precision and recall up to 0.92 for identifying FRs and NFRs
on the PROMISE NFR dataset. For the identification of specific NFRs classes,
they achieved the highest precision and recall for security and performance
classes with 0.92 precision and 0.90 recall. Dalpiaz et al. [16] reconstructed the
study by Kurtanović and Maalej and used the results obtained as a baseline
to evaluate their proposed approach using interpretable linguistic features.

To overcome the problem of labour intensive feature engineering, Navarro
et al. [31] proposed one of the first approaches using a deep learning (DL)
model. They used a CNN (Convolutional Neural Network) model on the
PROMISE dataset, and obtained precision and recall of 0.80 and 0.79 re-
spectively, thus addressing the problem of limited precision observed by
Cleland-Huang et al.. Similar approaches were proposed by Dekhtyar and
Fong [32], and more recently, by Aldhafer et al. [33].

A more closely related work to ours is Hey et al. [9], who proposed
NoRBERT, a transfer learning approach for requirements classification. Their
approach is based on fine-tuning the BERT model (Bidirectional Encoder
Representations from Transformers) [23]. They achieved similar or better
results with respect to previous works, achieving 0.92 precision and 0.95

5



recall for FR vs NFR classification on the PROMISE dataset. NoRBERT
also outperformed recent approaches at classifying NFRs classes. The most
frequent classes were classified with precision up to 0.94 and recall up to 0.90.
The proposed solution was also applied for the classification of different types
of functional requirements concerns in PROMISE, achieving precision up to
0.88 and recall up to 0.95.

2.2. Classification of Security Requirements
One of the early works on security requirements classification was by

Knauss et al. [34], who used a Bayesian classifier to identify security-relevant
requirements on three industrial datasets. These datasets are also used in our
paper (aggregated into the SeqReq dataset). They achieved precision > 0.8
and recall > 0.9. In another work, Riaz et al. [35] proposed an approach to
extract security-relevant sentences from requirements documents. They used
a dataset of 10,963 sentences belonging to six different documents from the
healthcare domain. The proposed approach was semi-automatic and based on
KNN (K-nearest Neighbours) classification. The authors achieved a precision
of 0.82, and a recall of 0.79.

Addressing the lack of domain-specific data sets, Munaiah et al. [36]
proposed a domain-independent classification model for identifying domain-
specific security requirements. The proposed approach, a one-class SVM
classifier, was used to identify general descriptions related to software security
weaknesses, but not the actual security requirements per se, as the classifier
was trained using the Common Weakness Enumeration database [37]. The
authors showed that the one-class classifier achieved an average precision
and recall of 0.67 and 0.70 respectively. Varenov et al. [38] compared the
performance of different LMs, namely BERT, XLNET, and DistilBERT, for
security requirements classification. They identified 1, 086 security require-
ments of seven different classes collected from multiple existing datasets, such
as PURE [39], SecReq [34] and Riaz’s dataset [35]. Unlike previous studies,
the work by Varenov et al. [38] aimed to classify security requirements into
more fine-grained classes, i.e., Confidentiality, Integrity, Availability, Account-
ability, Operational, Access Control, and Other. DistilBERT achieved the
best results, with precision of 0.80 and recall of 0.82.

2.3. Our Contribution
In comparison with the related work, our study aims to present a com-

parative analysis of different ZSL configurations for the classification of

6



requirements. Similarly to the proposal of Hey et al. [9], we explore the
potential of a DL solution on the widely used PROMISE dataset. Differently
from Hey et al. [9], this is the first work in RE that proposes to use ZSL for the
classification task. While Hey et al. focus on addressing generalisability of the
classifier by means of transfer learning, our proposal: (1) avoids the need of a
tagged dataset, therefore addressing the well known problem of the scarcity
of annotated datasets in RE [1, 12, 40, 39]; (2) is inherently generalisable
to different projects, thus addressing the problem of decreasing performance
with unseen projects, which typically affects requirements classifiers [9, 16].
Concerning security requirements classification, our proposal overcomes the
problem of dataset annotation as Munaiah et al. [36]. However, their approach
is specific to security requirements, while our proposal is more generalisable
and adaptable to different classification tasks.

3. Zero-Shot Learning

Zero-short learning is an emerging learning paradigm that aims to perform
learning tasks without using training data. ZSL was originally used in image
processing to predict unseen images [41], but has recently been adapted to
many NLP tasks, including entity recognition [42], relation extraction [43],
document classification [44], and text classification [45]. The fundamental
idea of ZSL is that some previously trained language models are so accurate
that they can be directly applied to predicting new data without any training
[24, 25]. In this section, we first introduce the concepts of language models
and then focus on a specific ZSL approach—embedding-based ZSL—used in
our study.

3.1. Language Models and Transfer Learning
Language models (LMs) are deep neural networks for representing words

and sentences in natural language. These models are developed to support
NLP tasks such as language understanding and inference. Traditional LMs,
such as Skip-gram [46], Word2Vec [47], and GloVe [48], use static word
embeddings, i.e., fixed vector representations, to represent the words and
sentences in a text [46]. More recently, transformer-based LMs, such as
OpenAI GPT [49] and BERT [23], have made significant improvements over
the traditional LMs in language representation, as they can capture the
deep meaning of words and sentences through dynamic or contextual word
embeddings [50]. In other words, traditional LMs are static as they simply

7



expand the words in a sentence with related ones. For example, the sentence
“This is not about usability” is mapped onto a vector similar to “This is about
usability”, as the two sentences only differ in one word. By contrast, with
transformer-based LMs, the vector representations of these two sentences are
different, as they have opposite meanings. This characteristic naturally plays
a crucial role in requirements analysis, as requirements sentences often use a
very restricted vocabulary [39], but convey different meanings.

Today, pretrained LMs (PLMs) are widely available1. These PLMs are
typically pretrained for some generic NLP tasks using unlabeled data such
as app reviews and Wikipedia, available en masse through the Internet [51].
Such LMs can be adapted— i.e., transferred—to different downstream tasks
[52]. This concept is known as transfer learning [53].

There are two approaches for adapting a PLM: feature-based and fine-
tuning [54]. The feature-based approach uses the representations of a pre-
trained model as input features to train a downstream task model (e.g., ELMo
[55]), while the fine-tuning approach, adopted by OpenAI GPT and BERT,
involves modifying the weights and parameters in certain layers of the PLM so
as to enable the model to perform a specific NLP downstream task. Transfer
learning helps to reduce the cost and effort required for training new models,
and allows users to explore different NLP tasks with a relatively small amount
of task-specific labelled data.

3.2. Embedding-Based Zero-Shot Learning
There are two common approaches to ZSL: entailment-based and embedding-

based. The former treats the classification task as a natural language inference
(NLI) task [56], whereas the latter uses language representations to predict
if an input text is related to a given class label. More specifically, the
entailment-based approach treats an input text sequence as a premise and
the labels as a hypothesis, and then infers if the input text is an entailment
of any of the labels or not [56]. For example, given the sentence “the system
must be deployed on Azure” as a premise, and the label string “this is about
software architecture” as a hypothesis, the entailment-based classifier provides
a score which is then translated into one of the following outputs: entailment
(yes), contradiction (no), or undecided. This ZSL approach requires a large

1For example, a large number of PLMs are freely available at Hugging Face website:
https://huggingface.co/models.

8

https://huggingface.co/models


inference-based PLM2 that can interpret the entailment relation between an
input sequence and a label.

The embedding-based ZSL approach was introduced by Veeranna et
al. [57]. Under this approach, both class labels (e.g., “usability”, “security”)
and input text are represented as word sequences using word embeddings.
Text classification then involves computing the semantic similarity between
each label sequence and the text sequence. If the similarity score is greater
than a certain threshold, then the text can be classified into a specific category
represented by the label; otherwise, the text does not belong to that category.
Note that, since a label is treated as a sequence of words, it can contain any
number of words or their combinations.

Due to the simplicity of the embedding-based approach to ZSL, we have
applied it in our study. However, unlike the original proposal by Veeranna et
al. [57], who used the static word-embedding technique (Skip-gram) for word
representation, we take advantage of transformer-based LMs and use them to
produce contextual word-embeddings for both labels and input text. In so
doing, our embeddings not only capture syntactic and semantic characteristics
of the words, but also their context.

Another difference between our approach and the original one is that we
do not use similarity thresholds to determine the predicted label; instead,
we treat all text classification as a multi-label classification task and rank-
order all the labels with their similarity scores. For a binary or multi-class
classification task, we select the label with the highest similarity score as
the predicted label. For a multi-label task, we check the top-n labels. The
usage of similarity thresholds could help identify misclassifications, when the
highest similarity has a low value. However, selecting appropriate thresholds
is a task per se, which we do not consider in this paper.

The contextual word embedding-based approach adopted in our study
(Figure 1) can be explained using a simple example: Given a requirement
“CNG shall support mechanisms for secure authentication and communication
with the remote management system” and two class labels as “usability” and
“security”, we want to find out if the requirement should be classified into
the “usability” or the “security” class. ZSL performs this classification task
by taking the three word sequences (the requirement statement plus the two
labels) as input to a PLM to produce three contextual word embeddings. It

2Hereafter we simply call a “PLM” “LM”, as the LMs used in our study are PLMs.

9



Figure 1: An Illustration of the Contextual Word Embedding-Based ZSL Approach.

then compares the requirement with each label using the Cosine similarity
function3. The comparison will return n similarity scores, each score for a
label and the requirement pair. The pair with the highest similarity score
means that the requirement belongs to the category denoted by its associated
label. In our example, ZSL would return two similarity scores: 0.86 for the
“security” label and the given requirement, and 0.25 for the “usability” label
and the given requirement. Based on these scores, we deduce that the given
requirement is a security requirement.

The above example shows that the accuracy of the embedding-based ZSL
approach depends highly on the choice of 1) the labels and 2) the PLMs.
Whereas the above example only uses single word labels (i.e., “usability”
and “security”), our study will investigate different label configurations. For
example, by composing the usability label using a set of synonyms and
related words, such as instructive, easy, helpful, useful, learnable, explainable,
intuitive, and understandable, the LM can produce a more dynamic embedding
that can capture a range of connotations of the usability requirements.

4. Experimental Design

To evaluate the effectiveness of embedding-based ZSL for requirements
classification, our study aims to answer the following three research questions
(RQs):

RQ1: Which language model is more effective for which zero-shot require-
ments classification task?

3The Cosine similarity function is the standard way to compute semantic similarity
between a label and a text [47, 48, 58, 50].

10



RQ2: To what extent do different label configurations affect the effective-
ness of zero-shot requirements classification?

RQ3: How effective is zero-shot learning for requirements classification
compared to related supervised learning approaches?

We answer these questions through a series of experiments. In this section,
we describe our experimental design, consisting of five steps: selection of
datasets and tasks; selection of LMs; label configuration; performance measure
selection; technical setup of the experiments.

4.1. Dataset and Task Selection
The following two datasets are selected for our experiments:

• PROMISE NFR dataset [19], introduced by Cleland Huang et al.
[7]: This dataset contains 625 requirements, partitioned into 255 FRs,
and 370 NFRs. The NFRs are further partitioned into 11 different
classes, namely: A = Availability (21 requirements), L = Legal (13), LF
= Look and feel (38), MN = Maintainability (17), O = Operational (62),
PE = Performance (54), SC = Scalability (21), SE = Security (66), US
= Usability (67), FT = Fault tolerance (10), and PO = Portability (1).
These classes are unevenly distributed, ranging from 67 requirements
for Usability to one for Portability. Each one of the most frequent
classes—Usability, Security, Operational, and Performance—has more
than 50 examples, while the less frequent classes—Fault Tolerance, Legal,
Maintainability and Portability—have from one to 17 requirements each.
The dataset has been widely used in the literature, e.g., by Kurtanović
and Maalej [8], and by Hey et al. [9].

• SecReq dataset [27], introduced by Knauss et al. [34]: This dataset
contains 510 requirements, made of security-related requirements (187)
and non-security related requirements (323). The requirements were
collected from three projects: Common Electronic Purse (ePurse),
Customer Premises Network (CPN), and Global Platform Spec (GPS).
The dataset has been used, e.g., by Varenov et al. [38].

We select the following typical requirements classification tasks for our
study:

11



• Task FR/NFR—Binary Classification of FRs vs. NFRs. With this
task we aim to distinguish FRs from NFRs, assuming that a requirement
belongs to either a FR or a NFR class. We use the PROMISE NFR
dataset for this task.

• Task NFR—Binary, Multi-class and Multi-label Classification of NFRs.
This task aims to classify different types of NFRs based on the 10 differ-
ent classes of the PROMISE NFR dataset (we excluded the Portability
class as it only has one single sample in the dataset). We perform three
sub-tasks to understand how ZSL reacts to different ways of classifying
NFRs: 1) binary classification which discerns if a NFR belongs to a
particular class or not; 2) multi-class single-label classification (simply,
multi-class classification) which assigns a NFR to one of the top or all
NFR classes; 3) multi-class multi-label classification (simply, multi-label
classification), which allocates a NFR to one or more NFR classes.
The purpose of the third sub-task is to check if the top-n NFR classes
returned by the ZSL classifier correlate with the assigned NFR label in
the datatset.

• Task Security —Binary Classification of security related vs. non-
security related requirements. This task assumes that a requirement
belongs only to one of these two classes: security related and non-security
related. We use the SeqReq dataset for this task.

These datasets and tasks are selected for our experiments as they are
frequently considered in the literature (cf. Sect. 2) and will enable us to
compare our results directly with those obtained by previous work.

4.2. Language Model Selection
We select the following four BERT-based LMs for our study: two generic

and two domain-specific LMs. The two generic LMs are Sentence-BERT
(Sbert) and All-MiniLM-L12 (AllMini), which are freely avaiable at
the HuggingFace website4, a well-known NLP community repository that
provides open source pretrained LMs and other language resources. The two
domain-specific LMs, Bert4RE [59] and BERTOverflow (SObert) [60],
were developed for requirements and software engineering tasks.

4https://huggingface.co

12

https://huggingface.co


We focus on the BERT-based models, due to their popularity and suitabil-
ity for requirements classification [9]. Other LMs, such as GPT-2 and GPT-3
by OpenAI, and XLNet [61], have not been included in our study, as they are
not suitable for requirements classification. For example, GPT-2 and GPT-3
are mainly for language generation tasks, such as language translation and
text summarization [62], whereas XLN-Net is for NLP involving processing
long texts such as paragraphs [61]. Requirements classification typically deals
with texts at the sentence level. Below we introduce the four LMs used in
our experiments.

• Sbert: This generic LM5, proposed by Reimers and Gurevych [63], is
a fine-tuned version of BERT LM which aims to enrich the semantic
embedding representation, i.e., to aid in deriving semantically mean-
ingful sentence embeddings. The LM overcomes the drawbacks of the
original BERT models, which use word embeddings to generate sen-
tence embeddings and thus result in weak semantic representations of
sentences [63].

• AllMini: Introduced by Wang et al. [64] at Microsoft Research, this
LM6 aims to overcome the complexity of some LMs such as BERT
models which usually consist of millions of parameters and can be
challenging for pre-training and fine-tuning. AllMini reduces (or distils)
the size of the BERT models, while preserving their performance. The
main purpose of AllMini is to support sentence embeddings. In this
experiment, we use a version of AllMini (All-MiniLM v2), which was
fine-tuned using one billion sentence pairs. This LM is used for encoding
sentences and short paragraphs and is particularly efficient for semantic
search and sentence clustering tasks.

• Bert4RE: This is a RE domain-specific LM [59] which was trained on
the BERTbase model using more than seven million words from different
RE-related datasets, including the PROMISE NFR dataset, the PURE
dataset [39], and app reviews from Google Playstore and App Store.
Although Bert4RE aims to support a wide range of RE tasks, it has only
been tested on the task of identifying semantic roles from requirements

5huggingface.co/deepset/sentence_bert
6huggingface.co/sentence-transformers/all-MiniLM-L12-v2

13

huggingface.co/deepset/sentence_bert
huggingface.co/sentence-transformers/all-MiniLM-L12-v2


documents. As this is the only publicly available RE-specific LM, we
include it in our study. The BERT4RE LM is provided by the authors
in a Zenodo repository 7.

• SObert: This is a SE domain-specific LM [60] that was trained on 152
million sentences from Stack Overflow8. SObert9 shares the same
vision as Bert4RE, aiming to capture semantics of the SE terminology.
Although SObert has been trained to perform SE specific named entity
recognition (NER) tasks, it is among the few SE specific LMs that can
potentially be adopted for requirements classification10.

4.3. Label Creation and Configuration
Different label creation strategies are used to produce the labels for each

requirements class, described as follows.

• Original labels: These labels were derived from the original class
names used in the dataset without using any external knowledge. For
example for the task FR/NFR, the original label for the class FR is
“functional”, while for NFR we use two types of label: 1) the expression
“not about functional”11 and 2) a string including all the NFR class
names (“usability, security, availability, ...”).

• Expert curated labels: These labels were curated by the three authors
of this paper based on their understanding of the requirements classes.
The curation process took three steps: First, we independently provided
a set of terms to describe each requirements class, resulting in three sets
of terms per class. Second, we discussed our selections and produced a
set for each class together. Third, we performed preliminary trials on
a part of the requirements, to select the best subset of expert-curated
labels. For example, for the task FR/NFR, the label for the class FR

7zenodo.org/record/6354280
8https://stackoverflow.com/
9huggingface.co/jeniya/BERTOverflow

10Note that another LM for SE is CodeBERT [65], but it was trained on both natural
language and programming texts for specific tasks that involve code retrieval based on
natural language queries, which are not suitable for requirements classification.

11Preliminary experiments have shown that this term is more effective for ZSL with
respect to “non functional”.

14

zenodo.org/record/6354280
https://stackoverflow.com/
huggingface.co/jeniya/BERTOverflow


is composed of the terms “functional, system, behavior, shall, must”,
which are typically associated with FRs. These expert-curated labels
are expected to complement the aforementioned original labels as they
can better discriminate requirements classes.

• Word-embedding generated labels: These labels consisted of the
terms extracted and selected from word-embeddings learned from the
text of Wikipedia pages belonging to the Computer Science (CS) portal.
The idea was that the embeddings learned from the CS portal represent
the meaning of words in the CS domain, and are therefore more suitable
than a generic LM in providing similar terms for our CS context. We
adopted the embedding approach and code provided by Ferrari and
Esuli [66]. To agree on a label for each requirements class, we followed
these steps: (1) The top-n most similar terms were selected according
to the word-embeddings; (2) each of the three authors independently
annotated the terms with yes (indicating the term to be representative
for the class), no (indicating the term not to be representative for the
class), or maybe (indicating that the term could be representative for
the class); (3) each author revised their “maybe” answer as either yes
or no. (4) the final answer for each class was decided through majority
voting. After this procedure, the terms that were tagged with yes
were included in the label. To assess the degree of agreement between
the three authors in step (2), we evaluate the overall percentages of
agreement on each term (i.e., all annotators tagged the term with yes
or no), partial agreement (i.e., two out of the three annotators tagged
the term with yes or no), and disagreement (i.e., the three annotators
selected three different tags: yes, no, and maybe). In step (3), after
resolving the tags “maybe”, we consider the inter-rater agreement (IRR)
based on Krippendorff’s alpha test [67] as well as Fleiss’s Kappa [68].
These statistical tests are used to measure the level of agreement among
us. The interpretation of the test results follows the guidelines reported
in the Koch Kappa benchmark [69].

The above three label creation strategies are combined into different
configurations which are then adopted to each specific classification task to
produce task specific labels. Different label configurations and their associated
classification tasks are reported in Section 5 for each task.

15



4.4. Performance Measures
For each LM and its label configuration, we measure their performance on

each class with respect to a specific classification task using both unweighted
and weighted precision (P), recall (R), and F1-score (F1). The weighted P, R
and F1 (represented respectively as wP, wR and wF1) are calculated using
the distribution of the NFR classes in the dataset. Basically, we performed a
weighted sum of the different measures, where the weights are the percentages
of requirements in a certain class. These weighted results enable us to compare
our results with other studies in requirements classification [9, 8]. Instead,
the unweighted values, reported by each class, allow us to provide more-fine
grained analyses, especially for the multi-class and multi-label cases.

4.5. Experimental Setup
Based on the combinations of different LMs, different label selection

strategies, and different classification tasks, we have designed and conducted
more than 360 experiments. We set up each experiment as a combination of
one of the selected LMs, one specific label configuration and one specific task
for each dataset. We call each LM-Label combination as a ZSL classifier.
We use the Transformer API Python package12 to import and prepare the
four selected LMs with their transformer-like tokenizers, and we use the
torch.nn module13 in PyTorch to compute the cosine similarity score between
two tensors (i.e., the PyTorch tensor objects obtained from the contextual
representation by the selected LMs). The sklearn.metrics module [70] is used
to calculate the classification performance results in terms of the P, R and F1
scores.

5. Experimental Results

In this section, we first report our label configurations and the IRR
scores achieved from our label selection for the word-embedding strategy;
we then report the experimental results obtained from using the best label
configurations.

12huggingface.co/docs/transformers
13pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html

16

huggingface.co/docs/transformers
pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html


Table 1: Label configurations for Task FR/NFR.

Label Abbr. Label Configuration FR Label NFR Label
FR_A Original 1 “functional” “not about functional”

FR_B Expert curated “functional, system, behavior,
shall, or must”

“not about functional, system, behavior,
shall, or must”

FR_C
Word embedding
(selected from top 20 words) +
Expert curated

“functional, system, behavior,
shall, must, procedural, structural,
or characterize”

“not about functional, system, behavior,
shall, must, procedural, structural,
or characterize”

FR_D Original 2 “functional”
“usability, security, availability, legal, look & feel,
scalability, fault tolerance, performance,
operational, maintainability, or portability”

FR_E Expert curated +
Original 2

“functional, system, behavior,
shall, or must”

“usability, security, availability, legal, look & feel,
scalability, fault tolerance, performance,
operational, maintainability, or portability”

FR_F
Word embedding
(selected from top 20 words) +
Expert curated + Original 2

“functional, system, behavior,
shall, must, procedural, structural,
or characterize”

“usability, security, availability, legal, look & feel,
scalability, fault tolerance, performance,
operational, maintainability, or portability”

5.1. Task FR/NFR
For the FR/NFR task we perform a binary classification, which aims to

classify a requirement as either FR or NFR.

5.1.1. Label Configuration
The label configurations for the FR/NFR Task are reported in Table 1.

The labels consist of two groups, one group represents the FR class, and the
other the NFR class. Six configurations are used, which combine the different
strategies discussed in Sect. 4.3. In the selection of the word-embedding
generated terms, the annotation procedure produced the following statistics:
75% perfect agreement, 25 % partial agreement, and 0% disagreement. We
also computed the IRR, and we obtained 0.41 as Krippendorff’s alpha and a
Fleiss’ kappa score of 0.40, indicating a moderate agreement.

Concerning the other strategies, it is worth remarking the usage of “func-
tional” vs “not about functional” (strategy, FR_1 Original 1). This type of
strategy, in which the original label is negated with the prefix “not about” is
also applied for the NFR class label of FR_B and FR_C, and will be applied
also later on in this paper to represent the negation of a class in a binary
classification.

5.1.2. FR vs NFR Binary Classification
Table 2, column Total, reports the overall classification results for all

LMs and labelling strategy combinations. In bold, we highlight the best
combination for each LM.

The overall best combination is Sbert + FR_E, achieving a wF1 score
of 0.66, with wP = 0.71 and wR = 0.66. This indicates that the domain

17



Table 2: Classification results for FR and NFR classes on Task FR/NFR, obtained from
the best combination for each LM and label configuration.

ZSL Classifier Total FR (255) NFR (370)
wP wR wF1 P R F1 P R F1

Sbert + FR_E 0.71 0.66 0.66 0.55 0.82 0.66 0.82 0.54 0.65
AllMini + FR_D 0.63 0.59 0.59 0.50 0.71 0.58 0.72 0.50 0.59
Bert4RE + FR_C 0.58 0.56 0.57 0.47 0.65 0.54 0.67 0.50 0.57
SObert + FR_C 0.58 0.59 0.58 0.50 0.41 0.45 0.64 0.72 0.68

agnostic Sbert model, designed to provide a semantic-laden representation for
generic sentences, substantially outperforms the other models for this task.
Furthermore, the best labelling strategy for Sbert is FR_E, i.e., the one that
uses the Expert curated labels + Original labels, which identifies the NFRs
using the names of the NFR classes (Usability, Security, Availability, etc.).

Looking at Table 2, last six columns, we can see how the performance is
divided between FR and NFR classification. We see that the model tends to
have higher precision on NFR (P = 0.82), and higher recall on FR (R = 0.82).
This is an interesting result, as FRs are less frequent in the dataset (255 FR,
370 NFR), and one would expect to have the opposite result. Indeed, the
most frequent class is typically returned more frequently in ML approaches,
as it happens, e.g., for NoRBERT (cf. Hey et al. [9], Table III of their
paper). This phenomenon occurs also for the other best configurations of
LMs. This highlights a characterising element of ZSL: the performance does
not depend on the size of the dataset for each class, because no actual learning
is performed on the tagged data. A further increase in the accuracy on the
FR class could be potentially achieved with a more project-specific labelling
strategy for functional requirements (i.e., choosing terms that characterise
functional requirements in the specific project).

5.2. Task NFR
In this task, we performed three classification sub-tasks: a binary clas-

sification to detect a specific NFR category (e.g., “usability” vs “other”);
a multi-class classification to classify a requirement into one class out of a
set of NFR classes; a multi-label classification, in which each requirement
is associated with a ranked list of NFR classes, and we want to see if the
correct label is in the top-k classes. This last approach can be applied in a
semi-automatic classification context, in which the two top-k classes are shown
to the requirements analysts, and they are asked to select the correct one. For
all the sub-tasks, we evaluate the results: 1) considering only requirements in

18



Table 3: Label configurations for Usability and Security classes for Task NFR, binary
classification case.

Label Abbr. Label Configuration NFR Label “Other” Label
Usability
US_A Original 1 “usability” “not about usability”

US_B Expert curated “instructive, easy, helpful, useful,
learnable, explainable, affordable,
intuitive, or understandable”

“not about instructive, easy,
helpful, useful, learnable,
explainable, affordable,
intuitive, or understandable”

US_C Word embedding
(selected from top 20 words )

“accessibility, aesthetic, contextual,
experience, satisfaction, HCI, UX,
questionnaire, ease, or ergonomics”

”not about accessibility, aesthetic,
contextual, experience, satisfaction,
HCI, UX, questionnaire,
ease, or ergonomics”

US_D Word embedding
(selected from top 20 words) +
Original 2

“accessibility, aesthetic, contextual,
experience, satisfaction, HCI, UX,
questionnaire, ease, or ergonomics”

“security, performance, operational,
look feel, legal, fault tolerance,
maintainability, scalability, availability,
or portability”

US_E Word embedding
(selected from top 50 words)
+ Original 2

“accessibility, aesthetic, contextual,
experience, satisfaction, HCI, UX,
questionnaire, ease, ergonomics,
designer, evaluate, multimodal,
practitioner, prototyping, preference,
personalization, suitability, focus,
clarity, responsiveness, judgement,
feel, or helpful”

“security, performance, operational,
look feel, legal, fault tolerance,
maintainability, scalability, availability,
or portability”

Security
SE_A Original 1 ”security” “not about security”
SE_B Expert curated “security, authorization, or protection” “not about security, authorization, or protection”

SE_C Word embedding
(selected from top 20 words)

“vulnerability, securing, protecting,
protection, cybersecurity, assurance,
cyber, countermeasure, threat, privacy,
authentication, prevention, or confidentiality”

“not about vulnerability, securing, protecting,
protection, cybersecurity, assurance,
cyber, countermeasure, threat, privacy,
authentication, prevention, or confidentiality”

SE_D
Word embedding
(selected from top 20 words) +
Original 2

“vulnerability, securing, protecting,
protection, cybersecurity, assurance,
cyber, countermeasure, threat, privacy,
authentication, prevention, or confidentiality”

“usability, performance, operational,
look & feel, legal, fault & tolerance,
maintainability, scalability, availability, or portability”

SE_E
Word embedding
(selected from top 50 words) +
Original 2

“vulnerability, security, protection, cybersecurity,
assurance, countermeasure, threat, privacy,
authentication, prevention, confidentiality, trusted,
intrusion, compromise, safety, insecure, defensive,
breach, proactive, tampering, penetration, policy, phishing,
vulnerable, authorization, dependability, or certification”

“usability, performance, operational,
look & feel, legal, fault & tolerance,
maintainability, scalability, availability, or portability”

the largest classes, namely security, usability, performance and operational,
which include the majority of the requirements; 2) considering all the classes,
except the portability class, which includes one requirement only. For the
multi-label classification case, we consider k = 2 when only the largest classes
are considered, and k = 3 when all the classes are considered.

5.2.1. Label Configuration
Two labelling configurations are used for the three sub-tasks, one for the

binary case (Table 3), and the other for both the multi-class and multi-label
classification cases (Table 4).

Binary classification. For the binary case, we have 5 configurations for each
NFR class considered, i.e., each binary ZSL classifier. In Table 3 we report
only the labels for the usability and security classes, while the other labels

19



Table 4: Label configurations for the top 4 largest NFR classes (US, SE, O, and PE) for
the multi-class and multi-label classification sub-tasks in Task NFR.

Label Abbr. Label Configuration List of Labels
MultiNFR_A Original label [“usability”, “security”, “performance”, “operational”]

MultiNFR_B Expert curated [“instructive, easy, helpful, useful, learnable, explainable, affordable, intuitive, or understandable”,
“security, authorization, or protection”,
“periodic execution or efficacy performance”,
“working, running, connecting, interfacing, or operative environment”]

MultiNFR_C Word embedding
(selected from top 20 words)

[“accessibility, aesthetic, contextual, experience, satisfaction, HCI, UX,
questionnaire, ease, or ergonomics” ,
“vulnerability, securing. protecting, protection, cybersecurity, assurance,
cyber, countermeasure, threat, privacy, authentication, prevention, or confidentiality”,
“throughput, reliability, scalability, responsiveness, efficiency, workload, benchmark,
latency, speed, improvement, or accuracy”,
“environmental, organizational, coordination, systemic, or logistics”]

MultiNFR_D Word embedding
(selected from top 50 words)

[“accessibility, aesthetic, contextual, experience, satisfaction, HCI, UX, questionnaire, ease,
ergonomics, designer, evaluate, multimodal, practitioner, prototyping, preference, personalization,
suitability, focus, clarity, responsiveness, judgement, feel, or helpful”,
“vulnerability, security, protection, cybersecurity, assurance, countermeasure, threat,
privacy, authentication, prevention, confidentiality, trusted, intrusion, compromise, safety,
insecure, defensive, breach, proactive, tampering, penetration, policy, phishing, vulnerable,
authorization, dependability, or certification”,
“throughput, reliability, scalability, responsiveness, efficiency, workload,
benchmark, latency, speed, improvement, accuracy, achieve, tuning, bottleneck,
better, high, optimize, effectiveness, low, enhances, reducing, increased, quality, faster, or degrades",
“environmental, organizational, coordination, systemic, logistics, coordination, or automation”]

are reported in the online supplementary materials 14. The strategies are
analogous to those already discussed for the FR/NFR Task. The only main
difference is the usage of the top-50 words from the word embeddings, besides
the top-20. We performed some preliminary experiments and saw that the
list of similar words for the NFR class names included relevant words also
beyond the top-20, and therefore we considered it reasonable to extend the
list of terms to be included in the labels. This phenomenon was not observed
for the previous task.

Concerning the agreement in the word selection (top-50) we have the
following statistics: 52% perfect, 44 % partial, and 2% disagreement. We
obtained a Krippendorff’s alpha rate of 0.45 and 0.53 at macro and micro
level, respectively, and a Fleiss’s kappa of 0.42 and 0.52 at macro and micro
level, respectively (moderate agreement).

Multi-class and multi-label classification. For these tasks, we have a list of
labels for each configuration, cf. Table 4. The list is represented with squared
brackets, the elements in the list are separated by commas, and each element
is a label, expressed between quotes. In the table, each label in the list
is associated to one of the top-4 largest classes, namely usability, security,
performance and operational NFR. The label configurations considering all

14https://github.com/waadalhoshan/ZSL4REQ/tree/main/Appendix

20

https://github.com/waadalhoshan/ZSL4REQ/tree/main/Appendix


Table 5: Binary classification results of the top 4 NFR classes in Task NFR.

NFR class (249) ZSL classifier Total NFR class “Other” class
wP wR wF1 P R F1 P R F1

US (67) Sbert + US_E 0.81 0.82 0.80 0.73 0.49 0.59 0.83 0.93 0.88
SE (66) AllMini + SE_D 0.84 0.84 0.84 0.67 0.73 0.70 0.90 0.87 0.89
O (62) Bert4RE + O_C 0.72 0.73 0.72 0.46 0.37 0.41 0.80 0.86 0.83
PE (54) Sbert + PE_E 0.78 0.78 0.78 0.50 0.46 0.48 0.85 0.87 0.86
PE (54) AllMini + PE_B 0.80 0.70 0.78 0.47 0.63 0.54 0.89 0.81 0.84

classes are reported in GitHub14. We did not use combinations of labelling
strategies for these cases, given the extensive number of experiments, and the
exploratory nature of the study.

5.2.2. NFR Binary Classification
Table 5 reports the classification results for the 4 largest NFR classes.

The overall results indicate acceptable performance rates, with wF1 > 0.71
for all classes.

The highest wF1 score of 0.84 is achieved for the security class, with
AllMini + SE_D, which uses the word embedding selected labels (top-20)
for the security class, and the original NFR labels for the “Other” class.
Following that is the usability class, with wF1 = 0.80, using Sbert + US_E,
which includes the word embedding selected labels (top-50) for the usability
class, and the original labels for the “Other” class. This suggests that, for this
task and for highly represented classes such as security and usability, generic
LMs combined with word-embedding terms as labels appear to be the most
effective configuration. It is also worth noting that this binary classification
task leads to better results with respect to the FR vs NFR task (best wF1 =
84 vs wF1 =0.66), and the best results are obtained with more complex label
configurations. This means that, when using ZSL, it is preferable to select
relevant NFR classes and perform binary classification on them, rather than
classifying FRs vs NFRs. Furthermore, while for the task FR/NFR simpler
label selection strategies are preferable, more complex labels are appropriate
for the NFR binary task.

Table 5, last six columns, considers P, R, and F1 for each class. We see
that all the best classifiers tend to achieve higher performance on the “Other”
class (best F1 for NFR class 0.70, vs 0.89 for the “Other” class). This suggests
that the ZSL binary classifier encounters some difficulty in associating the
requirements to the specific labels, despite the extensive set of terms used. A
more accurate selection of terms, or the usage of terms directly coming from

21



Table 6: Best performance results of binary classification of all 10 NFR classes in Task
NFR. The results are different with respect to the binary classification using solely four
classes because more requirements are involved in the classification, thus leading to lower
performance.

NFR class (369) ZSL classifier Total NFR class “Other” class
wP wR wF1 P R F1 P R F1

US (67) Sbert + US_E 0.80 0.79 0.80 0.44 0.49 0.46 0.88 0.86 0.87
SE (66) AllMini + SE_D 0.87 0.85 0.85 0.61 0.33 0.43 0.87 0.95 0.91
O (62) Bert4RE + O_C 0.78 0.77 0.77 0.32 0.37 0.35 0.87 0.85 0.86
PE (54) Sbert + PE_E 0.82 0.78 0.80 0.33 0.46 0.38 0.90 0.84 0.87
LF (38) Sbert + LF_D 0.85 0.76 0.80 0.18 0.21 0.20 0.91 0.89 0.90
A (21) SObert + A_D 0.90 0.70 0.78 0.10 0.43 0.14 0.95 0.72 0.82
SC (21) AllMini + SC_E 0.92 0.74 0.81 0.13 0.62 0.21 0.97 0.75 0.85
MN (17) AllMini + MN_E 0.93 0.86 0.89 0.16 0.47 0.24 0.97 0.88 0.92
L (13) AllMini + L_E 0.95 0.84 0.88 0.11 0.54 0.19 0.98 0.85 0.91
FT (10) AllMini + FT_E 0.96 0.86 0.91 0.10 0.50 0.17 0.98 0.88 0.93

the requirements themselves15, could overcome this issue.
Finally, Table 6 lists the top performance rates considering all classes, and

the entire set of requirements. Comparing these results with Table 5, we see
that there is no substantial decrease in terms of performance for the largest
classes, e.g., US still achieves wF1 = 0.80, while SE achieves wF1 = 0.85,
which is even higher than wF1 = 0.84 in Table 5. However, the results are all
biased towards the ‘Other” class, since, even in the best case, F1 for the NFR
class is lower than 0.50. This problem was not so evident in Table 5, at least
for the US and SE classes, where F1 is still acceptable also for the NFR class.
We can therefore conclude that, in the case of requirements belonging to
many different classes, a binary ZSL classification leads to poor classification
results, with the selected labelling strategies.

5.2.3. NFR Multi-class Classification
Table 7 reports the multi-class classification results for the 4 largest NFR

classes. For this case, and for the multi-label case, we do not report the
weighted measures for the sake of space. However, we remark that the results
by class enable a more fine-grained analysis. Weighted F1 is presented in
Table 13 to facilitate comparison with other works. We see that, compared
to the binary classification, results are substantially lower, although still

15We did not consider this option, as it would have biased the classification. However, it
is a viable choice in practical contexts.

22



Table 7: Multi-class classification results for top 4 NFR classes.

ZSL Classifier US SE O PE
P R F1 P R F1 P R F1 P R F1

Sbert + MultiNFR_A 0.44 0.52 0.48 0.57 0.70 0.63 0.47 0.45 0.46 0.43 0.22 0.29
Sbert + MultiNFR_B 0.73 0.43 0.54 0.69 0.64 0.66 0.53 0.71 0.61 0.48 0.57 0.52
Sbert + MultiNFR_C 0.62 0.31 0.42 0.54 0.62 0.58 0.59 0.21 0.31 0.34 0.74 0.47
Sbert + MultiNFR_D 0.69 0.40 0.51 0.65 0.53 0.58 0.38 0.23 0.47 0.46 0.53 0.58
AllMini + MultiNFR_A 0.67 0.36 0.47 0.66 0.92 0.77 0.33 0.32 0.33 0.45 0.50 0.47
AllMini + MultiNFR_B 0.77 0.36 0.49 0.63 0.94 0.76 0.64 0.64 0.64 0.59 0.70 0.64
AllMini + MultiNFR_C 0.54 0.45 0.49 0.76 0.67 0.71 0.36 0.37 0.37 0.41 0.54 0.47
AllMini + MultiNFR_D 0.34 0.43 0.38 0.88 0.33 0.48 0.25 0.42 0.31 0.47 0.28 0.35
Bert4RE + MultiNFR_A 0.32 0.09 0.14 0.18 0.11 0.13 0.33 0.02 0.03 0.19 0.67 0.30
Bert4RE + MultiNFR_B 0.33 0.60 0.42 0.00 0.00 0.00 0.28 0.53 0.37 0.13 0.02 0.03
Bert4RE + MultiNFR_C 0.33 0.06 0.10 0.18 0.08 0.11 0.24 0.68 0.36 0.25 0.17 0.20
Bert4RE + MultiNFR_D 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.34 0.28 0.25 0.04 0.06
SObert + MultiNFR_A 0.00 0.00 0.00 0.60 0.05 0.08 0.22 0.71 0.33 0.12 0.09 0.10
SObert + MultiNFR_B 0.30 0.81 0.44 0.00 0.00 0.00 0.29 0.16 0.21 0.08 0.06 0.07
SObert + MultiNFR_C 0.31 0.36 0.33 0.24 0.21 0.22 0.31 0.56 0.40 0.00 0.00 0.00
SObert + MultiNFR_D 0.20 0.04 0.07 0.00 0.00 0.00 0.24 0.90 0.38 0.00 0.00 0.00

acceptable for SE (F1 = 0.76), O (F1 = 0.64) and PE (F1 = 0.64). In the
majority of the cases, the best results are obtained again with the domain-
generic LMs, and using MultiNFR_A or MultiNFR_B as labels. These are
the shortest labels, which do not use the word embedding strategies. This
result is the opposite of what was observed for binary classification for NFR.
We argue therefore that, in a multi-class classification setting, longer and
more informative labels can lead to some possible overlapping between the
represented meaning of each class. Instead, in a binary classification setting,
more informative labels, i.e., using word embeddings, appear to be more
effective.

For the multi-class classification results for all the NFR classes (Table
reported in supplementary material), the performance in terms of F1 remains
acceptable only for SE class (F1= 0.69), while for the other classes poor
results are obtained.

5.2.4. NFR Multi-label Classification
Table 8 reports the multi-label classification results for the 4 largest NFR

classes, considering the top-2 labels returned by the classifier. In other terms,
when the right label is returned by the classifier in the top-2 labels, we consider
it a true positive. We see that in this case the performance substantially
increases with respect to the multi-class classification case in Table 7, e.g.,
reaching F1 = 0.94 for US requirements, 0.89 for SE, 0.83 for O, and 0.89
for PE. This suggests that the multi-label classification strategy may be the

23



Table 8: Multi-label classification results for 4 largest NFR classes—Top 2 results—249
requirements from the PROMISE dataset.

ZSL Classifier US SE O PE
P R F1 P R F1 P R F1 P R F1

Sbert + MultiNFR_A 0.60 0.67 0.60 0.74 0.84 0.79 0.72 0.71 0.72 0.68 0.46 0.55
Sbert + MultiNFR_B 0.93 0.60 0.73 0.86 0.77 0.82 0.71 0.92 0.80 0.73 0.91 0.81
Sbert + MultiNFR_C 0.84 0.73 0.78 0.76 0.79 0.78 0.81 0.48 0.60 0.57 0.91 0.70
Sbert + MultiNFR_D 0.92 0.70 0.80 0.83 0.76 0.79 0.62 0.85 0.72 0.81 0.80 0.80
AllMini + MultiNFR_A 0.82 0.60 0.69 0.79 1.00 0.88 0.62 0.58 0.60 0.69 0.74 0.71
AllMini + MultiNFR_B 0.93 0.58 0.72 0.81 0.98 0.89 0.80 0.84 0.82 0.82 0.94 0.88
AllMini + MultiNFR_C 0.63 0.70 0.66 0.94 0.73 0.82 0.63 0.63 0.63 0.64 0.72 0.68
AllMini + MultiNFR_D 0.63 0.88 0.74 0.96 0.74 0.84 0.61 0.58 0.60 0.74 0.63 0.68
Bert4RE + MultiNFR_A 0.84 0.70 0.76 0.39 0.20 0.26 0.96 0.44 0.60 0.32 0.78 0.45
Bert4RE + MultiNFR_B 0.41 0.67 0.51 1.00 0.08 0.14 0.45 0.87 0.60 0.93 0.24 0.38
Bert4RE + MultiNFR_C 0.98 0.76 0.86 0.28 0.11 0.15 0.30 0.73 0.45 0.53 0.31 0.40
Bert4RE + MultiNFR_D 1.00 0.12 0.21 0.00 0.00 0.00 0.31 0.95 0.47 0.90 0.87 0.89
SObert + MultiNFR_A 0.00 0.00 0.00 1.00 0.44 0.61 0.36 0.98 0.53 0.57 0.54 0.55
SObert + MultiNFR_B 0.39 0.85 0.54 1.00 0.05 0.09 0.75 0.92 0.83 0.29 0.13 0.18
SObert + MultiNFR_C 0.71 0.10 0.83 0.46 0.38 0.42 0.43 0.66 0.52 1.00 0.09 0.17
SObert + MultiNFR_E 0.89 1.00 0.94 0.00 0.00 0.00 0.34 0.92 0.49 1.00 0.06 0.11

24



Table 9: Label configurations for Task Security.

Label Abbr. Label Configuration Security Non-Security
Sec_A Original label “Security” “not about security”
Sec_B Expert curated “Security, authorization, or protection” “not about security, authorization, or protection”

Sec_C Word embedding
(selected from top 20 words)

“vulnerability, securing. protecting,
protection, cybersecurity, assurance,
cyber, countermeasure,
threat, privacy, authentication,
prevention, or confidentiality”

“not about vulnerability, securing. protecting,
protection, cybersecurity, assurance, cyber,
countermeasure, threat, privacy, authentication,
prevention, or confidentiality”

Sec_D Word embedding
(selected from top 50 words)

“vulnerability, security, protection,
cybersecurity, assurance, countermeasure,
threat, privacy, authentication,
prevention, confidentiality, trusted,
intrusion, compromise, safety, insecure,
defensive, breach, proactive, tampering,
penetration, policy, phishing,
vulnerable, authorization, dependability,
or certification”

“not about vulnerability, security, protection,
cybersecurity, assurance, countermeasure,
threat, privacy, authentication,
prevention, confidentiality,
trusted, intrusion, compromise, safety,
insecure, defensive, breach,
proactive, tampering, penetration,
policy, phishing, vulnerable,
authorization, dependability, or certification”

most effective when dealing with NFR classification.
Looking at the results based on the LMs, we do not have a clear pattern,

and each LM appears to be suitable for a certain requirement type. Concerning
labels, simple configurations as MultiNFR_A and MultiNFR_B appears to
be the most effective for all classes, except US, for which the embedding-based
labels are more effective. This could be due to a better, and more clear-cut
characterisation of US requirements with respect to other types.

Performance is similar in case of the multi-label classification results for
all the NFR classes (Table reported in supplementary material), considering
the top-3 results—i.e., if the right label is returned among the top-3 labels, we
consider it a true positive. The performance remain rather high, frequently
with F1 above 0.90 for the best configurations. Overall, we can say that ZSL
in the multi-label classification context appears to be effective also in case of
NFRs belonging to many classes.

5.3. Task Security
5.3.1. Security Label Configuration

The labelling of the security class (Table 9) is similar to the labels groups
related to security as an NFR class in the binary classification task (cf. 5.2.1).
The agreement results obtained for the word-embedding of the term “security”
are the following: 50% perfect, 48 % partial, and 2% disagreement. For IRR
we obtained 0.46 as Krippendorff’s alpha and a Fleiss’ kappa score of 0.45,
indicating a moderate agreement.

25



Table 10: Binary classification results for Task Security. All the requirements are considered
together in one single SeqReq dataset.

ZSL classifier Total Security (187) Non-Security (323)
wP wR wF1 P R F1 P R F1

Sbert + Sec_C 0.58 0.41 0.31 0.37 0.92 0.53 0.70 0.11 0.19
AllMini + Sec_B 0.68 0.65 0.68 0.52 0.67 0.58 0.77 0.63 0.70
Bert4RE + Sec_A 0.52 0.53 0.52 0.34 0.30 0.32 0.62 0.66 0.64
SObert + Sec_C 0.56 0.54 0.55 0.39 0.51 0.45 0.66 0.55 0.60

5.3.2. Security Binary Classification
Table 10, column Total, reports the results for the Security task, consid-

ering all the requirements in the three datasets. The best performance is
achieved by AllMini + Sec_B, with a wF1 score of 0.66, with wP = 0.68
and wR = 0.65. The generic LM, AllMini, thus achieves best results. On the
other hand, the other generic model, Sbert, achieves the worst results (wF1
= 0.31), thus suggesting that generic models are not necessarily better for
this specific task. The best set of labels, Sec_B, is the expert’s curated one,
which includes a limited set of three security-related words. This suggests
that a limited number of well-selected terms is sufficient to identify security
requirements in this dataset.

Table 10, last six columns, shows the performance for the two classes.
We see that better performance in terms of F1 is achieved for Non-Security
requirements (F1 = 0.70 vs 0.58), using AllMini + Sec_B, i.e., the best
configuration. Looking in more detail, the best recall (R = 0.92) is obtained by
Sbert + Sec_D. Therefore, if one seeks for a better ability to identify security
requirements, i.e., high recall on this set, this configuration—though having
the worst overall performance—should be preferred. This is an important
observation, since for many requirement tasks, including this one, high recall
is more important than high precision, as remarked by Berry [71]—if one
searches for security requirements, then one wants as less false negatives as
possible.

Table 11 reports the results for the Security task, divided by each dataset
included in SecReq. Best results are achieved for CPN (wF1 = 0.78), while
worst results are for GPS (wF1 = 0.63). This could be due to the specific
characteristics of the datasets. In some cases, security and non-security
requirements in GPS are expressed with very similar sentences and are likely
to be classified similarly though they belong to different classes (e.g., class
Security: The Load File Data Block Hash is used in the computation of the

26



Table 11: Binary classification results for Task Security. The results are obtained from
each of the three projects in SecReq - CPN, GPS and ePurse.

ZSL Classifier wP wR wF1
CPN

Sbert + Sec_C 0.85 0.30 0.25
AllMini + Sec_B 0.79 0.77 0.78
Bert4RE + Sec_B 0.65 0.80 0.72
SObert + Sec_A 0.65 0.80 0.72
SObert + Sec_B 0.65 0.80 0.72

GPS
Sbert+ Sec_D 0.67 0.40 0.30
AllMini + Sec_B 0.62 0.61 0.61
Bert4RE + Sec_C 0.59 0.53 0.54
SObert + Sec_C 0.63 0.63 0.63

ePurse
Sbert + Sec_D 0.59 0.64 0.60
AllMini + Sec_A 0.69 0.70 0.69
Bert4RE + Sec_A 0.67 0.44 0.40
SObert + Sec_D 0.66 0.69 0.62

Load File Data Block Signature vs Non-Security: The Load File Data Block
Hash is used in the computation of The Load Token).

6. Research Findings

Based on the above detailed analysis of the experimental results, in this
section we answer our three RQs one by one. Additionally, we also offer some
general observations based on our experiments.

6.1. Best Language Model (RQ1)
• For Task FR/NFR, the best overall performance is obtained with Sbert,

which has achieved a wF1 score of 0.66 (with wP = 0.71 and wR =
0.66). This indicates that the generic Sbert model, although designed
to provide a semantic representation for generic sentences, substantially
outperforms the other LMs (including two domain-specific LMs) for
this task.

• For Task NFR, the performance of LMs in each sub-task are as follows:

– For binary classification of NFR, the generic AllMini model out-
performs the other three LMs, particularly on the SE class.

27



– For multi-class classification of NFR, in the majority of the cases,
the best results are obtained by the generic LMs (Sbert and
AllMini).

– For multi-label classification of NFR, there is no clear winner as
each LM appears to be suitable for a certain requirement class.

• For Task Security, the best overall performer is the generic AllMini
model; on the other hand, the generic Sbert model achieves the worst
results (wF1 = 0.31). This suggests that generic models are not neces-
sarily better for this specific task and a careful selection of the best LM
is key to the success of ZSL.

Based on the above findings, we can state that:

 In the majority of the cases, generic LMs perform better than domain-
specific LMs on requirements classification tasks. When applying ZSL in
practice one does not need to define domain- or project-specific LMs and
can rely on larger ones that are freely available.

Our findings thus contrast the claims that generic LMs do not perform
particularly well on domain-specific tasks, as they cannot recognize highly
domain-specific vocabulary [72, 73, 74, 10, 59].

Based on our experimental results we can conclude that generic LMs, being
trained on generic data, are more generalizable and adaptable—the actual
sense of being generic; by contrast, domain-specific LMs, being trained on
domain-specific data, are less generalizable and adaptable,—the actual sense of
being specific. Future developments of LMs, we posit, should not differentiate
between generic vs. specific, but rather, should focus on continual learning on
new tasks and new data [53]. As LMs retain and accumulate knowledge across
many tasks, they will become more adaptable to new tasks, domain-specific
or otherwise.

6.2. Best Label Configuration (RQ2)
• For the Task FR/NFR, the best label configuration is FR_E for Sbert.

This configuration is composed of the Expert Curated and the Original
labels, which identify the NFRs using the names of the NFR classes
(Usability, Security, Availability, etc.). The result shows that expert
knowledge of NFR characteristics plays an important role on label
configuration for this task.

28



• For Task NFR, we show the performance of label configurations for each
sub-task as follows:

– For binary classification of NFR, the best label configuration is
SE_D for AllMini, which uses the word embedding with top-20
words for the SE class, and the original NFR labels for the “Other”
class.

– For multi-class classification of NFR, in the majority of the cases,
the best label configurations for individual NFR classes are Multi-
NFR_A (Original label) and MultiNFR_B (Expert curated label)
for Sbert and AllMini.

– For multi-label classification of NFR, simple label configurations
based on either original label (MultiNFR_A) and expert curated
label (MultiNFR_B) appear to be most effective for all classes,
except US, for which the embedding-based labels (MultiNFR_D
and MultiNFR_E) are more effective.

• For Task Security, the best label configuration is Sec_B, curated by
expert. Although this label only contains three security-related words,
it has shown to be effective in identifying security requirements.

Based on the above findings, we can conclude that:

 Label selection has a relevant impact on the performance of ZSL
classification. In general, simple label configurations with the original
class names or with a combination of original and expert-curated labels
appear to be more effective than more complex word-embedding generated
labels.

 The above conclusion implies that, when applying ZSL in practice, for
a given requirements classification scheme, domain experts can manually
select their own labels for the classes, without using word embeddings.
Furthermore, they can also consider project-specific terms that can bet-
ter distinguish between classes. Preliminary trials to select the best
configuration for the problem at hand are also recommended.

29



Table 12: Binary classification results obtained from Task FR/NFR compared to the results
obtained by K&M [8] and NoRBERT [9].

Approach (model, train/test) FR (255) NFR (370) wF1P R F1 P R F1
K&M (word features, 10-fold) 0.92 0.93 0.93 0.93 0.92 0.92 0.92
K&M (best 100 features, 10-fold) 0.86 0.51 0.63 0.65 0.92 0.76 0.71
K&M (best 500 features, 10-fold) 0.92 0.79 0.85 0.82 0.93 0.87 0.86
NoRBERT (base+ep.16 16, 10-fold) 0.89 0.88 0.89 0.92 0.93 0.92 0.91
NoRBERT (large+ep.10+OS, 10-fold) 0.92 0.88 0.90 0.92 0.95 0.93 0.92
ZSL(Sbert + FR_E, all) 0.55 0.82 0.66 0.82 0.54 0.65 0.65
ZSL(AllMini + FR_D, all) 0.50 0.71 0.58 0.72 0.50 0.59 0.59
ZSL(Bert4RE + FR_D, all) 0.47 0.65 0.54 0.67 0.50 0.57 0.56
ZSL(SObert + FR_C, all) 0.50 0.41 0.45 0.64 0.72 0.68 0.59


An exception is the binary classification of NFRs, where word-embeddings

enable better performance. In these cases, more complex label configura-
tions based on word embeddings should be preferred.

Selecting the most effective label configuration is a difficult task and
requires testing many different labels by trial and error. Our study shows
how we have handcrafted each label using one of the aforementioned three
strategies. However, more work is needed in search for a more systematic
approach to label configuration. We argue that expert knowledge of RE,
both domain-specific and possibly project-specific, plays an important part
in choosing the correct terms for the labels.

6.3. Effectiveness of ZSL for RE (RQ3)
Here we address the effectiveness of ZSL by first comparing our best ZSL

results to the state-of-the-art results achieved by Kurtanovic̀ and Maleej
(K&M) [8], Hey et al. (NoRBERT) [9] and Knauss et al. (Knauss) [34],
with respect to the same classification tasks (i.e., binary and multi-class
classification). Second, we discuss our best ZSL results obtained from multi-
label classification with state-of-the-art results and provide our insight into
ZSL classification.

30



Table 13: Binary and multi-class classification results obtained from Task NFR compared
to the results obtained by K&M and NoRBERT. Only top 4 NFR classes are considered.

Approach (parameters) US (67) SE (66) O (62) PE (54) wF1P R F1 P R F1 P R F1 P R F1
NFR Binary Classification

10-fold
cross val.
on Top-4
NFR (249)

K&M(w/o features selection) 0.81 0.85 0.82 0.91 0.90 0.88 0.72 0.75 0.73 0.93 0.90 0.90 0.83
K&M (best 50 features) 0.70 0.57 0.61 0.81 0.77 0.74 0.78 0.50 0.57 0.87 0.57 0.67 0.65
K&M (best 500 features) 0.80 0.71 0.74 0.74 0.81 0.74 0.72 0.73 0.71 0.87 0.81 0.82 0.75
NoRBERT(base + ep.10) 0.81 0.69 0.74 0.93 0.82 0.87 0.80 0.53 0.64 0.88 0.80 0.83 0.77
NoRBERT(base + ep.10 - OS17) 0.78 0.70 0.74 0.90 0.86 0.88 0.88 0.71 0.79 0.88 0.80 0.83 0.81
NoRBERT(large+OS+ES18) 0.89 0.70 0.78 0.89 0.89 0.89 0.90 0.71 0.79 0.88 0.81 0.85 0.83

Test Top-4
NFR (249)
w/o training

ZSL(Sbert + (NFR)_D) 0.77 0.78 0.78 0.72 0.71 0.72 0.68 0.72 0.70 0.80 0.67 0.70 0.72
ZSL(Sbert + (NFR)_E) 0.81 0.82 0.80 0.76 0.78 0.75 0.68 0.63 0.65 0.78 0.78 0.78 0.74
ZSL(AllMini + (NFR)_B) 0.54 0.35 0.35 0.73 0.73 0.73 0.71 0.65 0.67 0.80 0.70 0.78 0.62
ZSL(AllMini + (NFR)_D) 0.75 0.75 0.75 0.84 0.84 0.84 0.65 0.55 0.58 0.81 0.69 0.71 0.72
ZSL(BERT4RE + (NFR)_C) 0.52 0.43 0.46 0.62 0.65 0.63 0.72 0.73 0.72 0.68 0.41 0.43 0.56
ZSL(BERT4RE + (NFR)_D) 0.54 0.42 0.45 0.56 0.70 0.61 0.63 0.41 0.42 0.60 0.46 0.51 0.50
ZSL(SObert + (NFR)_B) 0.55 0.51 0.53 0.81 0.74 0.63 0.65 0.73 0.67 0.61 0.78 0.68 0.62
ZSL(SObert + (NFR)_C) 0.51 0.32 0.30 0.66 0.53 0.56 0.71 0.74 0.71 0.61 0.55 0.58 0.53

NFR Multi-class Classification

10-fold
cross val.
on Top-4
NFR (249)

K&M(word features) 0.65 0.82 0.70 0.81 0.77 0.75 0.81 0.86 0.82 0.86 0.81 0.80 0.76
K&M(best 50 features) 0.49 0.68 0.55 0.60 0.50 0.39 0.42 0.47 0.33 0.85 0.53 0.63 0.47
K&M(best 500 features) 0.70 0.66 0.64 0.64 0.53 0.56 0.47 0.62 0.51 0.81 0.74 0.76 0.61
NoRBERT(base+ep.32) 0.78 0.84 0.81 0.89 0.85 0.87 0.79 0.73 0.76 0.88 0.78 0.82 0.82
NoRBERT(large+ep.32) 0.86 0.82 0.84 0.91 0.91 0.91 0.83 0.71 0.77 0.90 0.81 0.85 0.84

Test Top-4
NFR (249)
w/o training

ZSL(Sbert + MultiNFR_B) 0.73 0.43 0.54 0.69 0.64 0.66 0.53 0.71 0.61 0.48 0.57 0.52 0.58
ZSL(Sbert + MultiNFR_D) 0.69 0.40 0.51 0.65 0.53 0.58 0.38 0.23 0.47 0.46 0.53 0.58 0.53
ZSL(AllMini + MultiNFR_A) 0.67 0.36 0.47 0.66 0.92 0.77 0.33 0.32 0.33 0.45 0.50 0.47 0.51
ZSL(AllMini + MultiNFR_B) 0.77 0.36 0.49 0.63 0.94 0.76 0.64 0.64 0.64 0.59 0.70 0.64 0.63
ZSL(AllMini + MultiNFR_C) 0.54 0.45 0.49 0.76 0.67 0.71 0.36 0.37 0.37 0.41 0.54 0.47 0.51
ZSL(BERT4RE + MultiNFR_A) 0.32 0.09 0.14 0.18 0.11 0.13 0.33 0.02 0.03 0.19 0.67 0.30 0.14
ZSL(BERT4RE + MultiNFR_B) 0.33 0.60 0.42 0.00 0.00 0.00 0.28 0.53 0.37 0.13 0.02 0.03 0.21
ZSL(BERT4RE + MultiNFR_D) 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.34 0.38 0.25 0.04 0.06 0.11
ZSL(SObert + MultiNFR_A) 0.00 0.00 0.00 0.60 0.05 0.08 0.22 0.71 0.33 0.12 0.09 0.10 0.13
ZSL(SObert + MultiNFR_B) 0.30 0.81 0.44 0.00 0.00 0.00 0.29 0.16 0.21 0.08 0.06 0.07 0.19
ZSL(SObert + MultiNFR_C) 0.31 0.36 0.33 0.24 0.21 0.22 0.31 0.56 0.40 0.00 0.00 0.00 0.25

• Binary Classification of FR vs. NFR: Table 12 shows that both K&M
and NoRBERT outperform all our ZSL classifiers. In particular, on
FR, K&M produces the best results with a SVM model that applies
all the word features in the PROMISE dataset (i.e., without feature
selection), achieving F1 = 0.93. On NFR, NoRBERT produces the
best results with the fine-tuned BERTlarge model, with F1 = 0.93. By
contrast, the best ZSL classifier (with Sbert LM) has only managed
to achieve F1 = 0.66 on FR and F1 = 0.65 on NFR. On average, the
performance of the best ZSL classifier is 0.27 lower than that of K&M
and NoRBERT. Clearly, these results show that the ZSL approach is

16ep. refers to the number of passes of the training dataset during LM learning process.
17OS refers to Oversampling technique for randomly selecting data from the minority

class by adding them to the training dataset Sampling
18ES refers Early Stopping, a feature that enables the model training to be automatically

stopped when a selected metric (e.g., F1) has stopped improving

31



Table 14: Comparison between the classification results obtained by Knauss et al. (2011)
and Task Security divided by the subset of SeqReq dataset: CPN, GPS, and ePurse.
Bold values indicate the best performance results. Underlined values refer to the best
performance rates with the ZSL classifier.

Approach (parameters) wP wR wF1
SeqReq (510)

10-fold cross val.
on SeqReq (510) Knauss et al. (Bayesian classifier) 0.79 0.91 0.84

Test SeqReq (510)
w/o training

ZSL(Sbert + Labels_Sec_C) 0.58 0.41 0.31
ZSL(AllMini + Labels_Sec_B) 0.68 0.65 0.66
ZSL(BERT4RE + Labels_Sec_A) 0.52 0.53 0.52
ZSL(SObert + Labels_Sec_C) 0.56 0.54 0.55

CPN (210)
Train on ePurse (124) Knauss et al. (Bayesian classifier) 0.23 0.54 0.33
Train on GPS (176) Knauss et al. (Bayesian classifier) 0.29 0.65 0.40
Train on ePurse + GPS (300) Knauss et al. (Bayesian classifier) 0.26 0.85 0.40
Test CPN (210) w/o training ZSL(AllMini + Labels_Sec_B) 0.79 0.77 0.78

GPS (176)
Train on ePurse (124) Knauss et al. (Bayesian classifier) 0.43 0.85 0.57
Train on CPN (210) Knauss et al. (Bayesian classifier) 0.29 0.19 0.23
Train on ePurse + CPN (334) Knauss et al. (Bayesian classifier) 0.51 0.56 0.53
Test GPS (176)
w/o training ZSL(SObert + Labels_Sec_C) 0.63 0.63 0.63

ePurse (124)
Train on CPN (210) Knauss et al. (Bayesian classifier) 0.99 0.33 0.47
Train on GPS (176) Knauss et al. (Bayesian classifier) 0.72 0.48 0.58
Train on ePurse + CPN (386) Knauss et al. (Bayesian classifier) 0.84 0.31 0.46
Test ePurse (124) w/o training ZSL(AllMini + Labels_Sec_A) 0.64 0.70 0.69

32



(much) less effective than K&M and NoRBERT with respect to this
particular task.

• Binary Classification of NFRs: Table 13 shows that overall, both K&M
and NoRBERT outperform our best ZSL classifier, with wF1 = 0.83
achieved by their best model; on the other hand, the performance of
our best classifier (ZSL with Sbert) is 0.10 points worse, with wF1 =
0.73. By examining the results obtained for each class, on US, our
ZSL classifier (with Sbert) performs slightly worse than K&M, but
outperforms NoRBERT. On SE, although both K&M and NoRBERT
outperform our best ZSL classifier (with AllMini), the difference is not
large. A similar observation can be made to classes Operational (O)
and Performance (PE).

• Multi-class Classification of NFRs: For this task, we notice in Table
13 large gaps exist between the results of K&M and NoRBERT and
our results on every class. As the purpose of this task is basically the
same as the binary classification of NFR task, the inconsistent results
achieved by ZSL in these two tasks indicate that when a requirement
belongs to many classes, ZSL does not appear to be sufficiently effective.

• Binary Classification of Security vs Non-Security Requirements: Table
14 reveals interesting results. When treating all the security require-
ments as a whole (i.e., without separating them into different projects),
Knauss outperforms the best ZSL classifier by 0.18 points on wF1.
However, when the requirements are divided into three projects (i.e.,
CPN, GPS and ePurse), ZSL outperforms Knauss on all individual
projects. In particular, ZSL (AllMini + Sec_B) achieved a high wF1
= 0.78, compared to Knauss’s wF1 = 0.40 on CPN. This again seems
to suggest that ZSL performs well with binary classification of security
requirements when opposite labels are clearly defined.

Based on the above findings, we can conclude that:

 Unsupervised learning with ZSL achieves acceptable performance for bi-
nary and multi-class classification tasks. However, it does not outperform
supervised classification models, as RE tasks are narrowly defined, and
often require well-trained, specifically fine-tuned models on specifically
labelled dataset. Nevertheless, without training or fine-tuning, ZSL is

33



more flexible, open to less data-rich tasks, and easily adaptable to the
evolution of classification schemes.

 When using ZSL in practice, a company can choose its requirements
classification scheme. This will also entail selection of new labels. Given
its lower performance in comparison with supervised methods, ZSL is
recommended for contexts with large sets of non-mission critical require-
ments, where misclassification can be tolerated.

In relation to multi-label classification, the following results are obtained:
From Table 8, concerning the 4 largest NFR classes, best performance for
each class are F1 ∼ 0.83−0.94, which are comparable with the average results
of NoRBERT (large + ep.32) for multi-class classification (average F1 = 0.84,
cf. Table 13), and are higher than those of K&M.

 To achieve state-of-the-art performance of ZSL for multi-class classifica-
tion, a multi-label strategy is recommended. In practice, this implies that
a semi-automated classification approach should be followed, in which a
human operator is asked to select the most suitable class among the top
ones returned by the ZSL classifier.

7. Threats to Validity

Construct Validity. The first threat in our study is the adopted concept of FR
and NFRs. This is an artificial distinction [18], as NFRs are often referred to
as qualities [20], and their classification is often non-binary, i.e., a multi-label
classification. However, FR/NFR is a traditional distinction, still common in
industrial practice and research. Furthermore, using ZSL for a multi-label
binary case would introduce the need for threshold values in the classification
(i.e., when both classes have a correlation score above a certain threshold, then
classify the requirement as both FR and NFR). For this reason, we excluded
the binary, multi-label variant of the PROMISE dataset annotated by Dalpiaz
et al. [16] from our evaluation. Therefore, the presented approach does not
apply to cases in which a requirement can be considered to be both FR and
NFR. For security vs non-security requirements, the same observations as for
FR/NFR hold. Finally, the adopted metrics for evaluation (precision, recall,
weighted F1, accuracy) are those typically used for ML systems, so we do not
foresee any major construct validity issue in this aspect.

34



Internal Validity. As our experiments deal with software subjects, which
require only limited human intervention, this ensures minimal bias. In the
evaluation, we have used established and widely used annotated datasets from
the literature. The only internal validity threats are somewhat inherited from
the labelling performed by previous work. While the accuracy of the labelling
of the PROMISE dataset has been questioned by previous work [16, 9], the
dataset represents a classical benchmark, which can be used to compare
our results with previous proposals. Concerning internal threats due to
implementation issues, we have adopted widely used LMs. These models
have been tested in other environments, thus increasing confidence in their
reliability. Concerning the implementation of the ZSL approach, we have used
the Transformers package in Python to retrieve the LMs from HuggingFace
hub and to apply encoding for the labels and requirements representations.
This package is also widely used, and we have made our code available for
inspection in a Google Colab Notebook, so that the results can be replicated.
Another possible threat is related to expert-curated labels. To mitigate bias
in label selection, we followed a procedure of independent selection, followed
by majority voting, and we reported the obtained agreements, which was
moderated in all the cases.

External Validity. Our results apply to requirements classification cases that
are similar to the task considered in the paper. Different results may be
observed, e.g., for the classification of requirements vs non-requirements,
and the extraction of relevant content from app reviews. A main threat to
external validity is due to the PROMISE dataset, as the requirements in the
dataset were largely written and labelled by students, and this may not be
representative of industrial requirements [8, 9]. We agree that the quality of
the dataset can affect the performance of the LMs used in our evaluation.
However, the PROMISE dataset has been widely used in the RE community,
as a de facto benchmark for requirements classification, and using this dataset
for research evaluation will allow RE researchers to compare their results
with ours. We also make our code and data publicly available so that further
replication or reproduction of our approach can be carried out. We also
recognize that the lack of labelled requirements datasets has been an open
challenge to using ML approaches for RE tasks [6].

Conclusion Validity. To reduce the threat to our conclusion, we used statistical
significance tests to compare the variance of the means within the ZSL

35



classifiers to assess if the systems have the same effect or not. We used
one-way Analysis of Variance (ANOVA) with repeated measures, and verified
the results with another non-parametric significance test, the Friedman Test.
From all the variance testing results, all the ZSL classifiers in all tasks are
statistically significant for α = 0.05, confirming that the ZSL performance
results are not due to chance. All the statistical analysis tests are reported in
the online supplementary materials19.

8. Conclusion

This paper reports on an extensive study of using the contextual word
embedding-based zero-shot learning approach for requirements classification.
The study tested this approach using 4 LMs (2 generic and 2 domain-specific),
3 groups of requirements classification tasks (Task FR/NFR, Task NFR, Task
Security, and their subtasks), 19 label configurations, and 2 datasets with
a total of 1020 requirements. More than 360 experiments were conducted,
each based on a combination of a specific LM, a specific task, a specific label
configuration, and a specific dataset. The study found:

• Generic LMs perform better than domain-specific LMs under the ZSL
approach.

• Simple label selection strategies, i.e., using original labels and expert
curated labels, outperform complex strategies such as word-embedding
generated labels.

The study also found that in comparison with three previously reported
supervised learning approaches for requirements classification, the performance
results achieved by the best ZSL classifiers (i.e., the best combinations of the
LMs and label configurations) are still lower. However, the ZSL approach
is fully unsupervised that does not require any labelled dataset or training.
This approach therefore has the great potential to address the problem of
labelled data shortages in RE and SE.

Another advantage of the ZSL approach is that it is inherently flexible.
Unlike supervised approaches that require a set of fixed classes preassigned

19https://github.com/waadalhoshan/ZSL4REQ/blob/main/StatAnalysis_ZSL4RE_
results.ipynb

36

https://github.com/waadalhoshan/ZSL4REQ/blob/main/StatAnalysis_ZSL4RE_results.ipynb
https://github.com/waadalhoshan/ZSL4REQ/blob/main/StatAnalysis_ZSL4RE_results.ipynb


to the dataset, the ZSL approach can classify requirements into any unseen
new classes directed by the given labels. Consequently, the ZSL approach
is suitable for requirements classification tasks facing changing classification
schemes. As classification schemes change, all is required is for the ZSL
approach to adopt a new set of labels, which can be defined easily, as our
study shows.

Future work will consider the following directions: 1) assess ZSL for
the classification of app reviews, using existing datasets made available by
previous studies (cf., Dabrowski for a complete list [13]); 2) explore other RE
tasks to frame them as classification problems suitable for ZSL; 3) replicate
current experiments with the entailment-based ZSL approach, to explore
whether better performance can be achieved; 4) consider the few-shot learning
approach i.e., by only using a handful of labelled examples to train the
classifier, and assess to what extent the shortcomings of ZSL can be addressed
by including a limited set of labelled examples; 5) evaluate the effects of
different label sizes (i.e., the number of words) on the performance of ZSL.

Replication

We shared our experimentation settings including Colab notebook and
the results we obtained from all the ZSL classifiers at https://github.com/
waadalhoshan/ZSL4REQ.

Acknowledgments

We wish to thank the two reviewers for their valuable comments and
suggestions, for their support and interest in this paper. We thank the
Guest Editors of this special issue, Vincenzo Gervasi and Andreas Vogelsang,
for their great support and interest in our paper. Liping Zhao and Waad
Alhoshan extend their appreciation to the Deanship of Scientific Research at
IMSIU for funding and supporting this work through Research Partnership
Program no. RP-21-07-03.

References

[1] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E.-
V. Chioasca, R. T. Batista-Navarro, Natural language processing for
requirements engineering: A systematic mapping study, CSUR 54 (3)
(2021) 1–41.

37

https://github.com/waadalhoshan/ZSL4REQ
https://github.com/waadalhoshan/ZSL4REQ


[2] M. Kassab, C. Neill, P. Laplante, State of practice in requirements
engineering: contemporary data, Innovations in Systems and Software
Engineering 10 (4) (2014) 235–241.

[3] J. A. Sidey-Gibbons, C. J. Sidey-Gibbons, Machine learning in medicine:
a practical introduction, BMC medical research methodology 19 (1)
(2019) 1–18.

[4] I. H. Sarker, Machine learning: Algorithms, real-world applications and
research directions, SN Computer Science 2 (3) (2021) 1–21.

[5] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu,
J. Gao, Deep learning–based text classification: a comprehensive review,
CSUR 54 (3) (2021) 1–40.

[6] M. Binkhonain, L. Zhao, A review of machine learning algorithms for
identification and classification of non-functional requirements, Expert
Systems with Applications: X 1 (2019) 100001.

[7] J. Cleland-Huang, R. Settimi, X. Zou, P. Solc, Automated classification
of non-functional requirements, REJ 12 (2) (2007) 103–120.

[8] Z. Kurtanović, W. Maalej, Automatically classifying functional and non-
functional requirements using supervised machine learning, in: RE’17,
Ieee, 2017, pp. 490–495.

[9] T. Hey, J. Keim, A. Koziolek, W. F. Tichy, Norbert: Transfer learning
for requirements classification, in: RE’20, IEEE, 2020, pp. 169–179.

[10] A. Sainani, P. R. Anish, V. Joshi, S. Ghaisas, Extracting and classifying
requirements from software engineering contracts, in: RE’20, IEEE, 2020,
pp. 147–157.

[11] S. Abualhaija, C. Arora, M. Sabetzadeh, L. C. Briand, M. Traynor,
Automated demarcation of requirements in textual specifications: a
machine learning-based approach, Empirical Software Engineering 25 (6)
(2020) 5454–5497.

[12] A. Ferrari, F. Dell’Orletta, A. Esuli, V. Gervasi, S. Gnesi, Natural
language requirements processing: A 4D vision., IEEE Softw. 34 (6)
(2017) 28–35.

38



[13] J. Dkabrowski, E. Letier, A. Perini, A. Susi, Analysing app reviews for
software engineering: a systematic literature review, Empirical Software
Engineering 27 (2) (2022) 1–63.

[14] W. Maalej, Z. Kurtanović, H. Nabil, C. Stanik, On the automatic classi-
fication of app reviews, REJ 21 (3) (2016) 311–331.

[15] W. Wang, V. W. Zheng, H. Yu, C. Miao, A survey of zero-shot learning:
Settings, methods, and applications, ACM TIST 10 (2) (2019) 1–37.

[16] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, S. Çevikol, Requirements
classification with interpretable machine learning and dependency parsing,
in: RE’19, IEEE, 2019, pp. 142–152.

[17] M. Glinz, On non-functional requirements, in: RE’07, IEEE, 2007, pp.
21–26.

[18] J. Eckhardt, A. Vogelsang, D. M. Fernández, Are "non-functional" re-
quirements really non-functional? an investigation of non-functional
requirements in practice, in: ICSE’16, 2016, pp. 832–842.

[19] J. Cleland-Huang, S. Mazrouee, H. Liguo, D. Port, NFR (Mar. 2007).
doi:10.5281/zenodo.268542.
URL https://doi.org/10.5281/zenodo.268542

[20] I. 29148:2018(E), ISO/IEC/IEEE international standard - systems and
software engineering – life cycle processes – requirements engineering
(2018). doi:10.1109/IEEESTD.2018.8559686.

[21] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions
on knowledge and data engineering 22 (10) (2009) 1345–1359.

[22] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He,
A comprehensive survey on transfer learning, Proceedings of the IEEE
109 (1) (2020) 43–76.

[23] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep
bidirectional transformers for language understanding, in: J. Burstein,
C. Doran, T. Solorio (Eds.), NAACL-HLT’19, ACL, 2019, pp. 4171–4186.

[24] H. Larochelle, D. Erhan, Y. Bengio, Zero-data learning of new tasks., in:
AAAI’08, 2008, p. 646–651.

39

https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.1109/IEEESTD.2018.8559686


[25] C. H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen
object classes by between-class attribute transfer, in: CVPR’09, IEEE,
2009, pp. 951–958.

[26] W. Alhoshan, L. Zhao, A. Ferrari, K. J. Letsholo, A zero-shot learning
approach to classifying requirements: A preliminary study, in: REFSQ’22,
Springer, 2022, pp. 52–59.

[27] E. Knauss, S. H. Houmb, S. Islam, J. Jürjens, K. Schneider, Secreq (Feb.
2021). doi:10.5281/zenodo.4530183.

[28] F.-L. Li, J. Horkoff, J. Mylopoulos, R. S. Guizzardi, G. Guizzardi,
A. Borgida, L. Liu, Non-functional requirements as qualities, with a spice
of ontology, in: RE’14, IEEE, 2014, pp. 293–302.

[29] M. Broy, Rethinking nonfunctional software requirements, Computer
48 (05) (2015) 96–99.

[30] A. Casamayor, D. Godoy, M. Campo, Identification of non-functional
requirements in textual specifications: A semi-supervised learning ap-
proach, IST 52 (4) (2010) 436–445.

[31] R. Navarro-Almanza, R. Juarez-Ramirez, G. Licea, Towards supporting
software engineering using deep learning: A case of software requirements
classification, in: CONISOFT’17), IEEE, 2017, pp. 116–120.

[32] A. Dekhtyar, V. Fong, RE data challenge: Requirements identification
with word2vec and tensorflow, in: RE’17, IEEE, 2017, pp. 484–489.

[33] O. AlDhafer, I. Ahmad, S. Mahmood, An end-to-end deep learning
system for requirements classification using recurrent neural networks,
IST 147 (2022) 106877.

[34] E. Knauss, S. Houmb, K. Schneider, S. Islam, J. Jürjens, Supporting
requirements engineers in recognising security issues, in: REFSQ’11,
Springer, 2011, pp. 4–18.

[35] M. Riaz, J. King, J. Slankas, L. Williams, Hidden in plain sight: Automat-
ically identifying security requirements from natural language artifacts,
in: RE’14, IEEE, 2014, pp. 183–192.

40

https://doi.org/10.5281/zenodo.4530183


[36] N. Munaiah, A. Meneely, P. K. Murukannaiah, A domain-independent
model for identifying security requirements, in: RE’17, IEEE, 2017, pp.
506–511.

[37] S. Christey, J. Kenderdine, J. Mazella, B. Miles, Common weakness
enumeration, Mitre Corporation (2013).

[38] V. Varenov, A. Gabdrahmanov, Security requirements classification into
groups using NLP transformers, in: REW’21, IEEE, 2021, pp. 444–450.

[39] A. Ferrari, G. O. Spagnolo, S. Gnesi, Pure: A dataset of public require-
ments documents, in: RE’17, IEEE, 2017, pp. 502–505.

[40] F. Dalpiaz, A. Ferrari, X. Franch, C. Palomares, Natural language
processing for requirements engineering: The best is yet to come, IEEE
software 35 (5) (2018) 115–119.

[41] B. Romera-Paredes, P. Torr, An embarrassingly simple approach to
zero-shot learning, in: ICML’15, 2015, pp. 2152–2161.

[42] Y. Ma, E. Cambria, S. Gao, Label embedding for zero-shot fine-grained
named entity typing, in: Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics: Technical Papers,
2016, pp. 171–180.

[43] O. Levy, M. Seo, E. Choi, L. Zettlemoyer, Zero-shot relation extraction
via reading comprehension, arXiv preprint arXiv:1706.04115 (2017).

[44] J. Nam, E. L. Mencía, J. Fürnkranz, All-in text: Learning document,
label, and word representations jointly, in: AAAI’16, 2016, pp. 1948–
1954.

[45] P. K. Pushp, M. M. Srivastava, Train once, test anywhere: Zero-shot
learning for text classification, arXiv preprint arXiv:1712.05972 (2017).

[46] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, Advances
in neural information processing systems 26 (2013).

[47] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, arXiv preprint arXiv:1301.3781 (2013).

41



[48] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for
word representation, in: EMNLP’14, 2014, pp. 1532–1543.

[49] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving lan-
guage understanding by generative pre-training, Technical Report, Ope-
nAI (2018).

[50] K. Ethayarajh, How contextual are contextualized word representations?
comparing the geometry of BERT, ELMo, and GPT-2 embeddings, arXiv
preprint arXiv:1909.00512 (2019).

[51] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, P. J. Liu, et al., Exploring the limits of transfer learning with a
unified text-to-text transformer, J. Mach. Learn. Res. 21 (140) (2020)
1–67.

[52] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
Language models are unsupervised multitask learners, OpenAI blog 1 (8)
(2019) 9.

[53] S. Ruder, M. E. Peters, S. Swayamdipta, T. Wolf, Transfer learning in
natural language processing, in: NAACL’19, 2019, pp. 15–18.

[54] S. Ruder, Neural transfer learning for natural language processing, Ph.D.
thesis, National University of Ireland, Galway (2019).

[55] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
L. Zettlemoyer, Deep contextualized word representations, in: ACL’18,
ACL, 2018, pp. 2227–2237.

[56] J. H. Wenpeng Yin, D. Roth, Benchmarking zero-shot text classification:
Datasets, evaluation and entailment approach, in: EMNLP’19, 2019, pp.
3914–3923.

[57] P. V. Sappadla, J. Nam, E. L. Mencía, J. Fürnkranz, Using semantic
similarity for multi-label zero-shot classification of text documents., in:
ESANN, 2016, pp. 423–428.

[58] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors
with subword information, Transactions of the association for computa-
tional linguistics 5 (2017) 135–146.

42



[59] M. Ajagbe, L. Zhao, Retraining a BERT model for transfer learning in
requirements engineering: A preliminary study, in: RE’22, IEEE, 2022,
pp. 309–315.

[60] J. Tabassum, M. Maddela, W. Xu, A. Ritter, Code and named entity
recognition in StackOverflow, in: ACL’20, ACL, Online, 2020, pp. 4913–
4926.

[61] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le,
Xlnet: Generalized autoregressive pretraining for language understanding,
NeurIPS 32 (2019).

[62] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models
are few-shot learners, arXiv preprint arXiv:2005.14165 (2020).

[63] N. Reimers, I. Gurevych, Sentence-BERT: Sentence embeddings using
siamese BERT-networks, arXiv preprint arXiv:1908.10084 (2019).

[64] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, M. Zhou, Minilm: Deep
self-attention distillation for task-agnostic compression of pre-trained
transformers, NeurIPS’20 33 (2020) 5776–5788.

[65] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, M. Zhou, CodeBERT: A pre-trained model
for programming and natural languages, in: EMNLP’20, ACL, 2020, pp.
1536–1547.

[66] A. Ferrari, A. Esuli, An NLP approach for cross-domain ambiguity
detection in requirements engineering, Automated Software Engineering
26 (3) (2019) 559–598.

[67] K. Krippendorff, Content analysis: An introduction to its methodology,
Sage publications, 2018.

[68] J. L. Fleiss, J. Cohen, The equivalence of weighted kappa and the
intraclass correlation coefficient as measures of reliability, Educational
and psychological measurement 33 (3) (1973) 613–619.

[69] J. R. Landis, G. G. Koch, The measurement of observer agreement for
categorical data, biometrics (1977) 159–174.

43



[70] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

[71] D. M. Berry, Empirical evaluation of tools for hairy requirements engi-
neering tasks, Empirical Software Engineering 26 (6) (2021) 1–77.

[72] I. Beltagy, K. Lo, A. Cohan, Scibert: A pretrained language model for
scientific text, arXiv preprint arXiv:1903.10676 (2019).

[73] I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, I. Androut-
sopoulos, Legal-bert: The muppets straight out of law school, arXiv
preprint arXiv:2010.02559 (2020).

[74] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, J. Kang, Biobert:
a pre-trained biomedical language representation model for biomedical
text mining, Bioinformatics 36 (4) (2020) 1234–1240.

44


	1 Introduction
	2 Related Work
	2.1 Classification of FRs and NFRs
	2.2 Classification of Security Requirements
	2.3 Our Contribution

	3 Zero-Shot Learning
	3.1 Language Models and Transfer Learning
	3.2 Embedding-Based Zero-Shot Learning

	4 Experimental Design
	4.1 Dataset and Task Selection
	4.2 Language Model Selection
	4.3 Label Creation and Configuration
	4.4 Performance Measures
	4.5 Experimental Setup

	5 Experimental Results
	5.1 Task FR/NFR
	5.1.1 Label Configuration
	5.1.2 FR vs NFR Binary Classification

	5.2 Task NFR
	5.2.1 Label Configuration
	5.2.2 NFR Binary Classification
	5.2.3 NFR Multi-class Classification
	5.2.4 NFR Multi-label Classification

	5.3 Task Security
	5.3.1 Security Label Configuration
	5.3.2 Security Binary Classification


	6 Research Findings
	6.1 Best Language Model (RQ1)
	6.2 Best Label Configuration (RQ2)
	6.3 Effectiveness of ZSL for RE (RQ3)

	7 Threats to Validity
	8 Conclusion

