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Abstract: The phase separation of a two-dimensional active binary mixture is studied under the
action of an applied shear through numerical simulations. It is highlighted how the strength of
the external flow modifies the initial shape of growing domains. The activity is responsible for the
formation of isolated droplets which affect both the coarsening dynamics and the morphology of
the system. The characteristic dimensions of domains along the flow and the shear direction are
modulated in time by oscillations whose amplitudes are reduced when the activity increases. This
induces a broadening of the distribution functions of domain lengths with respect to the passive case
due to the presence of dispersed droplets of different sizes.

Keywords: phase separation; activity; shear

1. Introduction

Over the last decades much research has been dedicated to studying active materi-
als, i.e., non-equilibrium systems in which internal units continuously consume energy,
usually stored in the environment, to self-propel [1–5]. Examples of active matter range
from bacterial and algal suspensions [6–9] to colloidal particles acquiring motion through
chemical reactions [10–12], up to the cytoskeleton of living cells [13–15], to name but a few.
Importantly, to convert their energy into motion, particles violate time-reversal symmetry
(TRS) at the micro-scale.

An active process of particular relevance to us is the motility-induced phase separa-
tion (MIPS), where a suspension of repulsive motile particles can phase separate into bulk
dense (liquid) and dilute (vapor) regions [16–18]. This essentially occurs because active
particles aggregate where they move slowly, thus leading to a local density increase causing
a slowing down and further accumulation. The resulting clusters show highly dynamical
particle exchange leading to macroscopic phase separation [19–21]. The kinetics of MIPS
has been found to share many features with that of passive systems with attractive inter-
actions, thus suggesting that TRS could be restored at the macroscale level [16,17,22–27].
However, large scale simulations of active Brownian particles [20,21,28,29] as well as exper-
iments [10–12] reveal that MIPS may also exhibit further non-equilibrium features, such as
the formation of mesoscopic vapor bubbles within the particles aggregates and microphase
separation [20,28–30]. This scenario would indeed support the view that time-reversal
symmetry is manifestly broken macroscopically.

Alongside particle-based simulations, the phenomenology of MIPS can be also de-
scribed using continuum field theories, either by an explicit coarse-graining of the micro-
scopic dynamics or via symmetry arguments and conservation laws [31]. The latter strategy
has led to the construction of the Active Model B (AMB) [24,28,32], a field theory that,
in the absence of solvent, essentially extends the passive model B [33] by incorporating an
active gradient term that cannot be obtained from a free-energy functional, thus breaking
time-reversal symmetry. The passive Model B (MB) falls within a class of phase-field mod-
els describing the kinetics of phase separation through a conserved scalar order parameter

Mathematics 2021, 9, 3008. https://doi.org/10.3390/math9233008 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6267-4957
https://orcid.org/0000-0002-5314-9664
https://doi.org/10.3390/math9233008
https://doi.org/10.3390/math9233008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9233008
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9233008?type=check_update&version=1


Mathematics 2021, 9, 3008 2 of 13

φ capturing, for example, the density of colloids or the concentration in a binary mixture.
If hydrodynamics can be neglected, the evolution of φ is governed by a Cahn-Hilliard
equation [34,35], where the thermodynamic force driving the relaxation of φ stems from
the functional derivative of a φ4 free energy with square gradient terms. Such simplified
description captures, for example, the result R ∼ tα, for the dependence of the domain size
R on time t with a characteristic growth exponent α = 1/3 [36].

MB provides a robust framework to describe the passive phase separation subject to
an external shearing [37–43]. In that case the growth is anisotropic, being characterized by
domains stretched and tilted along the flow direction as observed in simulations [42,44] and
experiments [45]. Indeed, numerical solutions of the dynamical equation with shear [42]
confirm the presence of anisotropy of growing domains, which are found to exhibit two
typical lengths. Theoretical calculations based on a renormalization group analysis shows
that the growth exponent αy in the shear direction, perpendicular to the flow, is not changed
by the applied velocity profile, while the exponent αx along the flow direction is increased
by 1 [41]. Moreover, relevant physical quantities are found to oscillate on a logarithmic
time scale, due to a periodic stretching and breaking-up of domains. The interest towards
the role of shear in phase ordering is still vivid, as witnessed by recent studies [46,47].

In the context of active matter, while efforts have been addressed to investigate the
active phase separation in the absence of an external driving [20,21,28,48,49], much less is
known about the dynamic response observed when a shear flow is applied. Though it was
shown [50] that in AMB the transition from homogeneous to bulk phase separation belongs
to the same universality class of equilibrium MB, numerical studies of coarsening in AMB
provide different scenarios. In Refs. [32,51], for example, it was argued that in AMB without
shear the size of growing domains is still compatible with a growth exponent α = 1/3 (i.e.,
activity has negligible effects on the coarsening dynamics) with a change in the static phase
diagram owing to a pressure jump, even in the case of a flat interface. On the contrary,
very recent simulations [52,53] put forward the existence of a late-time growth exponent
α = 1/4, a result akin to that obtained using particle-based simulations [20,54].

In this work we aim at characterizing, in the AMB theory, the shear-induced mor-
phology of growing domains in two spatial dimensions focusing on the role played by
the external flow and the activity. Our results show that, in agreement with the AMB
without shear, the activity promotes the formation of isolated drops. This significantly
affects the dynamic behavior of the mixture subject to a shear flow. Indeed, unlike the
passive counterpart, the amplitude of the time oscillations of domain sizes diminishes for
increasing values of activity, although their growth exponents are only weakly modified.
In addition, the probability distribution functions of the lengths of patterns computed
along the two spatial directions are found to broaden as the activity augments.

The paper is structured as follows. In Section 2 the model is properly defined. The nu-
merical results are presented and discussed in Section 3. The phenomenology of phase
separation is discussed in weak and strong regimes, remarking the differences with respect
to the passive model. The role played by isolated droplets appearing during coarsening
is highlighted in connection with the time evolution of the size of domains along the two
directions. Finally, some conclusions are drawn.

2. The Model

We consider a system with a scalar order parameter φ(r, t) at position r and time
t. In the framework of the present model, the order parameter can be considered as the
deviation of the density with respect to a reference value. It satisfies a conserved dynamics
given by the following equation

∂φ

∂t
+∇ · (φv) = −∇ · J. (1)

Thermal fluctuations are not considered here as it is usually done when studying
phase separation [36]. At the l.h.s. a convective term couples φ to an imposed linear shear
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flow. This has the form v = γ̇yex where γ̇ is the shear rate, y is the coordinate along the
(shear) y−direction and ex is the unit vector along the (flow) x−direction. The addition of
this term to the original equation of the AMB is the main novelty of this study which allows
us to consider the effect of an external velocity profile on the active coarsening dynamics.
Hydrodynamic effects are not taken into account since the evolution Equation (1) is not
coupled to the Navier-Stokes equation. This is because we are interested in considering only
diffusive phase separation. Indeed, to account for the fluid motion in an active medium,
the dynamics of φ needs to be coupled to that of a momentum-conserving solvent, whose
evolution is governed by the Navier-Stokes equation including an active contribution in
the stress tensor [55].

The current J is proportional to the negative gradient of a chemical potential

J = −Γ∇µ (2)

where the mobility Γ is set to unity in the following. The chemical potential µ = µP + µA is
the sum of passive and active contributions given, respectively, by

µP = −aφ + bφ3 − κ∇2φ, (3)

µA = λ(∇φ)2. (4)

The term (3), where a, b, κ are positive and of the order unity, corresponds to the
passive contribution of the model B, and can be obtained from the derivative of the square
gradient ϕ4 free-energy functional. In the passive case, the system would demix in two
coexisting states at binodal densities φP1,P2 = ±φP with φP =

√
a/b, corresponding to

the minima of the free-energy density. The energy cost for the formation of interfaces is
proportional to κ. The active contribution (4), on the contrary, cannot be obtained from a
proper free energy and is the simplest choice at second order in gradients. It was introduced
in the so-called active model B [32] in order to explicitly break TRS. For completeness we
note that this term is similar to the one appearing in other nonlinear partial differential
equations. Among others we cite, e.g., the Kardar-Parisi-Zhang equation for nonlinear
interfacial diffusion [56], the Hunter-Saxton equation for nematic liquid crystals [57],
and the Kuramoto–Sivashinsky equation for instabilities in laminar flame front [58,59].
Such a term is controlled by the active parameter λ which can be adjusted to go from
the passive case (λ = 0) to the active one (λ 6= 0) with λ ∼ O(1) [32]. We remark that
the presence of the λ term is such that the system is invariant under the transformation
(φ, λ)→ −(φ, λ). For this reason we restrict our attention to the case with λ ≥ 0. For the
active model B the binodals φ1,2 (φ1 < 0 < φ2) depend on λ and can be calculated by using
the method put forward in Ref. [32] and generalized in Ref. [51]. The spinodals do not
depend on λ [51] and are located at φS1,S2 = ±φS with φS =

√
a/(3b) as in the model

B. The state with uniform density is locally unstable between the spinodals while it is
metastable between the spinodals and the binodals. When λ increases, the binodal gets
closer to the spinodal on the negative φ side and stays far on the other side.

Equation (1) is solved in two dimensions by using a finite-difference scheme. The
field φ is discretized on the nodes (xi, yj) (i, j = 1, 2, . . . , L) of a square lattice with L× L
nodes and mesh size ∆x. The time is discretized in time steps ∆t with time values given
by tn = n∆t, n = 1, 2, 3, . . .. Any discretized function h at time tn on a node (xi, yj)
(i, j = 1, 2, . . . , L) of the lattice is denoted by h(xi, yj, tn) = hn

ij. At each time step we update

φn → φn+1 using an explicit first-order Euler algorithm for the time derivative [60]

φn+1 = φn − ∆t(γ̇y∂xφn + ∂α Jn
α ). (5)
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Central-difference schemes [61] are coded for the spatial derivatives. The x derivative
is given by

∂xh|nij =
hn
(i+1)j − hn

(i−1)j

2∆x
(6)

and analogously for the y derivative. The Laplacian operator appearing in the chemical
potential µP is discretized as

∇2h|nij =
hn
(i+1)j + hn

(i−1)j + hn
i(j+1) + hn

i(j−1) − 4hn
ij

∆x2 (7)

Periodic boundary conditions (BC) are adopted along the flow direction and Lees–Edwards
BC [62] are used in the shear direction. The latter take into account the space shift γ̇L∆x∆t
occurring in a time step, due to shear, between the lower and upper row of the lattice. This
is essentially done by identifying a point (xi, y1) on the lower row of the lattice with the one
placed on the upper row at (xi + γ̇L∆x∆t, yL) (i = 1, 2, . . . , L).

3. Results

In the following, all results are obtained with ∆x = 1 and ∆t = 0.001, values ensuring
numerical stability. We checked that simulations are converged for these values of space
and time discretization units by looking at the behavior of the binodal values and of
averaged domain sizes for different initial conditions (see the following). We verified that
results are stable upon decreasing the discretization units. To this purpose we considered
some runs with ∆x = 0.5 and ∆t = 0.0005, and no significant differences were found in
the binodals as well as in the typical extensions of forming patterns during coarsening.
The model parameters in Equation (1) are a = b = 1/4 and κ = 1 while λ is varied
within the range [0, 3]. The shear rate γ̇ is changed to access different shear regimes in the
phase-separation process. To this purpose we introduce a dimensionless shear rate ˆ̇γ = γ̇tD
where tD is the interface diffusion time. Weak and strong shear regimes are characterized
by values of ˆ̇γ lower and higher than unit, respectively [43].

3.1. Planar Interface

In the case of the model B one has tD =
ξ3φ2

P
Γσ [63], where ξ = 2

√
2κ
a is the width

of the planar interface between two coexisting phases described by the function φ(x) =
φP tanh (2x/ξ), and σ = 2

3 φ2
P

√
2κa is the interface tension [36]. For our choice of the

parameters, it is tD = 384 in model units. However, for the active model B with λ > 0
there are no explicit expressions for ξ and σ as well as for the binodals, though it can be
shown that there is a solution with a planar interface between the coexisting phases at
densities φ1,2 [32]. For this reason we first compute numerically the binodals φ1,2(λ) by
considering the relaxation of a flat interface between two states initially set at the values
±φP. Once the values φ1,2(λ) are found, a sharp profile between the initial states set at
φ1,2(λ) is let to evolve to the steady interface. The stationary profiles are shown in Figure 1
for the values λ = 0, 1, 2, 3. Numerical data are successfully fitted by a kink profile (see
the Appendix A for further details). The values of the interface width ξ obtained from fits
for different values of the activity are presented in Figure 2 and show a linear dependence
of ξ on λ for λ & 1. The binodal densities φ1 and φ2 increase with λ as φ1 approaches the
spinodal φS1 = −φS, being φS =

√
3/3 when a = b (like in our case).
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Figure 1. Steady density profiles for different values of the parameter λ.
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Figure 2. Interface width ξ (left panel) and diffusion time tD (right panel) as functions of the activity λ.

The diffusion time tD is computed as the time for the initial sharp profile to relax to
the steady interface (see the Appendix A). Numerical results give tD ' 4× 102 at λ = 0 in
agreement with the theoretical estimate of the model B. When λ > 0, it is found that tD
increases with λ reaching the highest value tD ' 1.1× 103 when λ = 3. The values of tD
are plotted in the right panel of Figure 2 and show that tD increases linearly with λ up to
λ ' 1.5, before slowing down its growth. In the following we consider a range of values
of the shear rate between γ̇w = 0.9× 10−3 and γ̇s = 3.6× 10−3. The values γ̇w and γ̇s are
such to access weak (γ̇wtD(λ) . 1) and strong (γ̇stD(λ) > 1) shear regimes, respectively,
for all considered values of λ. This guarantees that the shear regime is not affected when
changing activity while keeping fixed the strength of applied flow.

3.2. Phase Separation under Weak and Strong Shear

Now we move on to the study of the phase separation under an external shear flow
by varying the activity parameter λ for γ̇ = γ̇w, γ̇s. We consider a system initially prepared
in a symmetric disordered state with ϕ(r, 0) = ω where ω is a random number in the
range [−0.01, 0.01]. This state corresponds to a critical composition of the system. The
size of the lattice is L = 1024 and measures are averaged over five independent runs.
The different values of the dimensionless shear rate ˆ̇γ influence the initial morphology of
the forming domains. This can be seen in Figures 3 and 4 where snapshots of systems at
consecutive times are shown for the cases at weak (γ̇tD = 1.0) and strong shear (γ̇tD = 4.0),
respectively, with λ = 3.
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Figure 3. Configurations of the system at consecutive times in the weak shear regime (γ̇tD = 1.0)
with λ = 3. A central portion of size 512× 512 of the whole lattice is shown.

Figure 4. Configurations of the system at consecutive times in the strong shear regime (γ̇tD = 4.0)
with λ = 3. A central portion of size 512× 512 of the whole lattice is shown.

At weak shear, domains form and grow while the density φ attains the steady binodal
values before shear effects come into play at values of strain γ̇t > 1. This occurs since
the relaxation time scale tD(λ) is smaller than the shear characteristic time 1/γ̇. Once
isolated drops at density φ1 are produced (γ̇t = 1), the applied flow advects them along the
x−direction and favours their merging, thus causing the formation of elongated domains
along the y−direction (γ̇t = 1.75). Afterwards the shear stretches these structures which
are tilted as well, being characterized by different thicknesses. Isolated droplets at density
φ1 can be observed inside domains at density φ2 (γ̇t = 5.3). Later on, the shear further
deforms and tilts the domains, which may eventually break up. After the overstretching,
domains retract forming φ2 phases with a larger thickness where isolated droplets of the
other phase get trapped (γ̇t = 19.4). Such stretching and bursting persist though this
periodic behavior cannot be observed over very long periods of time due to the finite size
of the system.
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In the strong shear regime, the initial morphology is different with respect to the
previous case, since the interface diffusion time is larger than the inverse of the shear rate.
Indeed, while domains grow (as quantified later) and start to be deformed by the flow,
the two phases are still far from the steady binodal densities (see the panel at γ̇t = 2 in
Figure 4), an effect promoting an initial thinning of domains along the shear direction.
Afterwards, the elongations and ruptures of domains previously described take place
once again, a phenomenon also observed in simulations of passive model B with strong
shear [41,42]. However, unlike such cases, the main feature here is that, under shear, isolated
droplets of the φ1 phase survive and are dispersed in the φ2 matrix (see in particular the
last snapshots of Figures 3 and 4). This is not the case if λ = 0, as demonstrated in Figure 5
where instantaneous configurations of the passive case taken at equal times are shown.

A scenario akin to that just described in the AMB occurs when considering sheared
binary mixtures with surface diffusion [64]. However, in the present work the physical
explanation is different. The fraction β of the φ1 phase is larger than the one of the φ2 phase
when λ > 0 despite the fact that we consider a critical system with a symmetric initial
composition such that < φ >= 0 (the symbol < . . . > denotes an average over the lattice).
Since the dynamics described by Equation (1) is conserved, the average value of the order
parameter φ is preserved and it has to be βφ1 + (1− β)φ2 = 0. In a passive mixture the
values of the binodals φ1, φ2 are symmetric with respect to the value φ = 0 and it results
β = 0.5. In the AMB the binodals are not symmetric anymore with respect to the value
φ = 0 and one has β > 0.5, since |φ1| < φ2 when λ > 0. As a result, the φ1 phase is more
abundant than the φ2 one. In our study it is φ1 ' −0.71 and φ2 ' 1.15 when λ = 3 so that
β ' 0.62. Therefore, in AMB, it is the activity that produces an effective off-symmetric
mixture though the initial state is not, in agreement with previous studies of AMB [32].
Such off-symmetric mixture consists of droplets of the majority (φ1) phase dispersed in
the minority (φ2) one, a situation persisting under shear. We finally note that a different
morphology would be observed in the coarsening of off-symmetric passive mixtures under
shear with a similar ratio between the two phases [65]. In this case, at low shear rate small
droplets evaporate due to Ostwald ripening, while for strong flows it is the minority phase
to be dispersed in a large number of droplets.

Figure 5. Configurations of the system in the weak (left panel, γ̇tD = 0.4) and strong (right panel,
γ̇tD = 1.4) shear regimes with λ = 0. Snapshots are taken at the latest times of Figures 3 and 4. A
central portion of size 512× 512 of the whole lattice is shown.

3.3. Domain Size

The coarsening dynamics can be investigated by looking at evolution of the typical
measures of domains. The sizes Rx and Ry along the flow and the shear directions, respec-
tively, are shown in Figure 6 and are computed as the inverse of the first moments of the
structure factor

Rx,y(t) = π

∫
dkC(k, t)∫

dk|kx,y|C(k, t)
. (8)

C(k, t) = 〈φ(k, t)φ(−k, t)〉 is the structure factor averaged over different realizations of
the system and φ(k, t) is the Fourier transform of the order parameter.
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Figure 6. Average measures of domains along the flow (Rx) and the shear (Ry) directions as functions
of time at weak (left panel) and strong (right panel) shear for different values of λ.

At weak shear, it results that Rx ' Ry until γ̇t . 1, then Ry grows initially faster
than Rx due to the shear-induced dragging of droplets along the flow direction. The
typical size along the shear direction attains a maximum at γ̇t ' 1.75 and then decreases,
while the growth rate along the flow direction increases due to shear stretching. The
quantity Ry oscillates on a logarithmic time scale between minimum and maximum values
corresponding to elongated and broken domains, respectively. The amplitude of such
oscillations diminishes when increasing the activity parameter λ and is related to the
existence of small droplets that cannot grow any further. The radii Rx for different values
of λ show a similar trend compatible with an asymptotic power-law growth Rx ∼ A(λ)tαx .
Fitting the power law for Rx to numerical data shows that the amplitudes A decrease with
the activity as illustrated in Table 1, while the exponent αx ' 1 does not seem to be affected
by λ.

Table 1. Fitted values of the amplitudes A for different values of the activity λ in the weak shear
regime.

λ A

0 4.40
1 2.75
2 0.99
3 0.82

Due to the limited size of the simulated system and the superimposed oscillations, it
is difficult to estimate the growth exponent αy along the shear direction although, at γ̇t & 5,
one observes a regime with αx − αy ' 1. This result is due to the advection of domains by
the applied flow, and has been observed in the passive model B under shear as well [41,42].

At increasing values of shear rate, the growth along the flow direction proceeds faster
than that in the shear direction, with a local maximum of Rx at γ̇t ' 3 corresponding to a
minimum for Ry, since domains are strongly deformed by the shear. Note that the height of
the maximum of Rx is reduced by increasing the activity, a feature associated to the presence
of droplets which can be deformed only slightly by the flow. When γ̇t & 7, Rx shows
a power-law growth with an exponent αx ' 1.1 not depending on λ, while the size Ry
exhibits a periodic behavior on a logarithmic time scale with amplitude that shrinks with λ.
By using power counting, it might be expected that the net effect of the convective term is to
increase the growth exponent of the unsheared system by 1 in the flow direction. However,
as previously discussed, in AMB with no external flow the value of the growth exponent
has not been definitely determined yet. Our results seem to point towards a picture in
which the activity has mild effect on the coarsening dynamics, as in the unsheared case [32],
since we find that αx ' 1 as in the passive case and αx − αy ' 1. Additional simulations
run on systems of size L = 512 do not provide further insights for evaluating αx and αy as
well as for attempting a finite-size scaling analysis. Indeed, a more accurate estimate of the
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growth exponents would likely require much larger systems, thus dramatically increasing
the computational resources necessary to simulate their late-time dynamics.

To elucidate the role of flow strength, simulations with shear rate γ̇ = 2.8× 10−3 are
also considered. This value is such that γ̇tD(λ) & 1.1 for 0 ≤ λ ≤ 3 so that the system
is in the strong regime. The time behavior of Rx and Ry is similar to the one shown in
Figure 6, with no significant effect on the growth exponents. We only observe a reduction
in the amplitudes of oscillations at the smallest values of activity along the x-direction,
since domains are less affected by flow. Being less deformed, they can grow along the
shear direction, a result witnessed by wider amplitudes of Ry with respect to the case with
γ̇ = 3.6× 10−3. These effects reduce when λ increases, since, as previously discussed,
the dynamics is deeply modified by the presence of droplets for the highest value of activity.

The size distribution of domains can be analyzed by calculating the normalized
probability distributions P(Lx,y), having domains of lengths Lx and Ly along the flow and
the shear directions, respectively. By moving along all rows (the flow direction) of the
computational domain, Lx is computed as the size of unidimensional domains with equal
composition (same sign of the density φ). From the registered values of Lx, the function
P(Lx) is derived. The same procedure is adopted along the columns (the shear direction) of
the lattice to determine Ly and then P(Ly). In Figures 7 and 8 we plot P(Lx) and P(Ly) for
λ = 0.3 in the weak and strong shear regime. At weak shear (see Figure 7), P(Lx) and P(Ly)
show two peaks in the active case and a single one in the passive situation. The peaks at
the smaller values of Lx and Ly (with Lx ' Ly ' 8) correspond to the presence of isolated
droplets, while the other peaks indicate elongated domains. In particular, P(Lx) broadens
when going from the maximum of Ry at γ̇t ' 1.75 to the minimum at γ̇t ' 5.3 and, then,
shrinks when Ry grows again. In the passive counterpart, the distribution functions are
less broad. When looking at the shear direction, in the active case the peak of P(Ly) at the
larger value of Ly oscillates in height, with a local maximum attained when Ry is at the
minimum (γ̇t ' 5.3). Later P(Ly) broadens. In the passive case the distribution P(Ly) has
a single peak (narrower than in the active case) that oscillates in height, following the cyclic
dynamics of elongations and ruptures.
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Figure 7. Probability distribution functions P of domains of length Lx (left panels) and Ly (right
panels) with λ = 3 (upper row) and λ = 0 (lower row) in the weak shear regime.
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Figure 8. Probability distribution functions P of domains of length Lx (left panels) and Ly (right
panels) with λ = 3 (upper row) and λ = 0 (lower row) in the strong shear regime.

Moving to the strong shear regime (Figure 8), we observe that P(Lx) is characterized
by the presence of two peaks both in the passive and in the active case, roughly at the same
positions. When λ = 3, the peak at Lx ' 10 is always the prevailing one, owing to the
presence of droplets spanning the system. The value of Lx, corresponding to the second
peak, increases in time attaining its maximum at γ̇t ' 17.4, when domains are highly
stretched (Ry is at its minimum). The subsequent breaking-up of domains determines the
shift in position of the second peak to smaller values. Moreover, it can be seen that the
distributions are broader in the active case. This feature also holds for P(Ly), whose main
peak oscillates in height during the time evolution. We note here that in the active system
the first peak of P(Ly) at the smaller value of Ly, corresponding to isolated droplets, is less
pronounced with respect to that of the weak shear regime. This can be attributed to the fact
that, as previously discussed, initially forming droplets are fused by shear before growing
in size.

4. Conclusions

To summarize, we have investigated the phase separation of an active binary mixture
subject to an applied shear flow. For this purpose we numerically solved the phenomeno-
logical equation of the active model B [32], supplemented by a convective term that couples
the order parameter to the external velocity field. The initial morphology depends on
the strength of shear. Later, growing domains are elongated, tilted, and burst by the flow.
This is reflected in the typical sizes of domains Rx and Ry along the two spatial dimen-
sions, which appear to be modulated by oscillations on a logarithmic time scale. However,
the presence of activity is such that the fraction of one phase is larger than the other one,
despite the initial symmetric composition. This induces the presence of droplets of the more
abundant phase which span the system and are responsible for the observed reduction
of the amplitudes of the oscillations of Rx and Ry when increasing the activity parameter.
Though the limited size of the simulated system does not allow an estimate of the growth
exponents αx and αy along the flow and the shear directions, respectively, we find that
αx − αy ' 1 as in the passive case [41,42]. The combined effect of activity and shear on the
overall morphology has been studied by considering the probability distribution functions
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(PDFs) of the size of patterns along the two spatial directions. Our simulations suggest that
such PDFs are characterized by a width that broadens with activity.

We hope that our results may stimulate further research on this system. It would
be of interest, for example, understanding the role played by the shear in active binary
mixtures where all terms breaking time-reversal symmetry to leading order in ∇ and φ
are included [28], as well as how thermal noise is expected to impact on morphology and
growth dynamics in the presence of an external driving.
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Appendix A

Here we detail how the values of ξ and tD in Figure 2 are measured. The interface
width ξ is obtained by fitting the steady interface profile along the x-direction with the
following functional form

φ(x, λ) = φ1(λ) +
(φ2(λ)− φ1(λ))

2

[
1 + tanh

(
2x
ξ

)]
, (A1)

where φ1,2(λ) are the binodals and ξ is the only fit parameter.
The values of tD are evaluated by computing the ratio

Λ(t) = ∑i |φi(t)− φi(t− t1)|
∑i |φi(t− t1)|

, (A2)

over time, where φi is the density along a unidimensional profile initialized between the
binodals φ1 and φ2 and i is a discrete lattice index running over the whole planar interface
(i = 1, . . . , L). This quantity provides an estimate of the relative difference between two
profiles taken at a time interval equal to t1. The relaxation time tD is the time such that
Λ(tD) < 10−2. A reasonable estimate of tD is obtained by using t1 = 50. Although other
values of t1 can be adopted, our choice represents a reasonable compromise between the
requirement t1 � tD to resolve tD and the need of having a sufficiently large time interval
to avoid indistinguishable profiles at times t− t1 and t.
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