A TUTORIAL ON LOTOS

Tommaso Bolognesi - CNUCE / CN.R. - Pisa
Rocco De Nicola - LE.I / CN.R. - Pisa

Rapporto interno C86-7

Gansiglio Nazionale delle Ricerche

A TUTORIAL ON LOTOS

Tommaso Bolognesi
CNUCE - C.N.R. — Pisa

Rocco De Nicola
IEIL -CNR. —Pisa

Riassunto. Viene illustrato LOTOS, un linguaggio per la specifica formale
di sistemi distribuiti e concorrenti. Un sistema viene visto come un insieme di
processi che interagiscono fra loro, si scambiano dati ed offrono potenziali
interazioni con l'ambiente. LOTOS permette la descrizione modulare della struttura
interna, anche dinamicamente variabile, di un sistema, sebbene 1a semantica di una
specifica si riferisca soltanto al comportamento temporale del sistema specificato
cosi' come lo si puo' osservare dall'ambiente esterno. E' previsto che LOTOS
diventi uno Standard Internazionale ISO per il 1988.

Abstract. We illustrate LOTOS, a language for the formal specification of
distributed, concurrent systems. A system is seen as a set of processes which
interact with each other, exchange data, and offer potential interactions with the
environment. LOTOS supports the modular description of the internal, dynamically
. variable structure of a system, although the semantics of a specification only refers
to the temporal behaviour of the specified system as observable from the external
environment. LOTOS is expected to become an ISO International Standard by 1988.

) Key Words and Phrases: concurrent languages, formal description
techniques, protocol specification, specification languages.

0. Introduction

LOTOS (Language of Temporal Ordering Specification) is one of the two [12, 13] specification
languages under development for standardization within International Standards Organization
(ISO). The main motivation for starting this effort was the need of formally describing the OSI

(Open Systems Interconnection) network architecture. The aim of formal specifications in general is
twofold:

1) to pfovide unambiguous, clear and, possibly, concise descriptions of the system
being designed, and

i) to support rigorous analysis and verification of the design before its
implementation.

These aspects are particularly important of a distributed, standard architecture, such as OSI.
Machines must communicate and cooperate with each other, and ambiguous specifications of the
related software could lead to incompatible implementations. And OSI is having a large diffusion:

any error which slips out of the analysis in the early stages of the development cycle is going to
proliferate in all implementations.

The OSI architecture is logically partitioned into seven functional layers. By making use of the
functionality provided by layer N-1, or (N-1)-service, the entities at layer i cooperate with each
other according to the N-protocol to provide an enhanced N-service, with more powerful
primitives, to layer N+1. At the bottom of the layered architecture sits the physical communication
medium. A general description of the concepts of OSI can be found in [14] and [24]; see [25] for a
quick overview. The standardization process of the OSI architecture proceeds layer by layer, ;;)ut
the services and protocols standardized so far are described in a mixture of natural language,
graphical representations, ASN.1 [11], and state tables. The tendency within ISO today is to
complement these semi-formal descriptions with formalized ones. Work in this direction has
already started. LOTOS itself is expected to become ISO international standard by 1988.

The notion of N-service allows one to abstract from the structure of layers O through N and from
the flow of data between them. The description of an N-service is, in principle, an extensional
description of the observable behaviour of a black box, in terms of feasible sequences of
service primitives exchanged at its so called 'service access points'. An N-protocol, conversely,
gives an intensional description of the layer, in terms of N-entities and (N-1)-service. Protocol
entities synchronize and communicate with each other, and operate concurrently [24].

The expressive power of a language, in general, is the ability of its constructs to capture in a
natural way the relevant aspects of the objects being specified; and indeed all the aspects of OSI
mentioned above can be naturally expressed in LOTOS. The language is meant to allow abstract
specifications, which are independent from implementation details. It allows both intensional and
extensional descriptions. It allows, for instance, to hide internal events, making them unobservable
from outside. It supports hierarchic and modular design. And, of course, it provides constructs for
expressing synchronization, communication and concurrency. Needless to say, such features suit
the needs of formal specification well beyond the scope of OSL

The analytical power of a language is determined by the possibility to formally verify properties
of the specified objects. In this respect, the existence of a formal semantics for the language is

crucial. It guarantees that the meaning of a LOTOS expression does not depend on subjective
interpretations, but is a formal object uniquely associated to it. Not only does this avoid
misinterpretations, typically by implementors, but it also provides a solid basis for automated
analysis of a specification, and for proving that two syntactically different expressions have the
same meaning. Formally specified requirements and implementations, for instance, can be proved
equivalent in a rigorously defined sense. Or, an N-protocol composed with an (N-1)-service can
be shown to behave as required by the N-service.

Unfortunately, expressive power and analytical power are often conflicting needs: the more
expressive a language, the more difficult the analysis of its programs. It is too early to evaluate
- LOTOS with respect to this tradeoff. While some fairly complete specifications of OSI services
and protocols have already appeared [5, 22], which allow to appreciate the expressive power of the
~ language, the practical analyzability of such specifications via automated tools is still to be
assessed, and %a number of national and international projects are devoted to this challenging task
(e.g., the ESPRIT/SEDOS project of the European Community).

LOTOS has two components. Processes are defined and combined using an extension of the
Calculus of Communicating Systems, CCS, developed at the University of Edinburgh mainly by
R. Milner [10,16], although some elements have been borrowed from the Theory of
Communicating Sequential Processes (CSP) [2] and CIRCAL [15]. CCS provides a small set of
operators and an algebraic framework for describing and analyzing concurrent systems. Abstract
Data types can be defined in ACT-ONE, an algebraic specification language developed by the
ACT-group of the Technical University of Berlin [6, 7]. Historically, the two basic components of
LOTOS have been dealt with independently from each other, and their presentations can be easily
separated. In fact this paper concentrates on the process (or control) component of the language, for
various reasons. First, this is the component which has received more attention, so far, within ISO.

Second, this component departs from its inspiring theories more than the other one. Third, the
theory of abstract data types is today more settled and less debated than the various approaches to a
theory of concurrency. The reader interested in the specification of abstract data types in general
may refer to [8] and [9]. Another tutorial presentation of LOTOS is found in [26].

The paper is organized as follows. Section 1 is meant to informally introduce the basic concepts of
LOTOS, essentially composition, synchronization and abstraction of processes, in order to provide
an intuitive support for their formal treatment in the rest of the paper. Our first approach to this goal
is musical: we hope it could 'sound' better or, at least, less tedious than the usual intuitive
modelization in terms of black boxes emitting characters. An actual, simple LOTOS specification is
presented in Section 2. It illustrates how the language can support modular design and the use of

abstraction levels. It also contains the specification of an elementary data type.

Section 3 provides syntax and semantics of LOTOS behaviour expressions. For every expression
we give the axioms and the inference rules of the operational semantics, which allow to precisely
derive the potential behaviours of the process denoted by the expression. Simple examples are
given both of the expressions and of the derivation of their behaviours.

Section 4 introduces the notion of equivalence between LOTOS processes (or expressions). This
notion, together with the operational semantics, is essential for giving a precise meaning to
propositions such as "these two syntactically different expressions have the same meaning".
Notions of equivalenc‘é are needed for proving that a given formal specification is met by some
formally specified implementation, and for safely substituting subparts of a system without
affecting its overall behaviour. Section 5 contains some concluding remarks on possible future
developments and improvements of the language.

1. Composing processes

1.1, Music

The first mechanical device for composing nondeterministic music is probably the "arca
musarithmica" shown in Figure 1.1, described by jesuit father Athanasius Kircher in his book
"Musurgia Universalis" (Rome, 1660) [20]. The "score" appearing on the upper side of the box
was obtained by randomly rotating internal elements of the device. In the second half of the 18th

3

century several books for nondeterministic composition were published in Europe, some of them
related to illustrious names such as Mozart and Haydn. All these manuals were based on a method

of casting dice to impose a random temporal ordering on a set of short musical episodes

pre-composed by the author.

' Lol R ﬂ
X P A A L
'. s.cmuav:tn‘lc-a WK A WO 1 R ""5* 5@“1"!
muv:nsusc‘utm BRIELP WAL usus
s:»r‘-n_-uq\‘s‘.vpa.c LAY mw:i“ .ﬂ um C

R DA AR T D nzu.t.:.
v J

ﬁt-“‘"-‘ gml-m-m i e
m ~

SCALL MVSICA
[asmenup— [rey—r——y

Figure 1.2 - A device for nondeterministic sequential composition

The basic idea was sequential composition: building blocks were composed together only on a
one-after-the-other basis. However, the recent discovery of a correspondence between Maximilian
Stadler and a minor musical editor, dating theJate 18th century, seems to reveal that an attempt was
made also in the direction of concurrent and synchronized composition, where separate
sequential streams of building blocks overlap in time and, hopefully, synchronize with each other
from time to time. Unfortunately, no other documentation supports this fascinating thesis, and the
authenticity of these few letters is doubtful. The story, as inferred from the correspondence,
involves Stadler himself (Max), Franz J. Haydn, Wolfgang A. Mozart, and is summarized below.

In obscure circumstances, Max comes into possession of a book (process Max). Every page (staze)
contains a few musical episodes (actions) . Every episode is labelled with one out of four possible
labels : "Adagio”, "Largo", "Larghetto", "Presto” :

process Max [Adagio, Largo, Larghetto, Presto].

Also, every episode terminates with the number of a new page to go to (state rransition). Max has

written similar manuals and seems to know how to use it. Hé starts at page 1 (initial state), which
offers the choice between an "Adagio" and a "Presto”, randomly chooses one of them, plays it at
the harpsichord, goes to the page indicated at the end of the episode, and repeats the procedure over
and over again. Finding himself at page 1 for the second time (recursion), Max realizes that the
music might go on forever. The discovery of a white page, with no episode at all (process ‘stop’,
offering no action) tells Max that the music may terminate.

One kind of musical episode puzzles Max. It has no label, and its score is empty, i.e., no note
whatsoever appears on the pentagram; yet, at the end, the indication of a new page is regularly
given. He then visits his friend Franz for advice. Strangely enough, Franz owns a similar book,
also found in mysterious circumstances, which includes "Largo”, "Larghetto”, "Presto” and
"Rondo™ episodes, plus several empty ones. With excitement they go to the harpsichord and play
for each other in turn, each performing a few episodes from his own book, then leaving the
keyboard to the other. They never play simultaneously (pure interleaving, or concurrent
composition with no synchronization) :

Max [Adagio, Largo, Larghetto, Presto]
Il

Franz [Largo, Larghetto, Presto, Rondo']

Also Franz is puzzled by the anomalous empty episodes, and suggests to call them "silent

episodes" (silent, or unobservable action): when one is chosen the player should simply pause for a
while and then go to the page indicated at its end. Max objects that silent episodes are pointless;
Franz replies that they do have an effect: the set of alternatives (episodes) that can be accessed
before (or, rather, instead of) a silent one, is different from the set accessible ajfrer its
"performance”, because of the change of page involved. Max is not convinced, but temporarily
agrees to treat those episodes as pauses.

By accident, the two musicians realize that episodes with equal labels can be nicely played
simultaneously, four-hands (interaction). Thus, they decide to always synchronize on the common
episodes, i.e. "Largo”, "Larghetto” and "Presto" (concurrent composition with the maximum of
synchronization):

Max [Adagio, Largo, Larghetto, Presto]

I
- Franz [Largo, Larghetto, Presto, Rondo']

This implies that when Max reaches a page offering, among others, a "Largo”, and he wishes to
play that episode, he will not do so until Franz has found a "Largo" too, and is willing to play
four-hands. The same holds for Franz.

Unfortunately Max has problems in keeping synchronized with Franz, who is definitely more
talented in playing fast. They soon agree to give up with any attempt to synchronize on "Presto”
episodes, that is, to treat "Presto’s" in the two books as though they were differently labelled.
Synchronization must occur only on "Largo's” and "Larghetto's” (concurrent composition):

Max [Adagio, Largo, Larghetto, Presto]

" |[[Largo, Larghetto]|
Franz [Largo, Larghetto, Presto, Rondo']

Max and Franz are content with their achievements. Still they feel they do not have a good theory
about silent episodes, and decide to visit their friend Amadeus, the genius, to play for him and ask
for advice. Amadeus listens carefully to their music, then asks for the two books, gives his guests
leave, and receives them back few days later, with a third book in his hands.

"This book" Amadeus explains "contains all the music that the two of you played, or could have
played to me". Then he sits at the keyboard and plays, using the new book as Max was doing with
his book before visiting Franz. Although the interleaving of "Adagio","Presto" and "Rondo™
episodes sounds the same as for the Max-Franz music, Max objects that, obviously, Amadeus
alone cannot play four-hands "Largo's" and "Larghetto's". Without interrupting his playing,
Amadeus admits that, in compiling the book, he has "hidden” those passages, by turning them into
silent episodes: they can no longer be distinguished from the other silent episodes deriving from
the two original books. "However" he clarifies "four-hands means synchronization, and
synchronization means. constraints on the ways in which your sequences, Max, can be interleaved
with the ones played by Franz. These constraints are perfectly reflected in my book; just the score
of your four-hands episodes has been hidden, and no further musician will be able to synchronize
with you on those episodes” (hiding): '

(

Max[Adagio, Largo, Larghetto, Presto]
| [Largo, Larghetto]
Franz[Largo, Larghetto, Presto, Rondo']
)\ [Largo, Larghetto]

Max is lost. Franz is only half-convinced, and one thing now puzzles him. If some of the silent
episodes-in the new book hide four hands episodes played by Max with Franz himself, what is
hidden behind the silent episodes of their own books?

-

1.2 LOTOS

A LOTOS process is an abstract entity able to perform actions, either observable or

unobservable, and to interact with other processes in its environment. An interaction may occur
between two or more processes whenever every one of them is ready to perform the same

observable action. The interaction can be seen as a unique action identical to the component
actions, performed by the process composed by the interacting processes. An observable action
performed by a (possibly composite) process p can be considered as a potential interaction with
other processes, i.e., as the manifestation of p's ability to interact with any environment offering
that same action. In music: Max and Franz may interact when they are both ready to play, say, a
"Largo". In playing a "Presto” alone, Franz expresses his desire to interact with some other
"presto” player (Max excluded, as they agreed). Finally a four-hands "Largo"” is as good as a
two-hands one for further "Largo” players to synchronize with it.

Consider this 'process abstraction':

Max3 [inl, in2, in3, out] : noexit :=
(Max2[inl, in2, mid]

Max2[mid, in3, out]
) \ [mid]

It defines a process called Max3 in terms of an expression similar to the ones used in Max's story.
Process Max3 is defined as the concurrent composition (||) of two instances of process Max2
(incideﬁtally, "Max' stands now for Maximum, rather than Maximilian). The first (second) instance
of Max2 is capable of performing actions named inl, in2, mid (mid, in3, out). The two
streams of actions may interleave in all ways that are compatible with their synchronizing on action
mid, the only action shared by the two processes. Such synchronizations would appear as
mid-actions performed:by process Max3, if the hiding operator \ [mid] were not used. In fact,
because of the hiding of mid-actions, these interactions will appear as silent, unobservable, internal
actions of Max3, denoted i. Hence, only inl-, in2-, in3- and out-actions are observable from the
environment of Max3, and are available for further interactions. This is reflected by the
parenthésized list of gates in the first line of the process abstraction above. ': noexit’ means that
process Max3 cannot pass control to other processes on its completion.

As interactions originate from the execution of equal observable actions by a set of processes, the
name of an observable action can be thought of as the name of an interaction point, or gate,
shared by the processes, where interaction takes place. Although not essential, the spatial notion of
gate has the practical advantage of allowing pictorial representations such as that in Figure 1.2,
which refers to the’ process abstraction above, and reads as follows. The behaviour of process
Max3 consists of sequences of actions performed at its external gates inl, in2, in3, out. The
alternative terminology by which the process offers actions at its external gates stresses the
interpretation of an action as a potential interaction with the environment. Looking inside the box

7

representing process Max3 (i.e., reading beyond the ":=' symbol in the process abstraction), the
process reveals two component processes, sharing only gate mid. However, mid-actions are
hidden, thus gate mid is internalized and not accessible from the outside of the outer box.

in2 in3

ini mid out

Max2 Max2

Max3

Figure 1.2 - Spatial representation of process Max3

Concurrent composition of processes is a central notion in LOTOS. Of course this is not the only
way of combining LOTOS processes together, or defining new processes in terms of existing ones.
Some of these new combinators (e.g. the choice operator '[]) appear in the small specification
below, and the complete set of operators is given in Section 3.

2. A small specification
A typical LOTOS specification is syntactically structured as follows:

specification <specification identifier> [[<gate list>]]/ (<parameter list>)] : <functionality>

@ e
pp=—y

<behaviour expression>
where
<type definitions>
<process definitions>

ends pec

We adopt these notational conventions: terminal symbols are boldface (they literally appear in an
actual specification), reserved words of the language are underscored, nonterminal symbols are
enclosed in '<>' brackets; for clarity, these brackets will denote nonterminals, i.e. syntactical
categories of the language, throughout the paper. Finally, '/...] ' denotes optionality.

8

The <type definitions> sections of a specification describe the data sets being used and the
operations that can be performed on them. This component of LOTOS essentially coincides with
ACT ONE [7], the aforementioned language for the definition of abstract data types. The central
component of a specification is the <behaviour expression>, which describes the dynamic
behaviour of the specified system as a process, by implicitely defining all possible sequences of
events which can be offered at the gates in <gate list> and are observable from the environment of
the system. This <behaviour expression> is usually defined in terms of other processes which, in

turn, may use new <type definitions>: these new types and processes are all defined after the
where keyword.

We introduce now a small but complete LOTOS specification, and describe informally how it is
read and what the described system is meant to achieve. We take the example also as a means for

introducing some terminology. Comments are enclosed in (¥*...*) brackets.

1 Specification Max_of_three [inl, in2, in3, out]:noexit :=

(* Defines a 4-gate process that accepts three natural numbers at three input gates, in any temporal
order, and then offers the largest of them at an output gate *)

(Max2[inl, in2, mid] || Max2[mid, in3, out]) \ [mid]
where

2

3

4 tvpe natural is
5 sorts mnat ‘
6 opns zero: ——> nat

7 succ: nat ——> nat
8
9

largest: nat, nat —— néxt
eqns largest(zero, x) = X

10 largest(x, y) = largest(y, x)

11 - largest(succ(x), succ(y)) = succ(largest(x, y))
12 endtype (* natural *)

13 process Max2[a, b, c] : noexit :=

14 a 7x:nat; b ?y:nat; c l!llargest(x,y); stop

15 []

16 . b ?y:nat; a ?x:nat; c 'largest(x,y); stop

17 endproc (*Max2*)

18- endspec (*Max_of three*)

Max_of three is 2 non-parametric specification, as no <parameter list> appears on line 1. Its
defining <behaviour expression> is given in line 2. Lines 4 through 12 give the only <type
definition>, while lines 13 through 17 give the only <process definition> of the specification.

Let us first give a quick glance at the definition of type nat (see [7, 8, 9] for a complete
introduction to abstract data types and ACT ONE). A <type definition> in general is meant to define
sets of values and operations on them, and consists of three sections called sorts (line 5), opns
(for "operations", lines 6 through &) and eqns (for "equations”, lines 9 through 11). The first two
sections together are called signature of the type. The signature of our type natural defines one
<sort identifier> ('nat'), and one nullary ('zero'), one unary (‘succ'), one binary (largest’)
<operation identifier>'s. By combining <operation identifier>'s we construct <value expressions>
of sort nat such as:

a) zZero

b) succ(zero)

c) largest(zero, succ(zero))
d) largest(succ(zero), zero)

We will say that two <value expression>'s denote the same value if and only if it is possible to
rewrite them, according to the equations in section eqns, until they become syntactically identical.
By using the two equations on lines 9 and 10 we can easily prove that <value expression>'s (b),
(c) and (d) above denote the same value. Notice that we are checking that two expressions denote

the same value without asking whar the value is. The answer to this question would require an
introduction to the initial algebra semantics of abstract data types, which we do not provide here.
We will simply assume the existence of a function val which maps <value expression>'s of some
sort t (e.g. 'nat’) onto z{ set of values of sort t (e.g. {0, 1, 2...}), which will be called domain of
sort t, and denoted Domain(t). A concluding remark: basié data type definitions such as the one
above would typically be found in a standard library, so that specifications could refer to them by
name via a 'library' construct (e.g. " library natural _endlib"™).

Let us now consider the process part of the specification. We find convenient, for our future
discussions, to give a name to the <behaviour expression> of line 2. Thus we easily rephrase the
specification to make it appear as a <process definition>. This is done in Figure 2.1, where some
fundamental syntactical categories of LOTOS are identified too. We are specifying a process called
Max3 which interacts with its environment through gates inl, in2, in3 and out, and cannot
enable any subsequent activity (noexit). The behaviour of this process is defined, in a process
abstraction, by a <behaviour expression> which refers to process Max2. We have already met (see
Figure 1.2) and comimented this process abstraction . Let us now turn to the definition of Max2.
The synchronization and communication capabilities of this process are expressed in terms of the
formal gates a, b, ¢ (actual gates are used in the process instantiations Max2[inl, in2, mid] and
Max2[mid, in3, out}). Process Max2 offers the choice ([]) between two alternative streams of

10

actions, which only differ by the order in which the actions at gates a and b occur. Let us simply
say, for the moment, that symbols '?' and '!" following a gate name denote, respectively, the input
and output of some value at that gate. Thus, both alternatives input two values, associated to
variables x and y, and output the largest of them at gate c¢. Notice that <value expression>'s may
contain «<value identifier>'s (variables) of some sort. For example, largest(x, y) contains
variables x and y of sort nat. In this case val(largest(x, y)) is a function of the values val(x) and
val(y) which the variables are bound to by their binding occurrences in '?x:nat’ and '?y:nat’.

<process-abstraction> <{process <behaviour
instantiation> expression>
process‘ Max 3[int , in2, in3, out] :noexit:=
<process
definitions] [(Maleim , in2, mid] lI{Max2[mid, in3, out]) \ {mid}]
where
process Max2 [a, b, ¢] :noexit =
<process :l:]?x:nat; b?y:nat ; cllargest(x,y); stop
definition> b?x:nat; a?y:nat; cllargest{x,y); stop
endproc '
endproc

Figure 2.1 - Process Max3

Despite the superficiality of our first reading, the behaviour of the specified system should now be
clear: it accepts three natural numbers at gates inl, in2, in3, in any temporal order, and then offeré
the largest of them at gate out. Note how the structure of the specification reflects the way it was
obtained by "top-down" refinement.

We are ready for a more formal and exhaustive attack to the syntax and semantics of LOTOS

<behaviour expression>'s.

3. Syntax and semantics

1

Every LOTOS process is defined in terms of a <behaviour expression>. Therefore the latter is the
fundamental syntactical construct that we need to concentrate upon. Syntactically, a <behaviour
expression> is obtained by applying a nullary, unary or binary operator respectively to zero, one

11

or two other <behaviour expression>'s. Since a <behaviour expression> defines the behaviour of a
process, and the behaviour of a process is made up with transitions (i.e. actions and related process
transformations), we would like to have a formal mechanism to derive all possible transitions of a
process from the syntactic structure of its defining <behaviour expression>. This is exactly what
the structured operational semantics approach provides [19]. By applying the axioms and
inference rules of the operational semantics, we can infer the potential transitions of a compound

<behaviour expression> from the potential transitions of its components (notice that we
conveniently confuse the terms "process” and "behaviour expression").

We need now to define actions and transitions precisely. We will let:

G denote the set of user-definable gates;

GV be the set of observable actions {g<vy, ...,vy>|g € G, v; a value of some sort t;
(i=1..n), n=21};

DV be the set of observable, successful termination actions {d<vy,..,vy> | d
is a distinguished gate, not in G, called "successful termination"; v; is a value of

some sort t; (i=1...n), n20};

An action is an element of set GV L DV U {i}. In particular:

s g<vl,...,vn> € GV is the observable action which offers the n-tuple of values <V, V> at
gate g;

e d<vl,...,vn> € DV is the successful termination action, which also offers the (possibly
empty) n-tuple of values <vy, ...,v,> at special gate d;

+ i is the unobservable action.

We will use the following mnemonic variables for actions:

‘o' ranges over GV (‘o' for 'observable")
'‘od" ranges over GV UDV ('d" for 'done’)
'oi” ranges over GV v {i} (i’ for 'internal’)

‘odi’ ranges over GV UDV U {i}
'di" ranges over DV U {i}

For example, 'od' could stand for 'g<3, TRUE, 'tree'>', or 'd<5, FALSE>'"; 'odi' could stand for

12

1t

i', and so on. We will need a function which indicates the gate where an action occurs:

gate(odi) undef ifodi=i

4]

if odi = g<vy ... v>

i
[N

if odi = d<vy ... v;>,

and also function gates(B), which, informally, indicates the set of all the gates where B may
perform an action.

Please notice that, conceptually, an <action denotation>, such as "a !3" and an action, such as
"a<3>" are different objects, of pertinence, respectively, to the syntax and to the semantics of the
language. The former is a building block of a specification, and denotes the latter, which is a
building block of the system behaviour.

Let B denote the set of <behaviour expression>'s. The idea of an action as a state transition, or

transformation of a process into another process, is captured by the following definition. A

labelled transition relation is a binary relation over B, denoted '—odi—', where label 'odi’ is an
action (we will often omit the attribute "labelled" in the sequel). The fact that <behaviour
expression>'s B1 and B2 are related via action ‘odi’ is usually represented with the infix notation:

B1 —odi—B2,
which reads: "B1 is able to perform action 'odi' and transform into B2".

We may say, in conclusion, that the purpose of the operational semantics of LOTOS is the formal
 definition of transition relations over the set of <behaviour expression>'s. Despite the tutorial
nature of this paper, we found appropriate to present the semantics in a formal way, because, in
this case, the formalism directly and naturally reflects our intuitive understanding of the meaning of
expressions; and the little cost of explaining how to read axioms and inference rules is more than
compenéated by the advantages in terms of clarity and conciseness.

We give now a complete syntax table of <behaviour expression>'s , for quick reference, and then
present them one by one, with their semantics.

3.0 Table of behaviour expressions

13

The complete list of LOTOS <behaviour-expression>'s is given in Table 1 below, which includes
all LOTOS operators. Again, '<...>' brackets denote nonterminals and '[...]" brackets denote
optionality. Also, {...}* denotes zero or more occurrences of "...". Symbols B, B1', ‘B2 in
the table stand for any <behaviour-expression>. Any <behaviour-expression> must match one of
the forms listed in column SYNTAX. We have taken the metalinguistic liberty of representing some
lists with dots.

Table 1 - Syntax of <behaviour expression>'s

NAME SYNTAX
maction stop
action prefix
- unobservable (internal) i;B
- observable g {<value-offer>}*; B
choice B1({1B2
boolean guarding [<boolean-expression>] — B
parallel (concurrent) composition
- general case B1 {[g1s - 5 gull B2
- pure interleaving - B1 ||| B2
- with the maximum of synchronization B1]|B2
hiding B\ [g1s 5 gpl
successful termination exit [(Eq, ... ,Ep)]
enabling (sequential composition) Bl >> [def xjy:ty, .., xp:ty in] B2
disabling B1 [> B2 '
process instantiation - p/[lggs e 58yl] [(Eqy e s Ey)]
local definition let xi=Eq, ... xp=E, InB
summation - on values for x:t choice B
- on gates for g in [gy, ... , gp] choice B

Operator priorities are given in the following list, in decreasing order:

hiding
> action prefix
> boolean guarding
> choice
> parallel composition
> enabling
> disabling

14

> local definition and summation.

3.1 Inaction: stop

This is one of the basic <behaviour expression>'s. No axiom or inference rule is associated with it
and it is thus impossible to derive transitions from/for it. Hence we understand stop as denoting a
predefined LOTOS process which is unable to perform any action, and is uncapable of interacting
with any other process. A typical example of a process that does not interact with the environment
is the following vending machine:

broken_machine := gtop

3.2 Action prefix - unobservable: i; B

L

We may understand the action denotation 'i;' as a prefix operator applied to <behaviour
expression> B. The resulting behaviour expression> (process) is only able to perform the
unobservable action 'i' (the silent episode that puzzles Max and Franz in Section 1.1), and

transform into B. Indeed the unique axiom for this construct is:

The unobservable action models an event internal to the process, which no external process can
synchronize with (i.e., be directly aware of). Example:

powercut_machine := j; stop

Here i models a powercut. Notice that there is no way a user can distinguish between this vending
machine and the previous one: this is a first, trivial example of the concept of observational
equivalence to be formally introduced later.

3.3 Action prefix - observable

15

For convenience of presentation we distinguish three cases, the last one being the general case.:
o Action prefix with multiple value offer: g 7x:it; B

"?x:t' is a <multiple value offer>, where x is a variable declared of sort t. This process is able to
offer any value of sort t at gate g. The associated axiom is:

g?x:t; B(x) —g<v>—> B(v), for any value v of sort t

The occurrence of this action binds variable x to value v, so that the new process B, which
represents the scope of this binding, may access the value, through the variable. Indeed, B(v)
denotes <behaviour expression> B(x) after substituting v for all free occurrences of x in it. Let us

clarify these concepts with an example. Consider the <action prefix expression> at line 14 of
specification Max_of three (Section 2):

a ?x:nat; b ?y:nat; c Nargest(x,y); stop

where ' a ?x:nat;' is the <action prefix>, and B(x) = 'b ?y:nat; c !largest(x,y); stop’ is the
<behaviour expression> to which the prefix applies, and which includes, in turn, an <action
prefix>. The whole expression does not include free occurrences of x, nor of y, as the occurrences
of the variables in largest(x,y)' are bound, that is, they fall within the scopes of their binding
occurrences in the two prefixes. However, if we consider 'b ?y:nat; c !largest(x,y); stop'in
isolation, then the occurrence of x in 'largest(x,y)' is free, as no binding occurrence of x is there
any more to bind a value to it. According to the axiom above, the whole <behaviour expression> is
able to perform any one of the actions in the set {a<0>, a<1>, ..., a<n>}, i.e. to offer any natural
number at gate a. A possible sequence of two transitions is: ‘

a 7x:nat; b ?y:nat; c !largest(x,y); stop —a<0>—

b ‘fy:nat; c !largest(O,y); stop -b<3>—
¢ !largest(0,3); stop

Because of the binding of values 0 and 3 to variables x and y, which allows the new process to refer to
these values, we could say that, rather than offering values, the process offers to accept values, and

16

think of the '?' symbol as indicating input transitions.

The usual rules for nested scopes apply. For instance, consider expression ‘a?x:t; b?x:t; ¢!(x+1)' :
the value output at gate ¢ will depend on the value input at gate b, not gate a.

Another example:

trap_machine[money]:= money?x:coin; stop

Unlike the two previous machines, this one is able to accept a coin; but then it stops.
* Action prefix with single value offer: g!E; B

"IE" is a <single value offer>, where E is a <value expression>. The associated axiom is:

g'E; B —g<val(E)>— B

where val(E) denotes the value of expression E, as discussed in Section 2. As an example, we
complete the sequence of two transitions derived above, with a third and terminal transition:

¢ !largest(0,3); stop —c<3>;-> stop -

No memory of the value offered is kept by the process offering this value, hence we think of the '!'
symbol~as indicating output transitions. The following machine:

simple_machine [money, box]:= money?x:coin; box!cookie; stop

accepts any coin at gate money, and offers a cookie at gate box.

* Action prefix with structured value offer (general case) g {<value offer>}*;B

This is the general form of the observable <action prefix expression>, where the gate name is
- followed by a list of zero or more <value offer>'s, every one of them being either a <multiple value

17

offer> or a <single value offer>. The associated axiom is essentially the combination of the two

axioms for single and multiple offers, where m<> denotes any permutation of the list it is applied
to:

g T<?Xq sy 2Xpity,s 'Eqyey Epp>s B(Xqs--09Xp)

=8 W<V {505V, VAl(E1)se.., val(Ep,)>—

B(v15e5Vp) for any value Vi of sort tj (G=1..n)
Example:
a 7x:nat !(2+2) ?y:bool; B(x.y) -a<0,4, TRUE>— B(0,TRUE)

It is important to realize that values <0, 4, TRUE> are offered/accepted at gate a simultaneously.

3.4 Choice: | B1[] B2

B1 [1 B2 is a <behaviour expression> which offers a nondeterministic choice between the two
alternatives B1 and B2. Its behaviour is captured by the two inference rules:

Bl —odi — B1' implies B1[] B2 -odi — B1'

B2 —odi — B2’ implies B1 [1 B2 —odi — B2’

These rules essentially say that the action capability (set of possible actions) of a choice expression
is the union of the action capabilities of its components; however, once an action is chosen from
one component, the other component becomes unavailable.

Process Max2 (Section 2) was defined in terms of a choice expression. By applying the first rule

above, where the premise B1 —odi— B1' is instantiated to the already derived transition

18

'‘a?x:nat;b?y:nat; cllargest(x,y); stop -a<0>— b?y:nat; cllargest(0,y); stop ', we
derive:

a?x:nat; b?y:nat; cllargest(x,y); stop [1 b?y:nat; a?x:nat; cl!largest(x,y); stop

—-a<0>—
b ?y:nat; c !argest(0,y); stop

In this example process Max2 is ready to accept the first input either at gate a or at gate b, and it will
be up to the environment (possibly) to resolve this nondeterminism, by offering an integer firsz,
say, at gate a, and then at gate b. Conversely, in the example below:

unsafe_machine[money, box] :=
money ?7x:coin; ,
(box !cookie; stop (* offer cookie *)
[1
i: stop (*power cut *))

the first branch of the choice implies synchronization with the environment (a user), while the
second branch can be taken by the process independently. The user can always insert the coin, but
he may not be able to get the cookie.

3.5 Boolean guarding: . [E] = B;

This expression behaves like B, but only if boolean expression E has value TRUE. The rule is:

B —odi — B'and val(E) = TRUE implies [E]>B —odi = B’

Example:

rd

fair_machine[money, box] :=
money ?x:coin;

[x=10] — box !cookie; stop
[]
[x+10] — box !x; stop

19

The machine may accept different coins, but only when the coin happens to be one of value 10 a
cookie is offered at gate box, otherwise the coin is returned. The example shows that the

if-then-else construct of sequential programming languages has an obvious counterpart in
LOTOS.

3.6 Parallel composition: B1]S| B2

S stands for a set [gy,...,g,] of user-definable gates. The |S] operator expresses the fact that B1

and B2 communicate through the gates in S. Three inference rules are given:

Bl —0i—B1'and gate(oi) ¢ S implies B1|S|B2-o0i— B1'[S|B2
B2 —0i—B2'and gate(oi) ¢ S implies B1|S|B2-oi— BI1|S|B2’
B1 -0d—B1' and B2 ~od—B2' and gate(od) € S {d}

implies B1|S|B2—-0d—B1'|S|B2'

The rules essentially say that a parallel composition expression is able to perform any action that
either component expression is ready to perform at a gate not in S, or any action that both
components are ready to perform at a gate in S or at gate d (which represents successful termination
and is discussed later). This implies that when process B1 is ready to execute some action at a gate
in S, it is forced, in the absence of alternative actions, to wait until its "partner” process B2 offers
the same action. (Similarly, Max and Franz were waiting for each other for playing "Largo's" and
"Larghetto's".)

This need to synchronize imposes constraints to the possible temporal orderings of the events; thus
parallel composition is a sort of an and operator which allows to add temporal ordering constraints
to an already specified behaviour. To illustrate this, we give an example in pure LOTOS, where
value communication is simply ignored and interactions are pure synchronizations, i.e. an
observable action consists merely of a gate name.

20

Consider process Max2[a, b, c] introduced in Section 2, and degrade it to the pure LOTOS process:

X2[a, b, c] := a; b; ¢; stop [] b; a; ¢; stop

This process offers actions a

and b, in either order, followed by action ¢. We may equivalently say

that the only temporal constraints involved are "a precedes ¢ and "b precedes ¢, where the ‘¢’ in

the two costraints has to be regarded as a unique action. This is expressed by the parallel

composition operator as follows:

X2[a, b, ¢] := aj ¢; stop |c] b;¢; stop

Trees

To convince ourselves that the two definitions of X2 mean exactly the same thing we need the

notion of action tree. So far we have applied inference rules to expressions to derive, at most, a

sequence of three consecutive transitions (see Section 3.3). By exhaustively applying the rules to a

given expression we get, in

general, not just a transition sequence, but a transition tree. In a

transition tree nodes are labelled by <behaviour expressions> (the starting expression being the

label of the root), and arcs are labelled by actions. An action tree is a transition tree where node

labels have been deleted. By

exercising all applicable axioms and inference rules, the reader may

easily check that the two alternative definitions of X2 above yield precisely the same action tree,

shown in Figure 3.1.

Figure 3:1 - Action tree of process X2

-

Let us go back to full LOTOS and consider the system:

usersfether,

money] :=

ether ?x:song; money !10; stop (*a user®)
[[ether]]

21

ether ?y:song; money !10; stop (*another user*)

This example represents a system of two users of some unspecified vending machine. Each of them
offers (to listen to) any song, transmitted through ether, and then offers a coin of value 10 to the
money gate of some machine. They are composed in parallel, but only gate ether is referred to by
the parallel operator. This implies that they perform their actions at this gate simultaneously, while
the actions at gate money are executed independently from each other: gate money is meant only
for user-machine interaction. Notice that we are free to interpret each user's action at gate ether as

either singing or listening (or even both things simultaneously). The essential point is that the two

persons agree on a song, so that, after synchronization, variables x and y mean the same tune, the
choice of which is made nondeterministically. In this respect the synchronization between two or
more '?'-actions (input actions) can be seen as a way to extablish random values.

Two convenient shorthands are defined for the parallel composition operator. They correspond to
limit cases for the set S of synchronization gates, and are presented below.

« Parallel composition with pure interleaving

B1]||B2 stands for B1|@|B2

ie. Sis the empty set of gates, and the third inference rule will never apply, except for termination
at gate d. On the other hand, given an expression B1||[B2, if both B1 and B2 are ready for some
action (say actions bl and b2 respectively), the first two inference rules are both applicable, and
both action orderings (b1l before b2, b2 before bl) are possible. Notice that bl and b2 may even
occur at the same gate. As B1{}|B2 transforms, after an action, into an expression still involving the
'lII' operator, we conclude that this case of parallel composition expresses nothing but any
interleaving of the actions of B1 with the actions of B2.

» Parallel composition with(the maximum of synchronization

B1|jB2 stands for B1 |gates(B1) N gates(B2)| B2

i.e. S is the set of gates shared by B1 and B2. Consider process Max3, as defined in Figure 2.1,
degrade it to pure LOTOS, and remove the hiding operator \mid', which we have not introduced
yet, thus obtaining process:

X3'[inl, in2, in3, out] :=
X2[inl, in2, mid] || X2[mid, in3, out]

22

where

process X2[a, b, ¢] :=

a; b; c; stop [1 b; a; ¢; stop

endproc
Symbol || stands here for |mid|, as this is the only gate shared by the two components of the
parallel composition expression. The action tree for X2[a, b, c] has been already derived. The
tree for X3', shown in Figure 3.2b, is obtained by composing the two trees in Figure 3.2a, which
are instances of the tree for X2, according to the rules of parallel composition, with mid as a
synchronization gate. The construction rule is simple. A node of the composed tree stands for a pair
of nodes of the component trees; the root stands for the roots. The three arcs emanating from the
root of the composed tree, for instance, are obtained by considering any non-mid arc out of either
component's root (there are three), and any mid-mid arc pair out of the pair of roots (there is
none).

ini/o\inz i 3/°\mid

] @ &
in2 ini mid \.\”l;
m]d m]d ou't ou't
®) B ®

b)

Figure 3.2 - Building the action tree of process X3'

23

3.7 Hiding B\S

Hiding allows to internalize the gates of set S = [gl,...,gn]: the operator transforms the actions
occurring at these gates into unobservable actions, thus making them unavailable for
synchronization with respect to the environment. The inference rules are:

B —odi— B'and gare(odi) ¢ S implies B\S—odi— B\S

B —0—B' and gare(o) € S implies B\S—i— B\S

The following is an example of internal synchronization. Two actions synchronize at gate money
and the resulting action is hidden. Correspondingly, gate money does not appear in the list of
gates after the process name.

user_and_machine[box] :=

(money !10; box !cookie; stop (*user®)
l
money ?x:coin; stop ' (*machine*)

N\[money]

The user inserts his coin into the machine he is composed with, which accepts the coin but is then
unable to offer anything. However the user's action of pulling a box is still visible, and further

composition of the whole system with, say, a broken vending machine offering cookies for free is
a possibility.

In terms of trees, the hiding operation simply replaces the arc labels which include gates of S with
label '1'. Pure LOTOS process X3' introduced above can be refined by hiding gate mid :

X3[inl, in2, in3, out] :=
- (X2[inl, in2, mid] || X2[mid, in3, out])\mid
where ;
process X2[a, b, ¢] :=
a; b; ¢; stop [l b;a;c; stop
endproc

The corresponding tree is immediately derived from the one in Figure 3.2b, by replacing mid-labels

24

with i-labels.

3.8 Successful terminat

on

Exit can be seen as a process able to emit a successful termination signal at the special gate d, with
or without value offers, and transform into the dead process stop. There are two cases:

(a) successful termination without value offers: exit
(b) successful termination with value offers: exit(E1,...,En)

where E; (i = 1,...,n) is a <value expression>. The two corresponding axioms are:

exit —~d<>— stop
exit(EL,...,En) —d<val(E1

oA

--sval(En)>— stop

Gate dis used exclusively

for this purpose, and will never be explicitely referred to in a

specification (i.e., any gate accidentally named d in a specification is regarded as a "normal” gate,
with no termination significance).

The way the successful termi
no special discussion; simply

nation action is "seen" in the inference rules introduced so far needs
notice that the rules for parallel composition imply that the successful

termination of B1|S[B2 may occur if and when both components are ready to successfully
terminate (distributed termination). The ultimate purpose of successful termination is revealed,
instead, in the context of sequential composition of processes. However, before tackling this

construct we need to introduce the notion of functionality, which is meant to characterize processes

with respect to the sorts of the

Functionality.

Processes, or <behaviour

values they offer at their terminations, if any.

expression>'s, can be characterized by an attribute called

functionality. Its introduction of is motivated by the following consideration: whenever a process
is capable of two or more (alternative) successful terminations, we want them to offer the same
pattern of sorts to the process subsequently enabled. Some rules are thus needed for determining
the functionality of behaviour expressions, together with some constraints on the ways expressions

25

with different functionalities can be combined. The functionality of a process which may

successfully terminate with 'exit(Eq,...,E;)" is indicated by the list ty,...,t;;, where E; is of
sort t;, for i=1,...,n. In the case of n=0 (successful termination with no value communication), the

functionality degenerates to the empty list, and is denoted 1. The functionality of the remaining
processes is denoted 0. Notice that a process P with functionality different from 0 is not
guaranteed to reach a successful termination; what we know of P is simply that if P terminates,
then it will do so in the specified way. In fact a parallel <behaviour expression> such as 'a;
exit(3) |[al] b; exit(3)' is of functionality 'mat', but never terminates successfully.

The functionality of a process is indicated in its defining process abstraction, which associates the
process name to a behaviour expression Bp of equal functionality, according to the following
syntax:

-Functionality of p and Bp Process abstraction

0 P15 -8l (X it 5e Xy) TNOCXIL = Bp

1 p[g1,...,gn](x1:t1,...,xm) rexit = Bp

t1s--tp PLE 1508l (X it 5o sXyy) 2€XiE(E 5.0t) 1= Bp

For example, in specification Max_of three (Section 2) we had Max2[a, b, c]:noexit:=...'
because the choice expression which defines Max2 has functionality 0. Notice that in order not to
distract the reader with unnecessary details we have omitted such a functionality indication in
several of the previous examples (e.g. in the vending machines)

Functionality can be defined rigorously by induction on the structure of behaviour expressions (see
[12]), with rules such as "func(stop) = 0", or "func(a?x:t; B) = func(B)". However rules and
- constraints on functionality have not yet been complely settled by the ISO experts, and we do not
need here to investigate in detail the current proposals.

3.9 Sequential composition (enabling)

r

This operator expresses the fact that the successful termination of a process enables a subsequent
process. In corrispondence with the two cases for the exit construct, there are two cases of
sequential composition:

26

(a) sequential composition withour value communication: B1>>B2

(b) sequential composition with value communication: B1>> def Xqity... Xty in B2

There are two axioms for each case:

Bl —0i—B1' implies B1>>B2 —0i—B1'>>B2
Bl -d<>—B1' implies B1>>B2 -i—B2
B1 —0i—B1' implies B1>> def xq:ty... x:t, in B2 —oi—

Bl'>> def xqpity... Xpit, In B2

Bl —d<vy...vy>—B1' implies Bl >> _c_l_gf_xlztl...xn:tn in B2(x1,...,xn)

~-i— B2(vl,...,vn)
where n 1.

The first and third rules say that before B1's termination the actions of the compound expression
are the actions of its first component B1. The second and fourth rules say that the termination action
of B1 transfers control and, possibly, values to B2, and that this event is seen as an internal action

of the compound expression. Variables xy,..., Xp»> used in B2, identify the values offered by B1 at
its successful termination. For this value communication to be correctly defined it is necessary that

- the functionality of B1 be t1,----ty- In the case without value communication, the functionality of

B1 is required to be 1. Finally, the functionality of the whole construct is defined to be that of B2.

The enabling operator is conveniently used in conjunction with process instantiation, so that
subparts of a system can be first defined separately and then instantiated in the desired sequence.
An example is found in Section 3.12 (on process instantiation).

27

3.10 Disabling B1 [> B2

Process B1 may be disabled by process B2 according to the following rules:

B1 —0i—B1' implies B1 [> B2 —oi— B1l'[> B2
Bl —-d<vy...vy> —»B1 implies Bl [> B2 —d<vy...vp> — Bl
where n20

B2 —odi—B2' implies B1 [> B2 —odi—B2'

A L L R L o R L L R L R o o L o o L R e L e e o o o o o o o s ot o it e e i e v e s e it s

Process B1 may (third rule) or may not (first and second rules) be interrupted by the first action of
process B2; and the choice is nondeterministic. In the first case control is irreversibly transferred
from the interrupted B1 to the interrupting B2. In the second case the interruptable B1 performs an
action: if this action is not a successful termination (first rule) B2 survives. If the action is a
successful termination (second rule) B2 disappears: the process it was expected to interrupt has
completed its job, and the disabling process itself has been disabled.

The restriction is imposed that the functionalities of B1 and B2 be the same, or that the

functionality of B1 be ®. The functionality of B1[>B?2 is defined to be that of B2.

As an example, consider:

reusable_machine[money, box] :=
(money ?x:coin;

[x=10] — box!cookie; reusable machine[money, box]

[]
) [x<>10] — box!x; reusable machine[money, box]
) [> §; stop (* powercut *)

Normally the machine accepts a coin, offers a cookie or the coin back, and endlessly repeats these
actions. A powercut, modelled as an internal action, may interrupt such behaviour at any time, thus
transforming the machine into a dead one. Fortunately when the machine crashes not only the box

28

but also the money gate becomes unaccessible.

3.11 Relabelling Blhy/g1ss hp/gg]

It is important to stress that this is an auxiliary operator which does not belong to the LOTOS
language but to its metalanguage. It serves to define two other constructs: process instantiation and

summation on gates. The purpose of the operator is simply to rename some of the gates of a

process: gate g; becomes gate h;, for i=1,...,n. Its rules are:

B —odi— B' and gate(odi) not in [g,....g,] implies Blh{/g{s hy/gpl —odi—

B'[hy/gyses Np/gpl

B —gi<V{,--,vp>—> B'and 1<i<n implies

B[hl/gl,...,hn/gn] —hi<V1,...,Vm>-> B'[hl/gl,u.., hn/gn}

It follows from these rules that the action trees of B and B [hy/gy,..., hy/g,] are the same,

except for the renaming of gates which affects some of the arc labels.

3.12 Process instantiation pf[hl,...,hn]] [(Eq5e.sEpy)]

The instantiation of a process is, intuitively, a straightforward concept, similar to the invocation of
a procedure in programming languages such as Pascal. In fact, we have already applied it, for
instance, in the definition of process Max3, and that premature use has probably caused no
difficulty of interpretation. Consider process abstraction:

. PIg15s8n (X it ey Xppity)? <functionality> = Bp(X1seeesXy)

p is the process name, g;'s are formal gates, Xj is a variable of sort tj G=1,...,m), <functionality>

stands for noexit, exit, or exit(ty,...,t;.), as discussed in Section 3.8, and Bp is the

<behaviour expression> abstractly defining the behaviour of p, where its dependency on variables

29

X15-Xpp 18 evidenced. We say "abstractly” because the behaviour is defined in terms of gates
and variables yet to be given actual values. Given process instantiation
p[hl,...,hn](El,...,Em), the inference rule for process instantiation expresses how its actual
parameters (gates Rhy,...,h,, and values val(El),...,val(Em)) are passed to the corresponding

process abstraction:

Bp(val(Eq);...,;val(Epy,)) [hy/gysm.s hy/gy] -odi— B’

implies plhysecshpI(E 0. ,Epy) —0di— B

where [hy/gq,..., hy/g,] denotes the relabelling operation of Section 3.11. Notice that both

the <gate list> and the <parameter list> in a process instantiation (and the corresponding lists in the
process abstraction) may be missing.

Recursion

A recursive process is one which instantiates itself within its defining <behaviour expression>
(either directly or through a chain of nested instantiations). Care must be taken in definin g recursive
processes, to avoid cases such as "P:exit(nat) := exit(zero); stop [1 P" which could lead to
an endless application of the instantiation rule which never yields a transition.

As an example of process instantiation, and of sequential composition, consider the following:

machine_scheme[moneyl, money2, box] :=
Cash[moneyl, money2]

> def t : bool in Deliver[box](t)

>> machine_scheme[moneyl, money2, box]

where -

oooooo

The dots after "where" stand for the definitions of process Cash, which accepts coins at gates
moneyl and money2, and Deliver, which may offer a cookie at gate box. We do not specify
them in detail, but simply assume that the former terminates with an "exit(TRUE)" or
"exit(FALSE)", dépending on coin values, insertion order and gate, and that the latter may or
may not deliver the cookie, depending on the truth value above.

30

3.13 Local definition

let X1=E1...Xn=En in B(X1,e.esXp)

When lengthy value expressions E; appear frequently within behaviour expression B, this construct

allows to preliminarily bind their values to variables x;, so that quicker reference to those values is

possible within B. The rule is:

B (val(Eq),...,;val(Eq,)) —odi— B'

implies

let xy=Ej..xp=E, in B (xy,...,Xp) —odi—

3.14 Summation on values

for x:t choice B(x)

Let B(x) be a behaviour expression parametric in variable X. This construct offers a multiple choice
among instances of B(x) which differ by the value v bound to variable x, and generalizes the

(binary) choice operator B1 [] B2. The rule is:

B() —odi—>B' implies for x:t choice B(x)-odi—B' for ahy value v of sort ¢

Action prefix involving <multiple value offer> and summation on values are strictly related
constructs: 'a?x:t; B(x)' can in fact be seen as a shorthand for 'for x:t choice (a!x; B(x))', as
the application of the axiom for the former and of the inference rule for the latter yield the same

actions and the same transformed processes.

3.15 Summation on gates

for g in [gg...g,] choice B

This construct offers the choice between any one of the processes B[gj/g] (with 1<j<n), where

{gj/g] is a relabelling (Section 3.11). The rule is:

31

B[gj/g] —odi—B' implies for gin [gy...gy] choice B —odi—B'

where 1<j<n.

4. Behavioural equivalences

In the previous sections we have basically described the expressive power of LOTOS by
presenting all its operators together with a few toy examples; in this section we brefly turn our
attention to its analytical power, which mainly relies on a notion of behavioural equivalence.

One can describe systems at various levels of abstraction; for example it is possible to describe how
they are structured internally in terms of predefined subcomponents or how they behave from the
point of view of a user or of an external observer. LOTOS is a specification language which allows
to specify systems at different descriptive levels. Indeed it does not differentiate between
descriptions at different levels: they are all expressions in the language, and the difference between
them is purely subjective. This range of descriptive levels is commonly partitioned into:

specifications, which are rather high level descriptions of the desired behaviour of the
system, e.g. as seen by the user (extensional description);

implementations, which are more detailed descriptions of how the system works or of
how it is constructed starting from simpler components (intensional description).

Needless to say, the border line between the two classes is quite arbitrary. The relationships
between different LOTOS descriptions of a given system and, in particular, between specifications
and implementations, can be studied by using a notion of systems equivalence, proposed in [18]
and used for a CCS-like calculus in [17]. This equivalence, known as observational
equivalence, is based on the idea that the behaviour of a system is determined by the way it
interacts with external observers. Informally two systems are considered as equivalent whenever

32

no external observer can tell any difference between their behaviours.

Theories of equivalences turn out to be very useful. In fact, they allow not only to prove that an
implementation is correct with respect to a given specification but also to replace complex
subsystems with simpler, equivalent ones, within a large system, thus simplifying the analysis of
the latter. As an example, suppose we have specified the alternating bit protocol [1] by
describing how SENDER, RECEIVER and MEDIUM processes have to exchange messages and
acknowledgements so that all messages sent will eventually be received, in the same order, even
when the medium is unreliable. Then, to prove our protocol correct we need only to prove it
equivalent to the service it is meant to provide, namely:

AB_Spec [in, out] := in ?x:message; out !x; AB Spec [in, out]

Indeed this would amount to prove that, whatever the behaviour of the medium and whatever the
internal exchange of messages, the external view of our protocol is one of a machine which inputs a
sequence of messages and ouputs them preserving their temporal ordering. Once we have proved
this equivalence we can substitute the detailed description of the protocol with the simple one above
wherever we use the alternating bit protocol.

As an example of different descriptive levels consider the following pure LOTOS processes:

Process X3 Spec [inl, in2, in3, out] :=

inl; (in2, in3, out, stop
[]
in3, in2, out, stop)

[]
in2; (inl, in3, out, stop
"
in3, inl, out, stop)
[]
in3; (inl, in2, out, stop
(]
in2, inl, out, stop)
endproc¢
Process X3 Impl [inl, in2, in3, out] :=
(X2[in1, in2, mid] || X2[mid, in3, out])\mid
where

33

process X2 [a, b, c] :=
a; b; ¢; stop
[
b; a; c; stop
d endproc
en [‘zrgzg;

Process X3 Impl (identical to process X3 introduced in Section 3.7) can be seen as an
implementation, in terms of process X2, of process X-3_Spec. The latter gives a direct,
unstructured description of a machine which outputs a signal only after receiving three input
signals. In fact, our claim is that X-3 Spec and X3 Impl exhibit the same observable
behaviour. The notion of observational equivalence allows to formally prove our claim.

Basically two LOTOS expressions are considered as equivalent whenever they can offer the same
sequences of observable actions and transform into equivalent (sub)expressions. Observational

equivalence is thus based on the transition relation (—odi—) defined by the operational semantics
given in the Section 3. More precisely we need a transition relation on LOTOS <behaviour
expressions> which involves sequences of actions but allows to abstract from unobservable ones.
The definition of such a relation is reported below, and is based on the notational conventions
fixed at the beginning of Section 3.

Definition 4.1

If s denotes strings ody ody...od,, in (GV U DV)yF and € denote the empty string then

1) B—s—B'if and only if there exist B;, 0<i<n, such that B=Bo—odil—$}31—-_..-—-.; odi,— B,=B'
il) B=e=B' if and only if for somé n =0 we have %B—-'n-——>B’;

ii) B =f’d:> B' if and only if there exist By and B, such that B=g= B{~0d—By=¢=B';

iv) B =s=> B' (with s+ €) if and only if there exist B;, O<i<n, such that:

B ZBO =Od1=> By =Od2ﬁ By .. =Odn=> Bn = RB".

1

Definition 4.2

If C and D are two elements of B, the set of <behaviour expressions>, then we say that C

is observationally equivalent to D , and write C = D, if there exists a relation R over B,

34

called a bisimulation, which contains the pair <C, D>, and such that if BliK B then, forall s €
(GVUDV)*,
i. whenever By =s=>B'; then, for some B'5, By is:>B'2 and B'{%® By

ii. whenever By =s=>B'y then, for some B'{, B} =s= B'; and B'{R B'y.

Consider the following examples, in pure LOTOS:
By = a; (b; Stop [] i; ¢; Stop) [] a; c; Stop
By = a; (b; Stop i; ¢; Stop)

B3 =i; B
By = B
‘We have that:

l} Bl = B2 and

ii) B = By
Proof In case i) the relevant bisimulation is R = {<B, B> |B € B } U {<By, Bp>} since
whenever B =s= B,wwith B # B, we have that also By =s=> B, and whenever B, =s=> B, we
have that also By =s= B; and <B, B> eR.If By =s= Bj thens = ¢; hence By =8=> By, and

<B1, Bp>eR .In case ii), the relevant bisimulation is {<B, B>|B €B } U {<B3, B4>} and the
proof is similar . ¢

It is not difficult to prove that observational equivalence, as defined above, is an equivalence
relation. However in many cases we are interested in substitutive relations, which guarantee that we
can interchange equivalent terms in any context without affecting the overall behaviour.

Definition 4.3 A context C[]is a LOTOS expression where one or more subexpressions have
been replaced by "holes". We write C[B] for the result of inserting expression B into each "hole".

$

-

It is not difficult to See that = is not preserved in every LOTOS context. For example we have seen
that

i; Stop = Stop
but if we consider the context C[] = a; Stop [] [] then we have that C[i; Stop] is not

35

equivalent to C[Stop] since

a; Stop [] i; Stop =e= Stop

while we only have

a; Stop [] Stop =¢= a; Stop [] Stop.

(i.e. C[Stop] is not able to simulate the unobservable transition of C[i; Stop] to a state where
no further action is possible)

If we want to rely upon the substitutive properties of systems, we need to consider equivalences
which are also congruences. Indeed, we have already seen that = is not preserved by []
contexts. We can define a new equivalence ~© which is based on = but satisfies our needs.

Definition 4.4 If By and B, are two <behaviour expressions> then we say that By is

observationally congruent to By, and write By =C By, if and only if C[B{] = C[B,] for

every context C[]. ¢

This definition obviously meets our requirements. Unfortunately in many cases it is unpractical to
exhibit a bisimulations for every context. For this reason, more direct and practically tractable
characterizations of = have been given, such as the one below.

Proposition 4.5 Bj = B, if and only if forall odi e GV U DV v {i},

i. whenever By—odi—B1' then, for some By', By =odi= B5' and B 1‘%: By’

1i. whenever Bp—odi—>By' then, for some B{', By =odi=> B{' and Bi'= B, 3

On the basis of the operational semantics it is possible to prove several useful congruence laws.

Two of them are reported in Figure 4.1, together with the induced transformations on the
corresponding action trees.

36

odi;i; B =° odi; B

Forgetful law Absorbtion law

Figure 4.1 - Two congruence laws

Given two behaviour expressions By and B, it may be possiblé to prove them observationally

equivalent by repeatedly applying congruence laws as rewriting rules. Subexpressions are rewritten

until By and By become syntactically equivalent. Notice that contextual rewriting is rendered

possible by the fact that the relation we are dealing with is preserved by all LOTOS operators.

The laws above are sufficient to prove that processes X3-Spec and X3-Imp are observationally
equivalent. Consider the two action trees of the processes, shown in Figure 4.2.

a) Action tree for X3-Spec

H

37

b) Action tree for X3-Impl

Figure 4.2 - Two observationally equivalent action trees

The proof can be easily conducted by simple graphical manipulations. First the forgetful law is
applied to collapse six i’ actions of the tree corresponding to X3-Impl. Then two subtrees of the
resulting tree are reduced according to the absorbtion law, and eventually the first law can be
applied twice again to give us a tree identical to the one for X3-Spec.

The proof of equivalence between two full LOTOS specifications (i. e. with value offers) is much
more complicated than for pure LOTOS, because trees become, in general, infinitely branching,
and because we have to handle and compare <value expressionss. Similarly to the case of
processes X3_Spec and X3_Impl, we might wish to prove that specification Max_of three in

Section 2 can be seen as an implementation of the unstructured specification Max_of three Spec
given below:

Specification Max_of_three Spec

type nat is
sorfs nat
opns zero: ——> nat
. Succ: nat —— nat
largest: nat, nat ——> nat
egns largest(zero, x) = x
. largest(zero, x) = largest(x, zero)
largest(suce(x), succe(y)) = succ(largest(x, y))
endtype (* nat *)

process Max3-Spec[a, b, ¢, out] :=

a?x:nat; (b?y:nat; c¢?z:nat; cllargest(largest(x,y), z); stop

[1

38

¢?y:nat; b?z:nat; cllargest(largest(x,y), z); stop)

[1
b?x:nat; (a?y:nat; c?z:nat; cllargest(largest(x,y), z); stop
[

c?y:nat; a?z:nat; cllargest(largest(x,y), z); stop)

[1
e¢?x:nat; (a?y:nat; b?z:nat; c!llargest(largest(x,y), z); stop
(]
b?y:nat; a?z:nat; cllargest(largest(x,y), z); stop)

endproc (*Max3-Spec*)
endspec (*Max_of three-Spec*)
-

As a first step we could restrict ourselves to proving that for given inputs the synchronization trees
associated with the two descriptions are observationally equivalent. Indeed, if we fix the three input
values a priori, we have two trees which are structurally identical to the ones in Figure 4.2, but
where labels in1, in2, in3 and out are replaced, respectively, by inl<vl>, in2<v2>, in3<v3> and
out<largest(largest(v1, v2), v3)>. Notice that when the implementation performs 'in3<v3>' as a
first action, the terminal action becomes out<largest(v3, largest(vl, v2))>, and our equivalence
proof must rely also on properties of the specified data, namely on the (easily provable)
commutativity of function 'largest. The need to handle simultaneously processes and types,

whose definitions follow two substantially different approaches, is certainly a source of difficulty
in carrying out proofs.

The trick of proving equivalence for fixed input values is applicable only to restricted cases. In the
general case proofs are based on the direct definitions of observational equivalence and congruence.
and are likely to require massive amounts‘of computation. For this reason, and for the interplay
between the analysis of data and process expressions, it would be naive to think to do this by hand,
and many people are now trying to define proof techniques which can be assisted by the machine
(e.g., in the ESPRIT/SEDOS project funded by the European Community). A promising start is
found m [21] where results are proved which allow, under certain "reasonable” assumptions, to

check whether a relation is a bisimulation by considering only derivations of the form B—odi—B'

rather than B =od=>B'. These results allow the definition of an algorithm for a step-by-step

construction of a bisimulation between Bjand B (if there exists one), starting with the relations

{<B1, By >} and adding further ordered pairs as necessary.

Observational equivalence is not the only key to compare LOTOS processes. In particular, with
respect to the issue of specification versus implementation, one could argue that the latter need not
display the complere behaviour allowed by the former, particularly when the specification is

39

nondeterministic and leaves some freeedom to the implementor. Because of this, we may want to
prove that an implementation is an acceptable refinement of a given specification, rather than an
alternative description with the same external behaviour. For example we would like to say that
behaviour B is a legal implementation of specification 'i; B [] i; C', which says that a satisfactory
system behaves either like B or like C. A notion of preorder between CCS terms has been defined
in [3] and has been extended in [4] to labelled transition systems (and the operational semantics of

LOTOS is one of them). This preorder is based on the idea that a description implements another
description whenever

1.The implementation may perform only actions which are allowed by the specification
2.The implementation must perform all the actions which cannot be refused by the
specification

Saying it positively, B_imp implements B_spec whenever:

1. If B_imp may "do something" then B_spec may "do something" and
2. If B_spec must "do something" then B_imp must "do something".

This approach has the additional advantage of identifying processes which cannot be distinguished
by external experiments but which are not observationally equivalent. Consider, as an example, the
two behaviours below:

By = a; (a; a; Stop [] a; Stop) and
By = aj; a; a; Stop [] a; a; Stop

Both of them will certainly support the observation of action sequences a and aa, and may or may
not support the observation of aaa; any other observation will not be supported. In spite of this,
they would be distinguished by observational equivalence, since:

B —a—> (a; a; Stop [] a; Stop) = B3 and

Byp~a— a; a; Stop =B, and B, —a— a; Stop = Bs.

Clearly Bs is not equivalent to B4 because B3 may refuse to accept the action sequence ' aa' while

B4 will certainly accept it; and Bs is not equivalent to Bg because B3 may accept 'aa’ while By

will certainly refuse it.

40

One of the advantages of LOTOS is that, on the basis of its operational semantics, different
relations between specifications can be defined, which suit different analytical needs.

5. Conclusions

We have presented the specification language LOTOS and have focused our attention on the
component which deals with the definition of interacting processes in terms temporal ordering of
their actions and interactions. The language has a strong algebraic nature and the first impact with
the apparently complex symbology of specifications may be discouraging. However, we hope we
have proved, with the series of small examples given, that once some familiarity is achieved with
the operators, systems can be specified in a natural way which reflects quite directly our primary,
intuitive pictures of their structure and behaviour. The specifier, in general, does not feel forced to
express unnecessary details with respect to his abstract understanding of the processes being
specified. Whereas process specifications can be natural and concise, this may not be the case for
type definitions. Abstraction (from implementation details) is certainly guaranteed by the abstract
data type definitions of LOTOS. However some type definitions included in current specifications
of OSI protocols and services (e.g. [S, 22, 23]) have shown to require lengthy lists of equations, to
the detriment of readability. Some improvements are expected in this direction.

A major problem to be addressed in sketching a preliminary outline of a realistically complex
specification relates to the tradeoff between process and type definitions. It is a fact that many
elements of a system can be equally specified as processes or as data types. On one hand we may
rule out this problem as a mere matter of taste and style. On the other hand we have mentioned that
the interplay between processes and types has an impact also on the analysis of specifications. It is
felt that a deeper understanding of the relation between the two components could be beneficial, and
that some harmonization between them could be attempted (in the sense, for instance, of devising a
common semantical model). This is also an area where interesting developments are possible.

We have illustrated a notion of observational equivalence and stressed its important role in an
anaiytical sense. We have seen that the equivalence presented here is defined, in a sense, on top of
the operational semantics of the language. It is important to observe that the same basis can support
alternative definitions of equivalences, or preorders, in order to meet different analytical needs.

LOTOS has the merit (and takes the risks) of adopting relatively recent theories, which have been

41

mainly confined, so far, to academic environments. The wide exposure that the language is already
undergoing, in terms of OSI protocols and services specifications, and the ongoing effort in
building automated tools for the development, analysis and verification of specifications, are
valuable opportunities to test the practical applicability of those theories. And these efforts are
crucial for the success of LOTOS

Acknowledgement

The development of LOTOS started within ISO/TC97/SC16/WG1/FDT Subgroup C in 1981. Since
then several people from various national Member Bodies of ISO and from the CEC research
project COST11/bis FDT/TOS have contributed to the definition of the language. Subgroup C was
initially chaired by Chris Vissers and then by Ed Brinksma, who coordinated the efforts which
brought the language to its current shape. Both are at Twente University of Technology; they
donated time and energy to this activity far beyond their assigned task. It would be impossible to
acknowledge all people who partecipated to the development of LOTOS, since the technical
contributions input at international meetings by national delegations or experts are often the result of
discussions taking place in the various local institutions involved. The first author wishes to
acknowledge, among those with whom he interacted more directly: Giuseppe Scollo, Ed Brinksma,
Alastair Tocher, Elie Najm, Luigi Logrippo and Jan de Meer. Both authors wish to thank their
colleague Diego Latella for fruitful technical discussions.

6. References

[1] Bartlett, K.A., R.A.Scantlebury, P.T.Wilkinson, A Note on Reliable Full-duplex

Transmission over Half-duplex Lines, Communications of the ACM, 12, 5, pp.260-261,
1969. ‘

[2] Brookes,S.D., C.A.R.Hoare, A.D.Roscoe, A Theory of Communicating Sequential
Processes. Journal of ACM, Vol. 31, No. 3, pp. 560-599 , 1984,

[3] De Nicola, R., and Hennessy,M. Testing Equivalences for Processes. Theoret. Comput.
Sci., Vol. 34, pp. 83-133, North Holland, Amsterdam, (1984).

-’

[4] De Nicola, R., Extensional Equivalences for Transition Systems . Internal Report IEI
B84-13, Pisa.1984.

[5] Di Stefano, A. (Ed.), Draft specification in LOTOS of the OSI session protocol (Version 1),
ESPRIT/SEDOS/C1/WP/6/C, Univ. of Catania, October 1985.

[6] Ehrig, H., W.Fey, HHansen, ACT ONE: An Algebraic Specification Language with Two

42

7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

115}

[16]

17

(18]

[19]

[20]
[21]

[22]

[23]

Levels of Semantics, Technische Universitaet Berlin, Bericht-Nr. 83-03, 1983.

Ehrig, H., and Mahr, B., Fundamentals of Algebraic Specification - 1, Springer-Verlag,
Berlin, 1985.

Goguen, J.A., J.W.Thatcher and E.G.Wagner, An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types, IBM Research
Report RC 6487, 1976. Also: Current Trends in Programming Methodology IV: Data
Structuring, R.Yeh (Ed), Prentice Hall, 1978.

Guttag, J., Abstract Data Types and the Development of Data Structures, Communications of
the ACM, Vol.20, N.6, June 1977.

Hennessy, M., and R.Milner, Algebraic Laws for Nondeterminism and Concurrency,
Journal of ACM, Vol.32, No. 1, pp. 137-161, 1985.

ISO DIS8824 - Information Processing - Open Systems Interconnection - Specification of
Abstract Syntax Notation One (ASN.1), 1985.

ISO DP8807 (also: ISO/TC 97/SC 21 N 423), Information Processing Systems - Open
Systems Interconnection - LOTOS - A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour, 1985.

ISO DPS074 (also: ISO/TC 97/SC 21 N 422), Information Processing Systems - Open
Systems Interconnection - ESTELLE - A Formal Description Technique Based on an
Extended State Transition Model, 1985.

ISO IS7498 - Information Processing Systems - Basic Reference Model for Open Systems
Interconnection, 1983. '

Milne, G., CIRCAL and the Representation of Communication, Concurrency and Time.
ACM Toplas Vol. 7, No. 2, pp. 270-298, 1985.

Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer Science,
Vo0l.92, Springer-Verlag,1980.

Milner,R. A Complete Inference System for a Class of Regular Behaviours. Journal of
Computers and Systems Sciences, Vol. 28, No. 3, pp.439-466, (1984).

Park,D. Concurrency and Automata on Infinite Sequences. Proc. 5th GI Conference, LNCS
104, pp. 167-183, (1981).

Plotkin,G. A Structural Approach to Operational Semantics, Lecture Notes, Aarhus
University, (1981).

Prieberg, F. K., Musica ex machina, Verlag Ullstein, Berlin-Frankfurt-Wien, 1960.

Sanderson, M.T., Proof Techniques for CCS, Ph.D. Thesis, University of Edinburgh,
CST-19-82, (1982).

Scollo, G. (Ed.), Draft specification in LOTOS of the OSI transport protocol (Version 4),
ESPRIT/SEDOS/C1/WP/5/C, Univ. of Catania, October 1985.

Tocher, A.J., OSI Transport Service: A Constraint-Oriented Specification in Extended
LOTOS, ESPRIT/SEDOS/C1/WP/11/IK, ICL, Kidsgrove, November 1985.

43

[24] Proceedings of the IEEE - Special issue on OSI, Vol.71. No.12, Dec. 1983

[25] Voelker,J., Helping Computers Communicate, IEEE Spectrum, Vol.33, No.3, pp.61-70,
March 1986.

[26] Brinksma, H., A Tutorial on LOTOS, Proceed. 5th IFIP WG6.1 Workshop on Protocol
Specification, Testing, and Verification (North Holland, Amsterdam, 1985).

44

