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In this tutorial, we present the definition, interpretation, and properties of some of the main quasiprob-
abilities that can describe the statistics of measurement outcomes evaluated at two or more times. Such
statistics incorporate the incompatibility of the measurement observables and the state of the measured
quantum system. We particularly focus on Kirkwood-Dirac quasiprobabilities and related distributions.
We also discuss techniques to experimentally access a quasiprobability distribution, ranging from the weak
two-point measurement scheme, to a Ramsey-like interferometric scheme and procedures assisted by an
external detector. Once defined the fundamental concepts following the standpoint of joint measurability
in quantum mechanics, we illustrate the use of quasiprobabilities in quantum thermodynamics to describe
the quantum statistics of work and heat, and to explain anomalies in the energy exchanges entailed by a
given thermodynamic transformation. On the one hand, in work protocols, we show how absorbed energy
can be converted to extractable work and vice versa due to Hamiltonian incompatibility at distinct times.
On the other hand, in exchange processes between two quantum systems initially at different tempera-
tures, we explain how quantum correlations in their initial state may induce cold-to-hot energy exchanges,
which are unnatural between any pair of equilibrium nondriven systems. We conclude the tutorial by giv-
ing simple examples where quasiprobabilities are applied to many-body systems: scrambling of quantum
information, sensitivity to local perturbations, and quantum work statistics in the quenched dynamics of
models that can be mapped onto systems of free fermions, for instance, the Ising model with a trans-
verse field. Throughout the tutorial, we meticulously present derivations of essential concepts alongside
straightforward examples, aiming to enhance comprehension and facilitate learning.
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I. INTRODUCTION

In this paper we provide a tutorial that delves into the
use of quasiprobabilities and their associated distributions
within the realm of quantum science and with specific
applications in quantum thermodynamics and many-body
quantum systems.

As evident from numerous studies [1–19], quasiproba-
bilities have garnered significant interest within the quan-
tum community. In fact, they are a proper tool to describe
the statistics of the outcomes resulting from consecu-
tive events in several areas of quantum mechanics and
associated technologies, from foundations to quantum
devices. The most appealing feature of a quasiprobability
is its capability to embody the incompatibility of quan-
tum observables, due to their nonzero commutator, that are
evaluated at different times of a given experiment. This
incompatibility is singled out by the fact that the distri-
bution of the measurement outcomes admits nonclassical
traits. The latter ones, expressed in the form of “negative”
and “nonreal probabilities,” reflect the effects entailed by
the Heisenberg uncertainty principle that indeed concerns
the impossibility of concurrently measuring two comple-
mentary and incompatible properties of a quantum system
in contiguous times.

In the following, we are going to introduce the con-
cept of quasiprobability from theoretical arguments, and
we then outline their main properties, especially those con-
cerning the loss of positivity. After that, we will address
measurement procedures that allow observation of the
“negative” and “nonreal probabilities” of pairs of measure-
ment outcomes, by showing that such genuinely quantum
features have a clear physical interpretation inherently
related to quantum coherence and correlations [20,21].
We are particularly interested in pedagogically explain-
ing those physical interpretations that can be linked to
thermodynamic quantities under out-of-equilibrium condi-
tions (work, heat, and their distributions) [5,8,12,15,22–
27], and in the rich arena of many-body quantum sys-
tems [4,6,11,14,16,17,28]. In this regard, interpretations of

the well-known Loschmidt echo and out-of-time-ordered
correlators (OTOCs) for many-body systems in terms of
quasiprobabilities are discussed and illustrated with step-
by-step worked examples. Finally, the tutorial is con-
cluded with a discussion containing some perspectives
on possible theoretical studies and experimental observa-
tions of quasiprobabilities in current quantum platforms
[12,19,25,29].

This tutorial is targeted at graduate students and
researchers, both theoretical and experimental, with a basic
knowledge of quantum mechanics. Specifically, we aim
to provide both the formal definitions that lay the foun-
dations for quasiprobabilities in quantum science, and
simple analytical examples helping to understand the fun-
damental concepts and applications of the methodology.
We would also give some hints on new directions on the
use of quasiprobabilities that have not yet been explored,
especially in quantum thermodynamics and many-body
quantum systems.

II. QUASIPROBABILITIES

In this section, we introduce the concept of quasiprob-
abilities in quantum mechanics, following the seminal
papers by Kirkwood [30] and Dirac [31] in the 1930s and
1940s, respectively. There have been several approaches
that brought to light the notion of a “negative probability”
and crucially even probabilities represented by a complex
number. In this tutorial, we choose to approach this topic
from the fundamental standpoint of joint measurability in
quantum mechanics.

Under conditions we are going to detail, Kirkwood-
Dirac quasiprobabilities (KDQ) can take both negative
and imaginary values. “Negative probability” and even
“probabilities represented by a complex number” can be
explained from the fundamental standpoint of joint mea-
surability in quantum mechanics.

For this purpose, let us set the theoretical framework.
First, consider a quantum state preparation that generates a
generic density operator ρ that, by definition, is a Hermi-
tian, semidefinite operator with trace 1. Then, we define
two quantum observables, associated to two Hermitian
operators, O1(t1) and O2(t2), that we measure at two dis-
tinct times t1 and t2 with t1 < t2. The observables can be
generally expressed using their spectral decomposition as

Oi(ti) =
∑

si

osi(ti)�si(ti), (1)

in terms of their eigenvalues osi(ti) and the associated
projectors �si(ti) onto the corresponding eigenspace.

In the general case, ρ, O1(t1) and O2(t2) do not
commute with each other. Moreover, in the time inter-
val [t1, t2]—after the first measurement of O1(t1) and
before the second measurement of O2(t2)—the state of
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the quantum system can be subject to a generic quan-
tum process described by a completely positive trace-
preserving (CPTP) quantum map � : ρ(t1) �→ �[ρ(t1)] =
ρ(t2), which operates on and returns density operators.
For simplicity, we omit the explicit time dependence of
� to avoid making the notation too heavy. We introduce
its Kraus representation such that �[ρ] =∑α KαρK†

α and∑
α K†

αKα = I, where I is the identity operator. The reader
interested in the main properties of quantum maps can refer
to Refs. [32,33].

In this section, we discuss how to characterize the statis-
tics of measurements outcomes from the two-time evalua-
tion of O1(t1) and O2(t2), by also taking into account the
noncommutativity of the involved operators, i.e., the initial
density operator ρ and the two observables. We explicitly
wrote “two-time evaluation” in order to clearly distinguish
it from the wording sequential measurements. In fact, as
we will explain in a while, a procedure based on sequential
measurements is necessarily invasive. As a result, (a) the
measured system is perturbed; (b) initial quantum coher-
ence in ρ [with respect to the basis decomposing O1(t1)] is
destroyed; (c) the statistics of the outcome pairs (os1 , os2)

resulting from sequentially measuring O1(t1) and O2(t2)
changes.

Because of these reasons, we are going to consider an
approach that, even in the general noncommutative case,
can return a statistics of (os1 , os2) that is exempt from
the invasiveness of the measurement apparatus, and is not
affected by the first measurement of a sequential proce-
dure, at least in some statistical moments [34]. This aspect
should not be surprising since it is known that [35] when
noncommuting observables are taken into account, there
is no unique formula to describe the joint probabilities of
(os1 , os2) that has both a correspondence with the classical
theory of probability and at the same time is returned by
a noninvasive measurement routine; see Sec. II B for more
details on this aspect.

Now let us discuss in greater depth the invasiveness
under the joint measurability problem, by introducing the
celebrated two-point measurement (TPM) scheme [36].

A. Sequential projective measurements and the TPM
scheme

The TPM scheme is the procedure to characterize the
statistics of (os1 , os2) by means of sequential measure-
ments, which has a correspondence with the classical
theory of probability [37]. Albeit the process underlying
the measurement outcomes has quantum traits, the results
from such a measurement procedure can also be described
by a probability distribution that obeys the Kolmogorov’s
axioms of probability. The Kolmogorov’s axioms are as
follows: (i) the probability of getting a measurement out-
come is a non-negative real number; (ii) the probability to

measure at least one of the outcomes is 1; (iii) the prob-
ability to measure any countable sequence of mutually
exclusive measurement outcomes is equal to the sum of
the probabilities for each outcome.

Operationally, the two quantum observables O1(t1) and
O2(t2) are measured at times t1 and t2, respectively, and
a pair of outcomes (os1 , os2) is obtained. The probability
distribution associated to any outcome pair is determined
by repeating the sequential measurement procedure sev-
eral times. Formally, the joint probability to get (os1 , os2),
according to the TPM scheme, is

p(s1, s2) = Tr
[
�H

s2
(t2)�s1(t1)ρ�s1(t1)

]
, (2)

where ρ is the initial quantum state (prepared at time t1),
and �H

s2
(t2) = �†[�s2(t2)] =

∑
α K†

α�s2(t2)Kα is one of
the projectors of O2(t2) evolved in the Heisenberg picture.
For unitary dynamics, �H

s2
(t2) = U†�s2(t2)U, where we

have introduced the unitary evolution operator of the sys-
tem U ≡ T exp

(
−(i/�) ∫ t2

t1
H(t)dt

)
with � denoting the

reduced Planck’s constant, set to 1 for simplicity from now
on, T the time-ordering operator, and H(t) the Hamiltonian
of the system at time t.

A procedure based on sequential projective measure-
ments is invasive as it violates the no-signaling-in-time
condition [38]. To better single out this aspect, we intro-
duce the generic joint probability d(s1, s2) at two times,
depending on the outcome pairs (os1 , os2). We do not
explicitly provide a specific expression for d(s1, s2), as we
aim to study the mathematical properties that any joint
probability needs to satisfy assuming a (non)invasive mea-
surement procedure. Thus, if applied to our case study, the
no-signaling-in-time condition states that the statistics of
(os1 , os2) that is returned by a noninvasive measurement
apparatus must fulfill the condition

∑

s1

d(s1, s2) = ps2(t2) = Tr
[
�H

s2
(t2)ρ

]
. (3)

In other terms, the requirement for the noninvasiveness is
that, marginalizing the distribution over the outcomes s1
of the first observable O1(t1) at time t1, we recover the
unperturbed single-time probability ps2(t2) associated to
the outcomes of the second observable O2(t2) at t2.

In this respect, noninvasiveness can be considered as
a synonymous of unperturbed marginals. The validity of
Eq. (3) is a necessary condition for macrorealism [39]
and, interestingly, Eq. (3) can be violated even in situa-
tions where no violation of Leggett-Garg inequalities is
allowed [38]. The violation of the no-signaling-in-time
condition marks the main consequence of the joint measur-
ability problem due to the incompatibility of the involved
quantum operators ρ, O1(t1) and O2(t2).

030201-3



STEFANO GHERARDINI and GABRIELE DE CHIARA PRX QUANTUM 5, 030201 (2024)

The question that now arises is: “What information is
erased by using the TPM scheme in the attempt of attaining
the statistics of (os1 , os2)?” or equivalently “How invasive
is a procedure based on sequential measurements?” We are
going to show that the TPM scheme is noninvasive if and
only if [ρ,�s1(t1)] = 0 or [�s1(t1),�

H
s2
(t2)] = 0. Other-

wise, Eq. (3) would be violated. In order to determine what
information is erased by the TPM scheme, let us com-
pare the final-time probability ps2(t2) = Tr[�H

s2
(t2)ρ] and∑

s1
p(s1, s2). The latter equals

∑

s1

p(s1, s2) = Tr

[
�H

s2
(t2)
∑

s1

�s1(t1)ρ�s1(t1)

]

= Tr
[
�H

s2
(t2)D1[ρ]

]
, (4)

where the superoperator

D1[ρ] ≡
∑

s1

�s1(t1)ρ�s1(t1) =
∑

s1

ps1(t1)�s1(t1) (5)

denotes the dephasing channel, which is defined over
the eigenbasis of the quantum observable O1(t1) and
is applied to the initial density operator ρ. In Eq. (5),
ps1(t1) = Tr[�s1(t1)ρ]. Hence, if we compare ps2(t2) and∑

s1
p(s1, s2), we can see that the first measurement of the

TPM scheme erases the quantum coherence contained in ρ
once projected onto the eigenbasis of O1(t1).

It is worth noting that the initial density operator can
always be linearly decomposed in the basis of O1(t1) as

ρ = D1[ρ]+ χ , (6)

where

χ ≡
∑

s1 �=s′1

ρs1,s′1 |s1〉〈s′1| (7)

is the operator containing the off-diagonal elements of ρ,
with Tr[χ ] = 0.

As an example, let us consider a qubit as the quantum
system and O1(t1) = σ z as the quantum observable at time
t1. We have introduced the Pauli matrices {σ x, σ y , σ z} [40].
Then,

χ = ρ0,1|0〉〈1| + ρ1,0|1〉〈0|, (8)

where |0〉, |1〉 are the two eigenstates of σ z, ρi,j = 〈i| ρ |j 〉,
and, due to the Hermiticity of ρ, ρ1,0 = ρ∗0,1.

B. No-go theorem for sequential outcomes statistics

Previously, we have outlined that a procedure based on
sequential measurements fails in recovering the marginal

distribution ps2(t2) from the joint TPM distribution
p(s1, s2) of the pairs (os1 , os2) with respect to the measure-
ment outcomes os1 of O1(t1), see Eq. (4) and the related
discussion. This directly violates the no-signaling-in-time
condition, Eq. (3), and establishes that the measurement
procedure is invasive. The origin of such violation lies in
the fact that at least one of the commutators [ρ,�s1(t1)]
and [�s1(t1),�

H
s2
(t2)] is different from zero.

This conclusion is related to a deeper statement sum-
marized by the no-go theorem reported in Ref. [11],
which is less restrictive than the formulation firstly proven
in Ref. [41]. The no-go theorem states that the follow-
ing three properties cannot be valid simultaneously for
any initial density operator ρ if and only if [�s1(t1),
�H

s2
(t2)] �= 0 for some pair (os1 , os2):

(i) The probability distribution of the pairs (os1 , os2),
defined by the generic joint probabilities d(s1, s2)

in the time interval [t1, t2], obeys Kolmogorov’s
axioms of the classical theory of probability.

(ii) The joint probabilities d(s1, s2) lead to unperturbed
marginals:

∑

s1

d(s1, s2) = ps2(t2), (9)

∑

s2

d(s1, s2) = ps1(t1). (10)

(iii) The joint probabilities d(s1, s2) are linear func-
tions of the initial density operator ρ. Formally,
this means that, given a linear combination ρ =∑

k akρk, then d(s1, s2, ρ) =∑k akd(s1, s2, ρk).

The three properties (i)–(iii) are all simultaneously satis-
fied under the assumption of the commutative condition
[�s1(t1),�

H
s2
(t2)] = 0, and the probability distribution that

fully characterizes the statistics of the pairs (os1 , os2) is the
one returned by the TPM scheme.

In the following and throughout the tutorial, we will give
up the property (i). As a consequence we can no longer
employ sequential projective measurements to characterize
the statistics of (os1 , os2). Avoiding the direct application
of the TPM scheme on the quantum system under scrutiny
may completely eliminate the invasiveness of the mea-
surement procedure and allow us to recover unperturbed
marginal distributions [property (ii)]. Such a requirement
for the generic joint probabilities d(s1, s2) is well justi-
fied if we want that our knowledge on the fluctuations
of the pairs (os1 , os2) is not decreased by the quantum
measurement backaction. We therefore require that the
no-signaling-in-time condition is fulfilled. Furthermore,
we demand that the probability distribution of (os1 , os2)

exhibits linearity, in conformity with the property (iii). In
this way, for any variation of ρ, one does not need to repeat
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from scratch the experimental procedure (which, as noted
earlier, should not be sequential) to determine d(s1, s2).

As a result, by linearly decomposing ρ as in Eq. (6), in
terms of its diagonal and off-diagonal parts with respect to
the eigenbasis of O1(t1), we recover the results of the TPM
scheme whenever χ = 0, with 0 denoting the matrix with
all zeros. In addition, another consequence of the linearity
property is that the procedure for measuring d(s1, s2) can
be independent on the initial density operator ρ, as it is
customary in the classical case.

C. Beyond the two-point measurement scheme:
quasiprobability approach

Under the noncommutativity hypothesis [�s1(t1),
�H

s2
(t2)] �= 0 for some pair (os1 , os2), dropping the property

(i) of the no-go theorem mentioned in Sec. II B allows for
the introduction of a quasiprobability distribution (QD),
whose terms can be nonpositive (i.e., negative real num-
bers or even complex numbers), albeit still summing to 1.
In general, there is not a unique QD due to ordering ambi-
guities in how the QD is defined (see Refs. [9–11,13,35]).
As a consequence, there are, in principle, infinite QD that
are linear in the initial state ρ and lead to unperturbed
marginals, at both the initial and final times t1 and t2.

Let us introduce quasiprobabilities. We start from the
expression for the generic joint probabilities d(s1, s2) and
assign a linear operator M (s1, s2) to each pair (os1 , os2) of
measurement outcomes. Without loss of generality, we can
write

d(s1, s2) = Tr [M (s1, s2)ρ] . (11)

From classical probability theory, in the case of the TPM
scheme [see Sec. II A], we find that

M (s1, s2) = MTPM(s1, s2) ≡ �s1(t1)�
H
s2
(t2)�s1(t1), (12)

which returns Eq. (2). Multiplying the observable �H
s2
(t2)

by the projector �s1(t1) on both the left and right sides is
equivalent to performing a projective measurement entail-
ing the collapse of the measured quantity. In order to over-
come this, the minimal change is to remove one projector
�s1(t1). We can set either

M (s1, s2) = MKDQ 1(s1, s2) ≡ �H
s2
(t2)�s1(t1), (13)

or

M (s1, s2) = MKDQ 2(s1, s2) ≡ �s1(t1)�
H
s2
(t2). (14)

Substituting the linear operators MKDQ 1(s1, s2) or MKDQ 2
(s1, s2) in Eq. (11) gives two perfectly valid KDQ.

The difference of applying MKDQ 1 or MKDQ 2 on ρ is that
they operate on off-diagonal terms of ρ with exchanged

indexes [(os1 , os2)←→ (os2 , os1)]. In fact, one can com-
pute that

Tr
[
�H

s2
�s1ρ

]
= Re Tr

[
�H

s2
�s1ρ

]
+ i Im Tr

[
�H

s2
�s1ρ

]

Tr
[
�s1�

H
s2
ρ
]
= Re Tr

[
�H

s2
�s1ρ

]
− i Im Tr

[
�H

s2
�s1ρ

]
,

whence

Tr
[
ρ�s1�

H
s2

]
= Tr

[(
�H

s2
�s1 ρ

)†
]
= Tr

[
�H

s2
�s1 ρ

]∗
,

(15)

thus meaning that the KDQ Tr[MKDQ 1(s1, s2)ρ] and
Tr[MKDQ 2(s1, s2)ρ] differ by their imaginary parts that are
opposite in sign.

Both KDQ reduce to p(s1, s2) = Tr[MTPM(s1, s2)ρ], as
in Eq. (2), if [ρ,�s1(t1)] = 0 or [�s1(t1),�

H
s2
(t2)] = 0. In

this tutorial, without loss of generality, we will make use
of the KDQ defined by MKDQ 1(s1, s2) that, from now on,
we denote as

q(s1, s2) ≡ Tr
[
MKDQ 1(s1, s2)ρ

]

= Tr
[
�H

s2
(t2)�s1(t1)ρ

]
. (16)

The sign ambiguity in Tr[MKDQ 1(s1, s2)ρ] and Tr[MKDQ 2
(s1, s2)ρ] can be overcome by taking the uniformly
weighted sum of MKDQ 1(s1, s2) and MKDQ 2(s1, s2), i.e.,

MMHQ(s1, s2) ≡ 1
2
(
MKDQ 1(s1, s2)+MKDQ 2(s1, s2)

)

= 1
2

{
�H

s2
(t2),�s1(t1)

}
, (17)

where {A, B} ≡ AB+ BA denotes the anticommutator of
the generic operators A, B. In this way, we end up with the
quasiprobability

qMHQ(s1, s2) ≡ Tr
[
MMHQ(s1, s2)ρ

]

= 1
2

Tr
[{
�H

s2
(t2),�s1(t1)

}
ρ
]

(18)

= Re Tr
[
�H

s2
(t2)�s1(t1)ρ

]

= Re [q(s1, s2)] , (19)

commonly known as the Margenau-Hill quasiprobability
(MHQ) [42].

Other quasiprobabilities have been considered in the lit-
erature; for example, for systems weakly interacting with a
detector in order to avoid the invasiveness of the first mea-
surement of the TPM scheme [22,24,43–47]. Given their
affinity with MHQ and KDQ, we will discuss them in detail
in Sec. III. Moreover, in Sec. II D, we will also give a short
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overview of alternative formulations of quasiprobabilities
considered in the literature.

The quasiprobabilities defined in Eqs. (16) and (19)
respect properties (ii) and (iii) of the no-go theorem in
Sec. II B, meaning that the no-signaling-in-time condition
is fulfilled and the measurement procedure that allows to
get a QD is independent of the initial state ρ. Moreover, the
TPM statistics is recovered in the case in which ρ, O1(t1),
O2(t2) all commute with each other.

These characteristics are important requisites to build a
consistent thermodynamic theory via quasiprobabilities. In
particular, the property (iii) of the no-go theorem, regard-
ing the linearity on the initial state, is meaningful when
drawing a correspondence with classical thermodynamics.
In fact, any nonlinear dependence of thermodynamic quan-
tities—work, heat, and entropy—on the initial state seems
to be in contradiction with their standard definition in clas-
sical thermodynamics that does not change depending on
the way the phase-space distribution taken as the input
ensemble is split.

1. Nonpositivity

KDQ naturally encode temporal correlations between
the measurement outcomes of the quantum observables
O1(t1) and O2(t2). As explained in Sec. II B, in rela-
tion to the no-go theorem, the quasiprobabilities q(s1, s2)

can be nonpositive, although they are still subject to the
normalization constraint

∑

s1,s2

q(s1, s2) = 1. (20)

In the case of KDQ, nonpositivity can mean the following
two facts:

(I) the real part of q(s1, s2) is negative;
(II) q(s1, s2) is a complex number with a nonzero imag-

inary part.

From a mathematical point of view, the onset of nonposi-
tivity in KDQ is a consequence of the fact that the product
of two quantum observables (say, A and B) can always be
decomposed as the linear combination of self-adjoint oper-
ators: AB = {A, B}/2+ i[A, B]/(2i). Thus, for the product
�H

s2
(t2)�s1(t1), we have

�H
s2
(t2)�s1(t1) =

{
�H

s2
,�s1

}

2
+ i

[
�H

s2
,�s1

]

2i
. (21)

The first term on the right-hand side of Eq. (21) gives rise
to the MHQ—the real part of the KDQ—when evaluated
(i.e., averaged) with respect to the initial density opera-
tor ρ. Then, looking at the second term of Eq. (21), it is
evident that a necessary condition for the KDQ to have

an imaginary part is the noncommutativity of �s1(t1) and
�H

s2
(t2). In this regard, we stress that if [�s1(t1),�

H
s2
(t2)] =

0, then �H
s2
(t2)�s1(t1) = �s1(t1)�

H
s2
(t2)�s1(t1), and the

KDQ coincides with the TPM probabilities. In order to
ensure the validity of Eq. (20), the imaginary parts of KDQ
must cancel each other out.

In Sec. II C 2, we will show a simple case study that
directly connects the imaginary parts of the KDQ with the
presence of imaginary coherence terms in the initial den-
sity operator ρ, with respect to the eigenbasis of O1(t1).
Hence, if we ignored the imaginary parts of q(s1, s2), we
would exclude some information stemming from quan-
tum coherence and correlations that may emerge in the
quantum statistics of (os1 , os2).

The occurrence of nonpositivity can be considered as
a nonclassical feature in the statistics of the measure-
ment pairs, underlining the presence of genuinely quantum
features due to the interplay of quantum dynamics and
measurement. From here on, we will refer to this with the
term nonclassicality. The formal conditions and experi-
mental routines, allowing to identify nonclassicality, take
also the name of quantum contextuality [1]. In a scenario
involving a quasiprobability distribution, which describes
the occurrence of a given pair of measurement outcomes at
two times, an experimental protocol is defined contextual if
it is able to yield nonpositive values, provided incompati-
bility of noncommuting operators plays a role. No classical
stochastic process can explain such a behavior.

a. Noncommutativity is a necessary condition. For the
MHQ qMHQ, see Eq. (19), it has been recently shown
that the pairwise noncommutativity of the initial den-
sity operator and the quantum measurement observables
is only a necessary but not sufficient condition for non-
positivity (i.e., negativity of the MHQ). This means that
there are counterexamples where [ρ,�s1(t1)] �= 0 and/or
[�s1(t1),�

H
s2
(t2)] �= 0, but still Re [q(s1, s2)] ≥ 0 [48]. A

detailed analysis of this aspect can be found in Ref. [9],
where it has been formulated with the wording negativity
is stronger than noncommutativity.

b. Direct link with weak values. The nonpositivity of
KDQ can find a physical interpretation from their direct
connection with weak values [49–51] that, indeed, are con-
ditional KDQ [11]. To see this, we set �H

s2
(t2) = |̃s2〉〈̃s2|,

where |̃s2〉 = U |s2〉, under the hypothesis that the dynam-
ics is unitary and �H

s2
(t2) is a rank-1 projector. Moreover,

we take ρ = |ψ〉 〈ψ | as a pure state. Hence, from Eq. (16)
one has that

q(s1, s2)

ps2(t2)
= 〈ψ |̃s2〉〈̃s2|�s1(t1)|ψ〉

|〈ψ |̃s2〉|2 = 〈̃s2|�s1(t1)|ψ〉
〈̃s2|ψ〉 ,

(22)
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where

〈̃s2|�s1(t1)|ψ〉
〈̃s2|ψ〉 ≡ 〈�s1(t1)〉WV (23)

is the original definition of the weak value (WV) of the
projector �s1(t1) with initial state |ψ〉 and postselection
|̃s2〉. In this way, the weak value 〈O1(t1)〉WV of the observ-
able O1(t1) is obtained by averaging the outcomes os1(t1)
over the conditional KDQ 〈�s1(t1)〉WV = q(s1, s2)/ps2(t2).
Formally, we have that

〈O1(t1)〉WV ≡ 〈̃s2|O1(t1)|ψ〉
〈̃s2|ψ〉 =

∑

s1

os1(t1)〈�s1(t1)〉WV.

(24)

We recall that the weak values can be obtained via a weak
measurement that is performed on both a properly chosen
preselected quantum state and a postselected one. Weak
values are called anomalous when 〈O1(t1)〉WV lies out-
side the spectrum of O1(t1) (see Refs. [52–55]). In order
to guarantee such anomaly, it is required that the (possibly
mixed) pre- and postselection states have quantum coher-
ence with respect to the eigenbasis of O1(t1), i.e. that the
corresponding KDQ exhibits negativity [56]. Moreover,
the generalization of weak values to mixed density oper-
ators (instead of pure quantum states), can be a complex
number, and this is evidently in a one-to-one correspon-
dence with complex KDQs [52,54,57,58]. Overall, the
occurrence of an anomalous weak value is identified by the
nonpositivity of a KDQ, implying quantum contextuality
[53,54].

c. Nonpositivity functional. We conclude this subsection
by introducing the nonpositivity functional [6,9,11,12]

ℵ ≡ −1+
∑

s1,s2

|q(s1, s2)| (25)

that quantifies the “amount” of nonclassicality in the statis-
tics of the outcome pairs (os1 , os2). It is worth noting that
both the real and imaginary parts of the KDQ contribute to
the nonclassicality, whereby if present one has that

∑

s1,s2

|q(s1, s2)| > 1 ⇒ ℵ > 0. (26)

As noticed in Ref. [9], one could quantify the negativ-
ity and nonreality of a KDQ distribution by using the

functionals

ℵRe ≡ −1+
∑

s1,s2

|Re [q(s1, s2)]| , (27)

ℵIm ≡
∑

s1,s2

|Im [q(s1, s2)]| , (28)

that act separately on the real and imaginary parts of KDQ,
respectively. The condition ℵ = 0 occurs when all the
KDQ are positive real numbers [59].

2. Comparing KDQ and TPM probabilities

In this subsection we are going to compare the KDQ
q(s1, s2) with the joint probabilities p(s1, s2) returned by
applying the TPM scheme. In this regard, notice that

q(s1, s2)− p(s1, s2) = Tr
[
�H

s2
(t2)�s1(t1)ρ�

⊥
s1
(t1)
]

,

(29)

where

�⊥s1
(t1) ≡ I−�s1(t1) (30)

is the projector orthogonal to �s1(t1). Interestingly, as
discussed in Ref. [35], Eq. (29) quantifies the interfer-
ence patterns between the two different sequential pairs
of projectors, also known in the literature as quantum his-
tories, (�s1(t1),�

H
s2
(t2)) and (�⊥s1

(t1),�H
s2
(t2)). Moreover,

the right-hand side of Eq. (29) is also recovered from
the so-called nondemolition quasiprobability (NDQP)
[22,24,60]

q(s1, s′1, s2) ≡ Tr
[
�H

s2
(t2)�s1(t1)ρ�s′1(t1)

]
(31)

with s1 �= s′1. The NDQP is evidently defined over three
indexes: two, s1 and s′1 (different each other), refer to two
possible measurement outcomes of the quantum observ-
able O1(t1) at time t1, while s2 refers to O2(t2) as it
holds for q(s1, s2). Thus, by marginalizing over s′1 �= s1,
one directly obtains the difference between the KDQ and
TPM (joint) probabilities:

q(s1, s2)− p(s1, s2) =
∑

s′1 �=s1

q(s1, s′1, s2). (32)

It can be easily observed that if Re [q(s1, s2)] < 0,
then necessarily

∑
s′1 �=s1

Re
[
q(s1, s′1, s2)

]
< 0; moreover,

when the KDQ q(s1, s2) is a complex number, also∑
s′1 �=s1

q(s1, s′1, s2) is a complex number with the same
imaginary part of q(s1, s2).

Let us now exemplify these concepts with a simple
case study. We consider a spin-1/2 particle, first initial-
ized in the generic density operator ρ. Then, the spin of
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the particle is consecutively measured along two orthogo-
nal axes, the z and x axis, respectively, i.e., O1(t1) = σ z

and O2(t2) = σ x. Moreover, we assume U = I, so that
the system does not evolve between t1 and t2. Note that,
under specific conditions [61], this setup is representative
of the physics underlying the well-known Stern-Gerlach
experiments.

At the end of this quantum process, the state of the sys-
tem collapses onto one of the eigenstates of σ x, namely
|−〉〈−| or |+〉〈+|, with |±〉 ≡ (|0〉 ± |1〉)/√2. Let us
denote the eigenvalues of the observables σ z = |0〉〈0| −
|1〉〈1| and σ x = |+〉〈+| − |−〉〈−| with z0 = 1, z1 = −1
and x+ = 1, x− = −1, respectively. The quantum process
is inherently probabilistic, due to the stochastic nature of
any quantum measurement. We thus need to calculate the
probabilities of obtaining the pairs of measurement out-
comes (zk(t1), xj (t2)) measured at times t1 and t2 with
k ∈ {0, 1} and j ∈ {−,+}, for the initial density operator ρ.

As previously anticipated, if [ρ,O1(t1)] �= 0, then the
application of the TPM scheme (i.e., sequential projec-
tive measurements) does no longer suffice. This fact is
confirmed by the direct computation of the differences
q(zk, xj )− p(zk, xj ):

q(−1,−1)− p(−1,−1) = −ρ
∗
0,1

2
, (33)

q(−1,+1)− p(−1,+1) = ρ∗0,1

2
, (34)

q(+1,−1)− p(+1,−1) = −ρ0,1

2
, (35)

q(+1,+1)− p(+1,+1) = ρ0,1

2
, (36)

where
∑

k,j p(zk, xj ) =
∑

k,j q(zk, xj ) = 1 by construction.
From Eqs. (33)–(36), it is also apparent that at least

two of the differences q(zk, xj )− p(zk, xj ), among all four,
exhibit negative real parts whenever the initial state ρ does
not commute with the quantum observable σ z at time t1.
Notably, such a negativity is preserved from applying a
second measurement of the observable σ x immediately
after the first.

Of course, in the case ρ0,1 = 0, the KDQ q(zk, xj )

reduces to the TPM joint probabilities p(zk, xj ), and the no-
signaling-in-time condition is fulfilled. In contrast, in the
case ρ0,1 �= 0, the first measurement σ z of required by the
TPM scheme turns out to be invasive for the joint statistics
of the measurement outcomes (zk(t1), xj (t2)).

We now provide the average of the difference of out-
comes 	o = x(t2)− z(t1) [thus, 	oj ,k = xj (t2)− zk(t1)]
that is evaluated with respect to the KDQ q(zk, xj ). We
have

〈	o〉 ≡
∑

j ,k

(
xj (t2)− zk(t1)

)
q(zk, xj )

= 2 (q(−1,+1)− q(+1,−1))

= 1− 2ρ0,0 + 2Re
[
ρ0,1
]

. (37)

By setting ρ = I/2, it holds that 〈	o〉 = 0 that stems from
having all the KDQ equal to 1/4. This finding is in accor-
dance with the classical theory of probability applied to our
case study. In fact, if the initial density operator of the spin-
1/2 is mixed with both elements equal to 1/2 (i.e., the spin
of the particle is initially up or down with equal probabil-
ity 1/2), then the sequence of measurement outcomes ±1
obtained from applying two mutually uncorrelated opera-
tions (i.e., the sequential projective measurement of σ z and
σ x) is naturally equiprobable. As a result, on average, the
difference of the measurement outcomes 	o is zero.

Let us now add quantum coherence to the initial state ρ
with respect to the eigenbasis of σ z, by taking

ρ = I

2
+ χ , (38)

with χ defined in Eq. (8). Hence, from Eq. (37), we obtain
〈	o〉 = 2Re

[
ρ0,1
]
, meaning that a correction to the “clas-

sical” result 〈	o〉 = 0 has to be included. In this case
study, such a correction is directly proportional to the
quantum coherence of ρ.

From the previous discussion, it is evident that the non-
classicality due to the incompatibility of noncommuting
operators is very fragile and can be erased by external
noise and dissipation in an open quantum system. To show
this, let us assume that the initial state of the qubit at
time t1 is ρ and that before the second measurement the
qubit undergoes a pure-dephasing (PD) channel. The latter
is described by the following map (superoperator acting
on ρ):

�PD(ρ) = (1− p)ρ + pσ zρσ z, (39)

which realizes a phase flip occurring with probability p . If
we repeat the calculations leading to Eqs. (33)–(36), then
the quantum coherence in the resulting new equations is
reduced by a factor 1− 2p as an effect of the action of the
noisy channel. In particular, one gets

q(−1,−1) = ρ1,1 − (1− 2p)ρ∗0,1

2
, (40)

q(−1,+1) = ρ1,1 + (1− 2p)ρ∗0,1

2
, (41)

q(+1,−1) = ρ0,0 − (1− 2p)ρ0,1

2
, (42)

q(+1,+1) = ρ0,0 + (1− 2p)ρ0,1

2
. (43)
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3. Distribution and characteristic function of KDQ

As mentioned in the previous sections, the KDQ
q(s1, s2) describes the joint probability of the outcomes’
pairs (os1 , os2) from measuring the quantum observables
O1(t1) and O2(t2) at times t1 and t2, initial and final times
of the quantum process in analysis, with t1 < t2. The indi-
vidual outcomes s1 and s2 correspond to the eigenvalues of
the observables in Eq. (1).

Let us introduce the generic difference of outcomes

	o ≡ o(t2)− o(t1) (44)

such that	os1,s2 = os2(t2)− os1(t1). The number of values
that 	o can take depends on the combinations of all pos-
sible measurement outcomes at t1, t2. Therefore, the KDQ
distribution of 	o is defined by

P[	o] =
∑

s1,s2

q(s1, s2) δ
(
	o−	os1,s2

)
, (45)

where δ(·) is the Dirac δ function. We remark that the KDQ
distribution P[	o] is not unique due to ordering ambigu-
ities entailed by the noncommutativity of ρ, O1(t1) and
O2(t2), as discussed in Sec. II C. We also note that the
distribution of 	o provided by the TPM scheme is

PTPM[	o] =
∑

s1,s2

p(s1, s2)δ
(
	o−	os1,s2

)
, (46)

where, as before, p(s1, s2) denotes the TPM joint probabil-
ities.

All the information about the statistics of the outcome
pairs (os1 , os2) is also encoded in the characteristic function
of P[	o] defined as its Fourier transform:

G(u) =
∫ ∞

−∞
P[	o]eiu	od	o

=
∑

s1,s2

q(s1, s2)eiu	os1,s2

= Tr
[
e−iuO1(t1)ρ�† [eiuO2(t2)

]]
. (47)

While in principle for a Fourier transform the variable u
is real, it may be useful to extend Eq. (47) with u as a
complex number, as we will see in Sec. IV B. Interestingly,
both the KDQ q(s1, s2) and the characteristic function G(u)
are quantum correlation functions, namely they can be
obtained as the expectation value of the product of two
operators (not necessarily Hermitian, but defined at two
times) on the initial density operator ρ. In general, the
distribution P[	o] depends on the time duration of the
quantum system dynamics. Of course, the time dependence
of P[	o] is mirrored in a time-dependent characteristic
function G(u). Both for P[	o] and G(u), the time depen-
dence is omitted, unless specified, to enhance the clarity of
the presentation.

The characteristic function can be used to detect com-
plex values in the KDQs. In fact, a violation of the equality
G(−u) = G(u)∗ implies that the positive-semidefinite con-
dition for q(s1, s2) does no longer hold [11]. The equality
G(−u) = G(u)∗ is violated only when Im[q(s1, s2)] �= 0,
and such a violation serves as a witness of complex val-
ues in the KDQs, which are identified by the nonpositivity
functional.

D. Alternative formulations

We conclude this section of the tutorial, dedicated to
the introduction of quasiprobabilities, by mentioning other
possible formulations, alternative to the ones already dis-
cussed before, able to identify the presence of nonclassical
temporal correlations.

The first formulation to consider (even for histori-
cal reasons) are phase-space distributions. In quantum
mechanics, particularly in quantum optics, phase-space
distributions represent the state of a quantum system,
e.g., a light mode or a spin ensemble, using quasiprob-
ability distributions like the Wigner function [62]. These
distributions combine position and momentum, providing
a comprehensive framework to analyze quantum states,
coherence, and entanglement in optical systems [63–68].
It is important to remark that phase-space distributions
describe the state of a quantum system rather than a quan-
tum process involving two measurements at distinct time,
as we have described in this tutorial. Negativity in phase-
space distributions signals quantum coherence in the state
and has been used as a quantifier of nonclassical states.

It is also worth mentioning the Keldysh-ordered full
counting statistics (FCS) [69–72]. It has been originally
introduced to study the fluctuations of a time-integrated
quantum observable, like current fluctuations in quantum
electronic conductors averaged over a given time inter-
val. Formally, if OH (t) is an observable in the Heisenberg
picture at time t, the FCS corresponds to the probability
distribution Pτ [I ] of the time integral I ≡ ∫ τ0 OH (t) dt of
OH (t). Notice that the probability distribution of I depends
on the time interval τ . In a similar fashion of a KDQ or
NDQP distribution, Pτ [I ] can be obtained by means of
the inverse Fourier transform of the moment generating
function for I , namely

GI (λ) ≡
∫ ∞

−∞
Pτ [I ]e−iλI dI

= Tr
[
e−iHλτ ρ eiH−λτ ] , (48)

where Hλ ≡ H+ λI/2 with H denoting the Hamilto-
nian of the quantum system that is initialized in ρ. The
quasiprobability distribution Pτ [I ] is not always positive,
signaling nonclassicality [72]. In fact, from the unravel-
ing of the FCS in the spirit of Feynman’s path-integral
approach, the negativity in Pτ [I ] results from the inter-
ference of the products of probability amplitudes that
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comprise the distribution Pτ [I ]. In this context, each prod-
uct of probability amplitudes forms a discrete trajectory
that is weighted by the elements of the initial density oper-
ator corresponding to the initial position of each trajectory.
If this kind of interference between pairs of trajectories is
absent, then Pτ [I ] is positive definite.

The unraveling of the probability distribution Pτ [I ] [72]
has marked similarities with the derivation of the nonde-
molition quasiprobability distribution [22,60] in Sec. II C 2
that, we recall, identifies the interference between pairs of
sequential measurement projectors. Moreover, the unravel-
ing of the FCS is also at the basis of the so-called Keldysh
quasiprobabilities [73,74]. In fact, the Keldysh formalism
applied for investigating fluctuations of noncommuting
operators extends both the phase-space distributions in
quantum optics and the FCS of a time-integrated quan-
tum observable. This is evident from the fact that the
Keldysh quasiprobability distribution coincides with the
Wigner function when position and momentum operators
are considered, and it reduces to the FCS when we are
interested in an observable integrated over time. Inter-
estingly, what allows for this extension is to account for
the backaction exerted by a detector measuring the two-
commuting observables. Also this feature is shared by
nondemolition quasiprobabilities that can be attained using
a detector-assisted measurement scheme, as we will detail
in Sec. III C. We conclude by noting that, similarly to
the KDQ, the negativity of a Keldysh quasiprobability
distribution requires the noncommutativity of the initial
density operator with the first measurement observable, or
the noncommutativity of the operators measured at distinct
times.

III. MEASURING QUASIPROBABILITIES

In this section, we are going to present two approaches
that allows the reconstruction of a QD: the first is based on
performing only projective measurements [12,75], while
the second (based on interferometry or assisted by a
detector) is aimed at measuring directly the characteristic
function of the QD under scrutiny. More than these two
approaches have been formulated so far to achieve such a
reconstruction [76–81]; the reader can find more details in
Ref. [11] where alternative methods have been surveyed
and some of them extended. Moreover, it is also worth
mentioning Ref. [82] that investigates the use of quan-
tum circuits for the measurement of weak values and KDQ
distributions.

A. Weak two-point measurement scheme

The real part of the KDQ distribution, defined in Sec.
II C as the Margenau-Hill (MH) distribution, can be deter-
mined by resorting only to a scheme that is entirely based
on projective measurements. We have already proved that
a procedure directly using sequential projective measure-
ments cannot carry out this task. Instead, the combination

of projective measurement schemes accomplishes the task.
This is indeed enabled by the weak two-point measurement
(wTPM) scheme for the measurement of quantum time
correlators [11,75]. The main feature of the wTPM scheme
is to cancel the measurement backaction, thus attaining
the backaction-free limit and restoring a condition of no
measurement invasiveness [3].

As noticed in Ref. [12], the wTPM scheme can be effec-
tively seen as a probabilistic error cancellation technique,
a technique largely employed in quantum computing from
sampling noisy circuits [83].

Let us consider the MHQ qMHQ(s1, s2) = Re [Tr[�H
s2
(t2)

�s1(t1)ρ]] and the wTPM probability:

w(s1, s2) ≡ Tr
[
�H

s2
(t2)
(
�s1(t1)ρ�s1(t1)

+ �⊥s1
(t1)ρ�⊥s1

(t1)
)]

, (49)

where �⊥s1
(t1) has been defined in Eq. (30). The wTPM

probability has a clear physical meaning and can be
obtained via a proper measurement procedure. In fact, the
transformation

ρ −→ �s1(t1)ρ�s1(t1)+�⊥s1
(t1)ρ�⊥s1

(t1) (50)

is associated to the events “the outcome os1 is recorded” or
“the outcome os1 is not recorded,” both at the initial time
t1. For this reason, being given by a binary measurement
result, the transformation Eq. (50) is denoted as nonselec-
tive measurement, and applies to a given projector of the
quantum observable of interest—in this case, the projector
�s1(t1) of O1(t1).

We introduced the wTPM probability because one can
infer the MHQ from w(s1, s2). To see this, we just need
to substitute Eq. (30) in Eq. (49), and write the explicit
expression of w(s1, s2) as a function of �s1(t1); we get

w(s1, s2) = 2p(s1, s2)+ ps2(t2)− 2qMHQ(s1, s2), (51)

with the result that

qMHQ(s1, s2) = p(s1, s2)+ 1
2
(
ps2(t2)− w(s1, s2)

)
. (52)

Equation (52) is the way the MHQ can be experimen-
tally reconstructed via the wTPM scheme, as done, e.g.,
in Ref. [12] where a pictorial representation of the scheme
is provided. In fact, the TPM joint probability p(s1, s2) can
be obtained via sequential projective measurements, and
ps2(t2) is the unperturbed single-time probability to mea-
sure one of the outcomes os2(t2) of O2(t2) at the final time
t2. Finally, the wTPM probability w(s1, s2) is returned via a
procedure based on nonselective projective measurements,
as already explained above.
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Notice that the probability ps2(t2) also enters the so-
called end-point measurement (EPM) scheme [84,85] that,
by construction, singles out the presence of quantum
coherence in the initial state ρ by performing single
measurements at the end of the quantum process under
scrutiny. A discussion about the conceptual difference of
the KDQ and the joint probabilities stemming from the
EPM scheme can be found in Ref. [11].

We conclude this subsection by observing that, for
qubits, the expression of w(s1, s2) simplifies. This is
because

�s1(t1)ρ�s1(t1)+�⊥s1
(t1)ρ�⊥s1

(t1) = D1[ρ], (53)

where D1[ρ] is the dephasing superoperator defined in
Eq. (5). As a result, the wTPM probability reduces to the
marginal of the TPM joint probability p(s1, s2) over the
outcomes s1 of the initial observable, i.e.,

w(s1, s2) = Tr
[
�H

s2
(t2)D1[ρ]

]
=
∑

s1

p(s1, s2), (54)

such that

qMHQ(s1, s2) = p(s1, s2)+ 1
2

(
ps2(t2)−

∑

s1

p(s1, s2)

)

= p(s1, s2)+ 1
2

Tr
[
�H

s2
(t2)χ

]
, (55)

where χ , defined in Eq. (7), contains the quantum coher-
ence in ρ.

B. Interferometric scheme

Another approach for the inference of the KDQ distri-
bution P[	o], which we consider in this tutorial, is an
interferometric scheme. This method consists in encoding
on an auxiliary system A the real and imaginary parts of
the characteristic function G(u) of P[	o] for a given quan-
tum system S . The use of an auxiliary system allows one
to infer both the real and imaginary parts of the KDQ by
implementing a unique scheme. As explained in Sec. III A,
if our aim is to reconstruct only the real part of a KDQ, we
can resort to a procedure that is only based on projective
measurements.

The interferometric scheme we are going to present
here is a simplified variant of the theoretical proposals
discussed in Refs. [11,86–89], and has similarities with
the experimental schemes employed in Refs. [90,91]. It
has been recently realized in Ref. [92] using an electron-
nuclear spin system associated with a nitrogen-vacancy
center in diamond. However, all these interferometers lead
to the same result, namely the direct measurement of the
characteristic function G(u). Notably, the observed G(u)
can belong to both a probability distribution stemming

from a procedure of sequential projective measurements
(thus, a TPM distribution), and a quasiprobability one.

When the auxiliary system A is taken as a qubit, the
real and imaginary parts of G(u), can be extracted from the
expectation values of two Pauli matrices with respect to
the state of A at the end of the scheme. As it will be clearer
later, in order to implement the interferometer, u is taken as
a real number with the dimension of a time t. By collect-
ing several values of the pairs (Re[G], Im[G]) for different
u, we can reconstruct the (quasi)probability distribution
P[	o] by applying the inverse Fourier transform to G. The
Fourier transform is performed numerically, and hence is
subject to finite-time and finite-resolution constraints; see,
for example, Ref. [93].

Let us present the interferometric scheme for quan-
tum systems subject to unitary dynamics by assuming A
is a qubit. The extension to open quantum systems, i.e.,
nonunitary dynamics, is straightforward through the sub-
stitution of the unitary operator with a CPTP map �,
as long as the environment does not affect the auxiliary
system.

As pictorially represented in Fig. 1, the working princi-
ple of the scheme is to initialize the auxiliary system A in
the state |0〉A〈0| where we denote with |i〉A the eigenstates
of the Pauli matrix σ z

A for the auxiliary system A (i = 0, 1).
We then perform a Ramsey interferometric scheme on A
[94,95]. Between the application of both the Hadamard
UHad = 2−1/2(σ x

A + σ z
A) and σ x

A gates, and the final pro-
jective measurement of A (with respect to the observables
σ x
A, σ y

A), the auxiliary system interacts with the quantum
system S via the conditional (C) gates

FC
t1 ≡ Et1 ⊗ |0〉A〈0| + IS ⊗ |1〉A〈1|, (56)

FC
t2 ≡ IS ⊗ |0〉A〈0| + E†

t2 ⊗ |1〉A〈1|, (57)

where

Etj ≡ exp
(−iOj (tj )u

)
, j = 1, 2. (58)

The latter can be thought as unitary evolution opera-
tors corresponding to the effective Hamiltonian Oj (tj ) for
a time u. Moreover, between the two conditional gates
FC

t1 and FC
t2 , the quantum system S undergoes the actual

unitary dynamics of the process ruled by the evolution
operator U.

The result of implementing the interferometric scheme
of Fig. 1 is that the reduced state ρ ′A of A, before the final
measurement of σ x

A and σ y
A, is

ρ ′A =
1
2
IA + 1

4
G(u) (σ x

A − i σ y
A
)+ 1

4
G∗(u) (σ x

A + i σ y
A
)

= 1
2
IA + 1

2
Re [G(u)] σ x

A +
1
2

Im [G(u)] σ y
A. (59)
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U

σx
A

ρ E†
t2

FC
t2

Et1

FC
t1

UHad
|0 A 0|

FIG. 1. Pictorial representation of the interferometric scheme
to directly access the characteristic function G(u) of a KDQ dis-
tribution P[	o]. The scheme encodes the information on the real
and imaginary parts of G(u) associated to the quantum system
S of interest that is initialized in the generic density operator ρ.
Such an encoding is operated on the auxiliary system A via the
two conditional gates FC

t1 and FC
t2 , which applies the operations

Et1 and E†
t2 on S whether A is in |0〉A (white dot in the figure)

or |1〉A (black dot), respectively. The other gates involved are
the Hadamard gate UHad, the system’s evolution operator U and
the gate σ x

A for the auxiliary system. A detectorlike box on A
denotes its final measurement.

In this way, we can obtain

Re [G(u)] = 〈σ x
A〉(u) = Tr

[
ρ ′Aσ

x
A
]

, (60)

Im [G(u)] = 〈σ y
A〉(u) = Tr

[
ρ ′Aσ

y
A
]

. (61)

In Sec. III D, we will illustrate how the interferometric
scheme works in a simple qubit case.

C. Detector-assisted measurement of
quasiprobabilities

Here we provide a more general framework for the
measurement of quasiprobabilities considering a quantum
model for a detector coupled to the system of interest.
This framework extends the TPM and the Ramsey scheme,
by realizing that the observation of the change of an
observable O(t) can be attained not through von Neumann
projective measurements, but rather via a generalized mea-
surement or, more precisely, a positive operator-valued
measure (POVM). This was first introduced by Roncaglia
et al. in Ref. [43] to assess the thermodynamic work done
on a quantum system (see Sec. IV), while a proposal for
its measurement in cold atoms was reported immediately
after in Ref. [44]. Moreover, an experimental realization
of the POVM to measure quantum work done on a Bose-
Einstein condensate is in Ref. [46]. In a series of papers,
Solinas and his collaborators formalized this approach
establishing a profound connection between fluctuations
of quantum observables, quasiprobabilities and the full
counting statistics [22,24,45,47,60].

We will describe two possible schemes: one that pro-
vides access to the characteristic function of the distribu-
tion associated to 	o, and the other providing directly the
(quasi)probability distribution [22].

Let us imagine a system coupled to a detector that
is modeled as a quantum free particle moving in one
dimension. The detector is described by the canonical posi-
tion X and momentum P operators. We assume that the
system-detector interaction Hamiltonian is

HSD = −b(t)P ⊗O(t), (62)

where the time-dependent coupling constant b(t) =
κ[δ(t− t2)− δ(t− t1)] is such that the detector is impul-
sively coupled to the system only at times t1 and t2 with
strength κ . The operator O(t) is the observable to be mea-
sured and, without loss of generality, can be thought of
being O1(t1) at time t1 and O2(t2) at time t2, as formalized
in Sec. II.

In the same spirit of what we discussed above, we con-
sider the initial state of the system to be ρ and that of the
detector to be pure, i.e.,

|φD〉 =
∫ ∞

−∞
dp G(p) |p〉 , (63)

where |p〉 are eigenstates of the momentum operator with
eigenvalue p and G(p) is the initial momentum distribu-
tion of the detector. Moreover, for simplicity, let us assume
the system to evolve with the unitary operator U between
times t1 and t2. The extension to the case of a nonunitary
evolution described by a CPTP map is straightforward. The
detector may also evolve during these times, but the effect
of this free evolution can be very small or compensated,
and we will therefore ignore it [22].

The final state of the detector, after tracing out the state
of the system, can be cast in the following two equivalent
forms, with 	os1,s2 = os2(t2)− os1(t1) [see Eq. (44)]:

ρD(t2) =
∑

s1,s′1,s2

∫ ∞

−∞
dp
∫ ∞

−∞
dp ′q(s1, s′1, s2)G(p)

× G∗(p ′)eiκp	os1,s2 e
−iκp ′	os′1,s2 |p〉 〈p ′∣∣ (64)

=
∑

s1,s′1,s2

∫ ∞

−∞
dx
∫ ∞

−∞
dx′q(s1, s′1, s2)g(x − κ	os1,s2)

× g∗(x′ − κ	os′1,s2) |x〉
〈
x′
∣∣ , (65)

where we have used the expression q of the NDQP,
see Eq. (31). The last two equations are written in the
detector momentum and position representations, respec-
tively, whereby we have introduced the detector position
distribution g(x) as the Fourier transform of G(p).
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Some considerations are in order: since the detector
momentum P is a conserved quantity (as it commutes
with the interaction Hamiltonian), the sole effect of the
evolution is to induce phase shifts in the momentum eigen-
states |p〉. By measuring these phase shifts we access
information about the observable change 	o. On the other
hand, the evolution operator exp{−iκP	o} associated with
the system-detector interaction is effectively a translation
or displacement operator of the detector position. There-
fore, the quantities 	o can be also observed by measuring
the detector position distribution. In the following, we
will describe two schemes that follow these two ideas,
respectively.

In the first scheme, the detector is initially prepared in
a superposition of two states with opposite momenta of
magnitude p0:

|�D〉 = A (|p0/2〉 + |−p0/2〉) , (66)

where A is a real normalization constant [96]. This cor-
responds to a momentum distribution G(p) = A[δ(p −
p0/2)+ δ(p + p0/2)]. After the evolution, the state of the
detector can be written as

ρD(t2) = A2 (|p0/2〉〈p0/2| + |−p0/2〉〈−p0/2|
+ eiφ |p0/2〉〈−p0/2| + e−iφ |−p0/2〉〈p0/2|

)
,

(67)

where information about the dynamics is contained in
the phase φ given that P is a conserved quantity (see
also considerations above). If we now measure the phase
φ accumulated during the whole evolution between the
eigenstates |p0/2〉 and |−p0/2〉, we have access to a modi-
fied characteristic function:

G̃ ≡ eiφ =
∑

s1,s′1,s2

q(s1, s′1, s2)

× exp

{
iκp0

[
os2(t2)−

os1(t1)+ os′1(t1)

2

]}
, (68)

which resembles the characteristic function G(u) defined
in Eq. (47), but this time computed over the NDQP of
Eq. (31). Hence, to all effects, Eq. (68) represents the
characteristic function of a nondemolition quasiprobability
distribution. As already outlined at the level of quasiprob-
abilities in Sec. II C 2, G̃ is a symmetric version of a KDQ
characteristic function, where the symmetrization is done
over the indexes s1 and s′1 labeling the outcomes of the
initial observable O1(t1). It is interesting to notice that
Eq. (68) can also be obtained by the trace of Eq. (26) in
Ref. [97]. Thus, the inverse Fourier transform of G̃ returns

the NDQP distribution

PNDQP[	o] =
∑

s1,s′1,s2

q(s1, s′1, s2)

× δ
{
	o−

[
os2(t2)−

os1(t1)+ os′1(t1)

2

]}

(69)

that is real [since q(s1, s′1, s2)+ q(s′1, s1, s2) is real] but can
assume negative values due to the noncommutativity of
ρ,O(t1) and O(t2). When the initial state of the system
ρ does not have any coherence in the basis of eigenstates
of O(t1), then ρs1s′1 = 0 for s1 �= s′1 and the inverse Fourier

transform of G̃ reduces to the TPM probability distribution,
see Eq. (2).

In the second scheme, we analyze directly Eq. (65),
which leads to the position probability distribution for the
detector:

P(x) = 〈x| ρD |x〉
=
∑

s1,s′1,s2

q(s1, s′1, s2)g(x − κ	os1,s2)g
∗(x − κ	os′1,s2),

(70)

that is real and never negative as it derives from the
expectation value of a Hermitian and positive semidefi-
nite density operator. If we assume an initially localized
detector position, g(x) = δ(x), then

δ(x − κ	os1,s2)δ(x − κ	os′1,s2) = δ(x − κ	os1,s2)δs1,s′1 ,

and Eq. (70) reduces to

P(x) =
∑

s1,s2

ρs1,s1p(s1, s2)δ(x − κ	os1,s2) (71)

that corresponds to the TPM probability distribution for
x = κ	o. In contrast to the case in which g(x) is delocal-
ized, in this case there is a unique relation connecting x and
	o allowing perfect reconstruction of the TPM probabil-
ity distribution for 	o from the statistics of the detector’s
position X .

Even though P(x) in Eq. (70) is real and positive
semidefinite, effects due to initial quantum coherences can
manifest themselves when the detector’s initial wave func-
tion g(x) is not localized and has a width comparable or
larger than the typical changes κ	os1,s′1 . In fact, imag-
ine that ρs1,s′1 �= 0, then in Eq. (70) the functions g(x −
κ	os1,s2) and g∗(x − κ	os′1,s2) may have an overlap that
results in a modification of the position probability dis-
tribution if compared to the one provided by the TPM
scheme.
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D. Examples

We conclude this section by providing examples of the
quasiprobability distributions obtained using the schemes
presented above.

1. Weak-TPM scheme

Let us start with an application of the weak two-point
measurement scheme to a three-level system (or a spin-1)
that is initialized in a generic density operator ρ, and whose
spin is consecutively measured along the orthogonal axes
z and x. In particular, we take

O1(t1) = Sz =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠

O2(t2) = Sx =

⎛

⎜⎝
0 1√

2
0

1√
2

0 1√
2

0 1√
2

0

⎞

⎟⎠

that share the same set of eigenvalues os1(t1), os2(t2) =−1, 0, 1, with eigenvectors

{|φ(−1)
z 〉, |φ(0)z 〉, |φ(1)z 〉

} =
⎧
⎨

⎩

⎛

⎝
0
0
1

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠

⎫
⎬

⎭

and

{|φ(−1)
x 〉, |φ(0)x 〉, |φ(1)x 〉

} = 1
2

⎧
⎨

⎩

⎛

⎝
1
−√2

1

⎞

⎠,

⎛

⎝
−√2

0√
2

⎞

⎠,

⎛

⎝
1√
2

1

⎞

⎠

⎫
⎬

⎭,

respectively. As in the qubit example in Sec. II C 2, no
quantum dynamics occurs in between the projective mea-
surements of O1(t1) and O2(t2), i.e., U = I. We now write:
the expression of the MHQ qMHQ(s1, s2), the joint probabil-
ity p(s1, s2) of the TPM scheme, the unperturbed final-time
probability ps2(t2) and the wTPM probability w(s1, s2).
We recall that p(s1, s2), ps2(t2), w(s1, s2) can be all exper-
imentally measured via a procedure based on single or
sequential measurements. Moreover, by linearly combin-
ing them together according to Eq. (52), any MHQ can
be fully reconstructed [12]. Thus, for the example under
scrutiny,

qMHQ(s1, s2) = Re
[〈φ(s2)

x |φ(s1)
z 〉〈φ(s1)

z | ρ|φ(s2)
x 〉

]
(72)

p(s1, s2) =
∣∣〈φ(s2)

x |φ(s1)
z 〉

∣∣2 〈φ(s1)
z | ρ|φ(s1)

z 〉 (73)

ps2(t2) = 〈φ(s2)
x | ρ|φ(s2)

x 〉, (74)

and w(s1, s2) is given by Eq. (49) with �H
s2
(t2) =

|φ(s2)
x 〉〈φ(s2)

x | and �s1(t1) = |φ(s1)
z 〉〈φ(s1)

z |. In this exam-
ple, �⊥s1

(t1) = I−�s1(t1) are projectors with rank 2

and describe the collapse of the spin-1 state onto a
two-dimensional subspace. For completeness, the explicit
expressions of �⊥s1

(t1) with os1(t1) = −1, 0, 1 are

�⊥−1(t1) =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ , �⊥0 (t1) =
⎛

⎝
1 0 0
0 0 0
0 0 1

⎞

⎠ ,

�⊥1 (t1) =
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠ .

Let us now take the initial density operator ρ = |ψ〉 〈ψ |
with

|ψ〉 = 1√
2

(|φ(−1)
z 〉 − |φ(0)z 〉

) = 1√
2

⎛

⎝
0
−1
1

⎞

⎠ . (75)

In the following, we provide the analytical expressions
of qMHQ(s1, s2), p(s1, s2), ps2(t2) and w(s1, s2) for a sin-
gle pair (s1, s2): s1 = −1, s2 = 1. This choice ensures that
qMHQ(−1, 1) < 0. In doing this, we will show a specific
example of how Eq. (52) effectively works:

qMHQ(−1, 1) = p(−1, 1)+ 1
2
(
ps2(1)− w(−1, 1)

)
. (76)

From direct calculations, one can find that

〈φ(1)x |φ(−1)
z 〉 = 1

2
, 〈φ(−1)

z | ρ|φ(1)x 〉 =
1−√2

4
,

〈φ(−1)
z | ρ|φ(−1)

z 〉 = 1
2

, 〈φ(1)x | ρ|φ(1)x 〉 =
3− 2

√
2

8
.

Therefore,

qMHQ(−1, 1) = 1−√2
8
≈ −0.0518 < 0 (77)

p(−1, 1) = 1
8

(78)

ps2(1) =
3− 2

√
2

8
≈ 0.0214. (79)

Moreover,

w(−1, 1) = Tr
[|φ(1)x 〉〈φ(1)x |

(〈φ(−1)
z | ρ|φ(−1)

z 〉|φ(−1)
z 〉〈φ(−1)

z |

+ �⊥−1(t1) ρ�
⊥
−1(t1)

)] = 3
8

(80)

that validates Eq. (76).
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2. Interferometric scheme

We consider the Ramsey interferometric scheme applied
to a spin-1/2 particle that is sequentially measured along
the z and x axis, as in the example reported in Sec. II C 2.
We recall that, in the case the initial density operator
ρ does not commute with O1(t1) = σ z, any procedure
based on sequential projective measurements is inva-
sive and unavoidably cancels out the quantum coher-
ence contained in ρ, with respect to the eigenbasis of
O1(t1). As a result, the statistics of the outcome pairs
(zk(t1), xj (t2)) is distorted. The unperturbed statistics of the
outcome pairs is provided by the KDQ distribution that, as
shown in Sec. II C 2, can exhibit negative and imaginary
quasiprobabilities.

The interferometric scheme finds application to such a
case study by making the substitution Et1 = exp(−i σ zu),
U = I, and Et2 = exp(−i σ xu). In this way, by measur-
ing the expectation values 〈σ x

A〉(u) and 〈σ y
A〉(u), we can

recover the real and imaginary parts of the KDQ charac-
teristic function providing the statistics of outcome pairs
(zk(t1), xj (t2)). In this case, the characteristic function
reads as [see also Eq. (47)]

G(u) = Tr
[
e−i σ zuρei σ xu

]
. (81)

Using the initial state defined in Eq. (38), we obtain

G(u) = cos2(u)+ 2i sin(u)

× (cos(u)Re
[
ρ0,1
]+ sin(u)Im

[
ρ0,1
])

, (82)

such that the analytical expressions of the expectation
values for the auxiliary system are

〈σ x
A〉 = cos2(u), (83)

〈σ y
A〉 = 2 sin(u)

(
cos(u)Re

[
ρ0,1
]+ sin(u)Im

[
ρ0,1
])

.
(84)

Taking the inverse Fourier transform, we get the following
QD for 	o:

P[	o] = 1+ 2iIm
[
ρ0,1
]

2
δ(	o)+ 1− 2ρ0,1

4
δ(	o− 2)

+ 1+ 2ρ∗0,1

4
δ(	o+ 2), (85)

which may be complex depending on the form of ρ0,1.
It is instructive to point out that, by defining the effective

Hamiltonian operators H1 ≡ ωσ z and H2 ≡ ωσ x, Eq. (81)
takes the more general expression

G (ωt) = Tr
[
eiH2t e−iH1tρ

]
(86)

with u = ωt. From this, we observe that the characteris-
tic function of the KDQ distribution can be identically

equal to the so-called Loschmidt echo [98,99]. Hence,
thanks to the link with the Loschmidt echo, H1 and H2
can be interpreted as the Hamiltonian operators governing,
respectively, the forward and backward evolution of a per-
turbed quantum system [100], and t as the time instant at
which the reversal operation takes place.

In Sec. V B we will show that the connection between
the characteristic function of a KDQ distribution and
Loschmidt echos does not hold only in specific examples,
but it is valid in general for any quantum system. In this
respect, condensed-matter physics and quasiprobabilities
are deeply related.

3. Detector-assisted scheme

Let us consider the modified characteristic function G̃ in
Eq. (68). By choosing the initial state qubit to be Eq. (38)
as in III D 2, we find

G̃ = 1
2
[
1+ cos(2κp0)+ 4iRe

[
ρ0,1 sin(κp0)

]]
, (87)

which clearly depends on the presence of the off-diagonal
element ρ0,1 of the system’s density operator ρ.

Consequently, taking the Fourier transform, we obtain
the NDQP:

PNDQP[	o] = 1
2
δ(	o)+ 1

4
(δ(	o− 2)+ δ(	o+ 2))

+ Re
[
ρ0,1
]
(δ(	o+ 1)− δ(	o− 1)) ,

(88)

which contains peaks at 	o = ±1 that are absent in the
KDQ (or for an incoherent initial state) and that can be
negative depending on the sign of Re

[
ρ0,1
]
. Another dif-

ference with the KDQ extracted from the Ramsey scheme,
Eq. (85), is that Eq. (88) is strictly real.

Let us now consider the signal observed in the posi-
tion representation of the detector assuming for con-
creteness the detector’s wave function g(x) = (2πσ 2)1/4

exp
[−x2/(4σ 2)

]
, albeit any localized function would be

suitable. From Eq. (70), we obtain P(x) = Pinc(x)+
Pcoh(x), where the incoherent and coherent parts of the
distributions read as

Pinc(x) =
e−

x2

2σ2 + 1
2 e−

(x−2κ)2

2σ2 + 1
2 e−

(x+2κ)2

2σ2

2(2πσ 2)1/2
, (89)

Pcoh(x) =
Re
[
ρ0,1
]

e−
κ2

2σ2

(2πσ 2)1/2

(
e−

(x−κ)2
2σ2 − e−

(x+κ)2
2σ2

)
. (90)

The probability density Pinc(x) would always appear in
the expression of P(x), even in the absence of initial
coherence. It represents a coarse-grained version of the
TPM probability distribution; see Eq. (46) for the general
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FIG. 2. Distribution function P(x) observed by an imperfect
detector for ρ0,1 = 0, ρ0,1 = 0.3 and ρ0,1 = −0.3. We have cho-
sen units in which κ = 1 and σ = 0.6.

definition. On the other hand, Pcoh(x) is proportional to
Re
[
ρ0,1
]

and can be negative (although P(x) can never be
negative).

We show P(x) in Fig. 2 and compare the cases when
ρ0,1 = 0 and ρ0,1 �= 0. The latter case brings an asymmetry
to the function P(x) and, for sufficiently large σ , a slight
shift in the position of the peaks and deeper dips in between
peaks. This effect increases for larger ρ0,1 and κ , and is
due to interference between probability amplitudes for the
different measurement outcomes.

IV. QUANTUM THERMODYNAMICS

In Sec. II, we have argued that, in the general case of
ρ and O1(t1) arbitrary noncommuting operators, the first
measurement of the TPM scheme is invasive. Specifically,
the TPM scheme does not allow one to recover the unper-
turbed single-time probability p(s2) by marginalizing the
joint probability p(s1, s2) of the TPM scheme over the out-
comes s1 of the first measurement. As a result, applying
the TPM scheme breaks the no-signaling-in-time condi-
tion, failing to capture noncommutativity in the statistics
of the measurement outcomes taken at times t1 and t2
[5,23]. This evidence is proven to be true for arbitrary
quantum observables O1(t1) and O2(t2). Consequently,
the same considerations shall hold in a thermodynamic
context, where the measured observables are Hamiltonian
operators.

Kirkwood-Dirac quasiprobabilities can be employed to
investigate nonclassical energetic processes, where here
“nonclassical” indicates the presence of negative and
imaginary values in the quasiprobability distribution of the
thermodynamic quantity of interest, for instance, work,
heat, or entropy. In the current literature, Margenau-Hill
quasiprobability distributions [5,8,12,35,101,102], the real
parts of Kirkwood-Dirac ones, have been already dis-
cussed and employed to characterize nonclassical work
distributions [12,103], as well as the statistics of anoma-
lous heat exchanges due to quantum correlations [8].

In this section, we discuss the KDQ approach to char-
acterize the statistics of internal energy fluctuations in a

generic quantum system, close or open. Then, we will
focus on the ways the presence of nonclassicality is respon-
sible for anomalous energy exchanges [25] (see below
for a proper definition) that can be identified, e.g., in the
average and variance of work and heat distributions.

As we are going to show in Sec. IV D, negative probabil-
ities in a KDQ distribution of work find an interpretation
as nonclassical energy transitions that make use of quan-
tum coherence to transform absorbed energy in extractable
work. In this regard, we will show how KDQ can take
into account genuinely quantum features in energy-change
fluctuations, and outline thermodynamic advantages. For
example, this becomes evident when noting that, without
quantum coherence, stochastic work processes can gener-
ate a lower amount of extractable work and thus be less
performing in operating a quantum device.

Before proceeding, it is worth stressing that possible
thermodynamic advantages enabled by quantum features
are inherent to any quantum system subject to a thermo-
dynamic transformation that does not spoil the state of the
system with respect to the expected output. For example,
a measurement procedure based on projective measure-
ments, such as the TPM scheme that strongly perturbs
the system’s state, cannot be considered as a thermody-
namic transformation preserving quantum features, in the
same way as any decoherence process. Approaches using
quasiprobabilities, instead, have been thought to character-
ize the quantum statistics originating from measuring the
energy of a given quantum system at multiple times. Of
course, to attain this characterization experimentally and
possibly in real time, one has to resort to a measurement
procedure that is the least invasive possible. The use of a
detector weakly interacting with the measured system (see
Sec. III C) could represent a solution.

Overall, acting directly on a quantum system while a
given thermodynamic transformation is active leads to the
spoil of functionalities entailed by quantum coherence or
correlations. However, a proper quasiprobability distribu-
tion can retain this kind of information, and its knowledge
could assist to build up a minimally invasive measurement
protocol that is able to return results beyond average values
while still characterizing the statistics of energy records.

A. Quantum internal energy distribution

From a stochastic thermodynamic point of view, any
internal energy difference of a quantum transformation is
a stochastic process. This holds even for isolated systems,
since energy-change fluctuations—that however average
to zero—are induced by the measurement apparatus. We
recall that the latter irreversibly perturbs the measured
(thermodynamic) system in any procedure of sequential
projective measurements that are directly performed on the
system.
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In the following, we are going to introduce the con-
cepts of stochastic internal energy and stochastic quantum
work in a generic quantum scenario with arbitrary density
operators and time-dependent thermodynamic transforma-
tions. Let us identify the time-dependent quantum observ-
ables O1(t1) and O2(t2) with the Hamiltonian operators
H(t1) and H(t2) at the initial and final times of the trans-
formation under scrutiny. The Hamiltonian operators admit
the spectral decomposition:

H(t1) =
∑

i

Ei(t1)�i(t1), (91)

H(t2) =
∑

f

Ef (t2)�f (t2), (92)

where i, f denote the indexes on the initial and final ener-
gies, respectively. From Eqs. (91) and (92), the definition
of the stochastic internal energy 	Uif follows. 	Uif is
defined within the time interval [t1, t2], and it is given by
the differences	Uif ≡ Ef − Ei. Notice that	Uif depends
only on the eigenvalues of the Hamiltonian H at the
initial and final times of the thermodynamic transforma-
tion described by the CPTP map �, which the system
is subject to, and not directly on � itself. On the other
hand, what is dependent on � is the probability distri-
bution that rules the occurrence of any value of 	Uif .
In order to describe such a distribution, we introduce the
Kirkwood-Dirac quasiprobability qif ≡ q(Ei, Ef ) defined
as

qif = Tr
[
�H

f (t2)�i(t1)ρ
]

, (93)

with ρ denoting the initial density operator, such that the
QD P[·] of 	Uif is

P [	U ] =
∑

i,f

qif δ
(
	U −	Uif

)
. (94)

Notice that, here, we have adopted a simplified notation for
the KDQ qif using as subscript the labels for the initial and
final energies, respectively.

Following what we previously stated in Sec. II C about
the properties of a KDQ, all the information about the
statistics of the stochastic internal energy 	Uif is also
contained in the characteristic function

GU (u) =
∫ +∞

−∞
P[	Uif ]eiu	Ud	U , (95)

obtained by the Fourier transform of P[	Uif ]. As such, the
KDQ distribution of the internal energy variation can be
directly evaluated by means of the interferometric scheme

discussed in Sec. III B. As in the general case, the char-
acteristic function GU (u)—as well as each KDQ qif —is
formally a quantum correlation function that takes the form

GU (u) =
∑

i,f

qif eiu(Ef (t2)−Ei(t1))

= Tr
[
e−iuH(t1)ρ�† [eiuH(t2)]] . (96)

For the case of time-dependent unitary dynamics (possibly
leading to work fluctuations),

�†[eiuH(t2)] = U†eiuH(t2)U = eiuHH (t2), (97)

where HH (t2) = U†H(t2)U is the evolution of the sys-
tem’s Hamiltonian at the final time of the work protocol
in the Heisenberg picture.

It is worth stressing that, when [ρ,�i(t1)] �= 0 or
[�i(t1),�H

f (t2)] �= 0, the corresponding KDQ qif can be
a complex number, with possibly a negative real part. We
recall that we have denoted this circumstance as being non-
classical. Even in this quantum thermodynamics case, the
nonclassicality of the internal energy distribution P[	Uif ],
in the time interval [t1, t2], can be measured via the func-
tional ℵ computed over the KDQ qif .

B. Quantum work and KDQ correction to the
Jarzynski equality

In any closed quantum system that is driven by a time-
dependent Hamiltonian H in the time interval [t1, t2], the
internal energy difference corresponds to the exerted work
W. This means that 	U = W, being the dissipated heat
equal to zero in such a case.

If the initial state of the system is a an equilibrium
thermal state at inverse temperature β:

ρ = e−βH(t1)

Z
, (98)

where Z(tk) ≡ Tr[e−βH(tk)] is the system’s partition func-
tion, then the TPM probability distribution of work fulfils
the celebrated Jarzynski equality (JE) [37,104]

〈e−βW〉TPM = e−β	F . (99)

Equation (99) relates a fluctuating physical quantity (the
work W) measured for an out-of-equilibrium system in a
given time during the work protocol, and the equilibrium
free-energy difference

	F ≡ −β−1 ln
(

Z(t2)
Z(t1)

)
. (100)

The equilibrium free-energy difference is achieved
asymptotically by the driven quantum system under the
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assumptions that, once the work protocol is over, (i) the
Hamiltonian of the system is assumed constant and equal
to H(t2); (ii) the system is put in contact with a thermal
bath at inverse temperature β. Moreover, in Eqs. (99) and
(100), it is implicitly assumed that the quantum system is
connected to the thermal bath at inverse temperature β also
before the work protocol is applied.

As surveyed in Ref. [105–108], the symmetries allowing
for the JE in Eq. (99) to hold are generally maintained as
long as (I) the initial density operator is thermal at inverse
temperature β, namely ρ = ρth(t1) ≡ e−βH(t1)/Z(t1); (II)
the dynamics of the quantum system is unital, meaning that
the identity I is a fixed point of the quantum map to which
the system is subject:�[I] = I. Notice that unitary dynam-
ics are a subgroup of such more general family of maps.
Therefore, a requirement for the validity of the JE is that ρ
is a thermal state, i.e., both (a) [ρ,H(t1)] = 0, and (b) the
diagonal elements of ρ [with respect to the eigenbasis of
H(t1)] follow a Boltzmann distribution.

As a result, the JE in Eq. (99) can be obtained by
applying the TPM scheme, which returns the following
characteristic function for any given work distribution:

GTPM
W (u) =

∑

i,f

pif eiu(Ef (t2)−Ei(t1))

= Tr
[
U†eiuH(t2)Ue−iuH(t1)ρth(t1)

]
(101)

with pif = Tr[U†�f (t2)U�i(t1)ρth(t1)�i(t1)] the joint
probabilities of the TPM scheme, and u complex number.
Hence, by setting u = iβ, we get

GTPM
W (iβ) ≡ 〈e−βW〉TPM = Z(t2)

Z(t1)
= e−β	F . (102)

Moreover, if one applies the Jensen inequality on both
sides of Eq. (102), we directly get the inequality

〈W〉TPM ≥ 	F (103)

that is one of the formulation of the second law of thermo-
dynamics in relation with the Clausius theorem.

Let us now start connecting these results with the dis-
cussion undertaken in the previous sections. In this regard,
we already know from Sec. II that, if the density operator
ρ at the beginning of the work protocol does not contain
quantum coherence χ with respect to the eigenbasis of
H(t1) (ρ = D1[ρ]), then the first energy measurement of
the TPM scheme is not invasive. Hence, in such a case,
〈W〉TPM −	F denotes, without any ambiguities, the dis-
sipated work that is the amount of work that cannot be
converted in extracted work.

However, the JE breaks down if ρ is not a thermal state.
The failure of the JE also occurs when ρ is thermal but
the dynamics of the quantum system is nonunital, possibly

leading to heat dissipation [109–112]. As a consequence,
one ends up with an expression similar to the JE that
exhibits a correction that is not a state function and depends
on both the dynamical map to which the quantum system
is subject and its initial state. We stress that, in the general
case, a correction is present also in the case no quantum
coherence χ is contained in ρ, i.e., ρ = D1[ρ]. Accord-
ingly, by setting ρ = D1[ρ], the characteristic function of
the work distribution provided by the TPM scheme reads
as [113–118]

〈e−βW〉TPM = e−β	Fγ , (104)

where

γ ≡ Tr
[
(ρth(t1))−1 D1[ρ]�† [ρth(t2)]

]
(105)

with ρth(t2) ≡ e−βH(t2)/Z(t2). Being expressed as a func-
tion of the dynamical transformation applied to the system,
the efficacy γ ≥ 0 depends on the time t2, making γ gen-
erally a time-dependent quantity. Of course, γ = 1 ∀t1, t2
if ρ = ρth(t1) and � is a unital map. We recall that the
difference D1[ρ]− ρth(t1) is commonly known as ather-
mality as it quantifies the nonthermal contributions in the
diagonal of ρ with respect to the eigenbasis of H(t1). The
athermality can be a significant thermodynamic resource
if the quantum system undergoes dynamics with feedback
[117,119,120].

If we now abandon the use of the TPM scheme and we
consider the more general framework of a quasiprobabil-
ity distribution, how is the average exponentiated work
〈e−βW〉modified when [ρ,H(t1)] �= 0, namely when quan-
tum coherences are present in the initial density operator
ρ? It is indeed clear that, if ρ is not thermal, the JE in
Eq. (99) is no longer valid and a further correction has
to be included to attain a modified JE expression. Notice
that a different correction has to be considered for all the
protocols that go beyond the TPM scheme [84,121–123].

The use of KDQ to describe quantum work fluctuations
leads to the relation

〈e−βW〉KDQ = GW(iβ) = e−β	F�, (106)

where

� ≡ Tr
[
(ρth(t1))−1 ρ�† [ρth(t2)]

]
(107)

is the KDQ correction to the JE that holds for any CPTP
map �. In conformity with the results shown in Sec. II,
� = γ when ρ = D1[ρ], i.e., under the commutative con-
dition [ρ,H(t1)] = 0. Similar to the efficacy γ , the KDQ
correction � to the JE is not a state function, and therefore
depends on the specific thermodynamic transformation
that is performed on the system. However, in contrast
to the TPM result, � is in general a complex number,
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whose real part can take both negative and positive values.
Consequently, as a possible application, if one measured
Re [�] < 0 or Im [�] �= 0, it would imply the presence
of nonclassicality, since the nonpositivity functional ℵ in
Eq. (25) would necessarily be greater than zero. The ther-
modynamic meaning of the KDQ correction � is still
lacking, and further investigations are thus needed.

C. Nonclassical work exerted by qubits: a case study

In this section, we discuss a simple example to ana-
lyze the KDQ distribution of work done on a single qubit
that is driven by a work protocol described by a uni-
tary operator U. Assuming the system does not interact
with any external bath, the internal energy change can
be fully identified as work. Albeit simple, this model
can be solved analytically and finds experimental applica-
tions in nuclear magnetic resonance (NMR) spin systems
[123] and nitrogen-vacancy (N-V) centers [12,85] (point
defects in the diamond lattice), where experiments of quan-
tum thermodynamics beyond TPM have been recently
performed.

Let us assume the Hamiltonian of the qubit to be

H(t) = 1
2
[
�
(
cos(δt)σ x + sin(δt)σ y)+ δσ z] , (108)

corresponding to a spin-1/2 particle subject to an effective
magnetic field rotating around the z-axis. In the rotating
frame, described by the unitary operator Urot = eiδσ z t/2, the
effective Hamiltonian governing the dynamics of the qubit
becomes time-independent and reads

H̃ = UrotHU†
rot+i U̇rotU

†
rot=

�

2
σ x, (109)

so that the system’s evolution operator (in the original
frame) is

U = e−iδσ z t/2e−i�σ xt/2. (110)

To find the statistics of work done between times t1 = 0
and t2 = t, we use the spectral decomposition of the time-
dependent Hamiltonian, i.e.,

H(t) =
∑

α=±
Eα�α(t), (111)

E± = ±1
2
	, (112)

�±(t) = I

2
± �(σ

x cos(δt)+ σ y sin(δt))+ δσ z

2	
, (113)

where we have defined a generalized Rabi frequency
	 ≡ √δ2 +�2. Moreover, we assume the system to have
quantum coherence in the eigenbasis of H(0), so that

ρ =
(

p c
c 1− p

)
, (114)

where 0 ≤ p ≤ 1 corresponds to the populations of the ini-
tial eigenstates, and c is the quantum coherence that we
have chosen to be real for simplicity. Using the definition
of the quasiprobability distribution for work, see Eq. (94),
we find

P[W] = (q−− + q++) δ(W)+ q+−δ(W+	)+ q−+δ(W−	), (115)

where the KDQ q are [see Eq. (93)]:

q−− = p(δ2 + 2�2)− cδ�+ δ(pδ + c�) cos(�t)+ icδ	 sin(�t)
2	2 , (116)

q−+ = δ sin
(
�t
2

)[
− ic cos(�t/2)

	
+ (pδ + c�) sin(�t/2)

	2

]
, (117)

q+− = δ[(1− p)δ − c�](1− cos(�t))− icδ	 sin(�t)
2	2 , (118)

q++ = (1− p)(δ2 + 2�2)+ cδ�+ δ[(1− p)δ − c�] cos(�t)+ icδ	 sin(�t)
2	2 . (119)

First, we notice that the imaginary parts of qif are always proportional to the coherence c. Second, the real parts of qif
may become negative. To see this, we specify, for simplicity, initial conditions and take the maximum possible coherence:
p = c = 1/2. In this case, the real parts Re[qif ] become
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(a)

(b)

FIG. 3. Real parts of the quasiprobabilities qif defined in Eqs.
(120)–(123) (with p = c = 1/2) as a function of time t = t2 for
� = (√2− 1)δ in panel (a) and � = (√2+ 1)δ in panel (b).
Re[q−−] (blue solid line), Re[q+−] (orange dashed line), Re[q−+]
(green dotted line), Re[q++] (red dot-dashed line).

Re[q−−] = δ2 − δ�+ 2�2 + δ(δ +�) cos(�t)
4	2 , (120)

Re[q−+] = δ(δ +�)(1− cos(�t))
4	2 , (121)

Re[q+−] = δ(δ −�)(1− cos(�t))
4	2 , (122)

Re[q++] = δ2 + δ�+ 2�2 + δ(δ −�) cos(�t)
4	2 . (123)

It is possible to see that the minimum value of Re[q−−] is
(1−√2)/4 < 0 that is obtained for� = (√2− 1)δ. Sim-
ilarly, the minimum value of Re[q+−] is also (1−√2)/4
attained for � = (√2+ 1)δ. The time dependence of the
quasiprobabilities qif is shown in Fig. 3 for the two cases
� = (√2± 1)δ. It is interesting to see that only one of
the Re[qif ] may become negative for each value of �.
Moreover, choosing c complex may lead to another of the
Re[qif ] to become negative, but the minimum value is still
(1−√2)/4.

D. Enhancement of extractable work

In this section, we are going to explain the meaning
of nonclassical work extraction and anomalous energy
exchange or variation.

In any system that is subject to a work protocol, the
extractable work is defined as the amount of energy that
is left over, with respect to the energy of the system
at the beginning of the transformation. Accordingly, if a
protocol admits nonzero extractable work, then the aver-
age energy at the end of the work protocol, 〈H(t2)〉 =
Tr[Uρ U†H(t2)], is smaller than the average energy at the
beginning, 〈H(t1)〉 = Tr[ρH(t1)], so that the extra energy
amount can be used by a work reservoir [124] or stored in a
battery [125]. Hence, the requirement for work extraction
is that

〈W〉 ≡ 〈H(t2)〉 − 〈H(t1)〉 < 0. (124)

Recently, it has been discussed whether the negativity of
the terms composing a quasiprobability work distribution
may correspond to an enhancement of work extraction, and
whether this circumstance can be witnessed by violating an
inequality that is instead valid under the commutative con-
ditions [ρ,H(t1)] = 0 and [H(t1),H(t2)] = 0, i.e., when
ℵ = 0. The answer to both these questions is positive [12].

In order to see this, at the level of energy transitions,
let us consider the fact that an excitation process 	Uif ≡
Ef − Ei > 0 (indexes i, f label the initial and final ener-
gies, respectively) occurring in a quantum process with
negative quasiprobability qif (not neccessarily KDQ) is
equivalent to a de-excitation process 	Uif < 0 in a clas-
sical work transformation with probability |qif |.

During an excitation (stochastic) process, the system
absorbs energy and uses this energy to carry out a tran-
sition between the energy levels. On the other hand, any
de-excitation process that is operated by a thermody-
namic transformation contributes to increase the amount of
the extractable work. Therefore, the presence of negative
quasiprobabilities can be effectively exploited as a resource
to enhance work extraction, beyond what any classical
stochastic process can achieve. Such an enhancement is
deemed as “nonclassical,” and the internal energy varia-
tions 	Uif associated to negative probabilities, enabling
it, are called “anomalous.” Thus, anomalous energy varia-
tions denote energy exchanges that are inherently quantum
mechanical, and heralded by nonpositivity.

Let us see how the enhancement of work extraction
occurs. If one uses a work protocol (such as the TPM
scheme) returning positive joint probabilities pif of the
work distribution, the work extraction is maximized if we
minimize (with sign) 〈W〉clas =

∑
i,f pif 	Uif , where the

subscript “clas” here specifically stands for “classical” in
the sense of positive joint probabilities. Without specify-
ing anything about the thermodynamic transformation, the
necessary condition to achieve the largest extractable work
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is to set
{

pif = 0 for 	Uif > 0,
pif > 0 for 	Uif ≤ 0,

(125)

such that

Wclas = −〈W〉clas =
∑

Ei≥Ef

pif
(
Ei − Ef

) ≥ 0 (126)

leads to extractable work (in absolute value).
If instead the statistics of the internal energy varia-

tions 	Uif are described by some quasiprobabilities qif
(for example, when [ρ,H(t1)] �= 0, as shown in Sec. II),
then the extractable work can be enhanced beyond what
is obtained by a work protocol returning positive joint
probabilities. For such a purpose, one can set

{
Re
[
qif
]
< 0 for 	Uif > 0,

Re
[
qif
]
> 0 for 	Uif ≤ 0.

(127)

In this way, the magnitude of the extractable work

W = −〈W〉 =
∑

i,f

qif (Ei − Ef ) ≥ 0 (128)

can be effectively maximized in order to satisfy the
inequality

Wmax ≥Wmax
clas . (129)

To achieve this, any excitation process	Uif > 0 has to be
associated to a negative Re[qif ], while any de-excitation
process 	Uif < 0 should occur with a positive quasiprob-
ability. It is worth observing that, in the case a KDQ
distribution of work is taken into account, the imaginary
parts of KDQ do not play an effective role for the task of
work extraction, since they do not affect the average work.

What really matters to get enhanced work extraction
is to ensure nonclassical behaviors in the time distribu-
tion of negativity, namely the distribution over time of
the quasiprobabilities with negative real part. In fact, it
is not necessarily crucial for the nonpositivity functional
ℵ to take a large value, but that a significant negativity
is associated to a positive “anomalous” energy variations
	Uif > 0. At the same time, work extraction is enhanced
when negative values of 	Uif occur with the largest pos-
sible positive quasiprobability qif . The interplay of all
these conditions is model-dependent and depends on the
specific parameters that rule the dynamics of the work
process. Therefore, it is evident that attaining enhanced
work extraction stems from an optimization routine that
makes Eqs. (127) valid in a given time interval of the work
protocol.

In Ref. [12], the electronic spin of an N-V center in
bulk diamond at room temperature was considered as
the system to which a work protocol would be applied.
Work extraction was observed, and its maximum values
were associated to negative MHQ fulfilling Eq. (129).
The work-extraction enhancement observed in Ref. [12]
originates from a suboptimal solution for the optimiza-
tion of work extraction against the time duration of the
work protocol. In fact, due to the experimental constraints,
only one internal energy change 	U , corresponding to
the largest possible value, was associated with a negative
MHQ. At the same time, the smaller internal energy varia-
tion−	U occurred with positive quasiprobability, with all
other MHQ being negligible.

1. Enhanced extractable work from violating a classical
inequality

We are going to show that fulfilling Eq. (129) implies
the violation of an inequality for work extraction that holds
as long as the commutativity condition [ρ,H(t1)] = 0 is
obeyed; as in Ref. [12], we consider MHQ. The viola-
tion of such an inequality cannot occur in any experiment
realizing a work protocol yielding positive work joint
probabilities, as the TPM scheme.

Let us thus consider that the projectors�i and�f of the
Hamiltonian at the initial and final times t1 and t2 of the
work protocol are rank-1 operators. This means that �i =
|Ei(t1)〉〈Ei(t1)| and �f = |Ef (t2)〉〈Ef (t2)|. Moreover, we
assume, for simplicity, the initial density operator ρ =
|ψ〉〈ψ | to be pure. Under these assumptions, the MHQ
takes the form

Re
[
qif
] = Re

[〈ψ |Ei〉〈Ei|U†|Ef 〉〈Ef |U|ψ〉
]

. (130)

Interestingly, all the terms 〈ψ |Ei〉, 〈Ei|U†|Ef 〉, 〈Ef |U|ψ〉
are complex numbers whose real parts are linked with a
standard probability amplitude, either defined at a single
time or measurable by means of the TPM scheme. In par-
ticular, for the probability pi to measure the initial energy
of the system, one has

pi ≡ |〈Ei|ψ〉|2 =⇒ 〈ψ |Ei〉 = e−iφi
√

pi, (131)

where φi is a phase factor. Then, in the same spirit, we can
write

pf |i ≡ |〈Ef |U†|Ei〉|2 =⇒ 〈Ei|U†|Ef 〉 = e−iϕif
√

pf |i
(132)

and

pf ≡ |〈ψ |U|Ef 〉|2 =⇒ 〈Ef |U|ψ〉 = e−iθf √pf , (133)

where ϕif , θf are the corresponding phase factors.
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In Eq. (132), pf |i is the conditional probability (associ-
ated to the TPM scheme) of measuring the energy Ef at
time t2 conditioned to have measured Ei at time t1. Instead,
in Eq. (133), pf is the probability to measure the energy Ef
at the end of the work protocol, by initializing the system
in ρ = |ψ〉〈ψ |. Notice that, by construction, the probabil-
ity pf encodes information on the quantum coherence that
is initially present in ρ; for this reason, pf is a key element
of the EPM scheme [84,85,126].

Overall, combining Eqs. (131)–(133) we arrive at

Re
[
qif
] = Re

[
�if
√

pif pf
]

, (134)

where, by definition, pif = pf |ipi is the joint prob-
ability returned by the TPM scheme, and �if ≡
cos
(
φi + ϕif + θf

)
that is named activity [12]. The lat-

ter brings information on the quantum interference fringes
among the eigenbasis of ρ, �i(t1) and �H

f (t2). It is indeed
the activity �if that is responsible for the negativity of
Re
[
qif
]
, such that Re

[
qif
]
< 0 if and only if �if < 0.

If we substitute Eq. (134) into the expression of the work
extraction in Eq. (128), we find

Wclas ≤
∑

Ei≥Ef

(
Ei − Ef

)√
pif pf (135)

whenever �if ≥ 0 ∀ i, f . The inequality in Eq. (135) gives
an upper bound, dependent on the work protocol, to the
amount of extractable work when ℵ = 0, and applies also
to initial quantum mixed states. Hence, a violation of this
bound, as experimentally tested in Ref. [12], is a witness of
the presence of negativity, as well as of nonclassical work
extraction.

In Fig. 4, we show an example of the enhancement of
work extraction aided by negativity using the work proto-
col introduced in Sec. IV C, applied to a driven qubit. In
particular, we plot the average work of the TPM and MHQ
probability distributions using the energies and Hamilto-
nian projectors in Eqs. (112) and (113), as well as the
quasiprobabilities in Eqs. (116)–(119), with p = 1/2, c =
−1/2 (c = 0 to get the work statistics of the TPM scheme),
and δ = �/(√2+ 1).

Interestingly, if the initial state of the qubit [see
Eq. (114)] is fully mixed (c = 0), then the average work
is zero for any value of the final time t2, see Fig. 4. On
the other hand, turning on the quantum coherence in ρ
and making use of quasiprobability to attain the work dis-
tribution P[W], the energy injected by the driving field
is transformed into extractable work, beyond the classi-
cal bound [right-hand side of Eq. (135)] in the interval
(�t)/π ∈ [0.6, 1.4] approximately. In this case study with

FIG. 4. Average work in units of � for the spin-1/2 model
described in Sec. IV C as a function of the final protocol time
t2 = t. We consider the parameters p = 1/2, c = −1/2, and� =
(1+√2)δ. In particular, we plot the average 〈W〉 of the KDQ
distribution of work (blue solid line), the average work 〈W〉TPM
returned by the TPM scheme (orange dashed line)—equal to zero
for any time—and the classical bound from Eq. (135) (green
dotted line) taken with opposite sign.

a qubit, the classical bound amounts to

(E+ − E−)
√

p+−p−

= δ
(
(1− p)(1− cos(�t))

2
Tr
[
Uρ U†�−

])1/2

with U given by Eq. (110).

E. Work variance in the KDQ setting

In the previous section, we have shown how using
KDQ to describe the work fluctuations makes the average
work 〈W〉 =∑i,f qif

(
Ef − Ei

)
equal to the corresponding

value that is unperturbed by the measurement disturbance.
Even though the KDQ qif are complex numbers, the
average work 〈W〉 is always a real number, with a clear
interpretation with classical physics, as shown above.

In the following, we analyze how the fact that qif are
complex numbers affects the second moment of the KDQ
distribution of work, P[W], i.e., the work variance (	W)2.
As noticed in Ref. [127], the variance of work is in general
not equal to the variance of the operator HH (t2)−H(t1)
calculated for the initial state ρ. Instead, this is formally
defined by

(	W)2 =
∑

i,f

qif (Ef − Ei)
2 −

⎛

⎝
∑

i,f

qif (Ef − Ei)

⎞

⎠
2

= 〈W2〉 − 〈W〉2, (136)

where, as before, all the averages 〈·〉 are performed with
respect to ρ, and the second statistical moment 〈W2〉 reads
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as

〈W2〉 =
∑

i,f

qif

(
E2

i + E2
f − 2EiEf

)

= 〈H2(t1)〉 + 〈HH (t2)2〉 − 2Tr
[HH (t2)H(t1)ρ

]
.

(137)

The quantity Tr
[HH (t2)H(t1)ρ

]
in the right-hand side

of Eq. (137) is a two-time quantum correlation function
for the Hamiltonian H and is generally complex, making
〈W2〉 also complex. This means that the imaginary part of
〈W2〉 is equal to the imaginary part of Tr[HH (t2)H(t1)ρ],
whose meaning lies in the presence of phase correlations
in the scalar products of the eigenvectors of ρ and H at
the times t1, t2. For this reason, the quantum correlation
function for H preserves information about the quantum
coherence contained in ρ, and this feature is transferred
to the work variance (	W)2. In this regard, we are going
to show that the imaginary part of (	W)2, Im

[
(	W)2

]
,

is directly linked with the noncommutativity between ρ
and H. From this, following the time-energy Schrödinger-
Robertson uncertainty relation [128–130], Im

[
(	W)2

]
is

bounded by the product of the uncertainties of H(t1) and
HH (t2), respectively.

A first expression of the work variance is obtained by
combining Eqs. (136) and (137), so that

(	W)2 = (	H(t1))2 +
(
	HH (t2)

)2

− 2Tr
[(HH (t2)− 〈HH (t2)〉

)

× (H(t1)− 〈H(t1)〉) ρ] , (138)

where

(	H(t1))2 = Tr
[
ρ (H(t1)− 〈H(t1)〉)2

]
∈ R (139)

and

(
	HH (t2)

)2 = Tr
[
ρ
(HH (t2)− 〈HH (t2)〉

)2] ∈ R.

(140)

The last term in the right-hand side of Eq. (138) identifies
the way Hamiltonian operators at distinct times correlate in
a quantum work protocol. The real and imaginary parts of
Tr
[(HH (t2)− 〈HH (t2)〉

)
(H(t1)− 〈H(t1)〉) ρ

]
are equal,

respectively, to [131]

1
2

Tr
[
ρ
{(HH (t2)− 〈HH (t2)〉

)
, (H(t1)− 〈H(t1)〉)

}]

≡ Cov
(H(t1),HH (t2)

) ∈ R (141)

W
or

k 
va

ri
an

ce
s

FIG. 5. Plot of the work variances of the KDQ (real part,
blue solid line) and TPM (orange dashed line) distributions,
respectively. The parameters are the same as in Fig. 4.

and

− 1
2

Tr
[
iρ
[(HH (t2)− 〈HH (t2)〉

)
, (H(t1)− 〈H(t1)〉)

]]

= −1
2

Tr
[
iρ
[HH (t2),H(t1)

]] ∈ R. (142)

Equation (141) defines the quantum covariance of H(t1)
and HH (t2). Instead, in Eq. (142), Tr[ρ[HH (t2),H(t1)]]
is a purely imaginary number and, by definition, is the
expectation value of the commutator [HH (t2),H(t1)] with
respect to the initial density operator ρ.

This derivation demonstrates that the work variance has
both a real and an imaginary part. The real part has a
clear correspondence with the thermodynamics of classical
systems, as

Re
[
(	W)2

] = (	H(t1))2 +
(
	HH (t2)

)2

− 2 Cov
(H(t1),HH (t2)

)
. (143)

In addition, the fact that the commutator [ρ,H(t1)] �= 0 or
[H(t1),HH (t2)] �= 0 may lead to a decreased work vari-
ance, namely to Re

[
(	W)2

] ≤ (	WTPM)
2. We show this

for the driven qubit of Sec. IV C and report the results
in Fig. 5 where we assume the same values used for
Fig. 4. Interestingly, apart from �t/π = 0, 2 where both
the work average and variances are zero, the real part of
the KDQ work variance Re

[
(	W)2

]
has a local minimum

at �t/π = 1 that is the time with maximum negativity.
On the other hand, the imaginary part of the work

variance is

Im
[
(	W)2

] = Tr
[
iρ
[HH (t2),H(t1)

]]
(144)

that quantifies the noncommutativity of H(t1) and HH (t2).
The magnitude of Im

[
(	W)2

]
can be bounded from above

by making use of the time-energy Schrödinger-Robertson
uncertainty relation [128–130]. In fact, the latter states
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that, for any quantum observables O1, O2 and density
operator ρ,

∣∣∣∣
〈[O1,O2]〉

2i

∣∣∣∣ ≤ 	O1	O2, (145)

where 〈[O1,O2]〉 = Tr [ρ[O1,O2]] and

	O =
√
〈O2〉 − 〈O〉2 (146)

with 〈Ok〉 = Tr[ρOk]. Therefore, by applying the inequal-
ity in Eq. (145) to our setting, we obtain

∣∣∣Im
[
(	W)2

] ∣∣∣ ≤ 2	HH (t2)	H(t1). (147)

F. Heat fluctuations in the quantum regime

In this section, we no longer deal with work distri-
butions, and we will focus on heat fluctuations. For this
purpose, we consider the paradigmatic model that con-
sists in placing into contact a cold and a hot quantum
system, which globally undergo a unitary quantum dynam-
ics. Depending on the initial quantum states of the cold
and hot systems, different results as well as thermody-
namic interpretations can be drawn. In this context, a first
relevant result is in Ref. [132] and goes under the name
of Jarzynski-Wójcik exchange fluctuation theorem. In Ref.
[132], two quantum systems Bc and Bh with finite Hilbert
space dimension are prepared in two equilibrium thermal
states at different temperatures βc and βh with βc > βh.
Then, they are made weakly interacting with one another
for a given time interval. Under this assumption, one gets
that

〈e−	βQ〉 = 1, (148)

where Q is the stochastic heat exchanged by the two bod-
ies, and	β = βc − βh denotes the difference of the inverse
temperatures of the initial thermal states for the two bodies.

If the initial global state of the two systems is a product
state then the average 〈·〉 in Eq. (148) can be performed
also with respect to the TPM distribution of the exchanged
heat. To find this, it is sufficient to measure the sum of
the local Hamiltonian operators of the two bodies, i.e.,
H = HBc +HBh (a time-independent Hermitian operator).
Furthermore, throughout this section, we also implicitly
assume the energy-preserving condition for the unitary
operator U that describes the quantum dynamics of the two
bodies:

[H, U] = 0. (149)

Equation (149) physically entails that, at any time t, the
average energy variation in a body is minus the corre-
sponding average energy variation in the other body. Such

symmetry allows one to study fluctuations of exchanged
energy between the two bodies by just measuring one of
them.

In the literature, it has been considered also the cases of
an initial quantum state that is locally thermal as in Ref.
[132], or classically correlated [133]. This kind of correla-
tion makes nonthermal the diagonal of the initial density
operator ρ for the two bodies taken individually, but does
not add off-diagonal elements in ρ with respect to H. As
shown in Ref. [133], a generalized exchange fluctuation
relation, extending Eq. (148), can be still obtained, as we
will discuss next.

Let us now introduce the spectral decomposition of
the local Hamiltonians HBc and HBh for each of the two
bodies:

HBk =
∑

�k

E�k��k (150)

with k = c, h and � = i, f . This implies that the projectors
of the total Hamiltonian H are �icih = �ic ⊗�ih .

For the initial state ρ, we require that the reduced states
of the each body is in equilibrium at inverse temperature
βk:

ρth,Bc = Trh [ρ] = e−βcHBc

Zc
, (151)

ρth,Bh = Trc [ρ] = e−βhHBh

Zh
, (152)

where Zk ≡ Tr
[
e−βkHBk

]
are the local partition functions.

We hence have ρ = ρth,Bc ⊗ ρth,Bh . While the reduced
states are diagonal in the eigenbasis of HBk , in general
the global state ρ may contain off-diagonal elements, with
respect to the local energy eigenbasis, that may be the
signature of the presence of quantum correlations.

We are now in the position to define the average heat
flow that, due to the energy-preserving condition, can be
inferred from the energy change of either the cold or
the hot body. Without loss of generality, we choose to
measure it through the cold system as in Ref. [8]. The aver-
age heat flow at the final time t2 of the thermodynamic
transformation is

〈Q〉 ≡ Tr
[
(ρ − ρ ′)HBc

]
, (153)

where ρ ′ = UρU† denotes the evolved density operator of
the two bodies.

According to Eq. (153), 〈Q〉 ≤ 0 denotes heat flowing
on average from the hot to the cold body, as naturally
requested by the second law of thermodynamics with the
intervention of no external drive. On the other hand, by
resorting to additional resources, it can also occur that
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〈Q〉 > 0 meaning that on average heat flows from the cold
body to the hot one, as in a refrigerator. Summarizing,

〈Q〉 ≤ 0 =⇒ hot-to-cold heat flow,

〈Q〉 > 0 =⇒ cold-to-hot heat backflow.

Moreover, if the amount of exchanged heat from the
cold to the hot body exceeds in magnitude the value of
(	β)−1 ln d, with d the Hilbert-space’s dimension of each
body, then the heat backflows are called strong. Notably,
the observation of strong backflows indicates that the
actual quantum state of the bipartite system, on which heat
fluctuations are evaluated, is entangled [134].

Let us introduce the quasiprobabilities qicihfcfh associ-
ated to the energy variations 	Eicihfcfh , eigenvalues of the
total Hamiltonian H of the two bodies. Using again the
definition of the QD in Eq. (94), one has that

qicihfcfh = picihfcfh + Tr
[
�H

fcfh�icihχ
]

, (154)

where �H
fcfh
= U†�fcfhU and

picihfcfh = Tr
[
�H

fcfh�icihD1[ρ]
]

(155)

is the corresponding joint probabilities returned by the
TPM scheme. As before, in Eq. (155) we have employed
the dephasing operator D1[ρ] =∑icih

�icihρ�icih . In Eqs.
(154) and (155) the initial quantum state ρ of the two bod-
ies is linearly decomposed as ρ = D1[ρ]+ χ [see Eq. (5)],
where both the diagonal and off-diagonal parts of ρ are
considered with respect to the eigenbasis of H.

Based on this framework, we describe an exchange fluc-
tuation relation that is also valid in the noncommutative
regime of [ρ,H] �= 0, due to the presence of quantum
correlations or entanglement in the initial state. For this
purpose, let us introduce the stochastic mutual information
I with elements

Ijcjh ≡ ln

(
Tr
[
�jcjhρ

]

Tr
[
�jcρth,Bc

]
Tr
[
�jhρth,Bh

]
)

, (156)

where j = i, f , such that 	I ≡ Ifcfh − Iicih . We also recall
that the energy variation in the cold body is Q ≡ Eic −
Efc = Efh − Eih , assuming the energy-preserving condition
for U and a resonant interactions between the bodies.
Hence, we find [8]

〈e	I+	βQ〉 = 1+ϒ , (157)

where the average 〈·〉 in Eq. (157) is made with respect to
the quasiprobabilities qicihfcfh , and

ϒ ≡
∑

ic,ih,fc,fh

Tr
[
�H

fcfh
�icihχ

]
Tr
[
�fcfhρ

]

Tr
[
�icihρ

] . (158)

The correction to the exchange fluctuation theorem, ϒ ,
is equal to zero if [ρ,H] = 0, which is equivalent to
ρ = D1[ρ] and χ = 0. In this case the application of the
TPM scheme suffices. The exchange fluctuation relation
of Eq. (157) reduces to the Jarzynski-Wójcik identity in
Eq. (148) in the case ρ = ρth,Bc ⊗ ρth,Bh , whereby 	I =
0. Instead, if the diagonal elements of ρ are not ther-
mally distributed—due to classical correlations in the H
eigenbasis—and χ = 0, then one recovers the exchange
fluctuation relation in [133], i.e.,

〈e	I+	βQ〉 = 1. (159)

We conclude this theoretical analysis about heat fluctua-
tions in the quantum regime, by providing the thermody-
namic interpretation of the fluctuation profiles associated
to the quasiprobability distribution of heat exchanges.
Previously, we have seen that the presence of quantum
correlations in the initial state can enhance the amount
of heat backflows, such that 〈Q〉 ≥ 0 according to the
used convention. The explanation of this phenomenon lies
in the possibility to associate negative quasiprobabilities
Re
[
qicihfcfh

]
to positive heat exchanges Q = Eic − Efc > 0

corresponding to heat flowing from the cold body to the hot
one. Such a process, which needs an external energy source
for its activation, is triggered by quantum correlations.

Notice that, in order for quantum correlations to be effec-
tively considered as a resource for heat backflows, it is
required that negative heat exchanges Q ≤ 0 (i.e., energy
fluxes from the hot to the cold bodies) occur with positive
quasiprobabilities Re

[
qicihfcfh

]
, similarly to what happens

to work extraction in Sec. IV D. When the enhancement
induced by quantum correlations in ρ allows for strong
cold-hot heat backflows, then one can state that the cor-
responding energy exchange process takes nonclassical
traits.

1. Example: two-qubit system

We now apply the theoretical framework introduced
above to a pair of interacting qubits, at inverse temper-
atures βc and βh, respectively, and local Hamiltonians
HBk = �σ z

k , k = c, f . The two qubits are initialized in
a global state ρ containing off-diagonal elements with
respect to H = HBc +HBh .

As proven in Ref. [8], a general form of the initial state
for a two-qubit system fulfilling the requirements (151)
and (152) is

ρ =

⎛

⎜⎜⎝

p 0 0 0
0 α−1

c − p η eiξ 0
0 η e−iξ α−1

h − p 0
0 0 0 αcαh−αc−αh

αcαh
+ p

⎞

⎟⎟⎠ (160)

where p ∈ [0, 1] is a population term, αk ≡ 1+ e−βk (k =
c, h), ξ ∈ [0, 2π ], and |η| ≤

√
(α−1

c − p)(α−1
h − p) such
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FIG. 6. Average heat exchanged 〈Q〉, see Eq. (162), against
θ for different values of the coherence strength η = 0 (solid
line), η = 0.2 (dashed line), η = 0.4 (dotted line). Note that
〈Q〉 = 〈Q〉TPM for η = 0. Other parameters: p = 0, ξ = 0,βc =
10,βh = 0.1.

that ρ ≥ 0. In Ref. [8], it is also shown that the energy-
preserving condition [Eq. (149)] is responsible to set a
minimal form for the unitary operator U:

U =

⎛

⎜⎝

1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

⎞

⎟⎠ (161)

with θ ∈ [0, 2π ], equivalent to a partial swap transforma-
tion.

Under these assumptions, the analytical expression of
the heat exchange (153) between the two bodies reads as
[8]

〈Q〉 = −η cos(ξ) sin(2θ)+ 〈Q〉TPM, (162)

where

〈Q〉TPM = sin2(θ)

(
1

1+ eβc
− 1

1+ eβh

)
(163)

is the average heat flow obtained by applying the TPM
scheme, or by setting η = 0 (no quantum coherence) in
Eq. (162). For any value of θ , βc, and βh, it can be easily
found that 〈Q〉TPM ≤ 0, which means that no cold-to-hot
heat backflows are possible. This is evident in Fig. 6 where
we plot Eq. (162) against θ for η = 0 and for η �= 0 for
fixed p , ξ ,βc,βh. From the figure it can be observed that,
for some values of θ , 〈Q〉 > 0 (cold-to-hot heat backflows)
is possible when η �= 0. The parameter η also affects the
magnitude of the heat exchanged between the cold and hot
systems.

V. QUANTUM MANY-BODY SYSTEMS

Quasiprobability distributions play an instrumental role
in the understanding of quantum many-body systems. In

this section, we will present their applications in the con-
text of quantum scrambling and out-of-time-ordered cor-
relators (Sec. V A), the Loschmidt echo (Sec. V B) and a
technique for efficiently calculating the KDQ distribution
of free fermion systems (Sec. V C).

A. Quantum scrambling and out-of-time-ordered
correlators (OTOCs)

Out-of-time-ordered correlators (OTOCs) allow the
study of quantum information scrambling, a phenomenon
in which localized quantum information rapidly spreads
across multiple degrees of freedom in many-body sys-
tems [135,136]. OTOCs have recently found extensive
applications in diverse fields, such as condensed-matter
physics, quantum chaos, holography, and the study of
black holes. Their versatility has thus pushed the develop-
ment of numerous experimental proposals aimed at mea-
suring OTOCs [137–142], with some experiments already
realized [143–148].

In this section, we review the basic definition of OTOCs
and show how they relate to quasiprobabilities. This
connection has been recently noted in various works
[4,6,28,149].

Following Ref. [149], let us consider a system that is
initially prepared at time t = 0 in the pure state |ψ〉 and
initially perturbed by a unitary operator V, acting locally
on a part of the system. For instance, if the system is made
of qubits, we may consider the spin flip V = σ x

j that acts
on qubit j . The system is then evolved for a time interval t
following a time evolution described by the unitary opera-
tor U. At the end of the dynamics, the system is perturbed
by the application of another unitary operator Y [150], act-
ing locally on another disjoint part of the system. Finally,
the system is evolved backward in time through the opera-
tor U†. At the end of this protocol, the state of the system
is
∣∣ψ ′
〉 = U†YUV |ψ〉. Now, suppose that we perform an

alternative protocol in which the perturbation V is applied,
not after the initial preparation of ρ, but after the backward
evolution. This results in the state

∣∣ψ ′′
〉 = VU†YU |ψ〉. The

overlap between these two states equals the OTOC

F(t) ≡ 〈ψ ′′∣∣ψ ′〉 =
〈
Y†

t V†YtV
〉

, (164)

where we have defined Yt = U†YU that denotes the pertur-
bation operator Y evolved in the Heisenberg picture. The
definition in Eq. (164) can be extended to initial mixed
states ρ and from now on we will assume: 〈·〉 = Tr[ρ ·],
so that F(t) = Tr

[
ρ Y†

t V†YtV
]
.

While the OTOC is in general a complex number,
one can consider a real quantity by introducing the OTO
commutator:

C(t) ≡ 1
2
〈
[Yt, V]†[Yt, V]

〉
. (165)
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Its interpretation is the following. Initially, at time t = 0
(U = I), the operators Yt = Y and V commute as they
have support on spatially separated parts of the system:
[Y, V] = 0. However, as time progresses, the effects of the
perturbation Yt may reach the support region of V and their
commutator might become nonzero: [Yt, V] �= 0. The quan-
tity C(t) measures the magnitude of this commutator. If
both operators V and Y are unitary, the OTO commutator
is related to the OTOC by the relation

C(t) = 1
2

〈
(V†Y†

t−Y†
t V†)(YtV− VYt)

〉

= 1− 1
2

〈
Y†

t V†YtV+ V†Y†
t VYt

〉

= 1− Re[F(t)]. (166)

This shows that the growth of the commutator C(t) is
associated with a decay of the real part of F(t).

Next, we are going to prove that an OTOC is equal
to the characteristic function of a KDQ. To this end, let
us follow Ref. [151], which introduces the wing-flap pro-
tocol and express the unitary operator V in exponential
form as V(u) = eiuO, with O a Hermitian operator and u
a real scalar. The spectral decomposition of the observable
O reads: O =∑m om�m, in terms of its real eigenvalues
om and the corresponding orthogonal projectors�m. Using
these definitions, V can be expressed as

V(u) =
∑

m

eiuom�m. (167)

The wing-flap protocol consists of the following steps:

(1) Prepare the system in the state ρ.
(2) Measure O.
(3) Evolve the system forward in time with U.
(4) Apply the perturbation Y.
(5) Evolve the system backward in time with U†.
(6) Measure O.

Recalling the definition in Eq. (16), we can define the KDQ

qnm(t) =
〈
Y†

t �mYt�n

〉
(168)

for the change 	onm = om − on in the eigenvalues of O
when two measurements of O are performed at times t1 =
0 and t2 = t, respectively (steps 2 and 6 of the wing-flap
protocol). In Eq. (168), the operator Yt plays the role of the
complete evolution operator Yt = U†YU that combines the
steps 3–5 of the protocol between the two measurements
of O. Notice that, in order to denote a quasiprobability, we
continue using the simplified notation adopted in Sec. IV,
whereby the subscript in qnm contains the indexes labeling
the measurement outcomes at the initial and final times of
a two-time procedure.

As a result, the quasiprobability distribution to observe
a change 	o(t) at time t is given by

P[	o, t] =
∑

n,m

qnm(t)δ(	o(t)−	onm) (169)

and the characteristic function of P[	o, t] is its Fourier
transform (see Sec. II C 3), such that

G(−u, t) =
∫ ∞

−∞
P[	o, t]e−iu	od	o

=
∑

n,m

qnm(t)e−iu	onm

=
∑

n,m

〈
Y†

t �mYt�n

〉
e−iu(om−on)

=
〈
Y†

t V†(u)YtV(u)
〉
= F(t) (170)

that can thus be expressed as an OTOC.
In general, whenever [ρ,O] �= 0, both the KDQ

P[	o, t] and its characteristic function G(u, t) are complex
numbers. When [ρ,O] = 0 (as in Ref. [151]), the KDQ is
real and positive, as explained in Sec. II.

Similar to Secs. II–IV, we can define the corresponding
MHQ distribution that can be associated with an OTOC.
Such a distribution is the real part of the correspond-
ing KDQ distribution, that is rnm = Re [qnm(t)], and its
characteristic function reads as

GMHQ(−u, t) = G(−u, t)+ G∗(u, t)
2

. (171)

Hence, using the equality

G(u, t) =
〈
Y†

t V†(−u)YtV(−u)
〉

=
〈
Y†

t V(u)YtV†(u)
〉

, (172)

we obtain

GMHQ(−u, t) = 1
2

[〈
Y†

t V†(u)YtV(u)
〉
+
〈
V(u)Y†

t V†(u)Yt

〉]

= Tr
[
{ρ, V(u)}Y†

t V†(u)Yt

]
. (173)

Let us now consider a practical example and let

H = B1σ
z
1 + B2σ

z
2 + Jσ x

1σ
x
2 (174)

be the Hamiltonian of two qubits initially in the thermal
state

ρ = e−βH

Tr
[
e−βH

] (175)

with inverse temperature β. Then, we choose Y = σ z
1 and

O = σ z
2 . Notice that neither Y nor O commute with either
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H or ρ. Therefore, this is an ideal setting to test the pos-
sible presence of nonpositivity in the KDQ (168). For
this purpose, we write the measurement observable as
O = |0〉〈0| − |1〉〈1|, from which �0 = |0〉〈0| and �1 =
|1〉 〈1| with the corresponding eigenvalues o0 = 1 and
o1 = −1. We stress that the projectors �0,�1 of O act
locally on qubit 2. One can see that the evolution oper-
ator U = exp(−iHt) is periodic with the frequency ω =
2
√
(B1 + B2)2 + J 2.

In Figs. 7(a) and 7(b), we show the real and imaginary
parts of qnm. The quasiprobability q00 is the only one whose
real part becomes negative. Since the probabilities need
to fulfil the normalization condition, it means that q11 is
amplified due to the presence of quantum coherences in
the initial state ρ, compared to a case in which the initial
state commutes with the observable O.

In Fig. 7(c), the nonpositivity functional ℵ is plotted
against the time for different values of J . In Fig. 7(d), we
show a contour plot of the minimum value of ℵ in the
time interval 0 ≤ t ≤ 20 as a function of β and J . First, as
expected, we confirm that larger values of the interaction
strength J always lead to a stronger nonpositivity. Second,
the nonclassicality reduces as the temperature increases.

B. Link with the Loschmidt echo

Another interesting connection of quasiprobability dis-
tributions with the irreversibility of many-body systems
arises in the context of quantum chaos and decoherence.
Consider a system of many particles, classical or quan-
tum, that evolves in time for a period t according to a
time-independent Hamiltonian H0. If we were to invert
all momenta and run the evolution backward, we should
be able to recover the initial state. However, little imper-
fections in the inverted evolution or decoherence induced
by an external environment may cause some deviations.
For an initial pure state |ψ〉, one can define the Loschmidt
echo (LE) L(t) = |G(t)|2 as the absolute square value of
the complex amplitude

G(t) = 〈ψ | eiH0te−iHδ t |ψ〉 , (176)

whose generalization to mixed states and nonunitary evo-
lutions is straightforward.

Mathematically, L(t) represents the fidelity, in terms of
the overlap, between the initial state |ψ〉 evolved with the
unperturbed Hamiltonian H0 and the state |ψ〉 evolved
with the perturbed Hamiltonian Hδ . Peres transferred the
idea of LE in the quantum domain [98], while Ref. [152]
used the LE to analyze the decoherence of a many-body
spin system and the relation to chaos. For the quantum ver-
sion of systems with a classically chaotic Hamiltonian (for
instance, a particle moving in a driven double well, see
Ref. [152]) the rate at which the information about the ini-
tial state is destroyed by the environment, within a range of

couplings to the environment, is set by the classical maxi-
mal Lyapunov exponent. Under these assumptions, the LE
decays exponentially in time with the Lyapunov exponent,
thus revealing the underlying classical chaotic behavior;
see also Ref. [99].

Moreover, the LE was beneficial to uncover a new type
of phase transition occurring in time. In this regard, if we
assume that the initial state |ψ〉 is the ground state of H0
with zero energy, then the LE amplitude (176) reduces to

G(t) = 〈ψ | e−iHδ t |ψ〉 , (177)

which looks like the partition function of the Hamiltonian
Hδ but with an imaginary inverse temperature it. Since
classical phase transitions arise because of singularities
in the partition function, Heyl and coworkers discovered
dynamical quantum phase transitions as those that give rise
to singularities in the LE at specific instants of time, see
Refs. [153,154].

The LE is also strongly connected with the statistics of
work as mentioned in Sec. IV and described in detail in
Ref. [155]. In fact, Eq. (176) can be interpreted as the char-
acteristic function of the work done on a quantum system
initially in the state |ψ〉, whose Hamiltonian is subject to a
quench dynamics that instantaneously changes H0 to Hδ .

Let us now formalize the connection between the LE
and the KDQ. First, we write the spectral decomposition
of the two Hamiltonian operators: H0 =

∑
n En�n and

Hδ =
∑

m E(δ)m �(δ)
m . With these assumptions, we write an

expression for the LE for a generic mixed initial state:

G(t) = Tr
[
ρ eiH0te−iHδ t]

=
∑

n,m

e−i(E(δ)m −En)tqnm, (178)

where we have introduced the KDQ qnm of the random
variable W = E(δ)m − En, defined as

qnm = Tr
[
ρ�n�

(δ)
m

]
. (179)

Thus, the inverse Fourier transform of G(t) with respect to
time t, i.e.,

P[W] =
∫ ∞

−∞
G(t)eiWtdt

=
∑

n,m

δ(W− E(δ)m + En)qnm, (180)

can be interpreted as the quasiprobability distribution for
the work W = E(δ)m − En done on the quantum system,
which initially is in the state ρ and whose Hamiltonian
is suddenly changed from H0 to Hδ. It is worth noting
that in contrast to the case of the characteristic function
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(a)

(c) (d)

(b)

FIG. 7. We plot the real and imaginary parts of qnm in panels (a),(b) respectively, as a function of ωt, for J = 2 (lines, blue solid:
nm = 11, orange dashed: nm = 10, green dotted: nm = 00). The nonpositivity functional ℵ [see Eq. (25)] is shown in panel (c), as a
function of time for different values of the coupling J (lines, blue solid: J = 0.5, orange dashed: J = 1.5, green dotted: J = 2.5). (d)
Contour plot of the the minimum value of ℵ in the time interval 0 ≤ t ≤ 20 as a function of β and J . Other parameters: u = π/2, B1 =
1, B2 = 1.1,β = 10.

of work obtained using the TPM scheme [155], in the gen-
eral case the initial state ρ may not commute with any of
the two Hamiltonian operators H0 and Hδ . This fact, as
we have seen in other examples earlier, may give rise to a
distribution P[W] with nonpositive values.

We now proceed to illustrate these concepts with a sim-
ple example. Let us consider a qubit in the pure initial
state

|ψ〉 = |0〉 + |1〉√
2

(181)

and choose the Hamiltonian operators H0 and Hδ as

H0 = Bσ z, (182)

Hδ = H0 + δσ x. (183)

The eigenstates of H0 are simply |0〉 and |1〉, with eigen-
values ±B, respectively, and we define the projectors on
these states as �i = |i〉 〈i| with i = 0, 1. Similarly, for Hδ,
the eigenstates are

|0δ〉 = cos(θ) |0〉 + sin(θ) |1〉 , (184)

|1δ〉 = − sin(θ) |0〉 + cos(θ) |1〉 (185)

with eigenvalues ±Bδ , where Bδ ≡
√

B2 + δ2, and the
mixing angle θ defined by

tan(θ) = δ

δ2 + 2B(B+ Bδ)
. (186)

Hence, for the LE, we get

G(t) = cos(Bt) cos(Bδt)+ B sin(Bt)− iδ cos(Bt)
Bδ

sin(Bδt),

(187)

whose real part is plotted in Fig. 8(a).
One can observe that for very small δ the two evolu-

tions associated with H0 and Hδ are very similar and G(t)
remains close to 1. However, when δ increases, the per-
turbed Hamiltonian Hδ induces a diverging trajectory for
the initial state |ψ〉. As the system is small, large revivals
of the LE are possible for longer times, but the short time
response is symptomatic of what would happen for a much
larger system.

Moreover, for the KDQ, we obtain

qnm = 1
4Bδ

[Bδ + (−1)m(δ + (−1)nB)] , (188)

where n, m = 0, 1. After a close inspection, since Bδ <
B+ δ, it is evident that q01 < 0 that corresponds to the
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(a)

(b)

FIG. 8. (a) Real part of LE G(t) as a function of time for differ-
ent values of δ: 0.1 (blue solid line), 0.4 (orange dashed line), 0.7
(green dotted line), 1.0 (red dot-dashed line). (b) Quasiprobabili-
ties qnm associated with the LE of Eq. (187) as a function of δ/B:
q00 (blue solid line), q01 (orange dashed line), q10 (green dotted
line), q11 (red dot-dashed line). Inset: nonpositivity functional ℵ
[see Eq. (25)] as a function of δ/B.

transition between the highest and the lowest energy eigen-
states of H and Hδ , respectively. Instead, all the other
quasiprobabilities are strictly positive. They are plotted in
Fig. 8(b). In the inset of the figure, we plot the nonpos-
itivity functional ℵ, which is always nonzero (since one
quasiprobability q01 is always negative) and peaks around
δ ∼ B.

C. Quantum work in quadratic fermionic systems

In this section, we explain how to calculate the KDQ for
systems of free fermions described by Hamiltonians that
are quadratic in fermionic creation and annihilation opera-
tors. This is relevant not only for actual fermionic systems,
for instance ultracold atoms in optical lattices, but also for
systems that can be mapped onto free fermion models, for
instance, Ising and XY spin chains.

Quasiprobability distributions of work in quadratic
fermionic systems have been recently calculated in a few
references; see, for instance, Refs. [16,17,156]. Inspired
by the approach taken in Ref. [156], here we showcase
the calculation of the KDQ for an Ising spin chain with

N spin-1/2 particles, described by the Hamiltonian

H(λ) = −
N∑

j=1

(
λσ z

j + σ x
j σ

x
j+1

)
, (189)

where periodic boundary conditions are assumed: σαN+1 ≡
σα1 , α = x, y, z. The parameter λ is an effective transverse
magnetic field. The critical value λc = 1 separates the
ferromagnetic phase, existing for λ < λc, from the param-
agnetic phase occurring for λ > λc. Within the ferromag-
netic phase, in the thermodynamic limit, the ground state
is doubly degenerate with a macroscopic magnetization
along x, while in the paramagnetic phase the ground state
is nondegenerate and exhibits an induced magnetization
along z.

To diagonalize the Ising Hamiltonian in Eq. (189),
following Refs. [157,158], we first employ the Jordan-
Wigner transformation that expresses the fermionic anni-
hilation operators

ai =
⎛

⎝
i−1∏

j=1

σ z
j

⎞

⎠ σ−i (190)

in terms of the spin ladder operators σ−i ≡ 1
2 (σ

x
i − iσ y

i ).
Then, we transpose the problem to the quasimomentum

space by defining the fermionic operators

ck = 1√
N

N∑

j=1

e−ikj aj , (191)

where the possible values of the quasimomenta are k =
2πm/N with m = −N/2+ 1, . . . , N/2 (assuming for sim-
plicity N even). Let us thus define the fermionic operators
γk that are obtained by applying the following Bogoliubov
rotation to the operators ck:

γk = cos
(
θk

2

)
ck − i sin

(
θk

2

)
c†
−k. (192)

The fermionic operators γk depend on the angles θk,
implicitly given by

eiθk = λ− e−ik
√

sin2 k + (λ− cos k)2
, (193)

and satisfy the canonical anticommutation relations

{γk, γ †
k′ } = δkk′ , {γk, γk′ } = 0. (194)

In terms of the operators γk, the Hamiltonian Eq. (189)
reduces to a diagonal form:

H(λ) =
∑

k

εk(λ)

(
γ

†
k γk − 1

2

)
, (195)
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where

εk(λ) = 2
√

sin2 k + (λ− cos k)2 (196)

are the single-particle eigenenergies.
In what follows, we consider a sudden change of the

Hamiltonian H(λ) in which the magnetic field λ is changed
instantaneously from the initial value λ0 to the final value
λ1. To calculate the quasiprobabilities defined in Eq. (93),
we need to express the fermionic operators γ (1)k , which
diagonalize H(λ1) with eigenenergies ε(1)k = εk(λ1), in
terms of the fermionic operators γ (0)k diagonalizing H(λ0)

with eigenenergies ε(0)k = εk(λ0). This is possible thanks to
the linear Bogoliubov transformation [157]:

γ
(1)
k = γ (0)k cos

(
	k

2

)
+ γ (0)†−k sin

(
	k

2

)
, (197)

where 	k ≡ θ(1)k − θ(0)k denotes the difference of Bogoli-
ubov angles θ(j )k corresponding to λj , with j = 0, 1. Let us

now define the vacuum states |0k〉 and
∣∣∣0̃k

〉
that are such

that γ (0)k |0k〉 = 0 and γ (1)k

∣∣∣0̃k

〉
= 0. The vacua of the two

Hamiltonian operators H(λ0) and H(λ1) are linked to each
other through the relation

|0k0−k〉 =
(

cos
(
	k

2

)
+ sin

(
	k

2

)
γ
(1)†
k γ

(1)†
−k

) ∣∣∣0̃k0̃−k

〉
.

(198)

Here, the need for a quasiprobability approach arises
whenever one chooses an initial state ρ that has coherences
in the eigenbasis of H(λ0). In our example, we choose the
following state:

ρ = p |�G〉〈�G| + (1− p)ρG(λ0), (199)

with 0 ≤ p ≤ 1. In Eq. (199), ρG(λ0) is the Gibbs equilib-
rium thermal state that corresponds to the initial Hamilto-
nian, i.e.,

ρG(λ0) = e−βH(λ0)

Z(λ0)

= 1
Z(λ0)

⊗

k

[
e−βε

(0)
k /2 |1k〉〈1k| + eβε

(0)
k /2 |0k〉 〈0k|

]
.

(200)

In Eq. (200), β is the inverse temperature, and Z(λ0) =∏
k Zk(λ0) is the total partition function, with Zk(λ0) =

2cosh(βε(0)k /2) denoting the partition function for each

P
 (

W
)

P
 (

W
)

(a)

(b)

FIG. 9. KDQ distribution of work for the Ising model under-
going a sudden change of the Hamiltonian H(λ). Specifically, the
Ising spin chain with N = 12 spins is quenched from λ0 = 0 to
λ1 = 0.5. Panel (a), p = 0. Panel (b), p = 1. Other parameters:
β = 0.1.

quasimomentum. Moreover, in Eq. (199), we have intro-
duced the coherent Gibbs state |�G〉:

|�G〉 =
⊗

k

1√
Zk(λ0)

(
e−βε

(0)
k /4 |1k〉 + eβε

(0)
k /4 |0k〉

)
,

(201)

which has the same energy distribution of ρG(λ0) but is a
pure state. Crucially, |�G〉 〈�G| contains coherent terms in
the initial energy eigenbasis, e.g., |0k〉〈1k|. This means that
the initial state ρ is a mixture of the Gibbs equilibrium state
ρG(λ0), which is diagonal in the eigenbasis of the initial
Hamiltonian, and of |�G〉 〈�G| that exhibits nondiagonal
quantum coherence.

Let us now calculate the KDQ distribution of the work
done by suddenly change the Hamiltonian from H(λ0) to
H(λ1). Since εk = ε−k, we can rewrite the initial state as

ρ = 1
Z(λ0)

⊗

k>0

[
e−βε

(0)
k |1k1−k〉〈1k1−k| + |1k0−k〉〈1k0−k|

+ |0k1−k〉〈0k1−k| + eβε
(0)
k |0k0−k〉〈0k0−k|

]

+ p
Z(λ0)

⊗

k>0

[|1k1−k〉〈0k0−k| + |1k0−k〉〈0k1−k| + h.c.]
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From Eq. (198), we see that the eigenstates of H(λ0)

with quasimomenta ±k are transformed into the superpo-
sition of eigenstates of the H(λ1) with the same pair of
quasimomenta. Therefore, we can compute the work done
for all possible transitions from |mk, n−k〉 to

∣∣m′k, n′−k

〉
that

correspond to the work instances Wmn,m′n′(k). The only
transitions that have nonzero quasiprobabilities

qmn,m′n′(k) =
〈
m′kn′−k

∣∣mk, n−k
〉 〈mk, n−k| ρ

∣∣m′kn′−k

〉
(202)

are

|0k, 0−k〉 →
∣∣0′k, 0′−k

〉
W00,00(k) = −ε(1)k + ε(0)k q00,00(k) = eβε

(0)
k

Zk(λ0)2
cos2

(
	k
2

)
− p sin(	k)

2Zk(λ0)2

|0k, 0−k〉 →
∣∣1′k, 1′−k

〉
W00,11(k) = ε(1)k + ε(0)k q00,11(k) = eβε

(0)
k

Zk(λ0)2
sin2

(
	k
2

)
+ p sin(	k)

2Zk(λ0)2

|0k, 1−k〉 →
∣∣0′k, 1′−k

〉
W01,01(k) = 0 q01,01(k) = 1

Zk(λ0)2

|1k, 0−k〉 →
∣∣1′k, 0′−k

〉
W10,10(k) = 0 q10,10(k) = 1

Zk(λ0)2

|1k, 1−k〉 →
∣∣0′k, 0′−k

〉
W11,00(k) = −ε(1)k − ε(0)k q11,00(k) = e−βε

(0)
k

Zk(λ0)2
sin2

(
	k
2

)
− p sin(	k)

2Zk(λ0)2

|1k, 1−k〉 →
∣∣1′k, 1′−k

〉
W11,11(k) = ε(1)k − ε(0)k q11,11(k) = e−βε

(0)
k

Zk(λ0)2
cos2

(
	k
2

)
+ p sin(	k)

2Zk(λ0)2

where, for each process, we have included the value of the
stochastic work instances and the associated quasiproba-
bility. As expected, the quasiprobabilities with nonvanish-
ing work also depends on the mixture parameter p , which
weighs the contribution of the initial state ρ containing
quantum coherence in the eigenbasis of H(λ0).

From the results above we can finally write the KDQ dis-
tribution of work by summing over all the quasimomenta
k > 0:

P[W] =
∑

All combinations

∏

k>0

qmn,m′n′(k)

× δ
(

W−
∑

k>0

Wmn,m′n′(k)

)
. (203)

A coarse-grained histogram of P[W] is shown in Fig. 9.
For p = 0 the distribution is always non-negative, while
for p = 1 some negative parts appear and are associ-
ated with positive values of W. As a consequence P[W <

0], leading to work extraction, tends to be enhanced,
so that 〈W〉 < 0, as explained in Sec. IV D and shown
explicitly in Fig. 10. Notice that, in order for P[W] to
exhibit negativity, the temperature entering ρG(λ0) must
be high enough for the two-body processes 00↔ 11 to be
significant. In contrast, if the initial state is close to the
ground state, these processes are suppressed and P[W] is
non-negative everywhere. Initial state coherence also leads
to a reduction of the work fluctuations as measured by its
variance, see Fig. 10.

VI. DISCUSSION

Quasiprobabilities have been quite elusive quantities so
far, due to the difficulty for their experimental inference.
As stressed in Sec. II, procedures based on sequential
projective measurements cannot reconstruct the quasiprob-
ability distribution of a physical quantity that is defined
over two times, as well as its corresponding statistical
moments.

Recently, however, we have witnessed a resurgence
of quasiprobabilities, thanks to their direct link with
two-point quantum correlation functions of the form
〈O1(t1)O2(t2)〉, with O1(t1), O2(t2) quantum observables,
and the average 〈·〉 performed with respect to a generic
density operator ρ. Quantum correlation functions are a

FIG. 10. Average work (absolute value) and work variance for
the quantum Ising model as a function of the weight p introduc-
ing quantum coherence in ρ. The other parameters are the same
as in Fig. 9.
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powerful tool to describe phase changes in quantum sta-
tistical mechanics. Hence, the possibility to express them
in terms of quasiprobabilities opens the door for building
a microscopic, nonequilibrium description of phenomena
that naturally includes genuinely quantum resources as
quantum coherence and correlations.

Beyond theoretical arguments, quasiprobabilities may
turn out to be pivotal also for revealing advantages in
quantum technology applications. In this tutorial, we have
seen several examples in quantum thermodynamic applica-
tions, particularly in experiments, including work extrac-
tion [12]. This is also relevant for the energetic assessment
of quantum computation, where the energy exchange of a
qubit with its environment can be continuously monitored
through weak measurements [25].

The contextual nature of quantum systems facilitates
the emergence of anomalous weak values of the energy
exchanges due to quantum coherence, which manifest
themselves through negative quasiprobability distribu-
tions. In the context of metrological applications, nega-
tive values of quasiprobability distributions may enhance
parameter estimation increasing the precision of quantum
sensing protocols [7,19,29].

We conclude the tutorial by mentioning some pos-
sible future perspectives of the topics treated here. By
now, it should be apparent how quasiprobabilities have
connections with all main theoretical and experimental
aspects of quantum theory. Here, we explored the direct
link with quantum measurement theory, fluctuation theo-
rems, work and heat in quantum systems led by genuinely
quantum resources, and the scrambling of information in
many-body systems. Thus, further investigations on the
following subjects could be considered:

(i) To determine how the thermodynamic entropy pro-
duction in a nonequilibrium quantum process is
expressed in terms of a quasiprobability distribu-
tion. A starting point could be taking Ref. [159],
where the entropy production as a quantifier of
irreversibility is extended to a regime with non-
commuting conserved quantities. Afterwards, one
might investigate the link with quantum infor-
mation theory and feedback mechanism naturally
including the so-called Maxwell’s demon [160].
In this regard, a quasiprobability formulation of
quantum trajectories [161] could be taken into
account.

(ii) The extension of two-time quasiprobability distribu-
tion to access multitime statistics in open quantum
systems (see, for instance, Refs. [68,73] for similar
attempts for other QDs). This could help investigat-
ing non-Markovianity arising because of memory
effects in the environment.

(iii) To define to what extent the quasiprobability dis-
tribution underlying an OTOC can be a proper

quantum sensing toolbox. In fact, given a quan-
tum many-body system, different perturbations may
scramble differently the state of the global sys-
tem [148], and the corresponding quasiprobability
distribution could give access to this information,
measurable by means of an interferometric proce-
dure.

We hope that the curious and interested reader can find
new, fascinating ideas from this tutorial, and can develop
some of the perspectives listed here, by opening in turn
further open problems.

The codes implementing the computations for the fig-
ures of the tutorial are available as Supplemental Material
[162].
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