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The problem of biological motion is a very intriguing and topical issue.

Many efforts are being focused on the development of novel modelling

approaches for the description of anomalous diffusion in biological systems,

such as the very complex and heterogeneous cell environment. Nevertheless,

many questions are still open, such as the joint manifestation of statistical

features in agreementwith differentmodels that can also be somewhat alterna-

tive to each other, e.g. continuous time random walk and fractional Brownian

motion. To overcome these limitations, we propose a stochastic diffusion

model with additive noise and linear friction force (linear Langevin equation),

thus involving the explicit modelling of velocity dynamics. The complexity of

the medium is parametrized via a population of intensity parameters (relax-

ation time and diffusivity of velocity), thus introducing an additional

randomness, in addition to white noise, in the particle’s dynamics. We

prove that, for proper distributions of these parameters, we can get both

Gaussian anomalous diffusion, fractional diffusion and its generalizations.

1. Introduction
The very rich dynamics of biosystemmovements have been attracting the interest

of many researchers in the field of statistical physics and complexity for its

inherent temporal and spatial multi-scale character. Further, new techniques

allowed tracking the motion of large biomolecules in the cell with great temporal

and spatial accuracy, both in vivo and in vitro [1–3]. Twomain transport mechan-

isms were identified: (i) passive motion, determined by cytoplasm crowding and

(ii) active transport, given by the presence of molecular motors carrying

biomolecules along filaments and microtubules (cytoskeleton) [4–7]. Diffusion

processes have been used to describe many biological phenomena such as mol-

ecular motion through the cellular membrane [8–11], DNA motility within the

cell nucleus [6], chromosome dynamics and motility on fractal DNA globules

[12], motion of mRNA molecules in Escherichia coli bacteria [5] and of lipid gran-

ules in yeast cells [4].

Standard or normal diffusive (Brownian) motion is uniquely described by

theWiener process [13] and is associatedwith aGaussian probability density func-

tion (PDF) of displacements and linear time dependence of the mean square

displacement (MSD). It is well-known that normal diffusion emerges in the

long-time limit t� tc when the correlation timescale tc is finite and non-zero

[14] (see section 1 of the electronic supplementary material for details). However,
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diffusion in biosystems is often non-standard, with non-Gaus-

sian PDF of displacements and nonlinear time dependence of

MSD:

s2
X(t) ¼ h(Xt � X0)

2i ≏ Dft
f; f . 0, ð1:1Þ

where X(t) is the position. This is known as anomalous diffusion,

distinguished in slow subdiffusion (f, 1) and fast superdiffusion

(f. 1). Normal diffusion is recovered for f ¼ 1.

The general condition for anomalous diffusion to occur is

to have a zero or infinite tc [14] and, precisely:

— superdiffusion:

tc ¼ 1: hX2i ≏ tf with 1 , f � 2 or

hX2i ¼ 1: ð1:2Þ

— subdiffusion:

tc ¼ 0: hX2i ≏ tf with 0 , f � 1: ð1:3Þ

(see section 1 of the electronic supplementary material for a

detailed discussion about this point).

Both subdiffusion and superdiffusion have been found in

cell transport, the first one usually being related to passive

motion and the latter one to active motion (see, e.g.

[4,5,15,16] for subdiffusion, and [6,7,17,18] for superdiffusion).

At variance with normal diffusion different physical/

biological conditions can originate anomalous diffusion

[19,20] and several models and interpretations have been pro-

posed in the recent literature [1,3,21,22]. Widely investigated

models of anomalous diffusion are continuous time random

walk (CTRW) [20] and fractional Brownian motion (FBM)

[23], both models sharing the same anomalous diffusive scal-

ing of equation (1.1). Many authors have compared these

models with each other and with data, essentially finding

some features to be satisfied by the CTRW (weak ergodicity

breaking and ageing) [21,24,25] and other ones by the FBM

(e.g. the p-variation index [26–28]). Despite the efforts of

many research groups, an exhaustive model explaining all

the statistical features of experimental data does not yet exist

and the research is recently focusing on alternative

approaches, such as heterogeneous diffusivity processes

(HDPs) [29–33] or other similar approaches based on fluctu-

ations of some dynamical parameter, e.g. fluctuating friction

governed by a stochastic differential equation [34–36], mass

of a Brownian-like particle randomly fluctuating in the

course of time [37].

All these approaches can be linked to superstatistics [38,39],

whose main idea is that of a complex inhomogeneous environ-

ment divided into cells, each one characterized by a nearly

uniform value of some intensive parameters. Then, a Brownian

test particle experiences parameter fluctuations during a cell-

to-cell transition [39]. In general, superstatistics is successful

to model: turbulent dispersion (energy dissipation fluctu-

ations) [38], renewal critical events in intermittent systems

[40,41] and, for different distributions of the fluctuating inten-

sive quantities, different effective statistical mechanics can be

derived [39], e.g. Tsallis statistics with x2-distribution [38].

Diffusing diffusivity models (DDMs), with position diffusi-

vity governed by a stochastic differential equation, have been

recently proposed [31] and are attracting the interest of many

authors as they represent an important attempt to go beyond

superstatistics [33,42–44].

In this framework, we propose a modelling approach to

anomalous diffusion inspired by the constructive approach

used to derive Schneider grey noise, grey Brownian motion

(gBM) [45,46] and generalized gBM (ggBM) [47–52] (see sec-

tion 5 of the electronic supplementary material for a brief

survey about grey noise, gBM and ggBM). Such processes

emerge to be equivalent to the product of the FBM BH(t) with

an independent positive random variable l, i.e. the amplitude

associated with each single trajectory can change from one tra-

jectory to another one (H is the self-similarity Hurst exponent).

When the amplitude PDF is the Mainardi distribution Mb(l)

with properly chosen scaling b (depending on the FBM scaling

H ) [53–55], grey noise is a stochastic solution of the time frac-

tional diffusion equation (TFDE) [56–58], i.e. the gBM-PDF

P(x, t) is a solution of the TFDE (see section 6 of the electronic

supplementary material for a brief survey about the Mainardi

function). The ggBM generalizes gBMby considering indepen-

dent scaling parametersb andH and itwas recently recognized

to be a stochastic solution of the Erdélyi–Kober fractional dif-

fusion equation (EKFDE) [59]. A further extension of the ggBM

is given by the process introduced in [60], where the amplitude

distribution is generalized to a combination of Lévy distri-

butions by imposing the ggBM-PDF to be compatible with

the space–time fractional diffusion equation (STFDE) [56–

58,61]. Interestingly, ggBM can also describe non-stationary

and aging behaviours. The potential applications of ggBM to

biological transport were recently discussed in [62], where

the ggBM compatible with EKFDE was investigated by

means of several statistical indices commonlyused in the analy-

sis of particle tracking data. The authors showed that the ggBM

approach accounts for theweak ergodicity breaking and ageing

(CTRW) and, at the same time, for the p-variation test (FBM). A

DDMand a ggBm-likemodel (namely a randomly scaledGaus-

sian process) with random position diffusivity governed by the

same stochastic equation have been recently compared each

other [33]. However, the physical interpretation of the ggBM

approach based on the FBM is not completely clear. Further,

potential applications to transport in a viscous fluid needs to

include at least the effect of viscosity.

In order to include the effect of viscosity, we describe the

development of a model similar to the original ggBM, but

with a friction–diffusion process instead of a Gaussian noise,

thus involving an explicit modelling of the system’s dynamics

by substituting the FBM, used to built the ggBM, with the sto-

chastic process resulting from the Langevin equation for the

particle velocity. In particular, we use a Langevin equation

with a linear viscous term (Stokes drag) and an additive

white Gaussian noise, also known as the Ornstein–Uhlenbeck

(OU) process [13]. The system’s complexity is described by

proper random fluctuations of the parameters in the velocity

Langevin equation: relaxation time, related to friction; velocity

diffusivity, related to noise intensity. It is worth noting that the

medium is here composed of the underlying fluid substrate

and of the particle ensemble. Medium complexity is then not

mimicked by random temporal fluctuations, but described by

inter-particle fluctuations of parameters and, thus, by proper

time-independent statistical distributions that characterize the

complex medium. In the next sections, we show that this

assumption allows anomalous diffusion to be obtained if

proper parameter distributions are chosen. In this sense, this

model also generalizes the approach of HDPs as it also

accounts for the heterogeneity of the friction parameter, thus

including the effect of relaxation due to viscosity that, in
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other HDPs, is completely neglected. In this work, we focus on

superdiffusion, which is derived for the free motion of a par-

ticle by means of a general argument.

The paper is organized as follows. In §2, we introduce the

randomized Langevin model for superdiffusion, based on the

free motion of Brownian particles in a viscous medium. In §3,

we show the results of numerical simulations. In particular,

we numerically test some crucial assumptions, such as the

existence of a generalized equilibrium/stationary condition

in the long-time limit. In §4, we sketch some conclusions

and discuss the potential applications of the proposed

model. Mathematical details can be found in the electronic

supplementary material.

2. Free particle motion and superdiffusion
Consider the following linear Langevin equation for the

velocity V (t) of a particle moving in a viscous medium:

dVt

dt
¼ �Vt

t
þ

ffiffiffiffiffi

2n
p

jt, ð2:1Þ

being t the relaxation timescale,1 and n the velocity diffusivity,

which has dimensional units: [n] ¼ [V2]/[T ]. The diffusivity n

determines the intensity of theGaussianwhite noise jt. This is a

random uncorrelated force:

hjti ¼ 0; hjt � jt0i ¼ d(t� t0), ð2:2Þ

whose stochastic Itô integral is a Wiener process [13]. When t

and n are fixed parameters, equation (2.1) is a OU process

(e.g. [13]), which, together with the kinematic equation:

dXt

dt
¼ Vt, ð2:3Þ

is the most simple stochastic model for the one-dimensional

free motion of a particle in a viscous medium, with thermal

fluctuations depicted by the white noise jt.

In the Langevin model with random parameters here pro-

posed, single path dynamics are given by equation (2.1), but

the statistical ensemble of paths is affected not only by ran-

domness in the white noise jt, but also in the parameters t

and n, whose randomness describes the complex medium.

In order to derive the overall statistical features of Xt and

Vt, the computation is carried out in three steps. First we con-

sider the averaging operation with respect to the noise term jt
and how the presence of a population for the parameters t

and n affects some statistical properties of the process. Then

we consider the average over the random parameter t and

we evaluate the PDF g(t) in order to get an anomalous super-

diffusive scaling. Finally, we evaluate the PDF f(n) in order to

get the distribution P(x, t) compatible with fractional diffu-

sion, i.e. equal to the fundamental solutions of some class

of fractional diffusion equations [59,60], or with other kinds

of diffusion processes.

The averaging operation with respect to the noise term jt
gives the statistical features conditioned to the random par-

ameters t and n, which result to be exactly the same as the

standard OU process as shown in box 1. In particular, we are

interested in the stationary correlation function conditioned

to t and n, which reads (see equations (2.6) and (2.7), box 1):

R(t jV0, t, n) ¼ nt e�t=t: ð2:8Þ

Given equation (2.8) and considering statistically independent

populations of t and n, the stationary correlation function of the

ensemble is given by:

R(t) ¼ hniht e�t=ti ¼
ð

1

0
nf(n) dn �

ð

1

0
t e�t=t g(t) dt, ð2:9Þ

where g(t) and f(n) are the PDFs of the parameters t and n,

respectively. The conditional MSD is derived from the con-

ditional correlation function R(t jV0, t, n), equation (2.8), and,

accordingly, the effective or global MSD (averaged over t

and n), is derived from the global correlation function R(t),

equation (2.9) (see section 1 of the electronic supplementary

material). The standard OU process is recovered for

f(n) ¼ d(n� �n) and g(t) ¼ d(t� �t), that is,when the parameters

n and t are the same for all trajectories.

Does such stationarity correspond to an equilibrium con-

dition? An equilibrium state is defined by the equilibrium

velocity distribution, which is independent of the initial con-

ditions and it is reached by the system after a transient time.

When equilibrium is reached, the process becomes stationary:

the non-stationary term of the correlation function becomes

negligible and only the stationary correlation given in

equation (2.8) survives. The decay of the non-stationary

correlation term corresponds rigorously to equilibrium in

the standard OU process with fixed t and n as shown

in box 1. However, it is not straightforward that this feature

also extends to the Langevin equation with random

parameters, equation (2.1).

It is worth noting that the average of the conditional

stationary velocity variance (equation (2.7), box 1) over t and

n gives:

hV2ist ¼ R(0) ¼ hnihti, ð2:10Þ

which resembles an equilibrium condition extending that of

the standard OU process, by considering the mean values of

t and n. This condition cannot be assumed a priori, but, if equi-

librium exists, it surely needs a stationary assumption, so that,

in the following, we assume that, in the long-time regime t1,

t2 � ktl, the stationary state defined by equation (2.10) is

reached within a good approximation. Consequently, in this

model we consider an approximated stationary condition by

setting to zero the non-stationary term of the correlation func-

tion in equation (2.5) (box 1). The validity of the stationary

assumption and its coincidencewith the emergence of an equi-

librium distribution will be discussed later and verified by

means of numerical simulations2 (see §3.2).

The correlation function R(t) defined in equation (2.9) and

the PDF g(t) must satisfy a list of features to describe super-

diffusion, i.e. s2
X(t) ≏ tf; R(t) ≏ tf22; 1, f , 2, concerning

the asymptotic time scaling of the functions, normalization

and finite mean conditions for the distribution of timescales

g(t) (see box 2 in electronic supplementary material).

It is worth noting that the statistical distribution of n does

not affect the scaling of the correlation function in equation

(2.9), but it only introduces a multiplicative factor. Therefore,

a constructive approach similar to that adopted to built up

the ggBM [47,49,50,60] can be applied to our model, random-

ness of t determining the anomalous diffusion scaling and

that of n the non-Gaussianity of both velocity and position

distributions.

Regarding the PDF g(t), the following:

g(t) ¼ h

G(1=h)

1

t
L�h
h

h

G(1=h)

t

hti

� �

; 0 , h , 1, ð2:11Þ
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indeed satisfies all the required constrains (i–iv) listed in the

electronic supplementary material (box 2, proofs in section 2).

We stress that the choice of g(t) is not arbitrary, but addressed

(not derived) by the required constrains listed in box 2 of the

electronic supplementary material.

In the above expression, g(t) depends on the parameter h,

which is the index of the Lévy stable, unilateral PDF L2hh ,

and on the mean relaxation timescale ktl. With the above

choice, we get the following asymptotic behaviour for the

stationary correlation function, conditioned to n, when

t ! 1(t � hti) (see section 2 of the electronic supplementary

material for details):

R(t j n) ¼ n
G(1þ h)

G(1� h)

G(1=h)

h

� �h

hti1þht�h: ð2:12Þ

By applying equation (3, electronic supplementary material),

we get the (superdiffusive) scaling for the MSD: s2
X(tjn)/tf

with 1, f ¼ 22 h, 2.

Note that the calculations are here made under the

assumption of the approximated stationary condition dis-

cussed previously. In this regime, X(t) is exactly a Gaussian

variable, as it can be reduced to a sum, over time, of almost

independent Gaussian distributed velocity increments.

Equation (3) (or, equivalently, equation (4)) in the electronic

supplementary material is essentially a sum of variances of

Gaussian distributed variables, so that the overall effect of

g(t) is the emergence of a Gaussian variable with the anom-

alous, nonlinear, scaling of the variance given in equation

(1.2).3 The resulting PDF of Xt conditioned to n is then

given by the following Gaussian law:

P(x, t j n) ¼ G(x, s2
X(t j n))

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
X(t j n)

q exp � x2

2s2
X(t j n)

� �

; ð2:13Þ

s2
X(tjn) ¼ 2Cntf; 1 , f ¼ 2� h , 2 ð2:14Þ

and C ¼ G(hþ 1)

G(3� h)

G(1=h)

h

� �h

hti1þh: ð2:15Þ

The conditional dependence of G(x, tjn) on n is clearly

included in s2
X(tjn). The one-time PDF of the diffusion vari-

able Xt is given by the application of the conditional

probability formula:

P(x, t) ¼
ð

1

0
G(x, 2Cntf)f(n) dn

¼
ð

1

0

exp {� x2=4Ctfn}
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pCtfn
p f(n) dn: ð2:16Þ

This relationship is formally similar to eqn (3.9) of [60]. Thus,

comparing with this same equation and after some algebraic

manipulation, equation (2.16) can be generalized to the fol-

lowing general form by including the scaling exponent f:

1

(C�ntf)1=2
K0
a,b

x

(C�ntf)1=2

 !

¼
ð

1

0
G(x, 2Cntf)

1

�n
K
�a=2
a=2,b

n

�n

� �

dn,

ð2:17Þ

with 1, f ¼ 22 h, 2, f(n) ¼ (1=�n)K
�a=2

a=2,b
(n=�n) and C ¼

C(h, ktl) given by equation (2.15). The reference scale �n is

needed to give the proper physical dimensions to the random

velocity diffusivity n. As we consider only symmetric diffusion,

u ¼ 0, the general range of parameters a and b is given by

0 , a � 2, 0 , b � 1 or 1 , b � a � 2: ð2:18Þ

equation (2.17) is, in general, driven by three scaling indices: (i)

a and b, which are related to the shape of the distribution and

(ii) f, i.e. the anomalous superdiffusive scaling of the MSD,

related to the scaling exponent h of the correlation function

R(t): f ¼ 22 h, 0, h, 1. The fundamental solution of the

STFDE (section 7, electronic supplementary material), that is

of particular interest for applications, is obtained with the

choice of parameters: f ¼ 2b/a; 1, f, 2. Interestingly,

Box 1. OU statistics conditioned to t and n.

The statistical features conditioned to the values of t and n are given by the same mathematical expressions of the standard

OU process [13].

Given the initial condition V0 ¼ V (0), the solution for t � 0 of equation (2.1) is given by:

Vt ¼ e�t=t V0 þ
ffiffiffiffiffi

2n
p ðt

0
et

0=tjt0dt
0

	 


: ð2:4Þ

This solution can be exploited to derive the conditional velocity correlation function, where the average is here made over the

noise jt:

hVt1 � Vt2 jV0, t, ni ¼ (V2
0 � nt) e�(t1þt2)=t þ nt e�jt1�t2j=t: ð2:5Þ

The conditional dependence of the average on the initial velocity V0 and on the parameters t and n has been explicitly

written. The choice of the initial velocity distribution affects the way the system relaxes to the equilibrium condition, but

not the equilibrium condition itself. The correlation function includes two terms: the first one is the non-stationary transient

associated with the memory of the initial condition V0, while the second one is the stationary component depending only on

the time lag between t1 and t2. In the long time limit t1, t2 � t, the first term becomes negligible, thus giving the conditional

stationary correlation function:

R(t jV0, t, n) ¼ hVt1 � Vt1þt jV0, t, ni ¼ R(0 jV0, t, n) e
�t=t, ð2:6Þ

being t ¼ jt22 t1j the time lag and:

R(0 jV0, t, n) ¼ hV2 jV0, t, nist ¼ nt, ð2:7Þ
the conditional stationary velocity variance, which results to be independent of time t1 and of the initial velocity V0.
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when f= 2b/a, equation (2.17) describes a generalized space–

time fractional diffusion that is not compatible with the STFDE.

3. Numerical simulations

3.1. Simulation set-up
In this section, we carry out numerical simulations of the

superdiffusive model given by equations (2.1)–(2.3) with

random t and n, both to compare with analytical results

and to verify the accuracy of our assumptions. A total of

10 000 stochastic trajectories are computed for each simu-

lation. To this goal, a statistical sample of 10 000 couples

(t,n) is firstly extracted by the respective distributions, each

couple being associated with one trajectory in the simulated

ensemble. In all simulations, the following values are chosen:

�n ¼ 1; initial conditions X0 ¼ 0 and V0 ¼ 0 for all trajectories;

total simulation Tsim ¼ 103ktl.

Regarding the sampled populations of n we consider

three different distributions f(n), corresponding to different

kinds of anomalous diffusion:

(1) Gaussian anomalous diffusion with long-range correlations: a

fixed value of n is chosen to be equal for all trajectories.

This is a reduced model, whose 1-time PDF is given by

equations (2.13)–(2.15) and, for long time lags, the

stationary correlation function is given by equation

(2.12) with 0, h, 1. The only random parameter label-

ling the trajectories is the correlation time t. It is

interesting to note that this model belongs to the class

of Gaussian stochastic processes with stationary incre-

ments and long-range correlations, thus sharing the

same basic features of FBM, but within a completely

different physical framework.

(2) Erdélyi–Kober fractional diffusion and Mainardi distribution

[51,59]: (parameter range: a ¼ 2, 0, b, 1, 1, f, 2)

1

(C�ntf)1=2
1

2
Mb=2

x

(C�ntf)1=2

 !

¼
ð

1

0
G(x, 2Cntf)

1

�n
Mb

n

�n

� �

dn, ð3:1Þ

being Mb/2/2 ¼ K0
2,b; Mb ¼ K211,b. This is the solution of

a fractional diffusion equation with Erdélyi–Kober

fractional derivative in time [51,59].

For f ¼ b the solution of the TFDE is recovered, i.e.

equation (89) of the electronic supplementary material

with a ¼ 2. In this case, the mean velocity diffusivity knl

is finite and can be computed by applying the formula

for the moments of Mb [58]:

hldi ¼
ð

1

0
ldMb(l) dl ¼ G(dþ 1)

G(bdþ 1)
, d . �1: ð3:2Þ

Thus:

hni ¼
ð

1

0
nf(n) dn ¼

ð

1

0

n

�n
Mb

n

n

� �

dn ¼ G(2)

G(1þ b)
�n ð3:3Þ

(3) Generalized space fractional diffusion and extremal Lévy distri-

butions: (parameter range: b ¼ 1; 1, a, 2; 1, f, 2)

1

(C�ntf)1=2
L0a

x

(C�ntf)1=2

 !

¼
ð

1

0
G(x, 2Cntf)

1

�n
L
�a=2
a=2

n

�n

� �

dn,

ð3:4Þ

where Lu
a is the Lévy stable density of scaling a and asym-

metry u and L0
a ¼ K0

a,1; L
2a/2
a/2 ¼ K2a/2

a/2,1. The moments of

both PDFs L0
a and L2a/2

a/2 are not finite. In particular:

knl ¼1. For f ¼ 2/a the solution of the space fractional

diffusion equation is recovered, i.e. equation (89) of the

electronic supplementary material with b ¼ 1.

For the random generation of n, we refer to the algorithms

discussed and used in [60] (eqn (4.9) for the Lévy extremal

distribution and eqn (4.6) for the Mainardi distribution),

based on the Chambers–Mallows–Stuck algorithm for the

generation of Lévy random variables [63,64]. The sampled

population of t is extracted from the PDF g(t), equation

(2.11), using the numerical random generator described in sec-

tion 4 of the electronic supplementary material. It is worth

noting that this algorithm is semi-analytical, that is, asympto-

tic solutions are used for both short and long t, while in the

intermediate regime the algorithm is completely numerical.

The numerical scheme for the Langevin equation is described

in the electronic supplementary material, section 3.
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3.2. Discussion of numerical results
Numerical simulations have been carried out for different

values of scaling parameters and show qualitatively good

agreement with analytical results for both ensemble

averaged MSD s2
X(t) and PDF P(x, t). The goodness of

comparison decreases as the parameters get closer to the

extremal allowed values of the scaling parameters that are

more far from standard and/or Markovian diffusion

(i.e. h ¼ 1, a ¼ 2, b ¼ 1).

It is important to notice that, while the random generator of

n does not essentially determine any criticality in the numerical

algorithm, the role of the parameter t in the numerical

implementation of the model is much more delicate. This

aspect is strictly related to the equilibrium properties of

single trajectories and of the overall system. In fact, the deri-

vation of our model is based on the assumption of an

equilibrium/stationary condition for all the sample paths in

the statistical ensemble. This condition is exactly true only for

t ¼1, while, for whatever finite time t, is clearly well approxi-

mated only for those trajectories satisfying the condition t, t.

Conversely, due to the slow decaying power-law tail in the g(t)

distribution, relaxation times t much longer than ktl have

non-negligible probabilistic weights. Thus, ktl does not really

characterize the relaxation/correlation time of all stochastic

trajectories, each one experiencing its own timescale to reach

the equilibrium/stationary condition.

Then, two crucial aspects need to be verified: does an

equilibrium condition exist? Is the timescale to reach such

an equilibrium finite?

The working hypothesis to be checked is that, despite

the inverse power-law tail in g(t), the statistical weights of

sufficiently large t are negligible enough to get a global equili-

brium condition in the range t� ktl. This is a crucial aspect

regarding the self-consistency of the model with respect to

the existence of a global stationary condition and, last but not

least, the comparison with experimental data.

The numerical simulations proved that a (global) station-

ary state indeed exists and that the equilibrium condition and

the expected anomalous diffusion regime in the MSD are

reached for times sufficiently larger than ktl. In figure 1, we

show the results for the simulation of a statistical sample of

10 000 trajectories with h ¼ 0.5 and fixed n ¼ 1 (Gaussian

case). From panel (a(ii)) and panel (b), it is clear that the

system reaches the stationary state within a time of the

order t � 10ktl or less, which is the time the particle needs

to reach the theoretical stationary velocity variance kV2lst ¼

knlktl (a(ii)) and the long-time diffusive scaling f ¼ 22 h ¼

1.5 (a(i)). From panel (b), it is clear that velocity fluctuations

reached a stationary/equilibrium condition. This character-

istic time depends on h as it decreases while h increases.

This feature is due to g(t) that, for h approaching 1, becomes

more and more peaked tending towards a Dirac d function.

For h ¼ 1, a unique value of t is chosen for all particles, so

that the relaxation time of the whole system becomes t

itself and we fall back into standard diffusion. Thus, numeri-

cal simulations show that the stationary condition is reached

at reasonable (i.e. not too much large) times. This is a good

indication that the model can compare well with
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experimental data, anomalous diffusion emerging in a given

temporal range that is neither too short nor too long. This is

true for values of scaling indices that are not too close to

extremes of the definition interval (e.g. b far from 0), except

those extremal values corresponding to time and space

locality, i.e. standard diffusion and/or Markovian processes.

In the case of inverse power-law tails, different statistical

samples extracted from the distribution g(t) can have quite

different statistics (e.g. different ktl). Owing to the slow

power-law decay and the unavoidable finiteness of the statisti-

cal sample, themaximumvalue tmax can also vary significantly

among different samples. Numerical simulations for five

different sampled sets of t are carried out with ktl ¼ 0.52,

0.44, 0.5, 0.46, 0.66 and tmax ¼ 279.2, 75.2, 91.9, 200.4, 1580.7.

The simulations are found to be well comparable with each

other. This can be seen in figure 2, where we compare the

two sampled sets of t having the minimum and maximum

values of tmax (Gaussianmodel). Even if these values are differ-

ent by orders of magnitude (from 75.2 to 1580.7), the

dependence on tmax is weak, as the time to reach stationarity

changes from about 10–30 to 60–80 (see the velocity variances

in a(ii),b(ii)). Further, the time to reach the stationary state

does not change when comparing the Gaussian model with

non-Gaussian ones (random n).

Figure 3 qualitatively shows the changes in the shape of

the position PDF P(x, t) due to the n randomization. Panel (a)

displays a typical Gaussian shape. Finally, in figure 4 we com-

pare the asymptotic tails of analytical solutions for the position

PDF P(x, t) with the corresponding histograms computed

from numerical simulations. The comparison, carried out for

h ¼ 0.5, show a good agreement for all the values of a and b

used. Similar agreement was seen in simulations, not shown

here, that were carried out for h ¼ 0.25 and h ¼ 0.75.

4. Concluding remarks
We have introduced and discussed a novel modelling approach

based on a linear Langevin equation (friction–diffusion pro-

cess) driven by a population of two parameters: relaxation

time t and velocity diffusivity n, with distributions properly

chosen to get anomalous diffusion (Gaussian or fractional). It

is worth noting that both t and n directly characterize the velo-

city’s dynamics and only indirectly the position dynamics. In

particular, n determines the diffusion properties of velocity

and, for normal diffusion, its dimensional units are [n] ¼

[V2]/[T ]. Gaussian anomalous diffusion is obtained by consid-

ering a constant velocity diffusivity and imposing the correct

power-law correlation function compatible with MSD anoma-

lous scaling. Fractional diffusion is derived by imposing the

particular PDFs that are fundamental solutions of EKFDE or

STFDE.Our stochasticmodel can also generate a generalized frac-

tional diffusion, whose more general expression for the 1-time

PDF is given in equation (2.17). In this PDF, the space–time scal-

ing relationship is not related to the scaling indices defining the

shape of the PDF itself, as in the fractional diffusion.

At variance with other HDPs, the inclusion of viscosity in

our model allows us to include the effect of relaxation. The

distribution of relaxation times t is then a crucial property

that is here derived by imposing the emergence of anomalous
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diffusion, retaining at the same time the Gaussianity and

stationarity of velocity increments.

Another interesting aspect is the weak ergodicity breaking

established in biological motion data [21,24,65] and defined by

the inequality of ensemble and time averaged MSD in anoma-

lous diffusion processes. In particular, even if the ensemble

averaged MSD is given by equation (1.1), the time averaged

MSD depends linearly on the time lag. In the model here pro-

posed, the single trajectory is driven by the linear Langevin

equation describing the OU process, which is characterized

by the crossover between a short-time ballistic diffusion:

s2
X(t) ≏ t2; and a long-time standard (Gaussian) diffusion:

s2
X(t) ≏ t. Thus, the single trajectory naturally follows a stan-

dard diffusion law in the long-time limit. The non-ergodic

behaviour ismodelled by considering the randomness of phys-

ical properties and, in particular, relaxation time and velocity

diffusivity, the first one driving the drift (linear viscous drag)

and the second one driving the noise, respectively.

An important observation regarding the comparison

between our ggBM-like modelling approach and other similar

approaches is in order. All these heterogeneity-based models

attempt to describe the role of heterogeneity in triggering the

emergence of long-range correlations and anomalous diffu-

sion. However, superstatistics and other models (fluctuating

friction or mass, DDMs) mimic heterogeneity through the tem-

poral stochastic dynamics or modulation of some parameters

driving the particle’s dynamics. On the contrary, ggBM-like

models explicitly describe the heterogeneity as inter-particle

fluctuations of parameters that are responsible for long-range

correlations, in agreement with approaches based on polydis-

persity where classical thermodynamics holds [66].

Future investigations are needed not only to better under-

stand these last observations but also, on one side, to

characterize our proposed model in terms of several statistical

indicators that are commonly used in the analysis of biological

motions and, on the other side, to better understand the link of

the parameter distributions to the observable physical proper-

ties of the complex medium. Finally, our modelling approach

can be extended to the subdiffusive case by considering a

kind of trapping mechanism such as a stable fixed point.
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Endnotes
1Given the particle mass m and the friction coefficient g, it results:
t ¼ m/g.
2The existence of an equilibrium distribution is actually verified by
means of numerical simulations and it is also shown to coincide
with the validity of equation (2.10) in the long-time regime. As a
consequence, by applying the average over t and n to the
conditional velocity correlation function (equation (2.5), box 1), we
find that the first term is exactly zero when the initial velocity
distribution is the equilibrium one and this proves that our model
is self-consistent.
3It is worth noting that the random superposition of Langevin
equations with randomized t is an example of a Gaussian process
with anomalous diffusion scaling that is different from the standard
(FBM).
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NOTE:
In the following, references to equations in the Main Text are labeled with the
acronym MT. For example, Eq. (1) of the Main Text is referred to as (1,MT).

1. General condition for the emergence of anomalous diffusion

Diffusion is described through the following simple, but general stochastic equa-
tion:

dXt

dt
= Vt (1)

being Vt a stochastic process describing a generic random fluctuating signal.
Here Xt and Vt are the position and velocity of a particle moving in a random
medium, respectively. For a generic, nonstationary process, the two-time Prob-
ability Density Function (PDF) p(V1, t1;V2, t2) depends on both times t1 and
t2. Similarly, the correlation function

〈Vt1 · Vt2〉 =
∫

V1 V2 p(V1, t1;V2, t2)dV1dV2
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is, in general, a function of the times t1 and t2
1.5

Now, by integrating in time the above kinematic equation (1), making the
square and the ensemble average, we get the Mean Square Displacement (MSD):

σ2
X(t) = 〈(Xt −X0)

2〉 =
∫ t

0

dt′
∫ t

0

dt′′〈Vt′ · Vt′′〉 , (2)

where, in order to get : 〈Xt〉 = X0, we assumed a uniform initial position X0. In
the stationary case, the two-time statistics, including the correlation function,
depends only on the time lag t = |t1 − t2|, and the above formula reduces to:

σ2
X(t) =

∫ t

0

dt′
∫ t

0

dt′′R(|t′ − t′′|) = 2

∫ t

0

(t− s)R(s) ds , (3)

or, equivalently:
dσ2

X(t)

dt
= 2

∫ t

0

R(s)ds . (4)

where R(t) = 〈Vt1+t · Vt1〉 = 〈Vt · V0〉 is the stationary correlation function.
Notice that these expressions have very general validity, independently of the
particular statistical features of Vt.

These expressions were firstly published by Taylor in 1921 [1], which implic-
itly formulated the following:10

Theorem (Taylor 1921)
Given the stationary correlation function R(t), let us define the correlation

time scale:

τc =

∫ ∞

0

R(s)

R(0)
ds , R(0) = 〈V 2〉st .2 (5)

Then, if the following condition occurs:

0 6= τ < +∞ , (6)

normal diffusion always emerges in the long-time regime:

t ≫ τc ⇒ σ2
X(t) = 2D

X
t , (7)

thus defining the long-time spatial diffusivity D
X
:

D
X
:=

1

2
lim

t→+∞

dσ2
x

dt
(t) (8)

independently from the details of the microdynamics driving the fluctuating
velocity Vt.

1 This also means that the statistics of Vt increments: ∆Vt1,t = Vt1+t − Vt1 , depend not
only on the time lag t, but also on the initial time t1

2 Notice that the variance 〈V 2〉st, being a one-time statistical feature, is a constant in the
stationary case.
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It is worth noting that, substituting Eq. (4) into Eq. (8) and using R(0) =
〈V 2〉st (Eq. (5)), we get:

D
X
= τc 〈V 2〉st , (9)

which is a general form of the Einstein–Smoluchovsky relation [2]3.

Taylor’s theorem gives in Eq. (6) the general conditions to get normal dif-15

fusion, i.e., a linear scaling in the variance: 〈X2〉 ∼ t). This result has a very
general validity, independently from the statistical features of the stochastic pro-
cess Vt. The theorem also establishes the regime of validity of normal diffusion,
given by the asymptotic condition t ≫ τc. As a consequence, the emergence of
anomalous diffusion is strictly connected to the failure of the assumption (6).20

In particular, we get two different cases:

• Superdiffusion:

τc = ∞ : 〈X2〉 ∼ tφ with 1 < φ ≤ 2 or 〈X2〉 = ∞ . (10)

• Subdiffusion:

τc = 0 : 〈X2〉 ∼ tφ with 0 < φ ≤ 1 . (11)

In order to get τc = 0 and, thus, subdiffusion, velocity anti-correlations must
emerge. This means that there exist time lags t such that R(t) < 0 (e.g.,
the anti-persistent Fractional Brownian Motion, with H < 0.5). Being R(0) =
〈V 2〉st > 0, in subdiffusion the correlation function is surely positive in the short-25

time regime and (i) becomes negative in the long-time regime or (ii) oscillates
between positive and negative values4.

The failure of Taylor’s theorem and of condition (6) is the main guiding
principle exploited here to derive stochastic models for anomalous diffusion.

1.1. Application to Fractional Brownian Motion30

The Fractional Brownian Motion (FBM) BH(t) was introduced by Mandelbrot
and Van Ness in their famous 1968’s paper [3]. Since then, thousands of papers
have been devoted to both theoretical investigations and applications of FBM
(see, e.g., [4] for a review). FBM is a Gaussian process with self-similar station-
ary increments and long-range correlations. In formulas, FBM has the following35

properties:

3 Interestingly, this relation is here derived in a very general framework, i.e., for a generic
fluctuating signal Vt, with the only assumption of the existence of a stationary regime in the
long-time limit. As known, the stationary condition usually emerges in correspondence of
motion reaching an equilibrium state. However, the stationary condition is more general with
respect to equilibrium and, for this reason, we prefer to leave the notation “st” for ”stationary”
instead of “eq” for ”equilibrium”.

4 A correlation time scale, different from the above definition of τc can be sometimes
introduced for subdiffusion (e.g., the time period in a harmonic correlation function), but it
does not have the meaning of discriminating a long-time regime with normal diffusion from a
short-time regime.
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• BH(t) has stationary increments;

• BH(0) = 0; 〈BH(t)〉 = 0 for t ≥ 0;

• 〈B2
H(t)〉 = t2H for t ≥ 0;

• BH(t) has a Gaussian distribution for t > 0;40

• the correlation function is given by:

〈BH(t)BH(s)〉 = 1

2

{

t2H + s2H − |t− s|2h
}

(12)

The FBM increments are given by:

Vδt(s) = BH(s+ δt)−BH(s) .

The process Vδt(s) is also called fractional Gaussian noise5. Both BH(t) and
Vδt(s) are self-similar stocastic processes but, at variance with BH(t), the in-
crements Vδt(s) are also stationary, i.e., their statistical features do not depend
on s, but only on δt. Vδt(s) is a Gaussian process and is uniquely defined by
the mean, variance and correlation function, which are derived from the above
listed properties of FBM:

〈Vδt(s)〉 = 0 ; 〈V 2
δt(s)〉 = (δt)2H (13)

R(t) = 〈Vδt(s)Vδt(s+ t)〉 = 1

2

{

|t+ δt|2h − 2t2H + |t− δt|2H
}

(14)

Then, we can say that FBM is a Gaussian process with stationary and self-
similar increments Vs(δt), while FBM is Gaussian, self-similar but not station-
ary. Eq. (14) also shows that, with the exception of the standard Brownian
motion (H = 1/2), increments Vδt(s) are not independent each other. Frac-
tional Gaussian noise and FBM are exactly self-similar, i.e., they satisfy the45

relationship: X(at) = aHX(t), the increment V1(s) with δt = 1 is usually con-
sidered in both theoretical and experimental studies, as a generic δt can be
obtained by simply rescaling the process with the self-similarity relationship. In
Fig. 1 the increment correlation functions of a persistent (H > 0.5) and of an
antipersistent (H < 0.5) FBM are compared. It is evident that antipersistent50

FBM is associated with anticorrelations, and this is the reason why subdiffusion
emerges in this case.

5 This can be considered as a kind of velocity for the FBM, even if it must be kept in
mind that FBM, such as standard Brownian motion, does not have a smooth velocity. In any
case, the above considerations about velocity and position and their statistical relationship
can here be applied by substituting velocity with the fractional Gaussian noise, i.e., the FBM
increments over a finite time step δt.
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Figure 1: Autocorrelation function of FBM increments V1(t): R(t) = 〈V1(s)V1(s + t)〉:
persistent (H = 0.7) vs. antipersistent (H = 0.3) case.

The asymptotics of the correlation function are easily obtained by rewriting it
in the following way (see [4], pages 6-7):

R(t) =
1

2
t2hhH

(

δt

t

)

, (15)

being, for x = δt/t < 1:

hH (x) = (1 + x)2H − 2 + (1− x)2H . (16)

The limit t → ∞ corresponds to x → 0 and the Taylor expansion of hH (x)
gives:

hH(x) = 2H(2H − 1)x2 +O(x4) , (17)

so that [3, 4]:
R(t) ≃ H(2H − 1)(δt)2t2H−2 . (18)

Regarding the correlation time τc defined in Eq. (5), we can exploit the same
asymptotic expansion used for R(t). Firstly, we apply Eq. (5) to a finite time
t:

τc(t) =

∫ t

0

R(s)

R(0)
ds , R(0) = 〈V 2〉st , (19)

so that: τc = limt→∞ τc(t). Then, for the fractional Gaussian noise we get:

τc(t) =
δt

4H + 2

{

(

1 +
t

δt

)2H+1

− 2

(

t

δt

)2H+1

+

∣

∣

∣

∣

t

δt
− 1

∣

∣

∣

∣

2H+1
}

. (20)

Analogously to R(t), this can be written as:

τc(t) =
δt

4H + 2

(

t

δt

)2H+1

hH+1/2(x) ; x = δt/t , (21)
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and, for x < 1, hH+1/2(x) is again given by Eq. (16), but with H+1/2 instead
of H. Then, an asymptotic formula similar to Eq. (17) can be derived:

hH+1/2(x) = 2H(2H + 1)x2 +O(x4) , (22)

and, finally:
τc(t) = H(δt)2−2Ht2H−1 for t → ∞ . (23)

Clearly, the mathematical limit t → ∞ corresponds to the physical regime
t ≫ δt. Exploiting the asymptotic behavior of τc(t) given in Eq. (23), we can
now derive the values of the correlation time scale τc = τc(∞):

τc = lim
t→∞

τc(t) =























+∞ ; 1/2 < H ≤ 1 ;

δt/2 < ∞ ; H = 1/2 ;

0 ; 0 < H < 1/2 .

(24)

The three cases correspond to persistent (superdiffusive) FBM, normal Brown-
ian motion and antipersistent (subdiffusive) FBM, respectively.
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Box 2. Properties of R(t) and g(τ)
The use of Laplace transform, defined by the expression:

ũ(s) = Lt→s[u(t)](s) =

∫
∞

0

e
−st

u(t)dt ,

gives important information about the normalization and moments of distributions.
The stationary correlation function R(t) and the distribution g(τ) are related by Eq.
(8,MT). For any choice of the distribution g(τ), the correlation function R(t) and g(τ)
must satisfy the following properties:

(i) The distribution g(τ) must be a PDF normalized to 1:

g̃(0) = 1 ,

which determines a constrain on the behavior of the first derivative of the cor-
relation function:

lim
s→+∞

s · L

[
−
dR(t)

dt

]
(s) = −

dR

dt
(0+) = 〈ν〉 .

(ii) The MSD is a power-law of time with superdiffusive scaling 1 < φ < 2 in the
asymptotic long-time limit:

lim
t→∞

σ2
X(t)

tφ
= C1 ; lim

s→0
s
1+φ · σ̃2

X(s) = C2 . (25)

where C1 and C2 are proper constants and the second asymptotic limit follows
from the Tauberian theorem [5]. From Eq. (3) or Eq. (4) it results:

d2σ2
X(t)

dt2
= 2R(t) ; σ̃2

X(s) =
2

s2
R̃(s) ,

we get equivalently the following expression for the stationary correlation func-
tion:

lim
t→∞

R(t)

tφ−2
= C3 ; lim

s→0
s
1−η · R̃(s) = C4 (26)

with η = 2 − φ, 0 < η < 1. Note that the above limits can be equivalently
written as asymptotic behaviors, e.g.: R(t) ∼ tφ−2 for t → ∞, which means
that the function R(t) is approximated by C3t

φ−2 in the long time range.

(iii) The MSD at time zero is zero:

lim
t→∞

σ
2
X(t) = 0 ; lim

s→+∞

s · σ̃2
X(s) = 0

(iv) Furthermore being 0 < R(0) < ∞, from Eq.(9,MT) the distribution g(τ) must
have non-zero, finite mean:

lim
s→+∞

s · R̃(s) = R(0) ∝ 〈τ〉 .

55
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2. Derivation of the PDF g(τ )

The properties that must be satisfied by the stationary correlation function
R(t) and by the PDF g(τ) are listed in the above Box 1.

We now prove the following

Theorem (PDF g(τ))60

Given Eq. (8,MT) defining the stationary correlation function of the Langevin
equation with random parameters, Eq. (4,MT), the PDF g(τ) given in Eq.
(14,MT) satisfies all the required constrains (i-iv) listed in Box 1.

Proof:

(i) normalization and (iv) finite mean:65

Let us write:

g(τ) =
C

τ
L−η
η

(

τ

τ∗

)

,

where τ∗ must be introduced to get an adimensional parameter as argument of
L−η
η . The mean correlation time is given by:

〈τ〉 =
∫ ∞

0

τg(τ)dτ = C

∫ ∞

0

L−η
η

(

τ

τ∗

)

dτ = Cτ∗ , (27)

so that we have:

g(τ) =
C

τ
L−η
η

(

C
τ

〈τ〉

)

. (28)

The normalization constant C can be obtained by imposing L[g(τ)](0) = 1. Ex-
ploiting the relationship

∫∞

s
exp(−ξτ)dξ = exp(−ξτ)/τ and making the change

of variables τ = (〈τ〉/C)τ ′, we get:

L[g(τ)](s) = C ·
∫ ∞

s〈τ〉/C

L[L−η
η (τ)](ξ)dξ

= C ·
∫ ∞

s〈τ〉/C

e−ξηdξ =

(x = ξη)

= C
1

η

∫ ∞

s〈τ〉/C

1

η
e−xx1/η−1dx ,

(29)

and:

L[g(τ)](0) = C ·
∫ ∞

0

1

η
e−xx1/η−1dx

= C · Γ(1/η)
η

= 1 .

(30)
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Substituting this relationship into Eq. (28) we finally get Eq. (14,MT), which
is a properly normalized PDF.

(ii) superdiffusive scaling:
We now prove that R(t) ∼ t−η, with 0 < η < 1, a condition leading to the

superdiffusive scaling for the position variance: σ2
X(t) ∼ tφ, 1 < φ = 2− η < 2.

This can be proven thanks to the integral representation of the extremal Lévy
density:

L−η
η (x) =

1

ηx

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)
xsds, 0 < η < 1 . (31)

Hence, we have:

R(t) = 〈ν〉 η

Γ(1/η)

∫ ∞

0

e−t/τL−η
η

(

τ

τ∗

)

dτ

= 〈ν〉 η

Γ(1/η)

∫ ∞

0

e−t/τ

[

1

η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)

(

τ

τ∗

)(s−1)

ds

]

dτ

= 〈ν〉 η

Γ(1/η)

1

η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)

[

∫ ∞

0

e−t/τ

(

τ

τ∗

)s−1

dτ

]

ds =

(ξ = t/τ)

= 〈ν〉〈τ〉1
η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)

Γ(s)

[
∫ ∞

0

e−ξξ−1−s

(

t

τ∗

)s

dξ

]

ds

= 〈ν〉〈τ〉1
η

1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η)Γ(−s)

Γ(s)

(

t

τ∗

)s

ds ,

(32)

where τ∗ = 〈τ〉Γ(1/η)/η. It is useful to rewrite the expression as:

R(t) = 〈ν〉〈τ〉1
η

1

2πi

∫ γ+i∞

γ−i∞

(η/s)Γ(s/η + 1)Γ(−s)

(1/s)Γ(s+ 1)

(

t

τ∗

)s

ds

= 〈ν〉〈τ〉 1

2πi

∫ γ+i∞

γ−i∞

Γ(s/η + 1)Γ(−s)

Γ(s+ 1)

(

t

τ∗

)s

ds ,

(33)

which can be solved through the residues theorem considering the poles s/η+1 =
−n or s = n, with n = 0, 1, 2..∞.70

In the first case we have:

R(t) =〈ν〉〈τ〉
∞
∑

n=0

η
(−1)n

n!

Γ(η(n+ 1))

Γ(1− η(n+ 1))

(

t

τ∗

)−η(n+1)

=〈ν〉〈τ〉
∞
∑

n=1

(−1)n

n!

Γ(ηn)

Γ(−ηn)

(

t

τ∗

)−ηn
(34)
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where each term of the series is obtained by the limit:

lim
s→−η(n+1)

(s+ η(n+ 1))
Γ(s/η + 1)Γ(−s)

Γ(s+ 1)

(

t

τ∗

)s

lim
s→−η(n+1)

η((s/η + 1) + n)
Γ(s/η + 1)Γ(−s)

Γ(s+ 1)

(

t

τ∗

)s

lim
s→−η(n+1)

η((s/η + 1) + n)

(s/η + 1)n+1

Γ(s/η + n+ 2)Γ(−s)

Γ(s+ 1)

(

t

τ∗

)s

lim
s→−η(n+1)

η(−1)n

n!

Γ(η(n+ 1))

Γ(1− η(n+ 1))

(

t

τ∗

)−η(n+1)

(35)

When t → ∞ only the first term survives and we find:

R(t) = 〈ν〉〈τ〉Γ(η + 1)

Γ(1− η)

(

t

τ∗

)−η

. (36)

Substituting τ∗ = 〈τ〉Γ(1/η)/η, we finally get Eq. (15,MT), from which we
obtain the superdiffusive scaling of the position variance σ2

X(t) ∝ tφ, with φ =
2− η.

Considering the poles in the other semi-plane, s = n with n = 0, 1, 2..∞, we
find that:

R(t) = 〈ν〉〈τ〉1
η

∞
∑

n=0

(−1)n

n!

Γ(n/η)

Γ(n)

(

t

τ∗

)n

(37)

converges to R(0) = 〈ν〉〈τ〉, as already shown before.

(iii) MSD at time zero is zero:75

The condition σ2
X(t = 0) = 0 is clearly verified.

Example:
In the special case η = 1/2, the extremal Lévy function corresponds to the
Lévy–Smirnov distribution, the whole exercise can be solved analitycally and

we may consider for simplicity 〈τ〉Γ(1/η)η = 1 :

g(τ) =
1√
4πτ5

e−1/(4τ) (38)

Solving the integral the analytical form of the correlation function turns to be:

R(t) =
Γ(1/2)√

4π

(

t+
1

4

)−1/2

(39)

which leads to the following exact formula for the position variance:

σ2
X(t) =

Γ(1/2)√
π

[

4

3

(

t+
1

4

)3/2

− t− 1

6

]

, (40)
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satisfying both superdiffusive long-time scaling and σ2
X(0) = 0 conditions.

NOTE: The Einstein–Smoluchovsky relation

By substituting Eq. (12,MT) into Eq. (5) it is easy to see that τc = τ . Using
the following equation (see the last equation in Box 1 of the Main Text):

R(0|V0, τ, ν) = 〈V 2|V0, τ, ν〉st = ντ ,

and substituting Eq. (12,MT) into the definition of D
X
, Eq. (8), we get the

Einstein–Smoluchowsky relation:

D
X
= ντ2 = τ 〈V 2|V0, τ, ν〉st , (41)

which, apart from the conditional statistics, is essentially the same as Eq. (9).
For a standard OU process with fixed ν and τ , 〈V 2|V0, τ, ν〉st = 〈V 2〉eq and
Eq. (41) relates the diffusion (D

X
) and relaxation (τ) properties through the

equilibrium distribution (〈V 2〉eq). In his 1905 paper [2], Einstein studied the
Brownian motion in a gas at equilibrium, where velocity distribution is given by
the Maxwell–Boltzmann law. In this case, the Einstein–Smoluchowsky relation
becomes:

D
X
= τ 〈V 2〉st = τ

kT

m
, (42)

being T , m and k the gas temperature, the Brownian particle mass and the
Boltzmann constant, respectively.80

3. Numerical scheme for the Langevin equation

In order to avoid stability problems, the numerical algorithm for the simulation
of Eqs. (1) and 4,MT) was implemented using an implicit scheme with order of
strong convergence 1.5 [6]. This is given by the following expression:

Vn+1 = Vn + b∆Wn +
1

2
{a(Vn+1) + a(Vn)}+ (43)

+
1

2
√
∆t

{a(V +)− a(V −)}
(

∆Zn − 1

2
∆Wn∆t

)

,

being Vn = V (n∆t), ∆t the time step, ∆Wn = W (tn +∆t)−W (tn) the incre-
ments of the Wiener process, a(V ) = −V/τ and b =

√
2ν the drift and noise

terms, respectively. Further, we have:

V ± = Vn + a(Vn)∆t± b
√
∆t ,

∆Zn =
1

2
(∆t)3/2

(

u1(n) +
1√
3
u2(n)

)

,
(44)

being u1(n) and u2(n) two independent random numbers with uniform distri-
butions in [0, 1]. A suitable time step ∆t, also depending on the time scale τ , is
necessary to maintain the accuracy of the numerical scheme. To take into ac-
count both the ensemble variability of the relaxation time τ , which is different
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for different trajectories, and the time variability of drift and noise terms along
the same trajectory, we applied a variable time step according to the scheme
given in Ref. [7]:

∆t = min

{

0.05

b
,
0.1

|a|

}

. (45)

This adaptive time step allows to avoid any problem of convergence and accuracy
in the numerical scheme, Eqs. (43) and (44). At the same time, in the range
of short τ , this algorithm can give very short time steps, thus determining very
long simulation times for a consistent number of trajectories. To overcome this85

problem we note that the short time regime τ ≪ 〈τ〉 of the PDF g(τ) does not
significantly affect the anomalous scaling of diffusion, which mostly depends on
the asymptotic tail of the distribution g(τ). A cut-off was then introduced in
the short-time regime. By comparing the numerical simulations with theoretical
results we chose the cut-off value τmin = 0.004, much smaller that 〈τ〉, which is90

always of the order 0.5− 1 for all sampled sets of τ .

4. Numerical algorithm for the random generator of τ

Here we describe a method to generate random variables τ distributed according
to the law of Eq. (14,MT),

g(τ) = A(η)L−η
η (τ)/τ, (46)

where A(η) is the normalization coefficient, and τ is already dimensionless.
For this, we use a well-known inverse transform sampling method (see,

e.g. [8]), so the procedure is straightforward.95

First, we generate a set of extremal Lévy density random numbers L−η
η (τ)

by using the generator described in Refs. [9, 10], see Eq. (3.2) of the latter
paper, and extract its histogram. Since the beginning of the histogram has
much statistical noise (red curve in Fig. 2a), it is a good solution to replace
these values with analytical asymptote at small arguments [11] (blue curve in
Fig. 2a). Moreover, we also expand the histogram with another asymptote, at
large τs (green curve in Fig. 2a):

L−η
η (τ) ∼ A1τ

−a1 exp(−b1τ
c1), τ → 0+, (47)

L−η
η (τ) ∼ C1(η)

|τ |1+η
, τ → ∞, (48)

where

A1 =
{

[2π(1− η)]
−1

η1/(1−η)
}1/2

, (49)

a1 =
2− η

2(1− η)
, b1 = (1− η)ηη/(1−η), c1 =

η

1− η
(50)

C1(η) ≈
1

π
sin
(

π
η

2

)

Γ(1 + η). (51)
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Figure 2: (color online) (a) Simulated Lévy extremal density (red) together with asymptotics
at small arguments (blue) and large ones (green). (b) Cumulative distribution function of
g(τ).

Then, we divide the obtained histogram by argument and find the normal-
ization coefficient numerically in order that the resulting PDF is normalized to
unity. Finally, we calculate the semi-analytical cumulative distribution function
(CDF) (see Fig. 2):

F (τk) =

k
∑

i=0

g(τi)δτi, τk ≤ τn; (52)

F (τ) =

n
∑

i=0

g(τi)δτi +

τ
∫

τn

A(η)

τ ′2+η
dτ ′, τ > τn, (53)

where δτi is the ith histogram’s bin width, i = 0, 1, 2..n.
Now, we draw a random variable τ obeying the target pdf (46) with

τ = F−1(u), (54)

where u ∈ [0, 1) is a uniformly distributed random variable: F−1 is a numerically
(or if u > F (xn), semi-analytically) inverted CDF.

Let us take out a verification and compare the original PDF g(τ) used for
the simulations and the histogram of the generated 107 random numbers with100

this algorithm gsim(τ). The result is shown in Fig. 3. At intermediate values of
τ the inaccuracy is about 1%, increasing due to statistical error at very small
and large τs (where g(τ) is small).

The software for the numerical simulations were written in C++ language (De-
bian gcc 4.9) and Python 2.7 and can be downloaded at the following web-site:105

https://gitlab.bcamath.org/opensource/lecm.
The codes include the algorithms described in this section and in the previ-
ous one. The simulation runs were performed on computational facilities of
BCAM-Basque Center for Applied Mathematics.
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Figure 3: (color online) (a) Comparison of the original PDF (46) (red) and the PDF histogram
of generated numbers (blue). (b) Relative error between original and simulated PDFs.

5. Schneider grey noise, gBM and ggBM110

We here provide an intuitive presentation of the Schneider grey noise, the
grey Brownian motion and the generalized grey Brownian motion. More rigouros
details can be found in [12, 13, 14, 15, 16, 17, 18, 19].

The grey noise is a generalization on the basis of the Mittag–Leffler function
of the white noise. The Mittag-Leffler function Eβ(z) is defined as

Eβ(z) =

∞
∑

n=0

zn

Γ(βn+ 1)
, (55)

and it is a generalization of the exponential function that is recovered as special
case when β = 1, i.e., E1(−z) = e−z. As well as the exponential function, when
0 < β < 1, the Mittag–Leffler function is a completely monotonic function. A
useful formula for what follows is

− d2

dz2
Eβ(−z2 q)

∣

∣

∣

∣

z=0

=
2

Γ(1 + β)
q . (56)

For any characteristic functional Φ(z) there exists a unique probability mea-
sure µ such that

Φ(z) =

∫ +∞

−∞

eizτ dµ(τ) , (57)

and if Φ(z) = Eβ(−z2), 0 < β < 1, the probability measure µ is the so-called

Schneider grey noise [12, 13, 17]. When β = 1 we have E1(−z2) = e−z2

, and115

the Gaussian white noise follows.
Let us introduce the stochastic process X(t) driven by the noise µ and we

look for its probability density function. The characteristic function is

〈eizX(t)〉 =
∫ +∞

−∞

eizX(t) dµ(t) = Eβ(−z2 ϕ2
α(t)) , (58)
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where function ϕα(t) takes into account what remains of parameter t after the
integration, and it is related to the scaling in time of X(t). By the inversion of
(58) we have the probability density function of X(t) as follows

p(x, t) =
1

2π

∫ +∞

−∞

e−izxEβ(−z2 ϕ2
α(t))dz =

1

2ϕα(t)
Mβ/2

( |x|
ϕα(t)

)

, (59)

where Mβ/2 is the M-Wrigth/Mainardi function. By using (58) and (56), we
have that the variance of X(t) is

〈x2〉 = − d2

dz2
Eβ(−z2 ϕ2

α(t))

∣

∣

∣

∣

z=0

=
2

Γ(1 + β)
ϕ2
α(t) . (60)

In the same spirit, the correlation function of the process X(t) can be com-
puted. In fact from (58) it holds

〈eiz[X(t)−X(s)]〉 =
∫ +∞

−∞

eiz[X(t)−X(s)] dµ(t, s) = Eβ(−z2 ϕ2
α(t, s)) , (61)

and by applying again formula (56) the correlation function results to be

1

Γ(1 + β)
(ϕα(t) + ϕα(s)− ϕα(t, s)) . (62)

Now we discuss how to establish function ϕα(t). Let ✶[a,b] be the indicator
function such that it is equal to 1 when a < t < b and to 0 elsewhere. In analogy

with the Wiener process where the Brownian motion is B(t) =
∫ t

0

dW (τ), we

write the process X(t) as

X(t) =

∫ t

0

dµ(τ) = ✶[0,t] X0(✶[0,t]) , (63)

where X0 is a random variable equivalent in distribution to X(t) but indepen-
dent of t, i.e., the probability density function of X0 is p0(x) = p(x, t = 1).
From (63) we have that

〈[X(t)]2〉 = 〈[✶[0,t]]
2〉 〈[X0]

2〉 , (64)

and from comparison with (60) and (62), we obtain that ϕα(t) is established
through the stochastic process ✶[a,b] that meets

〈[✶[0,t]]
2〉 = ϕ2

α(t) , (65)

〈✶[s,t]✶[0,s]〉 =
1

2
(ϕ2

α(t) + ϕ2
α(s)− ϕ2

α(t, s)) . (66)

Finally we observe that, by setting ϕ2
α(t) = tα, X(t) is the Brownian motion

when α = β = 1, and we refer to it as the grey Brownian motion and the
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generalized grey Brownian motion when 0 < α = β < 1 and 0 < α < 2,
0 < β < 1, respectively. Moreover, in order to have a process with stationary
increments we assume ϕ2

α(t, s) = |t− s|α, the correlation function results to be

1

Γ(1 + β)
(tα + sα − |t− s|α) . (67)

The corresponding stochastic process is obtained with a randomly-scaled
Gaussian process, i.e., a Gaussian process multiplied for a non-negative inde-
pendent randon variable not dependent on time.

From integral representation formulae of the M function [20], we have that
X0 has the same density of X(1) if, for example, we state X0 =

√
ΛB(1) where

Λ is a non-negative random variable distributed according to Mβ and B(1) is a
Gaussian variable. Finally, we obtain that

X(t) =
√
Λ ✶[0,t] B(✶[0,t]) . (68)

Looking at (60) and (62), the process ✶[0,t] B(✶[0,t]) is the fractional Brownian
motion XH(t) [21] characterized by

〈[XH(t)]2〉 = t2H , (69)

〈X(t)X(s)〉 = 1

2
(t2H + s2H − |t− s|2H) . (70)

Finally, by setting H = α/2, the trajectories of the process X(t) can be gener-
ated by

X(t) =
√
ΛXH(t) . (71)

Since the fBm XH(t) is fully characterized by the variance and the correlation120

functio, the process X(t) is also fully characterized by the variance and the
correlation function.
With a somewhat forced terminology, the term ggBM can be thought to include
any randomly scaled Gaussian process, i.e., any processes defined by the product
of a Gaussian process with an independent and constant non-negative random125

variable.

6. Mainardi distribution and Lévy densities

Fractional diffusion processes are a generalization of classical Gaussian diffusion,
mainly in the direction of the time-fractional diffusion, i.e., by replacing the first
derivative in time with a time-fractional derivative, and in the direction of the130

space-fractional diffusion, i.e., by replacing the second derivative in space with a
space-fractional derivative. In the case of time-fractional diffusion the Gaussian
particle density is generalized by the so-called M -Wright/Mainardi functions
[22, 23], and in the case of the space-fractional diffusion the particle density is
generalized by the so-called Lévy stable densities [11].135
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The M-Wright/Mainardi function Mν(r), r ≥ 0, 0 < ν < 1, is defined by the
series:

Mν(r) =

∞
∑

n=0

(−r)n

n!Γ[−νn+ (1− ν)]
=

1

π

∞
∑

n=0

(−r)n−1

(n− 1)!
Γ(νn) sin(πνn) , (72)

and it provides a generalization of the Gaussian and Airy functions:

M1/2(r) =
1√
π
e−r2/4 , M1/3(r) = 32/3Ai(r/31/3) . (73)

Moreover, the following limit holds:

lim
ν→1−

Mν(r) = δ(r − 1) . (74)

The M density function is related to the Mittag–Leffler function through the
Laplace transform:

∫ ∞

0

e−λrMν(r) dr = Eν(−λ) , (75)

and it has an exponential decay for r → ∞, i.e.:

Mν(r) ∼
Y ν−1/2

√
2π(1− ν)νν2ν−1

e−Y , Y = (1− ν)(ννr)1/(1−ν) , (76)

which allows for finite moments that can be computed through the formula:
∫ ∞

0

rqMν(r)dr =
Γ(q + 1)

Γ(νq + 1)
, q > −1 . (77)

A remarkable formula of the Mainardi density is the following integral repre-
sentation with r ≥ 0, 0 < ν , η , β < 1 [20]:

Mν(r) =

∫ ∞

0

Mη

( r

τη

)

Mβ(τ)
dτ

τη
; ν = ηβ , (78)

that, in the special case η = 1/2, provides the following link with the Gaussian
density:

Mβ/2(r) =

∫ ∞

0

e−r2/(4τ)

√
πτ

Mβ(τ)
dτ

τη
. (79)

The Lévy stable density Lθ
α(z), −∞ < z < +∞, 0 < α < 2, |θ| = min{α, 2−α},

is defined through the Fourier transform:
∫ +∞

−∞

eiκzLθ
α(z)dκ = e−Ψ(κ) , Ψ(κ) = |κ|αei(sgnκ)θπ/2 . (80)

In the case θ = −α, 0 < α < 1, the Lévy density reduces to a one-side density on
the positive semi-axis (when θ = α on the negative semi-axis) and it is defined
through the Laplace transform:

∫ ∞

0

eszL−α
α (z)dz = e−sα . (81)
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The asymptotic behaviour for |z| → ∞ is the power-law

Lθ
α(z) = O(|z|−(α+1) , (82)

and, for extremal densities, the following exponential decay holds for z → 0:

L−α
α (z) ∼ z−(2−α)/(2(1−α))

√

2π(1− α)α1/(α−1)
e−Y , Y = (1− α)αα/(1−α)zα/(1−α) . (83)

Important special cases are the Gaussian, the Cauchy and the Lévy–Smirnov
density, i.e.:

L0
2(z) =

e−z2/4

2
√
π

, L0
1(z) =

1

π

1

1 + z2
, L

−1/2
1/2 (z) =

z−3/2

2
√
π

e−1/(4z) . (84)

Moreover, the following limit holds:

lim
α→1

L−α
α (z) = δ(z − 1) . (85)

A remarkable formula of the Lévy density is the following integral representation
for z ≥ 0, 0 < β < 1:

Lθp
αp
(z) =

∫ ∞

0

Lθq
αq

( z

τ1/θq

)

L−β
β (τ)

dτ

τ1/αq
, αp = βαq , θp = βθq , (86)

that, in the special case αq = 2, θq = 0, provides the following link with the
Gaussian density [20, 24]:

L0
α(z) =

∫ ∞

0

e−z2/(4τ)

√
πτ

L
−α/2
α/2 (τ)dτ . (87)

The Mν(r) function, r ≥ 0, 0 < ν < 1, and the extremal Lévy density L−ν
ν (r)

are related by the formula:

1

c1/ν
L−ν
ν

( r

c1/ν

)

=
c ν

rν+1
Mν

( c

rν

)

, c > 0 . (88)

In the present paper we consider such special densities in order to highlight
the relation of the proposed formulation with the fractional diffusion. How-
ever, the asympototic behaviour of the modeled diffusion can be achieved by
using the asymptotic behaviour of the involved densities. This means, by using
exponential and power-law functions rather than special functions.140

7. Space-Time Fractional Diffusion

For the particular choice of parameters: φ = 2β/α ; 1 < φ < 2, Eq. (20,MT)
reduces to the fundamental solution of the following Space-Time Fractional
Diffusion equation:

tD
β
∗ p(x; t) = Aα xD

α
0 p(x; t) , −∞ < x < +∞ , t ≥ 0 , (89)
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with:
Aα = (Cν)

α/2
. (90)

The nonlocal operators tD
β
∗ and xD

α
0 are the Caputo fractional time derivative

and the Riesz-Feller space derivative, respectively (see [11] for the definition of
these operators). This is the same equation discussed in Refs. [11, 25], but with
a generalized fractional diffusivity Aα different from 1.145

The solution reads:

Kθ
α,β(x, t) =

1

(Aα)
1/α

tβ/α
Kθ

α,β

(

x

(Aα)
1/α

tβ/α

)

,

with θ = 0 in this case. 6. The superdiffusive regime determines the following
constrain on α and β: α/2 < β < α.

Given the solutions of the Time Fractional Diffusion equation and of the
Space Fractional Diffusion equation with diffusivity 1 and Aα, respectively
[11, 26]:
Mβ(x, t) = 1/tβMβ(x/t

β) (Mainardi probability density) and

Lθ
α(x, t) = 1/ (Aαt)

1/α
Lθ
α

(

x/ (Aαt)
1/α
)

(Lévy probability density),

the general solution Kθ
α,β can be written as a combination of these same solu-

tions:

Kθ
α,β(x, t) =

∫ ∞

0

Lθ
α(x, τ)Mβ (τ, t) dτ , (91)

then the general solution emerges as a linear combination of the temporal
(Mainardi) and spatial (Lévy) solutions. The Mainardi density is related to
the extremal Lévy density by the following relationship (see Section 6 for de-
tails):

t

βτ

1

τ1/β
L−β
β

(

t

τ1/β

)

=
1

tβ
Mβ

( τ

tβ

)

, 0 < β ≤ 1 , τ, t ≥ 0 , (92)

References

[1] G. I. Taylor, Diffusion by continuos movements, Proc. London Math.
Soc. s2-20 (1) (1921) 196–211. arXiv:http://plms.oxfordjournals.150

org/content/s2-20/1/196.full.pdf+html, doi:10.1112/plms/s2-20.

1.196.
URL http://plms.oxfordjournals.org/content/s2-20/1/196.short

6 Due to the self-similar property, here and in the following we use the same symbol for
the two-variable function F (x, t) and the associated one-variable function written in terms of
the similarity variable. Then, given the scaling exponent Λ and the coefficient A, we write:
F (x, t) = 1/tΛF (x/(AtΛ)). This notation is not ambiguous as the meaning clearly follows
from the number of independent variables.

19

http://plms.oxfordjournals.org/content/s2-20/1/196.short
http://arxiv.org/abs/http://plms.oxfordjournals.org/content/s2-20/1/196.full.pdf+html
http://arxiv.org/abs/http://plms.oxfordjournals.org/content/s2-20/1/196.full.pdf+html
http://arxiv.org/abs/http://plms.oxfordjournals.org/content/s2-20/1/196.full.pdf+html
http://dx.doi.org/10.1112/plms/s2-20.1.196
http://dx.doi.org/10.1112/plms/s2-20.1.196
http://dx.doi.org/10.1112/plms/s2-20.1.196
http://plms.oxfordjournals.org/content/s2-20/1/196.short


[2] A. Einstein, Uber die von der molekularkinetischen theorie der warme
geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen,155

Annalen der Physik 322 (8) (1905) 549–560.

[3] B. B. Mandelbrot, J. W. Van Ness, Fractional brownian motions, fractional
noises and applications, SIAM Rev. 10 (4) (1968) 422–437.

[4] T. Dieker, Simulation of fractional Brownian motion, 2004, ph.D. Thesis,
Physics Department of Mathematical Sciences, University of Twente.160

URL http://www.columbia.edu/~ad3217/fbm/thesis.pdf

[5] W. Feller, An Introduction to Probability Theory and its Applications, 2nd
Edition, Vol. 2, Wiley, New York, 1971.

[6] P. E. Kloeden, E. Platen, Numerical solution of Stochastic Differential
Equations, Springer-Verlag, 1992.165

[7] D. J. Thomson, Criteria for the selection of stochastic models of particle
trajectories in turbulent flows, J. Fluid Mech. 180 (1987) 529–556.

[8] L. Devroye, Nonuniform random variate generation, Handbooks in opera-
tions research and management science 13 (2006) 83–121.

[9] J. M. Chambers, C. L. Mallows, B. W. Stuck, A method for simulating170

skewed stable random variables, J. Amer. Statist. Assoc. 71 (1976) 340–
344.

[10] R. Weron, On the Chambers–Mallows–Stuck method
for simulating skewed stable random variables, Statist.
Probab. Lett. 28 (1996) 165–171, corrigendum:175

http://mpra.ub.uni-muenchen.de/20761/1/RWeron96 Corr.pdf or
http://www.im.pwr.wroc.pl/∼hugo/RePEc/wuu/wpaper/HSC 96 01.pdf.

[11] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-
time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2) (2001)
153–192.180

[12] W. R. Schneider, Grey noise, in: S. Albeverio, G. Casati, U. Cattaneo,
D. Merlini, R. Moresi (Eds.), Stochastic processes, physics and geometry,
World Sci. Publ., Singapore, 1990, pp. 676–681.

[13] W. Schneider, Grey noise, in: S. Albeverio, J. E. Fenstad, H. Holden,
T. Lindstrøm (Eds.), Ideas and methods in mathematical analysis, stochas-185

tics, and applications (Oslo, 1988), Vol. I, Cambridge Univ. Press, Cam-
bridge, 1990, pp. 261–282.

[14] A. Mura, Non-Markovian Stochastic Processes and Their Applications:
From Anomalous Diffusion to Time Series Analysis, Lambert Academic
Publishing, 2011, ph.D. Thesis, Physics Department, University of Bologna,190

2008.

20

http://www.columbia.edu/~ad3217/fbm/thesis.pdf
http://www.columbia.edu/~ad3217/fbm/thesis.pdf


[15] A. Mura, G. Pagnini, Characterizations and simulations of a class of
stochastic processes to model anomalous diffusion, J. Phys. A: Math. Theor.
41 (2008) 285003.

[16] A. Mura, M. Taqqu, F. Mainardi, Non-Markovian diffusion equations and195

processes: Analysis and simulations, Physica A 387 (2008) 5033–5064.

[17] A. Mura, F. Mainardi, A class of self-similar stochastic processes with sta-
tionary increments to model anomalous diffusion in physics, Integr. Transf.
Spec. F. 20 (3–4) (2009) 185–198.

[18] M. Grothaus, F. Jahnert, F. Riemann, J. da Silva, Mittag–Leffler analysis200

I: Construction and characterization, J. Funct. Anal. 268 (2015) 1876–1903.

[19] M. Grothaus, F. Jahnert, Mittag–Leffler analysis II: Application to the
fractional heat equation, J. Funct. Anal. 270 (2016) 2732–2768.

[20] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination
laws in fractional diffusion processes, Fract. Calc. Appl. Anal. 6 (4) (2003)205

441–459.

[21] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus for Frac-
tional Brownian Motion and Applications, Springer, 2008.

[22] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in time-
fractional diffusion processes: A tutorial survey, Int. J. Differ. Equations210

2010 (2010) 104505.

[23] G. Pagnini, The M-Wright function as a generalization of the Gaussian
density for fractional diffusion processes, Fract. Calc. Appl. Anal. 16 (2)
(2013) 436–453.

[24] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin convolution for subordinated215

stable processes, J. Math. Sci. 132 (5) (2006) 637–642.

[25] G. Pagnini, P. Paradisi, A stochastic solution with Gaussian stationary
increments of the symmetric space-time fractional diffusion equation, Fract.
Calc. Appl. Anal. 19 (2) (2016) 408–440.

[26] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete220

random walk models for space-time fractional diffusion, Chem. Phys. 284
(2002) 521–541.

21


	Langevin equation in complex media and anomalous diffusion
	Introduction
	Free particle motion and superdiffusion
	Numerical simulations
	Simulation set-up
	Discussion of numerical results

	Concluding remarks
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	References

	General condition for the emergence of anomalous diffusion
	Application to Fractional Brownian Motion

	Derivation of the PDF g()
	Numerical scheme for the Langevin equation
	Numerical algorithm for the random generator of 
	Schneider grey noise, gBM and ggBM
	Mainardi distribution and Lévy densities
	Space-Time Fractional Diffusion

