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ABSTRACT

Differential problems of parabolic and hyperbolic type are
presented in the weak (variational) formulation across the space
and time varilables,

A discrete approximation is performed using linear "shape®
functions in space and time. It is shown how, by setting the
appropriate conditions on the test function v, the size of the
discrete problem reduces to the total number of variables in
gpace, as for €alerkin method.

The numerical performance of space-time elements is compar-
ed to "optimal” Galerkin algorithms, in a series of test problems
where the analytic solution is khown.

For parabolic problems where £ is independent of t, space-
~time elements hold the line with the optimal ( 6 = 2/3) Galerkin,
showing some allergy, however, to discontinuitées between initial
and boundary conditions. For parabolic problems where f depends
on t, the space-time elements perform much better,

For hyperbolic problems{with £ dependent or not from time)
the space~time elements show a surprising accuracv: they atick
to the analytic solution while Galerkin (central diffevences)
rung out of phase or blows out for numerical instability.



1. INTRODUCTION

Since the early applications of the finite element method
to heat transfer or to elastodynamics {12]5 it seemed desirable
to blend the space and time varisbles into a unique finite ele-
ment formulation, rather than mixing finite elements (in space)
and finite differences {(in time), as in the universally used

Faedo~Galerkin approach.

Implementations of the space~time element technique, however,
have been scarce [5] due, partly, to the lack of support from a
comprehensive theory and, to a greater extent, to the blow up in
size of the asscciated numerical problem. When the nodal values

of ths molitirs

ton problem size (and the bhandwidth) of the matrix may grow by

an order of maonitude.

A somprensive theory of the “eguations of evolution® was,
indeed, existing, and had reached its fuvll bloom in the work of

Lions and Magenes [2] . There, the weak formulation for «llyptic
operatcers (1] was extended; wvia time integration, to parabolic and
to hyperbolic problems. The regularity of the solution was proved
under mildly restrictive conditions on the initial and on the
boundary conditions of the problems. A first attempt at extracting
from the theory a numerical algorithm feor the heat transfer.prob-
lem was made by the first author and M. Morandi Cecchi [3,4].

The roduvction 0f the numerical problem to Galerkin size was a-

chievad., However, the mizfortunate cholce of the test cases lead
to doubts as to whether space-time elements were competlitive
with the Gaerkin method. A subsequent attempt by the first two
authorg with the wave propagation problem didnt lead to any evi-
dence, either way [10].

Finally, a restart from the basic theory, a careful analysis
of the algorithms, and ample numerical testing have brought to



the conclusion that space-time elements are superior, accuracy-wise
{at the same computational conditions) to the optimal Galerkin
algorithms. The superiority becomes striking either with coarse
time steps or with time-dependent £.

The range of testing is confined to one-dimensiocnal problems,
but is sufficiently articultate (the authors believe) to proto-
type the behaviour of multidimensional problems.

Further developments are to be seen.

2. WEAK FORMULATION FOR PARABOLIC PROBLEMS

Let £ be an open bounded domain in R", and let 08 be its
boundary. Let | = ]o,T[ be the open time interval, and let
C = {(x,t) e Rn+1l xe,t € I} be the open cylinder in the space-

=fime domaln.

Let A be a 279 order partial differential operator defined as

n
(1) A= -3 D,(a,.(x,t)D,); (Dy= & ; D,u=u)
iﬂ §$0 ﬁ i:} i i E)?i ©

where aijixgt} are real valued functions defined on C and there

sufficiently regular.

Assuming that A is ellyptic with respect to x, uniformly so
with respect to t, i.e.

n T e
(2) 3 a0t oI 2wl , »>o0, 0€R", (x,t) €C
i,j=oK
then, it is known from the literature [1], that the family of
bilinear forms defined on the Sobolev space H1(Q)
n
(3) s lsu,v) = g b ag4 (th)Di u Dj v dx
Qj . *WQ o .
el 0

akly cohercive on Hg (Q) for every t€I, i.e. that real

a>»o, A >0 exist such that



2 2
(4) a(t;u,u) > alu - 4w
=l H1 (Q) L2(Q)

for every t €I and for every UEHl (Q).

Assuming the regularity of the coefficients ajj {(x,t), the family
of bilinear forms is bounded in H1(Q), i.e.

(5) | alt;u,v)| <M |ul v s M >o0
1 (Q) H1(Q)
for every teI.

Under all the previous assumptions it can be proved [2] that:

given uo(x)eLz(Q) and f£(x,t) e inc)g there exists a unique
function u(x,t) € L2 (O,T;ﬂl(ﬂ )) such that

T I T
(6) (a(t;u,v)=(u,Vv ydt={ (£,v) dt+(u_,v(o))
& L2( Q) 5@ L2(Q) © L2(9)

for every v € W,(0,T) “); in addition
(7 Ju <c {]z + [l
o) L2 (o, T;Hl (@ )) o L2 (c) o L2(Q)
Equation (6) can be written in the form
n &
(8) [ (= aj5(x,t) Dyubyv) dx dt =~ [ (u-¥)dx 4t =
C i,3j=0 C

[ (£.v)dx dt + (ugy.v(o))dx
c Q

{1) We call WO(O,T) the space of real functions v(x,t), defined
on C, such that ‘VGLz(OpT;H; (02)), veL2(C),v(T) = O



Equation (8) represents the weak formulation for a linear parabolic
problem , as it can be proved [2] that:

a) <Autu,v>= (f,v) ,VEC?; (c)
L2(C)

therefore (in the sense of the distributions on C):
Au+u = f

b)  lim (u(x,t),v{x)) = (ug(x),v(x)) , veL?( Q)
£+0 L2(Q) L2(@)y

therefore u(x,t) tends, for t going to 0, toc wu,(x),

weakly in LZ(®);

c) ulx,t) = o for éx,t)o 68 XI ;A8 u(x,t)€L2(O,T;Hg(ﬂ ))

3. SPACE-TIME APPROXIMATION (PARABOLIC)

For sake of simplicity, we make reference to the following
one-dimensional problem, that prototypes the propagation of heat

in a wall

Problem PP

(9.1) ~kugyseou =f(x,t) (x,t) € C k.c real constants
(9.2) u{x,o0)=wug (x) x€]o,b

(9.3) u(o,t) = ulb,t) =0 te[o,T]

where 1t is assumed that
£ € 12(0,T;L% (b)) sug € L2 (0,b); ueL?(0,T;H](0,b))

The weak-formulation (8) applied to problem (9) gives

(10)  kllw, w))= cllw W) = ((£,v))+ ¢ (¥, V) vVEW(O,T)
T b b

where ({ )= [ f[(.)ax dt; v=v(x,0)% (,) ?.[o (.) ax
O [}

—S__



The domain [O,b] x [0,T] is partitioned into a finite num-
ber of elements spanning the space~-time subdomains [o,alx[os7] in
element-local coordinates. Inside the element the unknown function
u(x,t) is approximated by a bilinear function.

(11) u(x,t) = (1,x,t,xt)a =pa

where the parameters a= Nu are represented as a function of the
nodal values u of u(x,t). '

The approximating functions in p can be derived with respect
to x and to t, thus giving.

~ A
(12)  u~pNu;  uy>pNu; u=~pNu

The same approximation applies to V. Introducing (12) into
(10), and assembling over the elements the resulting discrete
equations,; one obtains

(13)  uTRyv - uTKev = £Fv + ugQvo

Where the expressions for Ky, Kgo Fy N are given in Appendix 1.
On the left hand side of eg. (13) the matrices Ky, K¢ can be con-
solidated into K = K,~K¢; the equations are partitioned into two
blocks, referencing with index 1 the terms related to time t=o,
and with index 2 the terms related to t=7T jthus

uy, t=o

(14) B?g 21}

;]

Notice that from (6) the “test" function v annihilates for t =7,
therefore.

¥4
(15) y_=vo={ i
o
Introducing (14) and (15) into (13) one obtains



(16) w1 Kqq vq+uzK2qvq=£F1vq{+uqQqqv1 vi{ € RO

eliminating v{,carrying the term with uq on the right.hand side,
and trasposing the equations, one finally obtains

T . . wl T T

Solving equation (17) in u, gives the required nodal values 2
of the unknown function u at the time t=7. The procedure can
iterate through any number of time steps. A few remarks:

a. - Equation (17), in its form, is not specifically related to
the one~dimensional problem PP, but is the general expression
of the space-time approximation to parabolic problems: it
would have the same form in a higher crder domain, or with a
higher order approximation 4provided hermitian polyouiials
are used, where the nodes are allocated, symmetrically,
either at t=o or at t=7T).

b. - The size 18 the same as for Galerkin method, i.e. the number
of nodal variables at:tdime t=o. We dont have here the
blow-up of the size of the numerical problem to the full
space~time dimensions, as in alternative approaches (see [5]).

C. = The matrix K?z is symmetric when linear approximation is

used, E@gaxdi@gﬁ cf the size of the domain; it could become
symmetric, though, with higher order approximation.

Therefore, solving a parabolic problem with the space-time finite
element approximation implies the same computational effort, at
each step, as with Galerkin method. The choice of either procedure

rests solely on theilr relative accuracy. The following numerical
tests try to make the point.

Netice that numerical stability is not of concern here, as
Galerkia method 1s npnconditlonally stable for parabolic problems,

P | *
An &Y

ime elements are presumed (but not proved) to be so,
from nvmerical evidence.



4. NUMERICAL TESTS (PARABOLIC)

A set of one-dimensional problems was selected to test the
numerical accuracy of space-time elements against *he "optimal”™
Galerkin method (¥ = 2/3, see for instance [6,7,8]). The compar-
iﬁ@@ iz made ueing the same  filw, discretization in space (n=9,
providing adeguate accuracy in space) and with the same, variable,
time step; the test is carried ﬁhxﬂ@gh nine time steps. The ana-
lytic solutd e
ured in

o is known for all te problems; the error is meas-

"
(18) Y =003 u dxg) - ou (xS Julxgd] x100
L n i=1 133 o |

at every tilme step. The pattern of wvariation with respect to time
of the L norm of error is plotted for the following test probiems:

P.P.1 - Ugeg =0 x € 10,1[

ulo,ty=ull,t)=0

vix,0)=sin & x

Fig. 1 and 2 show the superiocr accuracy of the space-iimns
elements at large time steps; they become . comparable, acouracy.-
wise, with Galerkln method at small time steps.

PoP.2 =—ugxtius{ @2t+l)sin wx  x € ]O,1]

u( 0,t)="(1,t)=0

wix,0)=0

The performance of space~time elements is overwhelming for a large
range of time steps (Fig. 3,4)



P.P.3 - gﬁxx+ﬁ“ﬁ x 6]051[

u(o,t)=u(1,t)=0

U(x,0)=0

For k=1, the space-time elements show instability at the end nodes,
for large time steps (Fig. 5); with lower time step, and filtering
the end nodes oyt of the computation of the error norm, the per-
formance becomes comparable with Galerkin (Fig. 6). For k=0,.2,

the tWo methods perform comparably, with Galerkin on the upper
side (Figs. 7,8). Further reduction of k to 0.1 brings the two
methods even closer (Figs. 9,10).

Notice that the poor performance, in this test, of the space-
~time elements is to be attributed to the discontinuity at the
boundary between forcing function and boundary conditions. The
continuity forced in by the element shape function perturbs the
nodes adjaceént to the boundary, that undergo oscillations; these
in turm can grow with time, affect other nodes and finally lead
to instability.

P.P.4 ~Ugey+1=2 T % (x—-1) x€ ]0,1[
u (o, t)=1
a(1,t)=0

U({x,0)=1-x%

P.P.5 “Uyy = ( w2t242t)sin @ x  x€]0,1[

QQOyt>xQ€1pt)=O

BW{x,0)=0

In these Bfoblems with £(t), space-time elements overdo Galerkin
at all time steps (Figs. 11 to 14)



5. WEAK FORMULATION FOR HYPERBOLIC PROBLEMS

Starting from a 2nd order ellyptic operator as defined in
par.[2, with the additional hypothesis that the operator be sym-
metric, i.e. that in eg. (1) ajy=ajj, and defining a family of
cohercive and bounded bilinear forms as in egs (3) and (4), it
can be proved [2] that: given Up&H)(Q), vy € L2(0), £(x,t)eL2(C),
there exists a unigue fucntion U(x,t) € WQG,T)§ﬁ§ such that

T T
(19) g@&ihﬁﬁyV)WQMrV} 5 \?ﬁﬁm §§f§V§ 5 dt+ (g, vyl 2,
o Le{ Q) e, L) L7080}

for every VEW(0,T) such that v{T)=0, and also
(20) u(x,0)=ug.
Equation (19) can be written in the form

n
(21) [(3  aiy(x,t)Djubgv)dxde- [ (4.V)dxdt=
C i,j=0 C

é(f.v)dxdt+(u1,vo)L2(£))

Equation (21) represents the weak formulation for a linear
hypexrbolic problem, as it can be proved [2] that:

an m
] RV A £
& “'(a,.&l.xﬂg)‘v > {fpV}LZ(C) ’VECO (C)
therefore
Autu=f

in the sense of the distributions on C:

(1) We call Wi{o,T) the space of real functions V(x,t) defined
on ¢, such that v € L?(0, ;8 (2)),v € L2(c)

- A0 -



® = 2
therefore u tends, for t going to 0, to uy weakly in L2(£2);
c) ulx,t)=o for every (x,t) € 0Qxi1

as uix,t) = agingﬁﬂg(iﬁ}P

6. SPACE-TIME APPROXIMATION (HYPERBOLIC)

For sake of simplicity we make reference to the following
one-dimensional problem, that prototypes the wave propagation
in a rod (zero damping)

Problem PI

(22.1) =Ky +pu=£ (x, t) xe ]0,bl, t = Jo,T|
(22.2) u(xiob=u0

(22.3) u(x,0)=d_

(22.4) u{o,t)=ulb, t)=0

the weak formulation (21) applied to problem (22) gives
(23) k((uygsvg) )= o (2,v) )= ((£,v))+p((Ug,v,))

Partitioning the domain [o,b] x[0,T] into space-time elements
[o,a]x[0,T), and using a bilinear approximating function inside
the element (see par. 3) one obtains for the assembled equations.

(24) UKy V-UK¢ ¢ v=EFV+IPY,
where the matrices Kxﬁﬁ%t,F,P axe given in Appendix 1 Calling
M=K, -K, ., partitioning egs (24) into two blokks, at time

=0 and t=T, as in par. 3 and introducing conditions (14) and

{15} one obtalns



B
(25) UqMqq ¥t 0Maq Yy =1F g vy Hag Py,

eliminating‘iﬁ,mnznqﬁmwgthm term with uwy on the right end side
and transposing the equations, one finally obtains

. T =l £opTi T
(26) M21 @E«»Figwiﬁ MY 4y

Solving eq (26) in U, provides the reguired nodal values of the
unknown function u at the time t=T. The same considerations a,b,c
made in par. 3 for parabolic problems apply here for the hyperbolic
ones. The only difference is that here éq, the vector of nodal
velocities is given only at t=0; at the subsequent time steps

é1 must be approximated, as the procedure produces only the nodal
displacements uq4 at each step.

After testing several techniques for approximating ug, it
was found that computing @2 at a time step close to T :

(27) b=wr |, o<y <2 , Y <1

and approximating the time derivative with the incremental ratio

(28) ;3131 :(Ez“‘ﬁz)/ | T ~Yr

may lead to unexpected accuracy of integration. Notice that in
eq (28) the terms on the right end side belong to, say, step n
of integration, while ﬁ1 is refered to step n+1.

The peak of accuracy occurs when the "optimal® value Yo of Y
is used. This can be easily computed:

.- the wave equations are integrated throughout a half wavelength
using an initial value Yy of Y , and the error eq in the
displacement (it shouldbe zero; the computed value coincides
with the errow) is recorded;

- 42 -



2., = the step is repeated with another trial value'u}: ey is
recorded;

3. - the optimal value %h is derived from linear extrapolation
on the two previously computed points:

(29) Y, = Y +eq Y2- ¥4
‘f‘fﬁ?‘“‘" @afg

<

Several numerical tests on problem PI have shown that &the relation-
ship between e and 1Y is indeed linear (see figs. 15,16,17);
therefore linear extrapolation is justified.

The accuracy obtained with %BF in the test problem, has
been superior to the accuracy obtained introducing into eq (26)
the exact value §g of the velocity.

In fig. 18 the values of the error e for the integration
of problem PI across the first wave—-length are displayed against
different values of mesh size, time step and Y .

7. NUMERICAL TESTS (HYPERBOLIC)

A set of one-dimensional wave propagation problems (zero
damping) was selected to test the numerical accuracy of space~time
elements againts Newmark's method (see [9]) (ym1/2,ﬁ}=o; it
coincides with central differences, that have shown [8]to be the
most accurate Galerkin-type operator for the undamped wave
problemns) .

The comparison is made with the same, fix, space discretization
w07 and with the same, variable,
time step; the latter is tuned to the problem, in order to fall
below the stability limit. Here, as for parabolic test problems,
the exact solution is known, the error is computed at all time
steps and displ ayed.

- 13 -



PoI. 1 “uxx"'ﬁﬁo XE]OyJE’[

wlo,tl=ulr, t)=0

the displacemn:

discretizatio: the @wmain}

and for different time steps, aga soluticn (solid
line). In fig. 19; with the coarse mesh and step, space-time
elements perform quite well, while CGalerkin is scon out of phase;
improving the time step doesnt help Galerkin (fig.23). Improving
the mesh (fig. 20,21) leads  the space-time elements to negligible

errors and Galerkin to a reasonable performance.

elo,1 [

In such a problem with f(t) the amplitude of the wave grows
linearly with respect to time. The displacement of the midpoint
is shown as a function of time in figs 23 and 24. Space-time
elements perform quite well, while Galerkin shows a loss of
accuracy in time almost insensiblé to the time step.

P.I. 3 wmxx+§w(2+t2az2}$imﬁyxx} xe lo, 1]

same initlal and boundary conditionsg as in P.T.2 Here
the amplitude ¢f the wave grows quadratically with respect to time.
The same relative considerations as for the previous test apply
(see figs 25 and 263.

§
-
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8. CONCLUSIONS

The discretization of the variational theory for parabolic
and hyperbolic operators developed by Lions and Magenes [2] has
proved to produce, at the same computational costs, an outstanding
numerical accuracy, compared with the optimal Galerkin methods.
The authors propose the following explamation: introducing into

the discretized eguations both the initial conditicns on the

oy . .
1w (vi{TY=0) on the

unknown function v and the
test function v, leads to selving a linear set of eguations in
ury=u(T) with the matrix K¢z, i.e. the off-diagonal matrix of the
space~time elements i.e. the matrix connecting the values of

u at t=o0 an at t=T namely the eveolution matrix. Galerkin methods
on the other hand solve with Kq9, namely with the distribution
matrix, Whenever a physical phenomenon evolves rapidly, space-time
elements should pick it up better. The ogustanding accuracy for

time~dependent problems prove it.
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APPENDIX 1

Development of space-time stiffness matrices.

W$(1 @th,xt) {a‘1 5a25a3l a4}

a=Ny u~pNu 1 0
-1/a 1/a
N =
-1/% 0
_1/azt -1/arv

upo=p Nu; P=(0,1,0,t)

AA A
Ug=pg=pNu ; p=(0,0,1,x)

k ( (Ug, Vy) )=k uUNDpPNv dxdt

O temmy 2}
Q=

4 5 1 -1
= WK,v; K,=k t [ A §A7 ; A%; ]
s B ¢ S - oo 4
* 3 {%A A} L

a
o T & . a
c({v,v))= c [ | uNppNv dxdt
o O

~-B B 1 3
== uRtyﬁ K= ¢C % E—B B}; B=[% 1]
£~ <« =p N £
: B iB
((£,v))=£fFv F=

Q|
|

udﬁgéwgo Egziﬁyxi0,0)

AugeVg) =u_Qv_; Qn% ¢B

- 17 -

o) <
O
0
1/av




.. T a /m®
o(fu,v))= o [ uNppNv dxdt
o ©

B ~B

=g Kep i Kee=lea | ]
i ¢ =B B
]
(4 Yoy e =
@» t% u(} & v@ g ﬁQP""’O 1 P ?

p BB

18 -
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