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ABsTrACT: This work focuses on avalanche photodiodes based on GaAs/AlGaAs with separated
absorption and multiplication regions (SAM-APDs). The two regions are separated by a thin p-
doped layer which, under the application of a reverse bias, is able to confine the potential drop only
in the multiplication region. We realized such layer under the form of either a ¢ sheet of C atoms
or a 50-nm-thick GaAs:C layer. Devices with these two structures will be discussed and compared
in terms of capacitance and response to light.
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1 Introduction

Fast, low noise X-ray detectors based on Avalanche PhotoDiodes (APDs) have the potential to pave
the way to new and significant applications in scientific contexts such as synchrotron radiation
facilities and free electron lasers. APDs have been traditionally based on silicon, as it is the most
mature and robust technology. However, with the advent of latest generation light sources, more
stringent requirements are put on detectors. In particular, in the energy ranges above 15 keV
available in such sources the absorption of silicon drops considerably. To this aim, in GaAs-
based semiconductors the higher Z number of Ga and As compared to that of Si leads to a much
higher absorbance [9] and, accordingly, much thinner absorption regions are sufficient, resulting,
in principle, in improved time resolution. However, a drawback of III-V materials is the similarity
between electron and hole ionization coefficients, which increases the multiplication noise [2].
To compensate for this effect, band-gap engineered heterostructures have been proposed, which
promote electron multiplication only [1]. In this respect, AlGaAs alloys can be synthesized in
multilayers with varying composition within the device with state-of-the-art epitaxial techniques.
We are developing APDs following such concept [1, 3, 11] including separated absorption and
multiplication regions (SAM-APDs), see figure 1c. The two regions are separated by a thin p-
doped layer, with the aim of confining the potential drop mainly in the multiplication region under
application of a reverse bias. In previous works [6], we have shown that acceptor sheet densities p
of at least 2.5 X 10'? cm™? are needed to obtain a complete electrostatic separation between the two
regions. In this work, we have studied the behaviour of SAM APDs as p exceeds such threshold
value. We found that up to 2.5 x 10'> cm™2, p doping can be realized as a & layer of C atoms
(i.e., a 2D sheet of C atoms deposited during a growth interruption of the host GaAs material).
However, since for higher C concentrations compensation effects take place [4], higher p dopings
were obtained in 50-nm-thick GaAs:C layers. We have compared the capacitances under reverse
bias of such devices and taken into account their response to visible light.

2 MBE growth and electrical characteristics

SAM APD samples were grown by Molecular Beam Epitaxy (MBE) following the protocols
described in [6]. The p-doped layer separating the absorption and multiplication regions was



photogeneration

[ 33
p-GaAs

c

impact ionization
! 0

/
/
/
/

[

b/
Cr/Au p-contact A0y
200 nm
\ - ‘/

absorption

region GaAs 4.5 pm
GaAs 35nm

multiplication Al,Ga;,As 20 nm 12 times
fegion AlossGaossAs | 25nm
GaAs 35nm

100 nm

,
500 pm

\ substrate
Ge-Au/Ni/Au n-contact

Figure 1. Schematics of the SAM-APD device structure (a), the layer sequence (b), and the band profiles
under an applied bias (c). A 12x staircase GaAs/AlGaAs multilayer (multiplication region) is electrically
separated from a 4.5 nm-thick GaAs absorption region by a p-doped layer, which ensures that, after applying
a reverse bias, the vast majority of the potential drops in the multiplication region.

deposited under the form of either a ¢ sheet of C atoms or a 50-nm-thick GaAs:C layer. We
calibrated the effective acceptor density in both cases by measuring the free carrier concentration
at room temperature in a series of bulk GaAs samples containing either a ¢ or a 50-nm doped layer,
with different planar densities of C atoms (figure 2), obtained by varying the current through the
graphite filament of a carbon sublimation source. It was found that 6 p-doped C layers are highly
compensated, likely owing to atomic pairing [4]. Compensation takes places in the thin GaAs:C
layers as well, although to a lesser extent. The maximum achievable acceptor densities were
2.5% 10" cm™2 and 1.2 x 10'3 cm™2, respectively. In the ¢ doping case, the dopant concentration
p drops below its maximum by further increasing the source current.

Two SAM-APDs with the epitaxial structure of figure 1b and characterized by a mesa of
600 um in diameter were grown by using either a ¢ carbon layer with p = 2.5 x 10'? cm™
(device A) or a 50-nm GaAs:C with p = 6 x 10'> cm™ (device B) to separate the absorption and
multiplication regions.

The devices were fabricated as illustrated in figure la by the standard fabrication procedure
described in [6], with the only difference that the passivation layer used was alumina (Al,O3).

In order to compare the shielding effect of the two doping distributions, the capacitance of
devices A and B was measured as a function of the reverse bias, under dark conditions and at
room temperature. These measurements were performed through a precision frequency LCR meter
(HP4284A). The test signal was sinusoidal with a magnitude of 30 mV rms. These measurements
were carried out at reverse voltages between 0 V and 35 V. The width of the depletion layer of the
diodes as a function of the applied voltage was computed by using the measured capacitance as
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where A is the area of the mesa, C is the measured capacitance, ¢, = 12.6 [7] and gy = 8.854 -
107'2 F/m are the equivalent relative permittivity of the active region (calculated as the average
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Figure 2. (a) Schematics of the structures used for calibration of the p doping density; (b) acceptor density in
the C-doped layers as a function of the 2D density of C atoms, showing that the effective 2D doping density
is much lower than the 2D density of deposited C atoms. The dash lines are just to guide the eye.
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Figure 3. (a) Experimental CV characteristics of devices with § separation layer of acceptor density of
2.5x 102 cm~2 (A) and 50-nm separation layer of acceptor density of 6 X 10'2 ¢cm~2 (B); (b) their respective
depletion width.

value of the permittivity of the different materials in the depletion region) and the permittivity
of vacuum, respectively. Figure 3a shows the capacitance per area of the two photodiodes under
comparison. The depleted width is in both cases close to 1 um (figure 3b), which corresponds to the
thickness of the multiplication region. This shows that for the whole voltage range considered both
the ¢ and the 50-nm p layers are able to separate completely the two regions from an electrostatic
point of view, confining the potential drop mainly into the multiplication region. It can be seen,
however, that for device A the depletion region starts to leak weakly into the multiplication region
too for the highest biases.

Looking closer into the shape of the CV curves we can calculate the profile of p-dopant concen-
tration inside the device, P(d), by using the equation for general nonuniform distributions [8, 10]
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Figure 4. Dopant concentration profile as a function of depletion width for devices A (a) and B (b). The
blue dots represents the measured values, while the red continuous curve is the results of a polynomial fit of
the inverse of the capacitance optimized with the least squares method, both obtained by using Equation 2.2.
The fitting polynomials were introduced in order to obtain (after differentiation) noiseless reference curves
which show the profiles also where the measured data become noisy.

where Cj, is the capacitance per unit area of the mesa, V is the applied bias and g is the elementary
charge and d is the depletion width, related to C4 through the data of figure 3. Since we are probing
values of d in the proximity of the depletion width, we are sensitive to the charge distribution around
the p-doped layer. From these analyses (figure 4) it follows that in the case of the 50-nm separation
layer (B) the dopant concentration as a function of the distance below the junction between the p-
layer and the intrinsic layer (which corresponds to the depletion region) grows monotonically. This
trend testifies how the layer shields the absorption region in a way that the field has no measurable
effect beyond the p-layer, at least within the voltages of operation. On the other hand, in the ¢ case
the carrier concentration has a bell shape due to the drop in capacitance, which starts to occur in the
devices with a just sufficient carbon concentration (A), meaning that in this case we start depleting
beyond the ¢-layer in the absorption region, as seen in figure 3b above.

3 Response to light

The devices were tested under a thermostated green tabletop laser (1 = 532 nm) to asses their
response to light. Though they are suitable to be used under X-rays, the laser source was chosen in
order to have ideal injection conditions (penetration depth = 140 nm [13]), meaning that electron
and hole pairs are created just in a thin portion of the absorption region, not across the entire
structure as when using higher photon energies. To compare the light responses of the devices we
use the gain which is defined as

M = Iy /Lopo 3.1)

where I, is the difference between the measured photocurrent and the current measured under dark
conditions and Iypo is Ipn when the multiplication does not occur [12]. The currents (figure 5a)
were acquired through a 4-channel picoammeter (AH501 by Elettra). These data show that the
absolute values of the photocurrent are higher in the case of device A even though the photon
flux during acquisition was slightly lower (1400 vs. 1600 uW). This could be explained by the
fact that device A has a small residual field in the absorption region. This residual field makes



the created electrons drift towards the multiplication region, providing a better charge collection
above 25 V. In absence of this field the charge carriers move just by diffusion resulting in a smaller
charge collection efficiency and subsequently a smaller photocurrent even under higher photon flux
(<1600 uW) in the case of the device B. The higher collection efficiency is also due to the different
profile of the conduction band in the two cases, as it can be seen in figure 6. In fact, figure 6 shows
that at higher concentrations (B) of the separation layer there is a larger initial step for the electrons
to overcome with respect to the one obtained at lower concentrations (A). However, comparing the
gains (figure 5b) of the devices A and B we can not see a significant difference in the behaviour.
This is in agreement with the fact that the variation of the electric field intensity in the multiplication
regions is relatively small compared to the already present one and it has no significant impact on
the multiplication process.
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Figure 5. Currents (a) and gain (b) for device A (blue curve) and device B (magenta curve) as a function of
the applied reverse bias. The power of the photon fluxes during the acquisition of the photocurrents for A
and B were 1400 yW and 1600 uW, respectively.

4 Conclusions

We have studied the influence of the p-doped layer separating absorption and multiplication regions
in GaAs/AlGaAs-based SAM APDs on their electrical characteristics and response to light. We
have found that, in order to increase the doping above the minimum required to obtain sufficient
electrostatic separation (2.5 x 10'2 cm™2), a thin (50 nm in our case) GaAs:C layer is needed, instead
of the § doping. Reverse-bias CV characteristics show that 2.5 x 10'> cm™2 doping is enough to
confine the potential drop mainly in the multiplication region. However, a more detailed analysis
reveals that, in contrast to higher doping, the depleted region extends slightly beyond the p layer
for the highest applied biases, creating a residual field in the absorption region. This field seems to
be beneficial for the collection efficiency of the devices as shown by comparing the absolute values
of the photocurrent, while it does not influence significantly the multiplication process. Moreover,
the higher concentration results in an obstacle for the electrons which are less likely to reach the
multiplication region. In future, beside a further optimization of the dark characteristic, new devices
with thicker absorption regions will be implemented and fabricated to be suitable under hard X-rays.
Such thick layer could be obtained by MBE growth or using with advantage the intrinsic substrate
as absorption region.
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Figure 6. Conduction band profile, at different bias voltages, of the SAM-APD device structure in the
surrounding of the layer dividing the absorption and the multiplication region. The red curve (device B)
results always higher compared to the black one (device A), which means that the electrons encounter more

difficulties in reaching the multiplication region in the first case compared to the latter one.
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