

Joint Device Association and Resource
Allocation for Time-critical IoT Applications

in MEC-empowered 5G Networks

S. Bolettieri, R. Bruno, E. Mingozzi

TECHNICAL REPORT
IIT TR-03/2021

Joint Device Association and Resource Allocation
for Time-critical IoT Applications in

MEC-empowered 5G Networks
Simone Bolettieri, Raffaele Bruno

Institute of Informatics and Telematics (IIT)
Italian National Research Council (CNR)

Pisa, ITALY
Email: {s.bolettieri,r.bruno}@iit.cnr.it

Enzo Mingozzi
Department of Information Engineering

The University of Pisa
Pisa, ITALY

Email: enzo.mingozzi@unipi.it

Abstract—Edge computing is emerging as an effective solution
to fulfil the requirements of time-critical Internet of Things
(IoT) applications by enabling the execution of data processing
tasks at the network edge, in proximity to data producers.
In particular, Multi-access edge computing (MEC) is attracting
considerable interest in the mobile telco industry, as it supports
edge computing capabilities within the mobile cellular network.
However, to improve the network efficiency and QoS support of
MEC systems, it is essential to jointly optimise edge resource
management, IoT data collection and IoT device association in
the context of heterogeneous services and edge resources. In this
study, we address these challenges by first formulating the resource
allocation, device association and data routing problem in a multi-
cell MEC network as a mixed-integer non-linear programming
problem that minimises the utilisation of communication and edge
resources. We also propose a best-fit greedy heuristic method to
determine an approximate solution to the optimisation problem
for online resource management. Simulation results confirm the
effectiveness of the proposed algorithm compared to three alter-
native benchmarks.

Index Terms—mobile edge computing, IoT, service placement,
device association, joint optimisation

I. INTRODUCTION

In recent years, many time-critical IoT applications have
emerged in the smart-city domain, which require the real-
time processing of streams of sensed data from multiple
sources. Typical examples are surveillance tasks where data
from networks of sensors and cameras are analysed for scene
reconstruction, human activity recognition or precise object
tracking [1], [2].

Edge computing is proposed as a promising solution to
satisfy the stringent low-latency requirements of these data-
intensive IoT applications. It makes computation and storage
capabilities available on edge devices in the access networks,
thus helping in overcoming the fundamental latency limitations
of centralised cloud systems [3]. In particular, Multi-access
edge computing (MEC) is attracting considerable interest in
the mobile telco industry, as (i) it supports the edge computing
paradigm within the future 5G-based mobile networks [4], and
(ii) it offers services that allow applications to exploit user

proximity information (e.g., connection and location informa-
tion of devices connected to a particular cell or access point)
to improve QoS [5].

MEC servers (hosts) have more limited capacities than cloud
counterparts. Thus, the design of optimised strategies to select
where to execute services in a MEC network in order to both
provide the best possible QoS for the user applications, and
to accept as many requests as possible, has received a lot
of attention [6]–[9]. However, prior work typically adopts a
user-oriented perspective as the computing demands directly
originate from the users’ devices, which are also the producers
of the data to be processed. On the contrary, the above-
mentioned IoT applications require that a non-trivial amount of
data is collected from dispersed IoT devices and then processed
and analysed. Besides, multiple paths can be used to route the
data traffic to the associated services, depending on: (i) the host
on which each service is running, (ii) the set of IoT devices
that are producing data for that service, and (iii) the particular
base station with which such IoT devices are associated. There
is only a handful of research studies that jointly consider the
problem of device association and resource allocation in MEC
networks. For instance, the authors in [10] address the problem
of multi-task offloading and user association to minimise the
total energy consumption of mobile users and MEC servers
in a multi-cell network. A strategy for resource allocation and
users’ association is proposed in [11] to minimise the weighted
sum of delays of both computing services and content delivery
services. Content placement and user association in small cell
networks is analysed in [12] to minimise the average content
download delay. To the best of our knowledge, the problem of
efficient resource utilisation with joint device association, data
routing and service placement in a multi-cell MEC network for
latency-sensitive IoT applications that collect data from multi-
ple sources is still an open challenge. The key contributions of
our work can be summarised as follows:

• We formulate an optimisation framework to jointly perform
communication, computation and storage resource allocation,
device association and data routing for time-critical IoT
applications in multi-cell MEC networks aiming to minimise
the network load and the utilisation of MEC resources. We

account for practical features of this system, such as overlap-
ping coverage regions of base stations, inter-cell interference,
and communication delays between MEC hosts.

• We develop a best-fit greedy heuristic method to determine a
sub-optimal solution of the resource allocation problem for
online resource management.

• We conduct an extensive simulation study to compare the
efficacy of the proposed strategy with three benchmarks that
perform device association and resource allocation indepen-
dently. We show that our proposed strategy performs close-
to-optimal.

II. SYSTEM MODEL

In this section, we first introduce the model of our MEC-
enabled system supporting delay-sensitive IoT monitoring and
processing applications. Then, we present the communication
and edge computing model.

A. System overview

We consider a heterogeneous cellular network consisting of
one MBS and M SBSs underlying the same macrocell. Let
B = {bo, b1, . . . , bM} denote the set of base stations, where
b0 is the MBS. Furthermore, we assume that there are N
IoT devices (also denoted as UEs) in the macro cell, denoted
as U = {u1, . . . , uN}. Each IoT device is equipped with a
sensor that is used to collect measurements, e.g. about an
environmental parameter, periodically. Let li denote the size
(in bytes) of the data payload of a sensor measurement from
device ui. We also consider that an IoT device is restricted to be
associated with one base station at any time, and Bi denotes the
set of SBSs covering device ui. Each base station is equipped
with a MEC host (i.e. a server providing a virtualisation
infrastructure) with heterogeneous computation and storage
capability. Specifically, it is assumed that base station bm has
a storage capacity of Γm bytes and a computation capability
∆m, measured in the number of CPU cycles per second [11].
Without loss of generality, we can also assume that the MBS
hosts the MEC resource orchestrator that decides about resource
allocation and association decisions between devices and base
stations within the cell. Typically, each SBS is connected to the
MBS via a backhaul link, which is either a physical link (wired
or wireless) or a virtualised link created using the MEC-enabled
virtualised network infrastructure [13].

In this study, we focus on a class of delay-sensitive IoT ap-
plications that perform inference tasks over spatially dispersed
sensor data streams periodically. These applications typically
require the periodic collection of sensory data from multiple
sources, which need to be processed within a deadline, e.g. to
be used as feedback in a control loop. Furthermore, we target
periodic applications, namely the inference tasks are invoked
with a fixed periodic schedule, such as in typical surveillance
applications of physical phenomena or industrial monitoring
applications [14]. More formally, a generic computation task sj
is described through a requirement vector 〈Uj , Tmax

j , δj , γj , 〉,
where Uj⊆U denotes the geographical scope of the application,
i.e., the set of sensors producing the real-time data that is
processed by the task; δj is the number of CPU cycles required
to execute the inference tasks on one byte of input data;

and γj is the storage space occupied by the persistent data
associated with the task (e.g., code). We point out that the
processing task of application j also needs additional storage
space beyond γj to store the input data collected from sensors
during each service execution period. Without loss of generality,
we can make the simplifying assumption that the task execution
deadline is equal to the periodicity of the computation process.
In other words, the outcome of the computing tasks is due
by the end of the service period. Finally, we assume that
there is a set S of K independent computation tasks that
need to be deployed on the MEC-enabled edge system to
reduce the load in the mobile core network and to avoid the
long network latencies to a remote centralised cloud. However,
given the heterogeneous characteristics of the edge servers and
the differences in available channel bandwidth between base
stations, an appropriate strategy for resource allocation and
device association is needed to ensure that the task execution
constraints are fulfilled without wasting resources. We elaborate
more on this in the following sections, wherein we describe the
communication and computation models in detail.

For the sake of notation simplicity, in the following, we
use the index i, j and m to denote device ui, application/task
sj and baste station bm, respectively, if no ambiguity occurs.
Furthermore, we use m to refer to both the base station bm and
the MEC server hosted on that base station.

B. Communication model

As in [15], we assume that the bandwidth resources are or-
thogonal between the MBS and SBSs, and the overall uplink
bandwidth of the MBS and SBSs is denoted as Bu

0 and Bu
s ,

respectively. Furthermore, IoT devices that are associated with
the same base station are also allocated orthogonal spectrum.
Therefore, in this study, we only account for inter-cell inter-
ference between UEs associated with SBSs. Specifically, we
define xmi ∈ {0, 1} as the association decision variable, i.e.,
xmi = 1 if device i ∈ U is associated with base station m ∈ B,
and xmi = 0 otherwise. Furthermore, we define αm

i ∈ [0, 1]
as a decision variable that expresses the fraction of the uplink
bandwidth of base station m that is assigned to UE i by the
scheduler of that base station. Under an OFDMA-based access
scheme, which allocates specific patterns of sub-carriers in the
time-frequency space to different users, the instantaneous data
rate for UE i is simply given by

Rm
i = Bu

s · ηmi · αm
i ,∀m ∈ {0,M} , (1)

where ηmi is the spectrum efficiency of the uplink for UE i
associated with base station m. If UE i is associated with SBS
m (m 6= 0), the spectral efficiency of the uplink will be given
by:

ηmi = log2

1 +
PiG

m
i

σ2
m +

N∑
i′=1
i′ 6=i

M∑
m′=1
i′ 6=m

αm
i α

m′
i′ Pi′Gm

i′

 , (2)

where Pi is the transmission power of UE i, σ2
m is the power

of the Gaussian noise at base station m, Gm
i is the channel

gain between UE i and base station m, and the summation is
the inter-cell interference due to active IoT devices associated
with other SBSs. For the sake of simplicity, we assume that
radio access resources are assigned to devices in a random and
independent way. Hence, (αm

i ×αm′

i′) represents the probability
that two devices i and i′ associated with two different SBSs
share the same channel resources.

Similarly, if UE i is associated with the MBS, the spectral
efficiency of the uplink is simply given by:

η0i = log2

(
1 +

PiG
o
i

σ2
0

)
, (3)

as the uplink transmissions to the MBS are not affected by inter-
ference from the uplink transmissions to SBSs. It is important
to point out that the average path loss between devices and
SBSs is typically smaller than between devices and the MBS
due to the proximity to SBSs. Finally, the complex interplay
between scheduling decisions at SBSs (i.e.αm

i) and inter-cell
interference among SBSs introduces multiple non-linearities in
the problem formulation. As discussed later, this dramatically
affects the computational complexity of the problem.

C. Edge computing model
In our model, the computing task j ∈ S has to be executed
within the Tmax

j deadline. Let T total
j denote the total execution

time of task j. It must hold that T total
j ≤ Tmax

j . It is
straightforward to observe that the execution delay for a task j
deployed on MEC server m consists of the processing latency,
say T cpu

j , and the total time that is needed to collect all
the sensed input data generated by the devices in Uj , say
T data
j . Thus, the completion time of the inference task can be

expressed as
T total
j = T cpu

j + T data
j , (4)

We next discuss how to compute the T cpu
j and T data

j variables.
For the sake of clarity Fig. 1 illustrates the different time
components of T total

j .

Access
Segment

Backhaul
Segment

Server
Segment

device i

BS mi host mj

task j

!"#$%!&,"(!&%$

!&,")*+*

Fig. 1. Schematic diagram of the different components of the service execution
latency.

1) MEC server processing latency: We let ymj ∈ {0, 1} be
the decision variable that indicates whether or not the MEC
server hosted on base station m has to execute task j. Hence,
ymj determines the service placement policy, which is essen-
tially a rule for choosing which edge node to use for running
the application. In this study, we assume an elastic computation
model, i.e., a fraction βm

j ∈ [0, 1] of the computational capacity
of base station m is allocated to task j. Then, the computation
delay for the deployed task can be expressed as

T cpu
j =

(∑
i∈Uj li

)
δj

βm
j ∆m

. (5)

The above expression accounts for the total amount of input
data (i.e.,

∑
i∈Uj bi) that has to be processed by the task j

during each execution period.
2) Data collection latency: To compute the overall data

collection latency for task j, we introduce T data
i,j , defined as

the time that is needed by device i to transmit the input data
of size li to the MEC server on which the task j is running.
As shown in Fig. 1 this latency consists of two components.
The first one is Tup

i , defined as the time to transmit the input
data from the source device i to the base station with which
the device is associated. This transmission latency depends on
the uplink transmission rate of device i, which is given by

Tup
i =

∑
m∈B

xmi
li
Rm

i

. (6)

The second component of the transmission latency is denoted as
T b
mi,mj

, and it expresses the time needed to transmit the input
data from the base station with which device i is associated
(say mi) and the MEC server that runs application j (say mj).
For the sake of generality, we assume that two MEC hosts
are connected through a virtual data path pmi,mj , which is
established by the MEC virtualisation infrastructure to ensure
guaranteed transmission delays. Specifically, path pmi,mj

can
be modelled as a set Hmi,mj

of virtual links, and the k-th link
in this set introduces a fixed transmission delay equal to ωlk .
In summary, the delay of collecting the input data for task j
from device i is given as follows

T data
i,j = Tup

i + T b
mi,mj

= Tup
i +

∑
mi∈B

xmi
i

∑
mj∈B

y
mj

i

∑
l∈Hmi,mj

ωl . (7)

We remind that we consider inference tasks that require data
from multiple sensors that can be spatially dispersed within
the cell. Since we assume that the data processing task of
an application can only start when the MEC server executing
that task has received all the input data, it holds that the data
collection delay is determined by the maximal value of the
transmission latencies of different data sources. Thus, it holds
that

T data
j = max

i∈Uj

(
T data
i,j

)
. (8)

It is important to observe that the same device i can generate
data for multiple applications that are deployed on different
MEC hosts. In this study we assume that each sensor produces
a single data stream with a fixed data rate that is sufficient to
meet the latency requirements of the most time-critical service.
Then, the MEC host of the base station with which device
i is associated, acts as a data proxy that replicates the same
data to the other MEC servers requiring that input data. This
design approach not only reduces the traffic to be transmitted
on the uplink but also allows us to compute the T data

j value
independently for each application.

III. JOINT DEVICE ASSOCIATION AND EDGE RESOURCE
ALLOCATION: PROBLEM FORMULATION

In this section, we formulate the device association and edge
resource allocation as a multi-objective optimisation problem.

Specifically, the optimisation function aims at minimising the
resource consumption while finding a feasible resource al-
location and association assignment that fulfils the latency
requirements of requesting services.

First of all, let us define x = {xmi } as the vector of device
association decisions; y = {ymj } as the vector of application
placement decisions; α = {αm

i } as the vector of data rate
allocation; and β = {βm

j } as the vector of computation
resource allocation. Then, the total data traffic that is distributed
among the MEC servers is given by

F (x,y) = (9)∑
i∈U

∑
md∈B

xmd
i

∑
j∈S

∑
ms∈B

yms
j

(
bi ·
∣∣Hmdi,msj

∣∣)
The rationale behind (9) is that the data generated by a device
i and transmitted over the path p to input the processing task j
has to be replicated on each virtual link of the backhaul network
path pmdi,msj

. In addition to the backhaul traffic F (x,y), we
also measure the resource consumption of the whole system in
terms of S(x,α), defined as the total normalised spectrum util-
isation, and C(y,β) defined as the total normalised utilisation
of the edge computing capacity. By definition, it holds that

S(x,α) =

∑
i∈U

(∑M
m=1 α

m
i ·Bu

s + α0
i ·Bu

0

)
M ·Bu

s +Bu
0

, (10)

and

C(y,β) =

∑
j∈S

∑
m∈B β

m
i ·∆m∑

m∈B∆m
, (11)

Now, we formulate the optimisation problem as follows:

min µF (x,y) + S(x,α) + C(y,β) (12a)

s.t. T total
j ≤ Tmax

j , ∀j ∈ S (12b)∑
m∈B

xmi = 1, ∀i ∈ U (12c)∑
m∈B

ymj = 1, ∀j ∈ S (12d)

∑
j∈S

ymj

γj + li
∑
i∈Uj

li

 ≤ Γm, ∀m ∈ B (12e)

∑
i∈U

αm
i ≤ 1, ∀m ∈ B (12f)∑

i∈U
βm
i ≤ 1, ∀m ∈ B (12g)

The optimisation function is a combination of the three objec-
tive functions (9), (10) and(11). The weighting coefficient µ
is needed to ensure a proper scaling of the F (x,y) function,
and to avoid that solutions with low computation and storage
costs but high backhaul traffic are not considered. Constraint
(12b) guarantees that the service execution latency is bounded
by the execution deadline. Constraints (12c) and (12d) ensure
that in a feasible solution a device is associated with only
one base station, and an application is deployed on only one
MEC server, respectively. Constraint (12e) guarantees that the
total amount of service data placed in a MEC server does not
exceed its storage capacity. Constraint (12f) ensures that the

total bandwidth resources assigned to devices associated with
a base station do not exceed the available bandwidth of that
base station. Similarly, constraint (12g) ensures that the total
computation resources assigned to the tasks running on a MEC
server do not exceed the overall computation capacity of that
server.

Model linearisation: Problem defined in (12) is a non-
convex mixed-integer non-linear programming (MINLP) prob-
lem, which is NP-hard and difficult to solve even for small
problem sizes. However, it can be reformulated into a MILP
problem by applying both exact and approximated linearisation
techniques [16]. Due to space constraints, we do not discuss
in detail the linearisation procedure for the problem in (12),
but we sketch the line of reasoning we follow. First of all,
we approximate the logarithm function in equation (2) using a
multivariate linear regression model. The training data points
are selected on a regular grid of αm

i values. In order to reduce
computational effort, we reduce the number of independent
variables in the model by assuming that two UEs interfere
only if they are sufficiently close. Now, we linearise the service
completion time in (4). First, we observe that equation (5) is
a nonlinear term because the decision variable βm

j is at the
denominator. However, to linearise this fraction, we can sub-
stitute βm

j with L auxiliary binary variables, each representing
a discretisation step for βm

j . Then, we leverage these auxiliary
variables to move the original decision variable to the numerator
of the fraction. A similar non-linearity condition holds for
equation (7). Finally, equation (8) in nonlinear as it includes
a max function, but a linearisation transformation of the max
function exists that requires the use of |S| additional continuous
variables. It is important to point out that our relaxed version of
Problem (12) decreases the computational difficulty of solving
the problem. However, the optimal solution in the relaxed
problem may be sub-optimal. Furthermore, the linearisation
transformations come at the cost of introducing several new
auxiliary variables, thus increasing the size of the state space.

IV. A BEST-FIT GREEDY HEURISTIC

As pointed out previously, Problem (12) is NP-Hard, and it can
be solved in reasonable time only for small problem instances.
To support online decision making, we also propose a best-fit
greedy heuristic (called BFG) with backtracking that determines
a sub-optimal solution of the original problem. The pseudo-
code of BFG is reported in Algorithm 1.

BFG defines an order relationship among the tasks to deploy.
Then, it greedily moves among the configurations that minimise
the objective function (12a). Specifically, the heuristic creates
an ordered list Ŝ of tasks from set S using the Earliest Deadline
First (EDF) scheduling method [17] (line 2). In other words,
BFG gives the highest priority to the task whose deadline is
the closest. Then, the heuristic enters a loop by testing the
deployment of each service j′ ∈ Ŝ following the priority
order (line 4). First, it creates a set B̂j′ (line 5) with all the
base stations that have sufficient available storage resources
to execute task j′ (i.e., satisfying constraint (12e)). Now, the
heuristic iterates among the base stations in B̂j′ to discover
a feasible device assignment and resource allocation with the
lowest value of the objective function. Specifically, at each

Algorithm 1 - BFG Algorithm.
Input: U ,B,S
Output: vars = {x∗,y∗, α∗, β∗} . Optimal set of decision

variables

1: Ω← {∅} . Initialise the set of allocated services
2: Ŝ ← SORT(S) . increasing order of Tmax

j (j ∈ S)

3: while (Ŝ 6= {∅}) do
4: j′ ← list(Ŝ).pop()
5: B̂j′ := set of m ∈ B satisfying (12e)
6: varsc ← vars . shadow copy of current decision variables
7: for all (m′ ∈ B̂j′) do . Greedy search
8: vars← varsc
9: Ûj′ ← SORT(Uj′) . decreasing order of Ri,max

(i ∈ Uj′)
10: coveragej′ ← |Ûj′ | . # points to cover
11: while (Ûj′ 6= {∅)}) do
12: i′ ← list(Ûj′).pop()

13: B̃i′ := set of m ∈ Bi′ , eligible for i′ association
14: B̂i′ ← SORT(B̃i′) . decreasing order of backhaul

traffic F (x,y)
15: while (B̂i′ 6= {∅}) do
16: m′′ ← list(B̂i′).pop()
17: if (ALLOCRES(i′, j′,m′,m′′) = True) then
18: coveragej′ ← coveragej′ − 1
19: break . Test next i′

20: end if
21: end while
22: end while

23: if (coveragej′ > 0) then
24: continue . Test next m′ ∈ B̂j′

25: else
26: varsj′ [].push(vars)
27: end if
28: end for

29: n := element in varsj′ [] that minimises (12a)
30: if (BACKTRACE(varsj′ [n]) = True) then
31: vars← varsj′ [n] . Commit Allocation
32: end if
33: end while

iteration, a new base station m′ ∈ B̂j′ is selected and a greedy
search is started (line 7), using the same set of consolidated
decision variables (line 8). The goal of this greedy search is
to iterate among the IoT devices in Uj′ to decide a device
assignment and resource allocation that do not violate the
execution deadline of task j′. More precisely, for each i ∈ Uj′
BFG computes the maximum data rate, say Ri,max, that device
i could obtain from the base stations it can associate to1. Then,
BFG creates an ordered list Ûj′ of devices from set Uj′ given
the highest priority to the device with the lowest Ri,max (line
9). Now, BFG iterates among the devices in Ûj′ (line 12). First,
it creates the set B̂i′ of available base stations with which device
i′ can be associated (line 13). Clearly, if device i′ is already
associated with base station m from a previous BFG iteration,
it holds that B̂i′ = {m}, otherwise this set consists of all

1The achievable data rate for device i associated with base station m is
estimated by assuming that all the remaining bandwidth of m is assigned to
device i.

base stations of set Bi′ with available bandwidth resources.
Then, set B̂i′ is sorted into set B̂i′ . The ordering criterion
is the amount of back-haul traffic that would be transmitted
over the shortest path between m′′ ∈ Bi′ and m′ (line 14).
Now, BFG iterates among the set B̂i′ (line 16) and it calls the
function AllocRes(i′, j′,m′,m′′). Due to space limitations
we do not provide the pseudo-code description of this function
but we summarise its operations. First, this function computes
the amount of bandwidth and computing resources that are still
available in m′′ ∈ B̂i′ and m′ ∈ B̂j′ , respectively, and which
could be assigned to device i′ and task j′, respectively. These
values are given by:

βm′

j′,max = 1−
∑

l∈S\{j′}

βm′

l , (13a)

αm′′

i′,max = 1−
∑

l∈U\{i′}

αm′′

l . (13b)

It is intuitive to observe that if all the available bandwidth
and computing resources of base station m′′ and m′ are used,
the total service execution delay of j′ would be minimised.
However, Problem (12) does not aim at minimising the service
latency but only to ensure that the service execution deadline is
not violated. Since a fixed latency T b

m′′,m′ is accumulated on the
backhaul data path between m′′ and m′, the latency requirement
is satisfied when the sum of the uplink transmission delay and
the server processing latency fulfils the following condition:

Tup
i′ + T cpu

j′ ≤ Tmax
j′ − T b

m′′,m′ = T target
i′,j′ . (14)

The key question to address is how to split the latency budget
T target
i′,j′ between the access segment and the edge segment (see

Fig. 1). Clearly, a fixed splitting would be inefficient. Thus,
BFG dynamically assigns a weight to the access and edge
segments considering the current utilisation of bandwidth and
computing resources. Specifically, let us introduce the weight
factor Θ̂m′,m′′

i′,j′ defined as

Θ̂m′,m′′

i′,j′ =
Tup,min
i′

Tup.min
i′ + T cpu.min

j′

, (15)

Tup.min
i′ and T cpu.min

j′ are the minimum uplink transmission
delay and service execution delay, respectively, that would be
obtained using the allocations of (13a) and (13b). Then, BFG
computes a tentative allocation as follows. If device i′ has
been already associated with a base station in a previous BFG
iteration, we define Tup,cur

i′ the current uplink transmission,
otherwise we set Tup,cur

i′ to a very large value. Then, the target
uplink transmission delay is given by

Tup.target
i′ = min

{
(1− Θ̂m′,m′′

i′,j′) T target
i′,j′ ;Tup,cur

i′

}
. (16)

Similarly, let T cpu.cur
j′ be the current service execution delay for

service j′ that has been computed in previous BFG iterations.
Then, the target service execution delay is given by

T cpu.target
j′ = min

{
T target
i′,j′ − Tup.target

i′ ;T cpu.cur
j′

}
(17)

Finally, the allocation function computes the pair of resource
allocation variables (α̂m′′

i′ , β̂m′

j′) that correspond to the delays

in equation (17) and (16). If it holds that (α̂m′′

i′ ≤ αm′′

i′,max and
β̂m′

j′) ≤ βm′

j′,max, the resource allocation is feasible and a new
device in B̂i′ is tested if available (line 12). When all i′ ∈ Uj′
have been tested, BFG checks if they were all successfully
covered. If yes, the new decision variables are saved (line 26).

At the end of the greedy search (line 28), BFG selects the
tentative set of decision variables that minimises the objective
function (12a) (line 29). Then, the Backtrace() function
is invoked to check if deploying service j′ does not violate
the constraints of already deployed applications. Indeed, the
activation of new devices changes the mutual interference
between base stations, which may result in a decrease in effec-
tive transmission capacity. Thus, BFG checks if the eventual
decrease in the transmission rates of already activated devices
may be compensated by increasing the computation capacity
assigned to the already deployed services so as to reduce the
processing delays. If this compensation is feasible, the new
decision variables are finally accepted (line 31).

V. PERFORMANCE EVALUATION

We consider a small-scale network topology of 500 m × 500 m
consisting of one MBS, three SBSs, and 180 IoT devices. The
MBS is located at the centre of the cell, while SBS and IoT de-
vices are randomly distributed. However, we force a minimum
distance between base stations and devices equal to 200 and
20 metres, respectively, to ensure a homogeneous deployment.
To model the channel gain, we use the typical urban channel
model defined in 3GPP standardisation [18]. Specifically, the
path loss between the MBS and the UEs is expressed as
128.1 + 37.6log10(R). Similarly, the path loss between an
SBS and the UEs is expressed as 140.7 + 36.7log10(R). Since
device association and service deployment occur on relatively
long timescales, we can neglect the impact of shadowing and
fading on the average channel gain. Finally, the noise power is
σ2 = 10−11 mW and the interference threshold is I = −90
dBm. The bandwidth of MBS and SBS are both equal to 10
MHz. We also assume that all SBSs are directly connected to
the MBS with a wired backhaul link that introduces a fixed
delay equal to 5 ms.

As a reference scenario, we focus on latency-sensitive ap-
plications that require the collection of high-resolution video
frames from multiple sources to perform a video analytic task
(e.g. behaviour analysis, moving object classification, object
detection, object tracking). We assume that the size of a video
frame is 512 KB, the computation is set within [50, 100] cycles
per bit of the uploaded data, and the storage footprint of
the application is within [2, 10] GB. If not otherwise stated,
each application requires data from three cameras. Finally, the
service execution deadline is set within [5, 10] seconds.

A. Benchmarks

To verify the performance of our proposed solutions, we
introduce the following three benchmark policies that decouple
the device assignment problem from the resource allocation
problem.
• Without SBS (WSBS): All devices are associated with the

MBS, and all services are deployed on the MBS, following

WEAS NEAS NEAS+ BFG OPT
Γ0 600 600 300 300 300
Γ1,Γ2,Γ3 0 0 100 100 100

TABLE I
DISTRIBUTION OF THE STORAGE CAPACITY AMONG BASE STATIONS. IN

ALL THE CONSIDERED SCENARIOS THE TOTAL STORAGE CAPACITY OF THE
MEC SYSTEM IS 600 GB

WEAS NEAS NEAS+ BFG OPT
∆0 10 10 5 5 5
∆1,∆2,∆3 0 0 1.66 1.66 1.66

TABLE II
DISTRIBUTION OF THE COMPUTATION CAPACITY AMONG BASE STATIONS.

IN ALL THE CONSIDERED SCENARIOS THE TOTAL COMPUTATION CAPACITY
OF THE MEC SYSTEM IS 10 GHZ

the same priority order of BFG. After the device assignment,
the vector of data rate allocations is computed so as to assign
the same share of Bu

0 to active UEs. Finally, a closed-form
solution for the allocation of computing resources is obtained
using constraint (12b).

• Nearest Assignment (NEAS): Devices are associated with the
base station with the lowest SNR (i.e., neglecting interference
in (2)), while all services are deployed on the MBS. The vec-
tor of data rate allocations and compute resource allocations
are computed using the same approach as WSBS. The only
difference is that a fair bandwidth allocation is enforced at
each base station independently.

• NEAS+: Enhanced version of NEAS in which each service j
is deployed on the base station that has connected the largest
fraction of devices in set Uj .

The rationale behind the two NEAS-based policies is to assess
the advantage of using SBSs to collect the data that is pro-
duced by IoT devices. NEAS+ is introduced to investigate the
benefit of using distributed service deployment to mitigate the
transmission delays on the MEC network.

All the following results are obtained by replicating 25 times
each experiment with random service-request patterns. Average
values and 95% confidence values are shown.

B. Numerical results

In Fig. 3 we first explore the efficacy of each scheme by
measuring the percentage of applications that can be success-
fully admitted. Table I and II we list the computation and
storage capacity of MBS and SBS we use in the following
experiments. It is important to note that to ensure a fair
comparison between WSBS, NEAS and the other schemes, the
computation and storage capacities of the MBS in WSBS and
NEAS are set equal to the total amount of computation and
storage resources that are available in the MEC network in the
other scenarios. First, we can observe the optimal scheme is
able to find a feasible service deployment in all the considered
settings. On the contrary, WSBS can satisfy the constraint on
service execution delays only for ten requesting applications,
while its effectiveness rapidly degrades as the number of
requesting applications increases. The other two benchmarks,
NEAS and NEAS+, are able to admit more applications than
WSBS. However, our proposed heuristic outperforms all the

 0

 2

 4

 6

 8

 10

b0 b1 b2 b3
C

P
U

 (
G

H
z)

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

WSBS
NEAS

NEAS+
BFG
OPT

 0

 50

 100

 150

 200

 250

 300

b0 b1 b2 b3

st
o
ra

g
e

(G
B

)

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

 0

 20

 40

 60

 80

 100

b0 b1 b2 b3

w
ir

el
es

s
b
an

d
w

 (
%

)

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

 0

 5

 10

 15

 20

 25

 30

b0 b1 b2 b3

#
 D

ep
lo

y
ed

 a
p
p

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

 0

 10

 20

 30

 40

 50

 60

 70

b0 b1 b2 b3

#
 a

ct
iv

e
d
ev

ic
e

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

 0

 20

 40

 60

 80

 100

 120

 140

b0 b1 b2 b3

M
E

C
 t

ra
ff

ic
 -

 o
u
t

(M
b
)

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

Fig. 2. Resource usage on each base station (B0 is the MBS) for 30 requesting applications.

benchmarks, and it closely approximates the efficacy of the
optimal scheme.

 0

 20

 40

 60

 80

 100

10 20 30 40

d
ep

lo
y
ed

 I
o
T

 s
er

v
ic

es
 (

%
)

requested IoT services

WSBS

NEAS

NEAS+

BFG

OPT

Fig. 3. Percentage of satisfied applications versus the number of requesting
services.

To explain the root causes of the different efficacy of each
scheme, Fig. 2 show how the network and edge resources are
allocated to each base station in the case of 30 requesting
applications. By design, 100% of deployed applications are
running on the MBS, and 100% of activated IoT devices
are associated with the MBS when using the WSBS scheme.
Furthermore, each associated IoT device is assigned an equal
share of the wireless bandwidth of the MBS. As shown in
Fig. 2 (red bars), this approach allows the MEC system to
fulfil the requirement of only 12 applications, even though
there are unused bandwidth and storage resources. The reason
is that the already admitted applications should share the
computation resources of the MBS (which are 100% used) with
each newly deployed service (we remind that we assume an
elastic computing model), thus increasing their task processing

delays. This would rapidly lead to the violation of the latency
constraints of running services. On the contrary, IoT devices are
also associated with SBSs when using the NEAS scheme (green
bars). This generally results in lower uplink transmission delays
than the ones observed with WSBS, since a higher percentage
of available wireless bandwidth can be used. Thus, the same
computation capacity at the MBS now allows the MEC system
to accept up to 25 requesting applications. It is also interesting
to note that about 20 Mbps of data traffic are transmitted from
the SBSs to the MBS, where all the services are running.
Clearly, there is a trade-off between the additional transmission
delay that is accumulated on the backhaul links connecting
SBSs to the MBS, and the more efficient utilisation of the
available wireless bandwidth. The only difference between
NEAS and NEAS+ (blue bars) is that in the latter scheme
services can also be deployed on SBSs. We can observe that
considerable data traffic is transmitted from the MBS to the SBS
in NEAS+. This traffic is mainly due to data forwarded between
SBSs. In these settings, the decentralisation of the storage
and compute resources provides a small improvement on the
number of admitted services (around 10%). It is also important
to point out that in all the benchmarks, device association and
bandwidth assignment are performed independently of service
deployment, and according to a greedy approach. Each running
service is allocated a set of resources that guarantees to fulfil
constraint (12b). As a consequence, when the deployment of
a new service fails, there is no advantage to reallocate the
bandwidth resources that were initially assigned to the devices
assigned to that services to the other running services. This
also explains why there are unused bandwidth resources, even

if there are rejected services. Finally, the results in Fig. 2
show that our proposed BFG scheme (magenta bars) is able
to reasonable mimic the allocation decisions of the optimal
solution (cyan bars). In particular, the services are deployed
in such a way to reduce the total traffic that is transmitted over
the backhaul links, which is beneficial for reducing the overall
data collection delays. Furthermore, the approach used by BFG
to split the delay budget of a task between the access and edge
segments effectively allows to balance computation and access
resource utilisation.

 0

 20

 40

 60

 80

 100

25 37.5 50 62.5 75 87.5 100

d
ep

lo
y
ed

 a
p
p
 (

%
)

fration on MEC resources assigned to the MBS

WSBS

WC-NEAS

NEAS

BFG

OPT

Fig. 4. Percentage of satisfied applications for different distributions of the
resources between the MBS and SBSs. The results refer to a scenario with 40
requesting applications.

To investigate more in-depth the impact of resource de-
centralisation on the efficiency of the different algorithms,
we conduct a second set of experiments in which a varying
percentage of the total edge resources is assigned to the MBS.
More precisely, 4 shows the fraction of satisfied service requests
when the computation and storage capacity of the MBS is a
percentage τ of the total MEC resources. When τ = 50%, we
have the same settings of the previous experiments, τ = 25%
means that each base station has the same computation and
storage capacity, and τ = 100% means that SBSs do not
have computation and storage capabilities. As expected, we
observe that the WSBS efficacy improves with the increase
of edge resources at the MBS. A four-fold increase of the
computation and storage capacity of the MBS improves the
number of satisfied services by three times. A similar trend is
also observed with NEAS. On the contrary, when τ = 25%
NEAS+ admits 57.9% of the requesting applications against
8.4% of WSBS and 11.9% of NEAS. However, the NEAS+
performance converges to the one of NEAS as more edge
resources are deployed in the MBS. Finally, BFG is far better
than the other methods, and its effectiveness is less affected
by the different τ values. However, the highest efficiency is
obtained when τ = 50%, while a performance degradation is
observed when the MEC resources are concentrated only on
the MBS.

VI. CONCLUSIONS

In this paper, we studied resource allocation, data routing
and device association in MEC-enabled multi-cell networks
for delay-sensitive IoT applications that periodically perform
inference tasks over spatially dispersed sensor data streams. We
developed both an exact optimisation model and a heuristic
strategy to solve the allocation problem. Numerical results

demonstrated that the proposed method outperforms the bench-
mark policies. Interesting directions for future work include
studying the generalisation of our framework to include network
slicing and different revenue and utility models.

REFERENCES

[1] L. Tian, H. Wang, Y. Zhou, and C. Peng, “Video big data in smart
city: Background construction and optimization for surveillance video
processing,” Future Generation Computer Systems, vol. 86, pp. 1371–
1382, 2018.

[2] A. Prati, C. Shan, and K. I.-K. Wang, “Sensors, vision and networks:
From video surveillance to activity recognition and health monitoring,”
Journal of Ambient Intelligence and Smart Environments, vol. 11, no. 1,
pp. 5–22, January 2019.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Ar-
chitecture and Computation Offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[4] Q. Pham and F. Fang and V. N. Ha and M. J. Piran and M. Le and L.
B. Le and W. Hwang and Z. Ding, “A Survey of Multi-Access Edge
Computing in 5G and Beyond: Fundamentals, Technology Integration,
and State-of-the-Art,” IEEE Access, vol. 8, no. 116974–117017, 2020.

[5] ETSI ISG MEC, “Multi-access Edge Computing (MEC); Framework and
Reference Architecture,” ETSI GS MEC 003 V2.1.1, January 2019.

[6] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-CoCaCo:
Toward Joint Optimization of Computation, Caching, and Communication
on Edge Cloud,” IEEE Wireless Communications, vol. 25, no. 3, pp. 21–
27, 2018.

[7] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Service
placement and request routing in mec networks with storage, computation,
and communication constraints,” IEEE/ACM Transactions on Networking,
vol. 28, no. 3, pp. 1047–1060, 2020.

[8] C. Cicconetti, M. Conti, and A. Passarella, “Uncoordinated access to
serverless computing in MEC systems for IoT,” Computer Networks, vol.
172, p. 107184, 2020.

[9] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in big data multi-access edge computing,” IEEE Transactions on Mobile
Computing, vol. 19, no. 6, pp. 1359–1374, 2020.

[10] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint Computation Offloading
and User Association in Multi-Task Mobile Edge Computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 313–12 325,
2018.

[11] J. Zhou, X. Zhang, and W. Wang, “Joint Resource Allocation and User
Association for Heterogeneous Services in Multi-Access Edge Computing
Networks,” IEEE Access, vol. 7, pp. 12 272–12 282, 2019.

[12] W. Teng, M. Sheng, K. Guo, and Z. Qiu, “Content Placement and User
Association for Delay Minimization in Small Cell Networks,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 10, pp. 10 201–10 215,
2019.

[13] ETSI ISG MEC, “Mobile Edge Computing (MEC); Mobile Edge Man-
agement; Part 1: System, host and platform management,” ETSI GS MEC
010-1 V1.1.1, October 2017.

[14] S. Jošilo and G. Dán, “Computation Offloading Scheduling for Periodic
Tasks in Mobile Edge Computing,” IEEE/ACM Transactions on Network-
ing, vol. 28, no. 2, pp. 667–680, 2020.

[15] Y. Sun, G. Feng, S. Qin, and S. Sun, “Cell Association With User Behav-
ior Awareness in Heterogeneous Cellular Networks,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 5, pp. 4589–4601, 2018.

[16] A. Costa, T. S. Ng, and L. X. Foo, “Complete mixed integer linear pro-
gramming formulations for modularity density based clustering,” Discrete
Optimization, vol. 25, pp. 141–158, August 2017.

[17] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, 2011.

[18] , “Evolved Universal Terrestrial Radio Access (E-UTRA); Further ad-
vancements for E-UTRA physical layer aspects,” 3GPP, Tech. Rep.
36.814 V9.2.0 , March 2017.

