

This item was submitted to Loughborough's Research Repository by the author. Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Loess geohazards research in China: Advances and challenges for mega engineering projects

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1016/j.enggeo.2019.01.019

PUBLISHER

© Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Engineering Geology and the definitive published version is available at https://doi.org/10.1016/j.enggeo.2019.01.019

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Juang, C. Hsein, Tom Dijkstra, Janusz Wasowski, and Xingmin Meng. 2019. "Loess Geohazards Research in China: Advances and Challenges for Mega Engineering Projects". Loughborough University. https://hdl.handle.net/2134/37278.

2	Loess geohazards research in China: Advances and challenges for mega
3	engineering projects
4	
5	C. Hsein Juang ^{1*} , Tom Dijkstra ² , Janusz Wasowski ³ , and Xingmin Meng ⁴
6 7	¹ Department and Civil Engineering and Graduate Institute of Applied Geology, National Central University, Taoyuan City 32001, Taiwan. [Email: hsein@clemson.edu]
8 9	² School of Architecture, Building and Civil Engineering, Loughborough University, LE11 3TU, UK. [Email: t.a.dijkstra@lboro.ac.uk]
10 11	³ National Research Council, Institute for Geohydrological Protection, via Amendola 122 I, 70126 Bari, Italy. [Email: j.wasowski@ba.irpi.cnr.it]
12 13	⁴ School of Earth Sciences, Lanzhou University, Lanzhou 730000, China. [Email: xmmeng@lzu.edu.cn]
14 15	* Corresponding author: C. H. Juang (hsein@clemson.edu)
16	
17	Abstract:Loess is a meta-stable, cemented assemblage of mainly silt and clay-sized
18	particles of low plasticity. When dry it behaves like a brittle material, but when wetted up
19	the fabric rapidly collapses. Unique geomorphological features include extensive surface
20	erosion, soil piping (loess 'karst'), catastrophic landslides, and widespread collapse
21	(hydro-consolidation). The Chinese Loess Plateau is a more or less continuous drape of
22	thick loess covering some 440,000 km ² . It isone of China's regions that is most prone to
23	geohazards. This paper reviews advances in the research related to loess geohazards,
24	drawing particular attention to he need to apply research findings to recent, very large
25	(mega-)construction projects in loess terrain such as the Mountain Excavation and City

26	Construction in Yan'anlevelling 78 km ² for urban expansion, the Lanzhou New District
27	creating 246 km ² , and large engineered interventions in the landscape for gully control
28	and land reclamation such as those in Shaanxi and Gansu generating agricultural land
29	covering an area of some 8,000 km ² . These projects are in response to increasing pressures
30	to facilitate expansion of urban centres, their interconnecting infrastructures and their
31	agricultural support systems. It is argued that, where proper application of scientific
32	knowledge for engineering control (e.g. density, drainage)of these new landscapes is
33	absent, these project generate a substantial, and costly geohazard legacy for future
34	generations.
35	
36	Keywords: Loess Plateau (China); loess geohazards; loess landslides; ground fissures;

mega engineering projects.

1. Introduction

40	Loess is an aeolian silt of engineering geological significance that has a global
41	distribution; the earliest global distribution maps were produced by Alfred Scheidig in 1934
42	(Scheidig, 1934;Smalley, 1995) and an updated map was published by Trofimov et al. 2001
43	(in Trofimov et al., 2015). Prominent deposits are encountered in the plains of North America
44	(e.g., Follmer, 1996), southern South America (e.g., Zárate, 2003), the margins of the glaciated
45	ice-age landscapes of north-western Europe (e.g., Haase et al., 2007), in Africa (e.g.,
46	Nouaouria et al., 2008; Assallay et al., 1997) and there are very substantial deposits across
47	eastern Europe and into Asia (Jefferson et al., 2003; Liu, 1985). Smalley et al. (2001) provide
48	a synopsis of early loess researchers.
49	The distribution of loess in China is particularly widespread with an estimated total
50	cover of some 630,000 $\rm km^2$, comprising a nearly continuous cover of some 440,000 $\rm km^2$
51	forming the Chinese Loess Plateau and reaching maximum thicknesses greater than 300 m
52	(Liu, 1985; Derbyshire, 2001; see Figure 1). Loess is a very fertile soil and has traditionally
53	attracted many communities drawing the benefits of this unique material in China (Ho, 1969;
54	Smalley and Smalley, 1983; Liu, 1985; Derbyshire, 2001). Rapid economic development and
55	the concomitant expansion of urban footprints and connecting infrastructures has resulted in a
56	significant increase in research into the geohazards posed by Chinese loess, illustrated by a
57	rapid rise in publications since 2005 and an overwhelming proportion of the global scientific
58	literature addressing loess geohazards in China (see Figure 2).

61	Figure 1. Loess distribution in Eurasia. The distribution of the European and Russian loess
62	deposits is largely associated with the southern margins of the Eurasian ice sheets (simplified
63	after Vasiljević, et al., 2014 and Svendsen et al., 2004). The Chinese loess is predominantly
64	found to the east of the Tibetan Plateau (Liu, 1985).

66	It is evident that before 1	1995 very	little research	was reported	in English	literatures
				_		

- 67 onloess geohazards. Lutenegger (1988) edited a special issue of Engineering Geology
- 68 providing an early anthology of research into loess geotechnology and associated
- 69 hazards, which included some early references to the special aspects of Chinese loess by Gao
- 70 (1988) and Tan (1988). From the early 1990s, a European research consortium, in

71	collaboration with researchers in Lanzhou, China, carried out research into the mechanisms of
72	large loess landslides in north-western China (Derbyshire et al., 1994; Dijkstra et al., 1994;
73	Derbyshire et al., 2000). This work stimulated research into the meta-stable loess structure and

- 74 its sensitivity to collapse upon wetting, which has severe implications for engineering
- 75 performance and the stability of natural and engineered loess slopes and surfaces (for
- collections of early research on loess collapse and particle packing transformations see, for
- example, Rogers et al. 1995; Dijkstra et al. 1994; Derbyshire et al. 1995).
- 78

- 81 Figure 2. Google Scholar search returns show a surge in publications reporting on research
- 82 into loess geohazards since the early 2000s. Nearly all these publications focus on China.

84	Chinese loess is often described as a special geomaterial (e.g. Peng et al., 2014) from
85	both a macroscopic perspective (where heterogeneities such as palaeosols, extent of
86	compaction and joint systems influence the formation of sinkholes, pipe systems and shear
87	surfaces for landslides) and a microscopic perspective (where the study of the characteristic
88	porous nature and its transformations provide insights into the collapse mechanisms of loess
89	(Gao, 1988). The meta-stable nature of this material makes the Loess Plateau one of China's
90	physiographic regions that is most susceptible to geohazards (Derbyshire et al., 2000, 2001;
91	Xu et al., 2014). Approximately one-third of all landslides in China occur in this plateau and
92	society's exposure to loess geohazards continues to increase with ongoing expansion of urban
93	footprints and infrastructure (Zhuang et al., 2017; Peng etal., 2015, 2016a).
94	Loess geohazards significantly influence the socio-economic development of the Loess
94 95	Loess geohazards significantly influence the socio-economic development of the Loess Plateau; loess landslides continue to affect lives and livelihoods (Derbyshire et al. 2000) and
94 95 96	Loess geohazards significantly influence the socio-economic development of the Loess Plateau; loess landslides continue to affect lives and livelihoods (Derbyshire et al. 2000) and major ground fissures such as those identified in the city of Xi'an affect construction and the
94 95 96 97	Loess geohazards significantly influence the socio-economic development of the Loess Plateau; loess landslides continue to affect lives and livelihoods (Derbyshire et al. 2000) and major ground fissures such as those identified in the city of Xi'an affect construction and the development of pipelines and subways resulting in an economic impact estimated to exceed
94 95 96 97 98	Loess geohazards significantly influencethe socio-economic development of the Loess Plateau; loess landslides continue to affect lives and livelihoods (Derbyshire et al. 2000) and major ground fissures such as those identified in the city of Xi'an affect construction and the development of pipelines and subways resulting in an economic impact estimated to exceed US\$1.6 billion (Peng 2012, Peng et al., 2008, 2013; 2016a). Furthermore, the presence of
94 95 96 97 98 99	Loess geohazards significantly influencethe socio-economic development of the Loess Plateau; loess landslides continue to affect lives and livelihoods (Derbyshire et al. 2000) and major ground fissures such as those identified in the city of Xi'an affect construction and the development of pipelines and subways resulting in an economic impact estimated to exceed US\$1.6 billion (Peng 2012, Peng et al., 2008, 2013; 2016a). Furthermore, the presence of extensive networks of loess pipe systems and caves exacerbate issues of soil and water loss
94 95 96 97 98 99 100	Loess geohazards significantly influencethe socio-economic development of the Loess Plateau; loess landslides continue to affect lives and livelihoods (Derbyshire et al. 2000) and major ground fissures such as those identified in the city of Xi'an affect construction and the development of pipelines and subways resulting in an economic impact estimated to exceed US\$1.6 billion (Peng 2012, Peng et al., 2008, 2013; 2016a). Furthermore, the presence of extensive networks of loess pipe systems and caves exacerbate issues of soil and water loss and have hindered the construction of transport infrastructure (such as high-speed railways) in
94 95 96 97 98 99 100	Loess geohazards significantly influencethe socio-economic development of the Loess Plateau; loess landslides continue to affect lives and livelihoods (Derbyshire et al. 2000) and major ground fissures such as those identified in the city of Xi'an affect construction and the development of pipelines and subways resulting in an economic impact estimated to exceed US\$1.6 billion (Peng 2012, Peng et al., 2008, 2013; 2016a). Furthermore, the presence of extensive networks of loess pipe systems and caves exacerbate issues of soil and water loss and have hindered the construction of transport infrastructure (such as high-speed railways) in the Loess Plateau (Peng et al., 2017b).

103 this tectonically active region also earthquakes form a potentially catastrophic trigger

104	mechanism; the 1920 Haiyuan earthquake triggered many thousands of landslides and
105	resulted in large numbers of fatalities (estimates vary between 200,000 to more than 500,000;
106	Close and McCormick, 1922;Dijkstra et al., 1995; Zhang and Wang, 2007; Wang et al., 2014;
107	Zhuang et al., 2018b).

Large engineeringprojects in the Loess Plateau include the construction of a New 108 109 District of Lanzhou (LZND) in Gansu Province (see Figure 3; Pacific Construction Group 110 Company, 2014). Elsewhere in the Loess Plateau, projects of similar dimension are being carried out, including the 'Mountain Excavation and City Construction' for urban expansion 111 in Yan'an, Shaanxi and the very large landscaping projects for agriculture such as the 'Gully 112 113 Stabilization and Land Reclamation' and the 'Gully Control and Highland Protection' projects 114 in Shaanxi and Gansu(Ministry of Natural Resources, PROC, 2012). These projects result in 115 major engineered interventions that significantly alter the loess landscape and will require the full application of the state-of-the-art of loess research to minimize the potentially negative 116 implications of these interventions that future generations may have to deal with (Dijkstra et 117 al. 2014; Li et al., 2014). 118

120	
120	
122	Figure 3. An example of the magnitude of landscape alteration to accommodate urban
123	expansion of north-eastern Lanzhou at Qinbaishi (Photo: Dijkstra).
124	
125	This paper focuses on the advances in the field of loess geohazard assessment and
126	mitigation in China and discusses the potential challenges and the research needs in the
127	context of ongoing very large land-creation projects in the Chinese Loess Plateau.
128	
129	2. Characteristics of loess in China
130	The Chinese Loess Plateau is a more or less continuous drape of aeolian silts of
131	substantial thickness (from around 5m to more than 300m) that have been deposited during
132	the past twomillion years (Liu, 1985). Although the particle size distribution represents a 8

133	uniform material (predominantly $<60\mu$), there are important regional variations in both clay-
134	sized fraction and clay mineral content that result in the need for a regionally specific
135	geotechnical characterization of loess (Derbyshire et al., 2000). As a consequence of the
136	aeolian deposition and subsequent weathering, slightly coarser loess ('sandy' loess) is found
137	in the northwestern parts of the Plateau with a gradual increase in the proportion of smaller
138	grain sizes and also clay mineral content towards the southeast.
139	Loess structure is characterized by an open packing where cementation bonds
140	maintain a meta-stable fabric dominated by silt particles and supported by bridges consisted
141	of clay-sized particles, such as calcite and clay minerals (Dijkstra et al., 1995). When
142	cementation bonds fail (in shear or as a consequence of wetting up)this open fabric collapses
143	resulting in potentially rapid packing transformations and an equally rapid loss of shear
144	strength. The degree of collapsibility of the fabric strongly depends on depositional
145	environment and stress history (age); this has resulted in intensive research efforts focusing on
146	linking micro-structure to the mechanical behavior of loess (Derbyshire and Mellors, 1988;
147	Fredlund and Rahardjo, 1993; Hu et al, 2001; Zhang et al, 2013b; Jiang et al., 2014; Xu et al.,
148	2017 & 2018; Liang et al. 2018; Luo et al., 2018; Zhang and Wang, 2018). Recent
149	developments are making good use of enhanced resolution of computed tomographyscanning
150	and advanced image processing techniques to investigate 3D changes in loess microstructure
151	(Zhao et al. 2017).

152	The loess landscape is very dynamic and heavily influenced by tectonics leading to the	
153	development of joint systems that, in turn, influence loess slope morphologies and the	
154	position and timingof loess geohazards. Extensive field surveys of loess slopes coupled with a	
155	statistical analysis of joints and fissures and the mapping of weak interfaces (such as	
156	paleosols) enabled the establishment of a relationship between the internal loess slope	
157	structure and landslide occurrence (Derbyshire et al., 2000; Wang, et al., 2011; Peng et al.,	
158	2016a, 2016b, & 2017b, 2017d; Zhuang et al., 2018).	
159		
160	3. Loess Geohazards Research in China	
161	3.1 Loess landslides	
162	3.1.1 Classification and distribution	
163	In the 1970's, the Chinese Department of Railway Construction categorized loess	
164	landslidesin terms of the main mode of loess deposition/reworking; alluvial, eolian, and	
165	colluvial. A further set of sub-categories were identified to represent depth to slip surface;	
166	shallow, intermediate-depth, and deep (Chinese Academy of Sciences, 1975). In turn,	
167	different types of loess landslidescould be distinguished based on the location of the slip	
168	surface; 1) slip surfaces within a single loess layer; 2) slip surfaces located at the interface	
169	between the different loess layers; 3) slip surfaces located at the interface between loess and	
170	underlying bedrock with bedrock strata dipping in the same direction as the slope; and 4) slip	

Commented [TD1]: Hsein, did you have a diagram in mind here that can help us show this statistical relationship? I had a quick look in the Peng papers, but could not quite put my finger on it.

171	surfaces located at the interface between loess and underlying bedrock with bedrock strata
172	dipping into the slope. These classes are widely reported in engineering practice in China. The
173	special nature slope movements in loess was highlighted inVarnes' 1978 classification who
174	created a special category for dry (seismically-induced) flows in loess. This feature was
175	updated inHungr et al. (2014)who describe the phenomenon of loess flowslides in detail. The
176	three most significanttypes of movement in loess slopes that areusedChina includeflows,
177	slides and slope collapses (Xu et al., 2011).
178	3.1.2 Triggering and kinematic behavior
179	Loess is very sensitive to water and loses strength rapidly uponwetting. There is
180	extensive evidence that precipitation and irrigation lead to slope failure(Zhang et al., 2017; Xu
181	et al., 2012b; Leng et al., 2018; Qi et al., 2018; Luo et al., 2018). Research has shown that
182	loess shear strength is dependent upon variations in moisture content with a complete loss of
183	cemented strength and a reduction in frictional resistance as the material wets up (e.g.
184	Derbyshire et al., 1994, 2000; Zhang et al., 2013b; Peng et al. 2017c, 2018a). Rainfall
185	simulations indicated that the depth of water infiltration in the loess slopes was generally less
186	than 4.0 m (Tu et al., 2009; Zhuang et al., 2017; Wang et al., 2018). However, a field tests
187	(such as rainfall simulations and in-situ permeability tests, sometimes coupled with
188	geophysical surveys) and laboratory tests have shown that water can infiltrate deep into the
189	thick loess through networks of microscopic pores leading to a loss of strength and high
190	transienthydrodynamic pressures within the joints and fissure networks (Derbyshire et al., 11

191	2000;Xu et al.,	2012a; Zeng et al.	, 2016; Zhuang	and Peng,	2014b; Zhuang e	et al., 2017;	Peng
-----	-----------------	--------------------	----------------	-----------	-----------------	---------------	------

192 et al., 2017c, 2017d, & 2018a)).

193	Increasingly, loess table-landscapes (tai in Chinese) are being irrigated to enable
194	agriculture and afforestation. Particularly, in the semi-arid to arid western margins of the
195	Loess Plateau this can lead to large settlements as the open, meta-stable loess fabric collapses.
196	Rising groundwater levelsin loess tablelandslead to widespread instability along their
197	margins. The Heifangtai Yellow River terrace (approximately 60km west of Lanzhou, Gansu)
198	is a natural laboratory for the study of loess geohazards and recent research there has
199	generated significant insights into the mechanical behavior of loess and the initiation of fast-
200	moving flowslides in loess (Zhang et al., 2013a; Peng et al. 2017d; Qi et al., 2018; Xu et al.,

201 2012a; Zheng et al., 2016; Zhang and Wang 2018; see Figure 4).

Figure 4. The site of the loess flow-slides in 2015 that affected the village of Dangchuan (slide DC2 in Peng, et al., 2016). This photo was taken in September 2018 and shows that the slide margins are still adjusting and that the centre of the basin is perpetually wet due to groundwater seepage (Photo: Dijkstra).

208	The mechanisms behind the phenomena of loess landslides and their evolution from
209	slide to flow, with the catastrophic consequences of high-speed, long-runouts have been the
210	subject of extensive studies. Both field and laboratory tests showed that these high-speed and
211	long-runout loess landslides were the outcome of the liquefaction of the loess (Zhang et al.,
212	2017; Picarelli, 2010; Xu et al., 2012a; Peng et al., 2018a,b). The collapse of the loess
213	structure caused by the shearing failure of saturated or partially saturated loess is known to
214	result in a sharp increase in the pore water pressure and a rapid decrease in the shear strength,

215	in which the loess behaves as a fluid (Peng et al., 2018a & 2018b; Zhang and Wang, 2007).
216	Further, Peng et al. (2018a) observed that lique faction of both loess and underlying alluvial
217	sand significantly amplified the speed and runout distance of loess flows/flowslides.
218	3.1.3 Monitoring and early warning
219	The monitoring of loess landslides and the development of early warning systems has
220	been the subject of extensive studies (e.g., Zhuang et al., 2014a, 2018a). Based on their focus
221	and the explored investigation techniques, these studies may be categorized into three groups:
222	regional rainfall data analysis, surface displacement monitoring and remote sensing
223	applications.
224	The analyses of long-term regional rainfall data and loess landslide occurrence has
225	resulted in statistical analyses aimed at establishing empirical loess landslide trigger
225 226	resulted in statistical analyses aimed at establishing empirical loess landslide trigger thresholds. For example, Zhuang et al. (2014a) analysed three decades of loess landslide and
225 226 227	resulted in statistical analyses aimed at establishing empirical loess landslide trigger thresholds. For example, Zhuang et al. (2014a) analysed three decades of loess landslide and rainfall data and managed to establish a loess slope failure early warningsystem
225 226 227 228	resulted in statistical analyses aimed at establishing empirical loess landslide trigger thresholds. For example, Zhuang et al. (2014a) analysed three decades of loess landslide and rainfall data and managed to establish a loess slope failure early warningsystem forXi'an.Otherregional rainfall thresholds for loess landslidetriggering are reported by Chen
225 226 227 228 229	resulted in statistical analyses aimed at establishing empirical loess landslide trigger thresholds. For example, Zhuang et al. (2014a) analysed three decades of loess landslide and rainfall data and managed to establish a loess slope failure early warningsystem forXi'an.Otherregional rainfall thresholds for loess landslidetriggering are reported by Chen and Wang (2014), Zhuang and Peng (2014b) and Zhuang et al. (2018b).
225 226 227 228 229 230	resulted in statistical analyses aimed at establishing empirical loess landslide trigger thresholds. For example, Zhuang et al. (2014a) analysed three decades of loess landslide and rainfall data and managed to establish a loess slope failure early warningsystem forXi'an.Otherregional rainfall thresholds for loess landslidetriggering are reported by Chen and Wang (2014), Zhuang and Peng (2014b) and Zhuang et al. (2018b). Surface displacement data have been used by Wang (1997) to forecastthe time of
225 226 227 228 229 230 231	resulted in statistical analyses aimed at establishing empirical loess landslide trigger thresholds. For example, Zhuang et al. (2014a) analysed three decades of loess landslide and rainfall data and managed to establish a loess slope failure early warningsystem forXi'an.Otherregional rainfall thresholds for loess landslidetriggering are reported by Chen and Wang (2014), Zhuang and Peng (2014b) and Zhuang et al. (2018b). Surface displacement data have been used by Wang (1997) to forecastthe time of occurrence of two landslide events on the Heifangtai Yellow River terrace(reported in Zheng,

233	in-situslope instrumentation, is typically expensive and is limited to applications where	
234	particularly high-risk, potential landslide events have been identified.	
235	Remote sensing techniques and advanced 3D imaging technologies have been	
236	usefullyexploited to investigate the spatial and temporal distribution of unstable slopes.	
237	Specifically, drones have recently been used for the 3D topographic mapping at different	
238	timescalesto inform landslide deformation calculations (Eltner et al., 2015; Hu et al., 2017).	
239	With the current centimetric precision of drone imaging technology (Wasowski and Bovenga,	
240	2015), these 3D aerial monitoring techniques have been regularly used for regional scale	
241	landslideassessment and forewarning in river basins (e.g., Hu et al., 2017). Space-borne	
242	synthetic aperture radar interferometry (InSAR) technology has been increasingly used for	
243	regional and local scale assessment and monitoring of landslides (e.g., Colesanti and	
244	Wasowski, 2006; Wasowski and Bovenga, 2014, 2015; Wasowski etal., 2014; Zhang, Y. et al.,	
245	2018). However, thus far InSAR has been rarely employed in the investigations of loess	
246	landslides in the Loess Plateau (e.g., Wasowski et al., 2012; Zeng et al., 2014). Small pre-	
247	failure strains in relatively brittle loess deposits coupled with topographic complexities limit	
248	the opportunities for the early detection of potential loess landslides. Nevertheless, some	
249	InSAR-based analyses have proved successful in monitoring potential landslide sites in both	
250	South Jingyang and Heifangtai tablelands(; Liu, 2015?;; Zhao et al., 2016; Xue et al., 2016).	Commented [U2]: Eltner et al and Hu et al used UAV; not
251	Furthermore, Qi et al. (2018) used InSAR to reconstruct retrogressive loess landslide events at	sure about Liu, 2015 as it is in Chinese)

252	Heifangtai. There is therefore scope for further application of this technique to analyse spatial
253	and temporal patterns in loess (slope) deformation.
254	Despite the above advances it is clear that theearly detection of loess landslide
255	initiation across the Loess Plateau remains elusive. Empirical approaches have delivered some
256	success, but their widespread application is limited. This is largely the result of a relative lack
257	of appropriate slope stability models that can be used to analyse the process-response system
258	of hydrologically-triggered loess landslides. The most promisingapproachwould therefore
259	appear to develop more comprehensive slope deformation process models that can be tested
260	against comprehensive monitoring data sets derived from an integration of remote and in-situ
261	based techniques.
262	3.1.4 Mitigation and control of loess landslides
263	Loess landslides are triggered by a variety of factors and local environmental
264	conditions result in a complex, and often poorly understood variation in landslide
265	susceptibility. The characterization of the engineering geology of loess slopes therefore still
266	requires substantial further research effort. Where potential loess slope deformations carry
267	significant risk to lives and livelihoods, engineered interventions and ecological control
268	mechanisms have been implemented providing examples of good practice that can be applied
269	elsewhere to manage the slopes and mitigate the potential impact. For example, Meng et al.
270	(1991) used a combination of shear piles and retaining structures to stabilize and control loess

271	landslides in urban districts of Tianshui (Gansu Province). Jia (2016) outlines the design of
272	retaining walls tomaintain loess slope stability. The design of engineered interventions to
273	stabilize loess slopes needs to carefully consider the role of water. For example, Dijkstra
274	(1994) evaluated the gradual deterioration of slope stability using a caste study of infiltrating
275	waste-water on a 9m high loess cutslope in Lanzhou; Liu (2015) proposed a stabilization
276	scheme of loess slopes <mark>that includes representation of hydro-geological processes; and</mark> Chen et
277	al. (2017) used experimental work, a limit equilibrium analysis and a numerical simulation to
278	developa method for evaluating the stability of loess slopesas it is affected by infiltrating
279	water.
280	Ecologicalinterventions have had some success in protection loess slopes (Wang et
281	al.,2003) with large scale experiments providing new data on the friction of the interfaces
282	between roots and soil, and the ways in which root systems provide additional stability for
283	loess slopes. This research culminated in the design of vegetation root mats for slope
284	protection (Wang et al., 2010). However, it must be noted that these techniques can provide
285	additional resistances for relatively small slope volumes. Loess landslides rapidly attain a size
286	where vegetation becomes a passenger in the slope deformation process. Additionally, much
287	further research is required to evaluate the consequences of afforestation of loess slopes in
288	semi-arid environments. The irrigation water required to sustain the afforestation process can
289	result in detrimental consequences for loess slope stability, manifested in the form of erosion,
290	soil piping, extensive fabric collapse and loess landslides.

Commented [TD3]:

291 **3.2 Ground fissures affecting loess**

292 **3.2.1 Origin of ground fissures**

Peng et al. (2007) found that the presence of fractured rock mass generated by tectonic 293 activity was a significant factor leading to deep-seated loess-mudstone deformations in the 294 295 Fen-Wei basin. This finding was supported by the works of Wang et al. (2014) and Shi et al. 296 (2016). The Fen-Wei Basin, located in the southern and eastern part of the Loess Plateau, is known for a remarkable latticework of ground fissures, with more than 430 fissures detected 297 298 since the 1950s. These fissures have caused extensive damage to construction and infrastructure, resulting in significant financial loss (Peng, 2007; Peng, 2017d). Some 14 large 299 300 ground fissures in the city of Xi'an threaten both the urban infrastructure and public safety. Over the past 30 years, the spatial and temporal distributions, failure patterns, and formation 301 mechanisms of theseground fissures havebeen studied usinggeological and geophysical 302 303 surveys, physical simulations, remote sensing, GPS monitoring and numerical analysis (e.g., 304 Peng, 2012; Peng et al., 2013). The Fen-Wei Basin has been undergoing an elongation in the NW-SE direction with a velocity of 2-5 mm/year, which can be attributed to the eastward 305 306 extrusion of the Oinghai-Tibet Block and the uplifting of the Ordos Block (Peng, 2012; Peng 307 et al., 2013). Collapse of the loess fabric due to over-exploitation of groundwater further contributes to surface deformation and therefore most hypotheses appear to agree that a 308 combination of these factors (hydro-geological and tectonics) constitute the most important 309 310 causes for the formation and ongoing deformation of these fissures (Peng, 2012;Peng et al.,

311 2007; 2016c). The consequences for urban developmentare severe with an increasing number

Commented [TD4]: this can be deleted.

- of buildings and connecting infrastructure, including metro-lines, at risk from
- continuous displacements along these fissures (Peng et al., 2017a; see Figure 5).
- 314

2	1	r
3	т	С

- 317 Figure 5. Damage to a University building in Xi'an where a ground fissure has caused relative
- displacement along the connection between two buildings (left) and (right) construction of a
- new building across an active fissure. To accommodate relative movement, the floor slabs are
- separated by a small gap: an imaginative solution, but of questionable sustainability (gap in
- 321 floor slab is visible in yellow circles. (Photos: Dijkstra).
- 322

3.2.2 Mitigation and control of ground fissures

324	China's economic development has resulted inrapid urban expansion and a need
325	toextend large-scale infrastructure networks (both above and below ground surface) in the
326	Loess Plateau. The safety of the infrastructure spanning ground fissures has become a
327	significant concern for urban planners and hazard managers (Peng et al., 2013). In particular,
328	new methods were required to design appropriate prevention and control methods to ensure
329	the integrity of the metro tunnels where these cross ground fissures(Wu et al.,2005;Liu and
330	Liu, 2017)). Large-scale physical experiments enabled simulation of effects of these fissures
331	on thedeformation and failure limit states of a range of structures and metro tunnels and the
332	development of appropriate design codes, ground improvement schemes and safe offset
333	distances between buildings and fissures (Peng et al., 2013, 2016c, 2016e, 2017a).
334	4. Loess Geohazards Research Challenges in China
335	With the implementation of the Western Development Policy and the Belt and Road
336	Policy by the Chinese Government, severalmega construction projects have been undertaken
337	in the Loess Plateau. These include two mega projects for urban expansion; the Mountain
338	Excavation and City Construction (MECC) and the Lanzhou New District (LZND) projects;
339	and two large scale landscaping project for mainly agriculture; the Gully Stabilization and
340	Land Reclamation (GSLR) and the Gully Control and Highland Protection (GCHP) projects.

341 These projects are associated with the recent local Government policy for "land creation" to

342	meet the need for the rapid economy growth in China, but there is a risk of a concomitant rise
343	in loess-related geohazardswhere these projects are implemented without carefully
344	designedengineering controls(e.g. density, drainage, volume stability; Dijkstra et al., 2014; Li
345	et al., 2014; Peng et al., 2014, 2016b,c). To gain a better insight into the potential geohazards
346	that might result from these ongoing large-scale engineering activities in the Loess Plateau,
347	there is a need to build on existing research foundations and further carefully investigate: (1)
348	howchanges in loess structure (from undisturbed toreworked/remoulded)influences failure
349	behavior; (2) howinteractions between water and loess in these new landscapes can give rise
350	to excessive volume changes (piping, subsidence, collapse, hydro-consolidation) and
351	potentially catastrophic loess landslides; (3) how potential future seismic activity affects loess
352	deformation (e.g. fabric collapse of level surfaces, or catastrophic slope failure in natural and
353	engineered slopes); (4) what tools can be developed to better forecast loess geohazards;
354	(5) what opportunities can be mobilized to mitigate the impact of loess geohazards and achieve
355	sustainable socio-economic development across the Loess Plateau. These challenges are
356	discussed in detail below with reference to the mega-projects being undertaken in the Loess
357	Plateau.
358	4.1 Major landscaping to accommodate urban expansion
359	In the undulating topographies of the Loess Plateau, rapid urban development and
360	population growth result in tremendous shortages of suitable space for construction. This

361 section illustrates two projects where new land is created through the "removing the tops of

362	mountains to fill in valleys" for urban development (Dijkstra et al., 2014; Li et al., 2014). In	
363	Yan'an City, Shaanxi Province, the Mountain Excavation and City Construction (MECC)	
364	project is underway to expand the areas of flat land and create a New District. The project	
365	started in 2012 and is expected to be completed by 2022. In Lanzhou city, Gansu Province, a	
366	similar New District (LZND) is being created that will ultimately cover some 246 km ² of new	
367	level ground for construction.	
368	4.1.1 Mountain Excavation and City Construction (MECC): Yan'an, Shaanxi	
369	The conservation of physical space in the Loess Plateauis of extreme importance. In	Commented [U5]: already said above
370	Yan'an City, Shaanxi Province, approximately 500,000 people live within an area of only 36	
371	km ² . To cope with the overcrowding problemin this famous historic city, the Mountain	
372	Excavation and City Construction (MECC) project, a flat land creation effort, has been	
373	undertaken to create a New District. The MECC project, that started in 2012 and is expected	
374	to be completed by 2022, shouldcreate new land for urban development by "removing the	
375	tops of mountains to fill in valleys" (Li et al., 2014). The project'saim is the creation of	
376	approximately 78 km ² of flat ground with an estimated cost of US\$10 billion. Although the	
377	large-scale implementation of the MECC project can provide more land for urban	
378	development (see Figure 6 for the recent land use and topography change in the New District	
379	of Yan'an City), this will also inevitablylead to an alteration of the local geological	
380	environment.	

382 383	
384 385 386	Figure 6. FourGoogleEarth TM imagesof the New City District in Yan'an City illustrating a rapid land use and topography change in the period 2012-2016(https://earth.google.com/web/)
387	It is apparent that the project requires a meticulous scientific assessment of
388	potentialnegative environmental consequences. There appears to be an absence of scientific
389	studies needed to collect geotechnical and geological data for the optimal design and
390	construction of the excavation may lead to new loess geohazards, such as the failure of man-
391	made loess slopes and the post-constructionsettlement of loess fill foundations. Ground

Commented [TD6]: Xingmin/Hsein, is there any information on environmental impact assessments having been carried out before these projects commenced? I am not aware of any.

392	settlement in the loess fill area and slope deformation in the mountain excavation area in the
393	New District in Yan'an City are widespread and substantial (Figure 7). Furthermore, large-
394	scale loess fill, which is known to influence both the surface water infiltration and the
395	groundwater migration in that region, may in turn negatively affect the local environment
396	needed for hosting water resources. The difficulties inherent in the MECC project could be
397	summarized as follows: 1) lack of scientific data on the failure modes of the loess fill
398	foundation, in terms of the key influencing factors, 2) absence of models for determining the
399	deformation and collapse behavior of the loess fill foundation, 3) possible coupled
400	deformation of the loess-water system, and the mechanisms of new loess geohazards from this
401	project, and 4) an apparent absence of consideration of the environmental impact of this
402	scheme in both the short and long-term.

405	Figure 7. InSAR results revealing the ground settlement in the loess fill area and the slope
406 407	deformation in the mountain excavation area in Yan'an City (Jianbing Peng, personal communication)
408	
409	4.1.2 Lanzhou Qingbaishi and Lanzhou New District (LZND)
410	The northern fringe of East-Lanzhou at Qingbaishi consists of a hilly topography with
411	a relative relief of more than 100m. The local bedrock consists of a sequence of Neogene-age
412	mudstones and sandstones; the bedrock is overlain by river sands, gravels and alluvial silts
413	(deposits of the Yellow Riverpalaeo-terrace), on top of which aeolian loess deposits are found
414	with a maximum thickness exceeding 100 m. As part of a 20 billion RMB (approximately
415	US\$3 billion) development project, some 700 loess hills are being 'reclaimed' in the
416	Qinbaishi District (Figure 3, 8). The Lanzhou New District (LZND) is the state-level new
417	district approved by the Chinese Government State Council in August 2012, and represents
418	the first and the largest national-level "new area" in the Loess Plateau region. The scope
419	planning covers sixtowns in Yongdeng and Gaolan counties of Lanzhou City, covering a total
420	area of 1744 km ² , with a planned ultimate construction area of 246 km ² and a project
421	population of nearly 300,000 people.
422	InSAR-derived vertical velocity maps have been constructed to better understand the
423	terrain instabilitycaused by these large-scale construction activities in in the Qinbaishi
424	District. The resultshighlight pockets of downward vertical movement between 15 and 55 mm
425	per year (Figure 9; Chen et al., 2018).

Commented [U7]: I gather that this is a 22 day interferogram, but it would be good to know the radar imagery used and to have the color scale to explain the amount of the detected ground surface displacements

Commented [U8]: not in References

- 434
- Figure 8. Landscape modifications at Qingbaishi, Lanzhou. The landscape in 2011 shows an
 undulating loess topography with elevations ranging from approximately 1600 to more than
- 437 1750 m. The 2018 landscape shows ongoing valley filling and extensive construction on
- 438 newly formed surfaces. The western settlement presently shows signs of widespread
- 439 subsidence affecting roads and services (the direction of the photo of Figure 3 is indicated by
- 440 a red arrow). Images courtesy Google EarthTM.
- 441
- 442

444	Figure 9. Detail of the InSAR-derived average annual vertical displacement velocity				
445	mapsover the LZND(Sentinel-1A for 2015-2016 using the SBAS technique(after Chen et a				
446	2018).				
447					
448	4.2 Gully Stabilization and Land Reclamation (GSLR): Yan'an, Shaanxi				
449	A substantial part of the Loess Plateaucomprises a highly fragmented topography				
450	oflevel surfaces intersected by steep-sided gullies (Figure 10). comprises is reflected by				
451	widely distributed gullies, offers scarce agricultural land resources. The 5-year Gully				
452	Stabilization and Land Reclamation (GSLR) project in Yan'an City, Shaanxi Province, was				
453	aimed at: 1) increasing agricultural land resources; and 2) reducing water and soil loss				
454	through sustainable and modernized agricultural management in the Loess Plateau. The				
455	GSLR project created approximately 360 km ² of agriculture land with a cost of US\$4.83				

456 billon.

443

Commented [U11]: unclear to me

Commented [U12]: not in References; also, a better quality figure or copy of the paper would be needed to understand Figure 9

Commented [TD13]: use detail of the figure to get away from copyright issues. Will still need better quality figure.

458	Figure 10. An engraving from von Richthofen (1877) showing an overview of a
459	terraced loess terrain with steep-sided gullies in Shanxi.
460	The large-scale implementation of the GSLR project could significantly change the
461	hydrological ecosystem of the valley and thus induce new natural and environmental
462	disasters, such as the failure of silt dams, flood and mudflow hazards, instability of loess
463	slopes, water accumulation, land salinization, soil erosion, and ground collapse in farmland.
464	However, the mechanisms of the loess slopeinstability induced by the GSLR project remain
465	unclear; the theoretical framework for evaluating the stability of loess slopes in these settings

Commented [TD14]: I know this is a bit indulgent, but I couldn't resist. It's a classic work that needs recognition. It was the earliest description of Chinese loess landscapes that reached an audience in the West...).

466	remains unestablished; there is an absence in modelling capabilities tocarefully evaluate the
467	dynamic nature of these landscapes and the evolution of slope instability; the time-dependent
468	deformation behavior of loess slopes following the implementation of the GSLR project has
469	not been systematically studied; and as for the other examples discussed in this paper there
470	remain uncertainties in the quantification of interactions of loess and water, and the potential
471	consequences for widespread and potentially catastrophic failures. All these issues warrant
472	further research and, more important, implementation of research findings in design and
473	management of these ongoing mega-projects in the Loess Plateau.
474	4.3 Gully control and Highlandprotection
475	Urban development and agricultural activities have greatly increased the incidents of
476	gully and soil erosion in the Loess Plateau; these events gradually extend towards the center
477	of the highlands that make up the Loess Plateau. For example, soil erosion is a problem across
478	theDongzhiyuanHighland(the largest highland in the Loess Plateau) and this results in the
479	deposition of nearly 66 million tons of silt into the Yellow River per annum. Progressive gully
480	erosion is a significant feature of the Dongzhiyuan Highland(Figure 11); the width of this
481	Highland has decreased from 32.0 km in the Tang Dynasty (about 1200 yrs BP) to 17.5 km at
482	present. The Gully Control and Highland Protection (GCHP) project is being undertaken to
483	mitigate and control further gully and soil erosion in this region. The GCHP project mainly
484	covers the area of Qingyang in Gansu Province and is expected to create approximately 7.357

486	billon.
487	
488	
489	
490 491	Figure 11. Gully erosion in the Dongzhiyuan Highland in the Loess Plateau (Image courtesy Google Earth TM).
492	
493	For a project of such large dimensions, the design and implementation should be based
494	upon rigorous scientific study of gully erosion characteristics to avoid the potential negative
495	consequences of the human activities and unforeseen ecological problems (e.g., as alerted by
496	Li et al., 2014). In light of the ever-increasing gully erosion and soil erosion caused by large-
497	scale urban development and agricultural activities, it is essential to investigate the interaction
498	between loess erosion processes and gully stabilization in the Loess Plateau. A systematic

km^2 of land resource during the period of 2013-2030, with an estimated total cost of US\$ 8.43

499	study needs to be undertaken to investigate: 1) the migration of surface water in the loess
500	gully area, 2) the interaction between water infiltration and internal structure of loess, and 3)
501	the mechanism of the seepage erosion in loess. With regards to the Dongzhiyuan Highland,
502	this data can then be used to 1) derive the mechanisms and modes of loess gully erosion and
503	soil erosion under the influence of human activities, and 2) advance the new gully
504	stabilization and highland protection techniques and standards. The study results may also
505	provide scientific support for the sustainable development of both land resources and
506	urbanization in the Loess Plateau.
507	The Loess Plateau is a region of strategic significance to China given the presence of
508	many energy production facilities (i.e. involving oil, gas, and coal) as well as substantial
509	agricultural assets. The implementation of the Belt and Road Policy by the Chinese
510	Government can only increase the scale of the existing infrastructures there, particularly in
511	terms of new highways, high-speed railways, and urban transit corridors and airports.
512	Although the large-scale infrastructure construction projects may well provide unprecedented
513	opportunities in the Loess Plateau, the possible byproducts of multiple loess geohazards and
514	associated risks for society pose great challenges to the engineering communities. Therefore,
515	not only is it imperative to drive forward a research agenda that builds on our current
516	understanding of loess geohazards, including slope instability, subsidence and erosion, but it
517	is also essential that our current understanding of key properties and processes of loess

isimplemented in the design and management of loess landscapes, both natural and

519 engineered.

520

521 5. Concluding Remarks

Research into the engineering geology and geomorphology of the Chinese Loess 522 523 Plateau has yielded a comprehensive foundation of knowledge regarding geohazards in this 524 unique region. This research has provided new understandingof, among many others, micro-525 and macro-structural behavior of loess and the triggering and post-failure behavior of loess 526 landslides. Furthermore, monitoring and modellingof ground deformations in the vicinity of 527 loess fissures has provided insights into sustainable construction on and in ground affected by 528 these discontinuities. Various teams continue to work on furthering our knowledge of loess geohazards. With the continued, and accelerating, modifications of loess landscapes through 529 the mega-projects illustrated in this paper, it is imperative that this research continues to push 530 the frontiers of knowledge. Engineering geologists have a key role to play in underpinning the 531 sustainable development of societies (see for example Juang et al., 2016). However, there is 532 also a need to translate this knowledge into practical messages that influence engineering 533 534 practice and result in development of mitigation/management strategies that can help to ensure that these large-scale engineered interventions in the loess landscape do not result in 535 the manifestation of a wide range of geohazards and thus provide a costly legacy for future 536

Commented [TD15]: I have significantly shortened this section as there was a lot of repeating. If you feel I have deleted too much, please feel free to undelete.

537	generations: at b	best in terms of	potentially	expensive remedia	tion. or worse	through loss of
	A					

- 538 lives and livelihoods. There remain therefore significant opportunities for engineering
- 539 geologiststo continue to contribute to achieving sustainable development in the Loess Plateau.

540 Acknowledgements?

541

542 **References**

543	Assallay, A.M., Rogers, C.D.F. and Smalley, I.J., 1997. Formation and collapse of metastable			
544	particle packings and open structures in loss deposits. <i>Engineering Geology</i> 48(1-2)			

545 101-115.

546 Chen, H.J., Han, Z.F., Zhou, C.M., Zhang, X.W., 2017. Stability Analysis of High Slope in

547 Loess Cut under Rainfall. *Highway*, 2, 6-11 (in Chinese).

- 548 Chen, H.X., Wang, J.D., 2014. Regression analyses for the minimum intensity-duration
- 549 conditions of continuous rainfall for mudflows triggering in Yan'an, northern Shaanxi,
- 550 China. Bulletin of Engineering Geology and the Environment, 73(4), 917-928.
- 551 Chen, G., Zhang, Y., Zeng, R.Q., Yang, Z.K., Chen, X., Zhao, F.M., Meng, X.M., 2018.
- 552 Detection of land subsidence associated with land creation and rapid urbanization in the
- 553 Chinese Loess Plateau using time series InSAR: A case study of Lanzhou New District.
- 554 *Remote Sensing*, 10(2), 270, 23p.

33

Commented [TD16]: can write this when we get comments back from reviewers....?

555 Chinese Academy of Sciences, 1975.http://www.cas.cn/

- 556 Close, U., McCormick, E., 1922. Where the Mountains Walked. The National Geographic
 557 Magazine, 12 (5).
- Colesanti C., Wasowski, J. 2006. Investigating landslides with space-borne Synthetic
 Aperture Radar (SAR) interferometry. *Engineering Geology*, 88, 173–199.
- Derbyshire, E., 2001. Geological hazards in loess terrain, with particular reference to the loess
 regions of China. *Earth Science Reviews*, 54(1-3), 231-260.
- 562 Derbyshire, E, Dijkstra T.A., Smalley, I.J. (eds.) 1995. Genesis and properties of collapsible
- soils. NATO ASI Series C; Mathematical and Physical Sciences, Vol 468. Springer
- 564 Science and Business Media, Dordrecht, 412p.
- 565 Derbyshire, E., Dijkstra, T.A., Smalley, I.J., Li, Y., 1994. Failure mechanisms in loess and the
- effects of moisture content changes on remolded strength. *Quaternary International*, 24,
- 567 5–15.
- Derbyshire, E., Mellors, T.W., 1988. Geological and geotechnical characteristics of some loess
 and loessic soils from China and Britain: a comparison. Engineering Geology, 25(2-4),
 pp.135-175.
- 571 Derbyshire, E., Meng, X.M., Dijkstra, T., 2000. Landslides in the Thick Loess Terrain of
- 572 North-West China. John Wiley and Sons Ltd, London.

573	Dijkstra, T., 1994. Wastewater disposal and problem soils in Lanzhou, China. In Affordable
574	Water Supply and Sanitation. Proceedings 20th WEDC Conference, Colombo, Sri Lanka, 305-
575	309.
576	Dijkstra, T.A, Rogers C.D.F., Smalley I.J., Derbyshire, E., Li, Y.J., Meng, X.M., 1994. The
577	loess of north-central China: Geotechnical properties and their relation to slope stability.
578	Engineering Geology, 36, 153 - 171.
579	Dijkstra, T.A., Smalley, I.J. and Rogers, C.D.F., 1995. Particle packing in loess deposits and
580	the problem of structure collapse and hydroconsolidation. Engineering Geology, 40(1-
581	2), 49-64.
582	Dijkstra, T.A., Wasowski, J., Winter, M.G., Meng, X.M., 2014. Introduction to Geohazards of
583	Central China. Q. J. Eng. Geol. Hydrogeol., 47 (3), 195-199.
584	Eltner, A., Baumgart, P., Maas, H., & Faust, D. (2015). Multi-temporal UAV data for
585	automatic measurement of rill and interrill erosion on loess soil. Earth Surface Processes
586	& Landforms, 40(6), 741-755.
587	Follmer, L.R., 1996. Loess studies in central United States: Evolution of concepts.
588	Engineering Geology, 45(1-4), 287-304.
589	Fredlund, D. G., Rahardjo, H., 1993. Soil mechanics for unsaturated soils. John Wiley &
590	Sons, New Jersey.

591	Gao, G.R	., 1988.	Formation	and	development	of the	structure	of	collapsing	loess	in Cł	nina.
-----	----------	----------	-----------	-----	-------------	--------	-----------	----	------------	-------	-------	-------

- 592 *Engineering Geology*, 25(2), 235-245.
- 593 Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H., Altermann, M. and Jäger,
- 594 K.D., 2007. Loess in Europe—its spatial distribution based on a European Loess Map,
- scale 1: 2,500,000. Quaternary Science Reviews, 26(9-10), 1301-1312.
- 596 Ho, P.T., 1969. The loess and the origin of Chinese agriculture. The American Historical

597 Review, 75(1), 1-36.

- Hu, R.L., Yeung, M.R., Lee, C.F., Wang, S.J., 2001. Mechanical behavior and microstructural
 variation of loess under dynamic compaction. *Engineering Geology*, 59(3–4), 203-217.
- 600 Hu, S., Qiu, H.J., Wang, X.G., Gao, Y., Wang, N.L., Wu, J., Yang, D.D., Cao, M.M., 2017.
- 601 Acquiring high-resolution topography and performing spatial analysis of loess
- 602 landslides by using low-cost UAVs. *Landslides*, 2, 1-20.
- Hungr, O., Leroueil, S. and Picarelli, L., 2014. The Varnes classification of landslide types, an
 update. *Landslides*, *11*(2), pp.167-194.
- 605 Jefferson, I.F., Evstatiev, D., Karastanev, D., Mavlyanova, N.G. and Smalley, I.J., 2003.
- 606 Engineering geology of loess and loess-like deposits: a commentary on the Russian
- 607 literature. Engineering Geology, 68(3-4), 333-351.

609	Building Materials Science and Technology, 25(4), 107-108 (in Chinese).
610	Jiang, M.J., Zhang, F.G., Hu, H.J., Cui, Y.J., Peng, J.B., 2014. Structural characterization of
611	natural loess and remolded loess under triaxial tests. Engineering Geology, 181, 249-
612	260.
613	Juang, C.H., Carranza-Torres, C., Crosta, G., Dong, J.J., Gokceoglu, C., Jibson, R.W.,

Jia, Y.J., 2016. Research on concrete retaining wall reinforced unsaturated loess slope. China

- Shakoor, A., Tang, H., van Asch, T.W.J., Wasowski, J., 2016. Engineering geology: a
 fifty-year perspective. *Engineering Geology*, 201, 67–70.
- Leng, Y., Peng, J., Wang, Q., Meng, Z., Huang, W., 2018. A fluidized landslide occurred in
 the Loess Plateau: a study on loess landslide in South Jingyang Tableland. *Engineering*
- 618 *Geology*, 236, 129-136.

608

626

- Li, P.Y, Qian, H., Wu, J.H., 2014. Accelerate research on land creation. Nature Comment,
 510, 29-31.
- 621 Li, Z.H., Motagh, M., Yu, J., Gong, X.L., Wu, J.Q., Zhu, Y.F., Chen, H.G., Zhang, D.M., Xu,
- 622 Y.L., 2014. Land subsidence in the Yangtze River Delta, China revealed from multi-
- frequency SAR Interferometry.EGU General Assembly.
- 624 Liang, C., Cao, C., Wu, S. 2018. Hydraulic-mechanical properties of loess and its behavior
- 625 when subjected to infiltration-induced wetting. Bulletin of Engineering Geology and the
 - Environment, 77(1), 385-397.

Commented [U17]: this is just an abstract - I do not think it is needed

Commented [TD18]: My suggestion is to leave it in – it gives people a route to access more information?

627	Liu, S.H., 2015. Loess slope engineering: theory and practice on the stability of slope surface.
628	Science Press, Beijing (in Chinese).
629	Liu, T.S., 1985. Loess and the environment. Science Press, Beijing (in Chinese).
630	Liu, Y., Liu, N.N., 2017. Research on longitudinal stress mechanism of metro tunnel under
631	ground fissure environment. Journal of Xi'an University (Natural Science Edition), 5,
632	105-108 (in Chinese).
633	Luo, H., Wu, F.Q., Chang, J.Y., Xu, J.B., 2018. Microstructural constraints on geotechnical
634	properties of Malan Loess: A case study from Zhaojiaan landslide in Shaanxi province,
635	China. Engineering Geology. 236, 60-69.
636	Lutenegger, A., (ed.) 1988. Loess Geotechnology; Special Issue. Engineering Geology, 25(2-
637	4)
638	Meng, X.M., Xu, Y.H., Guo, T., Zhang, S.W., 1991. Research of Jiaoshuwan and
639	Taishanmiao landslides in Tianshui city. Journal of Gansu Science, 3(2), 36-43 (in
640	Chinese).
641	MONR, 2012. http://www.mlr.gov.cn/xwdt/mtsy/people//201212/t20121204_1162174.htm
642	(in Chinese; Google translation available).
643	Neuronnia M.S. Curafaud M. and Leffi D. 2009. Engineering groupstice of large in
	Nouaouria, M.S., Guenioud, M. and Lann, B., 2008. Engineering properties of loess in

645	Pacific Construction Group (PCG), 2014, http://www.cpcg.com.cn/	en/industry/golden/2014-
646	05-28/1401270531d2391.shtml.	

Peng, D.L., Xu, Q., Liu, F.Z., He, Y.S., Zhang, S., Qi, X., Zhao, K.Y., Zhang, X.L., 2018a.
Distribution and failure modes of the landslides in Heitai terrace, China. *Engineering*

649 *Geology*. 236, 97-110.

- 650 Peng, J.B., 2012. *Geo-Hazards of Xi'an Ground Fissures*. Science Press, Beijing (in Chinese).
- 651 Peng, J.B., Chen, L.W., Huang, Q.B., Men, Y.M., Fan, W., Yan, J.K., 2013. Physical
- simulation of ground fissures triggered by underground fault activity. *Engineering Geology*. 155(2), 19-30.
- Peng, J.B., Chen, L.W., Huang, Q.B., Men, Y.M., Fan, W., Yan, J.K., Li, K., Ji, Y.S., Shi,
 Y.L., 2008. Large-scale physical simulative experiment on ground-fissure expansion
- mechanism. *Chinese Journal of Geophysics*, 51(6), 1826-1834.
- 657 Peng, J.B., Fan, W., Li, X.A., Wang, Q.L., Feng, X.J., Zhang, J., Li, X.S., Lu, Q.Z., Huang,
- Q.B., Ma, R.Y., Lu, Y.D., 2007. Some key questions in the formation of ground fissures
 in the Fen-wei Basin. *Journal of Engineering Geology*, 15(4), 433-440 (in Chinese).
- 660 Peng, J.B., Fan, Z.J., Wu, D., Zhuang, J.Q., Dai, F.C., Chen, W.W., Zhao, C., 2015. Heavy
- 661 rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui,
- 662 China. *Engineering Geology*. 186, 79-90.

663	Peng, J.B., He, K., Tong,	X., Huang, O.B., Liu, C	2017a. Failure mechanism of an
000	1 eng, e.z., 11e, 11, 1 eng,	11, 11aang, 2121, 21a, 0	, 201 / al 1 allare inteenament of a

- underground metro tunnel intersecting steep ground fissure at low angle. *International Journal of Geomechanics*, 17(5), E4016006.
- 666 Peng, J.B., Huang, Q.B., Hu, Z.P., Wang, M.X., Li, T., Men, Y.M., Fan, W., 2017a. A
- proposed solution to the ground fissure encountered in urban metro construction in
 Xi'an, China. *Tunnelling and Underground Space Technology*, 61, 12-25.
- Peng, J.B., Leng, Y.Q., Zhu, X.H., Wu, D., Tong, X., 2016b. Development of a loess-
- 670 mudstone landslide in a fault fracture zone. *Environmental Earth Sciences*, 75(8), 658.
- Peng, J.B., Lin, H.Z., Wang, Q.Y., Zhuang, J.Q., Cheng, Y.X., Zhu, X.H., 2014. The critical
 issues and creative concepts in mitigation research of loess geological hazards. *Journal*
- 673 *of Engineering Geology*, 22(4), 684-691 (in Chinese).
- 674 Peng, J.B., Ma, P.H., Wang, Q.Y., Zhu, X.H., Zhang, F.Y., Tong, X., Huang, W.L., 2018a.
- 675 Interaction between landsliding materials and the underlying erodible bed in a loess flow676 slide. *Engineering Geology*. 234, 38–49.
- Peng, J.B., Sun, P., Igwe, O., Li, X.A., 2017b. Loess caves, a special kind of geo-hazard on
 loess plateau, northwestern China. *Engineering Geology*, 236. 79-88.
- Peng, J.B., Sun, X.H., Wang, W., Sun, G.C., 2016c. Characteristics of land subsidence, earth
- 680 fissures and related disaster chain effects with respect to urban hazards in Xi'an, China.
- 681 Environmental Earth Sciences, 75(16), 136-146.

682	Peng, J.B., Wang, G.H., Wang, Q.Y., Zhang, F.Y., 2017c. Shear wave velocity imaging of
683	landslide debris deposited on an erodible bed and possible movement mechanism for a
684	loess landslide in Jingyang, Xi'an, China. Landslides, 14, 1503-1512.
685	Peng, J.B., Wu, D., Duan, Z., Tang, D.Q., Cheng, Y.X., Che, W.Y., Huang, W.L., Wang,
686	Q.Y., Zhuang, J.Q., 2016d. Disaster characteristics and destructive mechanism of typical
687	loess landslide cases triggered by human engineering activities. Journal of Southwest
688	Jiaotong University, 51, 971-980 (in Chinese).
689	Peng, J.B., Xu, J.S., Ma, R.Y., Wang, F.Y., 2016e. Characteristics and mechanism of the
690	Longyao ground fissure on North China Plain, China. Engineering Geology, 214,136-
691	146.
692	Peng, J.B., Zhang, F.Y., Wang, G.H., 2017d. Rapid loess flow slides in Heifangtai terrace,
693	Gansu, China. Quarterly Journal of Engineering Geology and Hydrogeology, 50, 106-
694	110.
695	Peng, J.B., Zhuang, J.Q., Wang, G.H., Dai, F.C., Zhang, F.Y., Huang, W.L., Xu, Q., 2018b.
696	Liquefaction of loess landslides as a consequence of irrigation. Quarterly Journal of
697	Engineering Geology and Hydrogeology, DOI: qjegdoi.org/10.1144/qjegh2017-098.
698	Picarelli, L., 2010. Discussion on "A rapid loess flow slide triggered by irrigation in China"
699	by D. Zhang, G. Wang, C. Luo, J. Chen, and Y. Zhou. Landslides. 7(2), 203-205.

700	Oi. X., Xu, 0	D., Liu, F.Z.,	2018. Anal	vsis of retrogressiv	e loess flow sl	ides in Heifangtai.
	x -, · , · , ·	x · · · · · · · · · · · · · · · · · · ·		,		

701	China. Engineering Geology. 236, 119-128.
702	Richthofen, F. von, 1877. China. Ergebnisse eigener Reisen unddaran gegruendeter Studien,
703	1, 392p.
704	Rogers, C.D.F., Dijkstra, T.A. and Smalley, I.J., 1994. Hydroconsolidation and subsidence of
705	loess: studies from China, Russia, North America and Europe: in memory of Jan
706	Sajgalik. Engineering Geology, 37(2), 83-113.
707	Scheidig, A., 1934. Löss und seine geotechnischen eigenschaften. Steinkopf, Dresden und

- 708 Leipzig, 233p.
- Smalley, I., 1995. Making the material: the formation of silt sized primary mineral particles
 for loess deposits. Quaternary Science Reviews, 14(7-8), 645-651.
- 711 Smalley, I.J., Jefferson, I.F., Dijkstra, T.A. and Derbyshire, E., 2001. Some major events in
- the development of the scientific study of loess. Earth-Science Reviews, 54(1-3), 5-18.
- 713 Smalley, I.J. and Smalley, V., 1983. Loess material and loess deposits: formation, distribution
- and consequences. In Developments in Sedimentology (Vol. 38, pp. 51-68). Elsevier.
- Shi, J.S., Wu, L.Z., Wu, S.R., Li, B., Wang, T., Xin, P., 2016. Analysis of the causes of largescale loess landslides in Baoji, China. *Geomorphology*. 264, 109-117.
- 717 Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S.,
- 718 Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W. et al., 42

720	Reviews, 23(11-13), 1229-1271.
721	Tan, T.K., 1988.Fundamental properties of loess from North-western China. Eng. Geol., 25,
722	103-133.
723	Trofimov, V.T., Balykova, S.D. and Bolihovskaya, N.S., 2001. Loess cover of the earth and
724	its properties. MSU, Moscow, 464. (in Russian)
725	Trofimov, V.T., Balykova, S.D., Andreeva, T.V., Ershova, A.V., 2015. Subsidence of buried
726	soils in cyclic loess sequences of the northern Eurasia. In Engineering Geology for
727	Society and Territory-Volume 5 (pp. 439-442). Springer, Cham.
728	Tu, X.B., Kwong, A.K.L., Dai, F.C., Tham, L.G., Min, H., 2009. Field monitoring of rainfall
729	infiltration in a loess slope and analysis of failure mechanism of rainfall-induced
730	landslides. Engineering Geology, 105(1-2), 134-150.
731	Varnes, D.J., 1978. Slope movement types and processes. Special report, 176, pp.11-33.
732	Vasiljević, D.A., Marković, S.B., Hose, T.A., Ding, Z., Guo, Z., Liu, X., Smalley, I., Lukić,
733	T. and Vujičić, M.D., 2014. Loess-palaeosol sequences in China and Europe: common
734	values and geoconservation issues. Catena, 117, 108-118.
735	Wang G.A., HanJ.M., Liu D.S., 2003. The carbon isotope composition of C3 herbaceous plants
736	in loess area of northern China.Science in China,46 (10),1069-1076.

2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science

737	Wang, G.X., 1997. Sliding mechanism and prediction of critical sliding of Huangci landslide
738	in Yongjing county, Gansu province. Journal of Catastrophology, 3, 23-27 (in Chinese).
739	Wang, G.H., Zhang, D.X., Furuya, G., Yang, J., 2014. Pore-pressure generation and
740	fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: A
741	case study. Engineering Geology. 174(1), 36-45.
742	Wang, H.B., Zhou, B., Wu, S.R., Shi, J.S., Li, B., 2011. Characteristic analysis of large-scale
743	loess landslides: a case study in Baoji City of Loess Plateau of Northwest China.
744	Natural Hazards and Earth System Sciences, 11(7), 1829-1837.
745	Wang, W., Wang, Y., Sun, Q., Zhang, M., Qiang, Y., Liu, M., 2018. Spatial variation of
746	saturated hydraulic conductivity of a loess slope in the South Jingyang Plateau,
747	China. Engineering Geology. 236, 70-78.
748	Wang,Y.Q., Shao,M., Shao. H.B., 2010. A preliminary investigation of the dynamic
749	characteristics of dried soil layers on the Loess Plateau of China. Journal of Hydrology,
750	381 (1), 9-17.
751	Wasowski, J., Bovenga, F., 2014. Investigating landslides and unstable slopes with satellite
752	Multi Temporal Interferometry: current issues and future perspectives. Engineering
753	<i>Geology</i> , 174, 103–138.
754	Wasowski, J., Bovenga, F., 2015. Remote sensing of landslide motion with emphasis on
755	satellite multitemporal interferometry applications: an overview. In: Davies, T.

756	(Ed.),Landslide Hazards, Risks and Disasters, pp. 345–403.	
757	http://dx.doi.org/10.1016/B978-0-12-396452-6.00011-2.	
758	Wasowski, J., Bovenga, F., Dijkstra, T., Meng, X., Nutricato, R., Chiaradia, M.T., 2014.	
759	Persistent scatterers interferometry provides insight on slope deformations and landslide	
760	activity in the mountains of Zhouqu, Gansu, China. In: Sassa, K. (Ed.), Landslide	
761	Science for a Safer Geoenvironment, Vol. 2: Methods of Landslide Studies. Springer	
762	International Publishing, pp. 359–364. http://dx.doi.org/10.1007/978-3- 319-05050-8_56.	
763	Wasowski, J., Bovenga, F., Nitti, D.O., Nutricato, R. Dijkstra, T., Meng X. 2012.PSI helps to	
764	map relative susceptibility to ground and slope instabilities in the Lanzhou loess area of	
765	Gansu Province, China. Proceedings of Fringe 2011 Workshop, Frascati, Italy, ESA	
766	Special Publication 697. (CD-ROM), ISSN: 1609-142X	
767	Wu, Q., Chen, P.P., 2005. A "Three Maps" Method on the Evaluations of Ground Fissure	
768	Hazard. Acta Geologica Sinica. 79(6), 774-783 (in Chinese).	
769	Xu, L., Coop, M. R., 2017. The mechanics of a saturated silty loess with a transitional mode.	
770	Geotechnique, 67(7):1-16.	
771	Xu, L., Coop, M.R., Zhang, M.S., Wang, G.L., 2018. The mechanics of a saturated silty loess	

and implications for landslides. *Engineering Geology*. 236(26), 29-42.

773	Xu, L., Dai, F.C.,	Gong, Q.M., Than	n, L.G., Min, H.	., 2012a. Ir	rigation-induced loess flow
-----	--------------------	------------------	------------------	--------------	-----------------------------

- failure in Heifangtai platform, north-west China. *Environmental Earth Sciences*. 66(6),
 1707-1713.
- Xu, L., Dai, F.C., Tham, L.G., Tu, X.B., Jin, Y.L., 2011. Landslides in the transitional slopes
 between a loess platform and river terrace, northwest China. *Environmental and*
- 778 Engineering Geoscience. 17, 267-279.
- Xu, L., Dai, F.C., Tu, X.B., Tham, L.G, Zhou, Y.F., Iqbal, J., 2014. Landslides in a Loess
 Platform, North-West China. *Landslides*, 11(6), 993-1005.
- Xu, L., Qiao, X.J., Wu, C.X., Iqbal, J., Dai, F.C., 2012b. Causes of landslide recurrence in a
 loess platform with respect to hydrological processes, *Natural Hazards*, 64(2),1657-

783 1670.

- 784 Xue, Y.T., Meng, X.M., Wasowsk, J., Chen, G., Li, K., Guo, P., Bovenga, F., Zeng, R.Q.,
- 785
 2016. Spatial analysis of surface deformation distribution detected by persistent scatterer
- 786 interferometry in Lanzhou Region, China. Environ Earth Sci .75 (1),80.
- Zárate, M.A., 2003. Loess of southern south america. Quaternary Science Reviews, 22(1819), 1987-2006.
- Zeng, R., Meng X., Wasowski J., Dijkstra T., Bovenga F., Xue Y., Wang S., 2014. Ground
 instability detection using PS-InSAR in Lanzhou, China. Quarterly Journal of

791 E	ngineering (Geology and	Hydrogeology	,47, 307–321.
-------	--------------	-------------	--------------	---------------

792	http://dx.doi.org/10.1144/qjegh2014-040
-----	---

- 793 Zeng, R.Q., Meng, X.M., Zhang, F.Y., Wang, S.Y., Cui, Z.J., Zhang, M.S., Zhang, Y., Chen,
- 794 G., 2016. Characterizing hydrological processes on loess slopes using electrical
- resistivity tomography a case study of the Heifangtai terrace, northwest China. Journal 795 of Hydrology, 541, 742-753. 796
- Zhang, D., Wang, G., 2007. Study of the 1920 Haiyuan earthquake-induced landslides in loess 797 (China). Engineering Geology, 94(1-2), 76-88. 798
- 799 Zhang, F.Y., Chen, W.W., Liu, G., Liang, S.Y., Kang, C., He, F.G., 2012. Relationships
- between landslide types and topographic attributes in a loess catchment, China. Journal 800 801 of Mountain Science, 9(6), 742-751.
- Zhang, F.Y., Kang, C., Chan, D., Zhang, X.C., Pei, X.J., Peng, J.B., 2017. A study of a flow 802 slide with significant entrainment in loess areas in China. Earth Surface Processes and 803
- Landforms, 42, 2295-2305. 804
- Zhang, F.Y., Wang, G.H., 2018. Effect of irrigation-induced densification on the post-failure 805 806
- behavior of loess flow slides occurring on the Heifangtai area, Gansu, China.
- 807 Engineering Geology, 236(26), 111-118.

808	Zhang, M.S.,	Cheng,	X.J., Dong,	Y., Yı	1, G.Q.,	, Zhu, L.F	and Pei,	Y., 2013a.	The effect of
-----	--------------	--------	-------------	--------	----------	------------	----------	------------	---------------

- 809 frozen stagnant water and its impact on slope stability: a case study of Heifangtai,
- 810 Gansu Province. *Geological Bulletin of China*, *32*(6), pp.852-860.
- Zhang, F.Y., Wang, G.H., Kamai, T., Chen, W.W., Zhang, D.X., Yang, J., 2013b. Undrained
- 812 shear behavior of saturated loess at different concentrations of sodium chlorate solution.
- 813 *Engineering Geology*. 155(6), 69-79.
- 814 Zhang, Y. Meng, X., Jordan, C., Novellino A., Dijkstra, T., Chen, C. 2018. Investigating
- 815 slow-moving landslides in the Zhouqu region of China using InSAR time series.
- 816 Landslides, 15 (7), 1299–1315.
- Zhang, Z.L., Wang, T., Wu, S.R., Tang, H.M., Xin, P., Liang, C.Y., 2017. Dynamics stress–
 strain behavior of Tianshui soils. *Landslides*, 14(1), 323-335.
- 819 Zhao, CY., Zhang, Q., He, Y., Peng, J.B., Yang, C.S., Kang, Y., 2016. Small-scale loess
- 820 landslide monitoring with small baseline subsets interferometric synthetic aperture radar
- technique—case study of Xingyuan landslide, Shaanxi, China. J Appl Remote Sens.
 10(2),026030.
- 823 Zhao, D., Xu, M.X., Liu, G.B., Ma, L.Y., Zhang, S.M., Xiao, T.Q., Peng, G.Y., 2017. Effect
- 824 of vegetation type on microstructure of soil aggregates on the Loess Plateau, China.
- 825 Agriculture, Ecosystems and Environment, 242, 1-8.

826	Zheng,	Y., 2017.	Nine hours	early war	ning of i	landslide	in a slop	e made by	Chengdu
	- 01	.,							0

- 827 University of Technology that have a distance of thousands of miles between them.
 828 http://news.chengdu.cn/2017/1011/1919068.shtml. (in Chinese).

landslide occurrences in Xi'an, Shaanxi Province, China. *Journal of Mountain Science*,
11(2), 345-359.

Zhuang, J.Q., Iqbal, J., Peng, J.B., Liu, T.M., 2014a. Probability prediction model for

- Zhuang, J.Q., Peng, J.B., 2014b. A coupled slope cutting-a prolonged rainfall-induced loess
 landslide: a 17 October 2011 case study. *Bulletin of Engineering Geology and the Environment*, 73(4), 997-1011.
- 835 Zhuang, J.Q., Peng, J.B., Wang, G.H., Iqbal, J., Wang, Y., Li, W., Xu, Q., Zhu, X.H., 2017.
- 836 Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan'an, China,
- using the TRIGRS model. *Earth Surface Processes and Landforms*, 42(6), 915-927.
- 838 Zhuang, J.Q., Peng, J.B., Wang, G.H., Javed, I., Wang, Y., Li, W., 2018a. Distribution and
- 839 characteristics of landslide in Loess Plateau: A case study in Shaanxi
- 840 province. *Engineering Geology*, 236, 89-96.
- 841 Zhuang, J., Peng, J., Xu, C., Li, Z., Densmore, A., Milledge, D., Iqbal, J. Cui, Y., 2018b.
- 842 Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan
- Earthquake, Northwest of China. Geomorphology, 314, 1-12.