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The GW self-energy may become computationally challenging to evaluate because of frequency
and momentum convolutions. These difficulties were recently addressed by the development of
the multipole approximation (MPA) and the W-av methods: MPA accurately approximates full-
frequency response functions using a small number of poles, while W-av improves the convergence
with respect to the k-point sampling in 2D materials. In this work we (i) present a theoretical
scheme to combine them, and (ii) apply the newly developed approach to the paradigmatic case of
graphene. Our findings show an excellent agreement of the calculated QP band structure with angle
resolved photoemission spectroscopy (ARPES) data. Furthermore, the computational efficiency of
MPA and W-av allows us to explore the logarithmic renormalization of the Dirac cone. To this
aim, we develop an analytical model, derived from a Dirac Hamiltonian, that we parameterize using
ab-initio data. The comparison of the models obtained with PPA and MPA results highlights an
important role of the dynamical screening in the cone renormalization.

I. INTRODUCTION

State of the art many-body perturbation theory from
first principles provides accurate prediction of elec-
tronic excitations in materials.1–3 In particular, the GW
approximation4–7 gives access to properties associated
with charged excitations, such as quasi-particle band
structures,8 satellites,9,10 lifetimes,11 and spectral func-
tions.12,13 The GW approximation has been applied to a
variety of materials, ranging from solids, to molecules and
nanostructures.1,2 Among these, several studies14–25 have
focused on two-dimensional (2D) materials, due to their
potential application in optoelectronics, sensing, mechan-
ical and energy storage technologies.26,27

The GW approximation is usually implemented in
its non-self-consistent framework, namely the G0W0 ap-
proximation, where the Green’s function, G0, and the
screened interaction, W0, are calculated in one shot
from DFT energies and wavefunctions. Already with-
out self-consistency, the computation of quasi-particle
(QP) properties within G0W0 often requires a significant
computational effort, in particular in the evaluation of
convolution integrals between G0 and W0, both in fre-
quency and transferred momentum. Many implementa-
tions of the GW method solve the frequency integral in
the self-energy resorting to the plasmon-pole approxima-
tion (PPA),6,28–31 where the frequency dependence of the
screened interaction is simplified through an analytical
model with a single pole for each matrix element. Within
PPA, the screened interaction is calculated for only one or
two frequency values, and the frequency integral is com-
puted analytically, making the calculation more efficient
with respect to full-frequency approaches. However, the
accuracy of PPA is strongly system dependent.32,33

Several full-frequency (FF) methods have been pro-

posed,34–38 most of them making use of numerical
approaches to integrate the self-energy by means of
quadrature rules, the contour deformation (CD) tech-
nique,7,39–43 or analytic continuation methods.44–48 Re-
cently, a multipole approximation (MPA) for the fre-
quency dependence of the screened potential has been
developed.32,33 As in PPA, the self-energy is integrated
analytically, with a computational cost similar to PPA,
but an accuracy closer to FF methods. In fact, MPA
achieves full-frequency quality results by evaluating the
screened interaction at tens of points in the complex fre-
quency space, instead of hundreds/thousands as for ex-
ample in real-axis approaches (FF-RA).32,33

Low dimensional systems, like 2D systems, pose spe-
cific challenges to the calculation of the momentum trans-
fer (q) integrals in the self-energy. At low momentum
transfers, the dielectric function may vary very rapidly
with q, as seen e.g. for semiconductors,19,49 which makes
the integration over the Brillouin zone (BZ) computation-
ally expensive. In Ref. [50], it is shown that the conver-
gence with respect to the BZ sampling can be drastically
improved, by combining a Monte Carlo integration with
an appropriate interpolation of the screened potential be-
tween the calculated grid points, using the recently de-
veloped W-av method.50 While W-av shares similarities
with other methods,51 it avoids sub-sampling of the BZ,
gaining in computational efficiency.51–53

In this paper, we present a general method to effi-
ciently combine the MPA and W-av schemes to com-
pute QP band structures with coarse frequency and BZ
samplings. Overall, the MPA and W-av methods signif-
icantly reduce the computational cost of evaluating the
G0W0 self-energy by acting over the frequency and mo-
mentum integrals, respectively. Their combination, re-
ferred here as MPA@W-av, has been implemented in the
yambo package54,55 and is applied to the calculation of
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the G0W0 band structure of graphene.
The GW quasi-particle band structure of graphene has

been thoroughly studied, both in the neutral14,56 and
doped regime.57 Here, the dominant effect of the GW
corrections to the density functional theory (DFT) band
structure is an increase of the Fermi velocity, severely un-
derestimated by DFT, and an enlargement of the energy
separation between valence and conduction bands farther
from the Dirac cone. In the doped regime, GW correc-
tions are strongly reduced due to the efficient screening
of the added electrons/holes.57 Close to the Dirac (charge
neutrality) point, the electron-electron interaction is ex-
pected to play an important role in intrinsic graphene,
where the graphene Fermi velocity should present an ul-
traviolet logarithmic divergence due to the coexistence of
Fermi points and strong correlation.58,59 The divergence
in the graphene self-energy is present in both Hartree-
Fock and higher order theories, regardless of the screened
or bare nature of Coulomb force.59,60 A number of ex-
perimental58,61,62 and computational57,63 studies report
the expected logarithmic renormalization of the graphene
Fermi velocity, obtaining quantitative agreement with
the theoretical results. However, due to the limitations
regarding the momentum resolution, the purity of the
samples, and residual doping, the scale at which the di-
vergence sets in is difficult to assess.

On the ab-initio side, Ref. [63] reports G0W0 calcu-
lations with a 17% increase of the Fermi velocity with
respect to the DFT local-density approximation (LDA).
Close to the K point, the linear dispersion of the π
band is modified by the presence of a kink, attributed
to low-energy π → π∗ single-particle excitations and to
the π plasmon. In Ref. [57], a strong renormalization
of the Fermi velocity at zero doping is reported, with
a 50% increase going from 0.846 × 106 m/s (LDA) to
1.25× 106 m/s (G0W0). Although the calculation meth-
ods are similar to the ones reported in Ref. [63], no kink
is visible, and the bands recover the linear behavior at a
0.003 Å−1 distance from K (Ref. 57) instead of 0.7 Å−1

(Ref. 63), possibly as a result of a different BZ discretiza-
tion.

The GW QP band structure of graphene has been
also used as a starting point for the calculation of op-
tical spectra within the GW+BSE method,4,64,65 which
revealed excitonic effects despite the semimetal screen-
ing properties of graphene.56,66 Indeed, graphene is a 2D
material with a sharp dependence of the dynamical di-
electric function on transferred momentum. Moreover,
the presence of two intense peaks (the π and π + σ plas-
mons) and an important low-energy contribution make
it a prototypical case in which PPA may be inade-
quate to describe the screened interaction, as highlighted
by electron-energy loss (EELS) experiments.67–69 These
properties make graphene an excellent test case for the
proposed MPA@W-av method.

In this work, as an application of the newly developed
MPA@W-av scheme, we compute the GW QP energies
of graphene within the MPA@W-av approach and com-

pare it with angle-resolved photoemission spectroscopy
(ARPES) data.70 We also compare the efficiency of the
MPA@W-av method with respect to the PPA and FF-
RA computational schemes. Moreover, the improved k-
resolution allows for an accurate calculation of the GW
Dirac cone, used here to determine the parameters of a
generalized model of the logarithmic velocity renormal-
ization.

The work is organized as follows: In Section II the
GW methodology is introduced (Section II A) and the
MPA (Section II B) and W-av (Section IIC) approaches
are presented. In Sec. II D the combined MPA@W-av
method is described and applied to obtain the QP band
structure of graphene. The computational details are
provided in Sec. III. In Secs. IV A and IVB, the dielec-
tric properties of graphene are reported. In Sec. IVC,
we address the convergence of the Fermi velocity and the
gap at M with a number of approximations and com-
putational schemes. The frequency dependence of the
graphene self-energy is studied in Sec. IV D. In Sec. IVE,
we compare the obtained QP band structure of graphene
with ARPES measurements. In Sec. IV F we investigate
the renormalization of the Fermi velocity close to the
Dirac point. In Sec. V we draw the conclusions. Fi-
nally, in Appendix A we present a static Dirac model of
the long-wavelength limit of graphene irreducible polar-
izability, while in Appendix B we construct an hyperbolic
Dirac model of the renormalization of the Fermi velocity.

II. METHODS AND DEVELOPMENTS

A. The G0W0 self-energy

Within the framework of many-body perturbation the-
ory, the quasi-particle energies are obtained by solving
the QP equation:

εQP
nk = εnk + ⟨nk|Σ(εQP

nk )− vxc|nk⟩ , (1)

where εnk and |nk⟩ are usually the KS energies and wave-
functions and vxc is the exchange-correlation potential.
Alternatively, Eq.(1) may be linearized by a Taylor ex-
pansion of the self-energy up to first order, leading to:

εQP
nk = εnk + Znk ⟨nk|Σ(εnk)− vxc|nk⟩ , (2)

where the renormalization factor Znk is defined as:

Znk =

[
1− ⟨nk|∂Σ(ω)

∂ω
|nk⟩

∣∣∣∣
ω=ϵnk

]−1

. (3)

In order to obtain the QP correction of a single-particle
state, |nk⟩, we need to compute its corresponding self-
energy matrix element, Σnk ≡ ⟨nk|Σ|nk⟩, in the G0W0

approximation. Making explicit use of the Lehmann rep-
resentation for G0, in a Bloch plane-wave basis set, the
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diagonal matrix elements of the self-energy can be ex-
pressed as

Σnk(ω) = −
∑
m

∑
GG′

∫
dω′

2πi
eiω

′η

∫
dq

(2π)3
×

ρnm(k,q,G)W 0
GG′(q, ω′)ρ∗nm(k,q,G′)

ω + ω′ − εmk−q + iη×sgn(εmk−q − µ)
, (4)

where ρnm(k,q,G) = ⟨nk|ei(q+G)·r|mk− q⟩, and µ is
the chemical potential. W 0

GG′ = ϵ−1
GG′vG′ is the (non-

self-consistent) screened interaction matrix in plane-wave
representation, and ϵ−1

GG′ the inverse dielectric function.
The implicit limit η → 0+ ensures the proper time-
ordering. From now on, we drop the 0 superscript of
the screened interaction to ease the notation.

Notably, Eq. (4) contains a double integral in momen-
tum and frequency space, which in principle requires the
calculation of W (q, ω) over a sufficiently dense grid both
in the BZ and in the frequency space. In Eq. (4) W is the
only operator whose analytical expression is not known
and is typically split in two terms: the bare Coulomb
interaction v, which is static, and the correlation part
W c ≡ W − v, which contains all the dynamical effects,
i.e. the frequency dependence. This definition leads to a
decomposition of the self-energy into exchange and cor-
relation terms, Σnk(ω) ≡ Σx

nk +Σc
nk(ω).

B. Frequency integration within MPA

The correlation part of the screened Coulomb poten-
tial W c depends on frequency via the density-density re-
sponse function χ, with W c(ω) = vχ(ω)v. In the MPA
method, both W c and χ matrix elements are expressed
as the sum of a small number of complex poles. For ex-
ample, the components of W c are written as:

W c
GG′(q, ω) =

np∑
p=1

2RpGG′(q)ΩpGG′(q)

ω2 − [ΩpGG′(q)]2
, (5)

where ΩpGG′ and RpGG′ are the poles and residues, re-
spectively, and np is the total number of poles. Since v
does not depend on the frequency, the poles of W c and
χ are identical, and the residues of W c are the residues
of the multipole model of χ scaled by the bare potential,
v, on both sides.

As described in Ref. [32], for each momentum trans-
fer q and each GG′ matrix element, poles and residues
are obtained through a non-linear interpolation with fre-
quency points sampled in the complex plane, z ≡ ω+ iϖ:

np∑
p=1

2RpGG′(q)ΩpGG′(q)

z2i − [ΩpGG′(q)]2
= W c

GG′(q, zi), (6)

where i = 1, . . . , 2np and the set of complex frequencies zi
is conveniently selected according to the doubled parallel

sampling defined in Ref. [32]. The correlation part of
the GW self-energy is then integrated analytically in the
frequency space, leading to:

Σc
nk(ω) = −

∑
m

∑
GG′

np∑
p=1

∫
dq

(2π)3
×

ρnm(k,q,G)RpGG′(q)ρ∗nm(k,q,G′)

ω +ΩpGG′(q)− εmk−q + iη×sgn(εmk−q − µ)
. (7)

This expression generalizes the PPA solution to the case
of a multipole expansion for W c. It bridges between PPA,
in the case of one pole, and an exact full-frequency ap-
proach, for an increasing number of poles. More details
about this procedure can be found in Ref. [32].

C. Momentum integration within W-av

The W-av approach extends to the dynamically
screened potential W the Monte Carlo integration used to
treat the bare Coulomb interaction50,54 when integrated
over transferred momentum. In Ref. [50] the method was
developed for the case of 2D semiconductors treated at
the PPA level (equivalent to Eq. (7) with np = 1 and real
poles), here denoted as PPA@W-av. The self-energy inte-
gral was discretized over the BZ by exploiting the smooth
dispersion of ρnm(k,q,G) and ΩPPA

GG′(q), with respect to
q. However, the residues RPPA

GG′(q) of the screened poten-
tial vary rapidly due to the divergence of the Coulomb
interaction.

To account for this, the integrand in Eq. (7) is split
into slowly and rapidly varying components with respect
to q. The rapidly varying components, proportional to
the correlation part of the static screened potential W c,
are first interpolated in order to determine W c between
the grid points and then used in a Monte Carlo integra-
tion, to compute the average value of W c in the area
around each grid point. The computed average, W c, is
finally included in the integral, providing a significant
computational speedup.50 In Ref. [50] it was shown that
within PPA, the use of this averaged screened potential
in the static limit, ω = 0, significantly accelerates the
convergence of the self-energy integral over the momen-
tum transfer with respect to the number of k-points in
the discretization of the BZ.

D. Combining the MPA and W-av methods

The key aspect of MPA is the use of optimal sam-
pling strategies for χ in the frequency complex plane,
which allows one to reach full-frequency accuracy by sam-
pling only a few frequency points. Conversely, the W-av
method allows one to obtain accurate quasi-particles for
2D materials with coarse k-point grids. Combining the
two methods allows for convergence acceleration in both
frequency and momentum space. However, some caution
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must be taken, since the hypotheses used in PPA@W-av
about the q dependence of the position and the ampli-
tude of the plasmon poles may not apply to the MPA
description.

While W-av interpolates a monotonic function in a
small neighbourhood of each point in the BZ, MPA inter-
polates a complex structure in the frequency space. This
suggests that the MPA interpolation is sufficiently flexi-
ble to model the frequency dependence of W c(ω) result-
ing from the W-av procedure. For this reason, we invert,
in the case of MPA@W-av, the order of the self-energy in-
tegrals over frequency and momentum with respect to the
PPA@W-av approach described in Ref. [50]. We begin
by using W-av to compute the average screened interac-
tion W c(ω) in the discretized BZ for all frequency points
of the MPA sampling. Next, we interpolate the results
in frequency space using a multipole model. Finally, we
evaluate the frequency integral in the self-energy analyt-
ically using MPA. The step-by-step procedure is outlined
in detail in the following paragraphs.

Let’s consider separately the exchange and correlation
terms of the self-energy, Σx

nk and Σc
nk(ω). Since v is

frequency independent, Σx
nk can be easily integrated an-

alytically in the frequency space, while the integral over
momentum transfer can be computed on a Monkhorst-
Pack grid71 by means of the v-av method:50,54

Σx
nk = − 1

NqΩ

occ∑
v

∑
q,G

|ρnv(k,q,G)|2v̄G(q) , (8)

where Ω is the unit cell volume and v is the average
Coulomb interaction within a region of the BZ centred
around q (here reported for a 2D case),

vG(q) =
1

Dq

∫
Dq

dq′

(2π)2
vG(q′), (9)

where Dq is the integration domain centred around q
within the 2D Monkhorst-Pack grid.

For the correlation part of the self-energy, Σc
nk(ω), we

split the integrand over q following a procedure simi-
lar to the PPA@W-av in Ref. [50]. First, in analogy
with Eq. (9), we define W c

GG′ as the average screened
Coulomb interaction, which is the term varying rapidly
wrt q:

W c
GG′(q, ω) =

1

Dq

∫
Dq

dq′

(2π)2
W c

GG′(q′, ω). (10)

This allows us to write the self-energy as:

Σc
nk(ω) =

−1

NqΩ

∑
m

∑
GG′q

∫
dω′

2πi
eiω

′η×

ImGG′(q, ω + ω′)W c
GG′(q, ω′). (11)

where IGG′ is a term that varies slowly with q:

ImGG′(q, ω + ω′)≡ ρnm(k,q,G)ρ∗nm(k,q,G′)

ω + ω′ − εmk−q + iη×sgn(εmk−q − µ)
(12)

Next, we build a multipole representation analogous to
Eq. (5) but for the average potential W c(ω). The non-
linear interpolation is then solved with the method de-
veloped in Ref. 32 based on Padé approximants. After
integrating in both momentum and frequency, we obtain:

Σc
nk(ω) =

1

NqΩ

∑
m

∑
GG′q

np∑
p=1

ρnm(k,q,G)RpGG′(q)ρ∗nm(k,q,G′)

ω − εmk−q + (ΩpGG′(q)− iη)× sgn(µ− εmk−q)
, (13)

where Ωp and Rp are the poles and the residues of the
multipole model for the average potential, W c.

Equation (13) allows us to simultaneously address the
convergence problems with respect to the BZ sampling
and the complex frequency dependence of the correla-
tion part of the screened interaction W c(q, ω), as demon-
strated in the next sections for the case of graphene. We
emphasize that, although in this paper we devise the for-
mulation for 2D semiconductors and semimetals, the pro-
posed method can be used to treat systems with differ-
ent dimensionalities (1D and 3D) and can be extended to
systems with different screening properties (e.g. metals).

III. COMPUTATIONAL DETAILS

DFT calculations were performed using the plane wave
implementation of the Quantum ESPRESSO package,72
within the local-density approximation (LDA) exchange-
correlation functional.73 We adopted norm-conserving
pseudopotentials to model the electron–ion interaction
and the kinetic energy cutoff for the wavefunctions was
set to 90 Ry. G0W0 calculations were performed with
the yambo package.54,55 The QP energies have been cal-
culated with the linearized expression in Eq. (3). The
derivative of the self-energy, required to compute the
Znk factors, has been computed by finite differences us-
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ing a frequency interval of ∆ω = 0.1 eV. In the calcu-
lation of the Green’s function, we used a finite damping
η = 0.01 eV. For all calculations other than the QP band
structures in Figs. 6-7, we used a cutoff of 5 Ry for the
size of the dielectric matrix, including up to 100 states in
the sum-over-state of the response function. The same
number of states has been employed in the calculation of
the correlation part of the self energy.

In the calculation of the QP band structures of Figs. 6-
7, we used a cutoff of 10 Ry with 200 states both in the
calculation of the dielectric matrix and the self-energy.
When working with the PPA model, we adopted the
Godby-Needs scheme29 by sampling the polarizability in
the complex frequency space at z1 = 0 and z2 = i Ha.
In the MPA implementation, we used a double paral-
lel sampling with shifts ϖ1 = 0.02 Ha and ϖ2 = 1 Ha
(see Refs. [32,33] for further details), with 10 poles and
a quadratic sampling along the real frequency axis, as
explained in Ref. [33]. When not explicitly declared, we
used a 60 × 60 Monkhorst-Pack grid to sample the BZ.
The Coulomb interaction has been truncated with a slab
cutoff74,75 in order to remove interactions within super-
cell replicas both in G0W0 calculations. This allowed us
to use a supercell with an interlayer distance of L = 10 Å
to obtain converged results with respect to the cell size.

The calculations to address the Fermi velocity renor-
malization in Sec. IVF were performed with the method
described in Ref. [57], which allows us to include extra
k-points to the regular grids used for the polarizability.
For such calculations we made use of a finite occupation
smearing consistent with the adopted k grid, as discussed
in Sec. IV F and detailed in the Supplemental Materi-
als76.

IV. RESULTS AND DISCUSSION

We now present the results obtained with the
MPA@W-av scheme derived in Sec. II for the case of
graphene. In particular, we compute the QP energies
and examine the frequency dependence of the response
functions and the self-energy of graphene. Results com-
puted at the MPA@W-av level are then compared with
those obtained from PPA and FF-RA, and the com-
puted GW band structures compared with angle resolved
photoemission spectroscopy (ARPES) measurements.70
Considering the semimetallic character of graphene, in
App. A we also present a scheme based on a static Dirac
model to include the long-wavelength limit contribution
of the Dirac cone into the irreducible polarizability, a
term which is often missing in common GW implemen-
tations. The effect of this scheme is also discussed.

A. Dielectric properties of graphene

In this Section we discuss some key features of the
screening of graphene that are helpful to understand the

0.00 0.05 0.10
qy (Å −1)

0.2

0.4

0.6

0.8

1.0

ε−
1

00
(q
,z

)

z= 0

Im(z)≈ 0

Re(z) = 0

FIG. 1: (Color online) Momentum dependence of the real
part of the inverse dielectric function of graphene along the
ΓM direction, calculated for G = G′ = 0 for three different
frequencies in the complex plane z = ω+iϖ: in blue the static
limit (ω = ϖ = 0. eV), in red near the real axis (ω ≈ 0.16
eV, ϖ ≈ 0.54 eV) and in green on the imaginary axis (ω = 0
eV, ϖ ≈ 27 eV). Dark squares (dots) indicate values obtained
with a 60× 60× 1 (180× 180× 1) grids. The dashed lines are
the static inverse dielectric function calculated not including
the intra-band contribution in the q → 0 limit.

subsequent results. In Fig. 1 we plot the macroscopic
component (G = G′ = 0) of the inverse dielectric ma-
trix of graphene as a function of momentum transfer,
calculated at three different points in the complex fre-
quency plane, z ≡ ω+iϖ. The symbols represent calcula-
tions that include the long-wavelength contribution of the
Dirac cone, derived in Sec. A, while the dashed/dotted
lines indicate calculations without this contribution.

In the static case (blue symbols), the inverse dielec-
tric function approaches the value ϵ−1 ≈ 0.2 linearly in
the long-wavelength limit. This is consistent with the
Dirac model,77–83 that is a good approximation in this
regime. When the q → 0 limit contribution is not explic-
itly included (dashed blue line) the screening function of
graphene behaves as a 2D semiconductor, recovering the
correct semi-metallic limit only for infinite q-point grids.
It is evident that such a behaviour drastically slows down
the convergence of the QP corrections.

At finite frequencies but close to the real axis (red sym-
bols), the inverse dielectric function approaches one very
quickly in the long wavelength limit, as expected for a 2D
system. In Fig. 1 we present values for ϵ−1 obtained with
two different Monkhorst-Pack grids. The comparison be-
tween the results obtained with the 60× 60 Monkhorst-
Pack grid (squares) and the 180×180 grid (circles) shows
that very dense grids are needed to describe the sharp be-
haviour for small q. The inverse dielectric function cal-
culated at an imaginary frequency (green symbols) shows
instead a smooth behaviour with respect to momentum
transfer, since ϵ−1 is sampled far from its poles, that lie
on the real frequency axis.

The PPA and MPA methods resort to different fre-
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FIG. 2: Frequency dependence of the real (upper panel) and
imaginary (lower panel) part of the correlation screened in-
teraction (G = G′ = 0) of graphene computed along a line
parallel to the real frequency axis, at a distance of ϖ = 0.1 eV.
The momentum transfer is q ≃ 0.085 Å−1 along the ΓM direc-
tion. Full frequency grid (FF), plasmon-pole approximation
(PPA) and multipole approximation (MPA) are represented
with black, blue and red lines respectively.

quency samplings. PPA samples the frequency plane only
in the static limit and on the imaginary axis (illustrated
here by the smooth blue and green curves), while MPA
also samples the polarizability at finite frequencies near
the real axis (rapidly varying red curve). Since W-av is
designed to improve the description of rapid variations
with respect q using coarse grids,50 we expect the W-av
method to be more relevant for MPA than for PPA.

B. Frequency dependence of the screened potential

In Fig. 2, we show the frequency dependence of the
macroscopic matrix element G = G′ = 0 of the screened
interaction W c computed at finite momentum transfer
q ≃ 0.085 Å−1 along the ΓM direction within the random
phase approximation (RPA). In the plot, we compare the
PPA (dashed blue line) and MPA (red line) description
against a direct evaluation on the frequency grid (black
line). W c was evaluated at frequencies ω+ iϖ parallel to
the real frequency axis, with ϖ = 0.1 eV. The imaginary
part of the macroscopic screened interaction is propor-
tional to the electron energy-loss spectrum, already dis-
cussed in the literature.69,84–88 In agreement with pre-
vious results, −Im[W ] presents three main features: a
low-energy shoulder, the π plasmon (around 5 eV) and
the π + σ plasmon (around 15 eV).

The PPA approximation captures the static and high-

frequency limits of the real part of the screened inter-
action. However, it fails to capture the qualitative be-
haviour of the screened interaction, with its pole located
between the π and π + σ plasmons, around ΩPPA ≈
6.22 eV. It is known that PPA fails to describe QP prop-
erties32,89,90 in systems presenting structured features of
W at the low-energies, such as metals.33 That is also the
case of graphene. In contrast, the MPA approximation,
here evaluated considering ten poles, successfully repro-
duces all the key features of both the real and imagi-
nary parts of the screened interaction. It is important to
note that the computational cost of MPA can be effec-
tively compared to that of conventional FF treatments
by evaluating the number of frequency sampling points
to be used. Specifically, MPA requires twice the num-
ber of poles (i.e., order of tens) while the FF integration
on the real axis requires hundreds or thousands of them,
depending on the frequency structure of the screened po-
tential.32

C. Convergence of W-av with the k-mesh

The number of k-points (Nk) used for discretizing the
BZ is a challenging convergence parameter for 2D semi-
conductors, due to the sharp behaviour of the inverse di-
electric function as a function of momentum transfer.19,49
As shown in Sec. IV A this is also the case of graphene. In
the top panel of Fig. 3, we show the results of the QP gap
at the M point computed with different approximations.
Both the PPA and MPA methods (without the inclusion
of the intraband correction χ0

D (see App. A), nor the use
of the W-av method) show a very slow convergence with
respect to Nk. This is due to the poor description of
the long-wavelength limit of the static inverse dielectric
function, as explained in Sec. IVA. The inclusion of χ0

D
greatly accelerates the convergence of the PPA gap, but
the convergence of the MPA gap remains slow, showing
that the Dirac cone contribution has a different impact
on the two approximations.

In PPA, the χ0
D contribution correctly smooths out

the static limit and the screened interaction is evaluated
only at ω = ϖ = 0 and ω = 0 & ϖ ≈ 27 eV, where
the inverse dielectric matrix is smooth with respect to
momentum transfer. Conversely, in MPA, the screened
interaction is also evaluated at frequencies close to the
real axis, where the inverse dielectric function exhibits a
rapid variation in the long-wavelength limit (see Fig. 1).
Only when MPA is applied in combination with W-av,
the convergence of the QP properties is greatly acceler-
ated. In fact, for a grid of 60×60 k-points, the difference
in the QP gap with respect to the converged value is
around 30 meV, while without W-av the error is larger
than 300 meV. In the bottom panel of Fig. 3, we show
the convergence of the Fermi velocity, evaluated at the K
point through a first-order finite-difference formula with
∆k = 0.085 Å−1, chosen to be consistent with determina-
tion of the Fermi velocity done from experiments.70 The
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FIG. 3: Convergence of the quasi-particle band gap at M
(top) and Fermi velocity (bottom) of graphene with respect
to the number of sampling points in the BZ. The blue lines
indicate results obtained with the plasmon-pole approxima-
tion (PPA). The dark (light) blue line refers to calculations
done with (without) the inclusion of the long-wavelength con-
tribution χ0

D to the irreducible polarizability, according to
Eq. (A5). The dark dashed blue line indicates results ob-
tained considering the inclusion of χ0

D and the use of the
W-av method. Yellow, orange and red lines indicate results
obtained with the multipole approximation (MPA). Orange
lines indicate results where the long-wavelength contribution
χ0
D is added to the irreducible polarizability, while red lines

indicate results obtained considering the inclusion of χ0
D and

the use of the W-av method.

considerations previously done for the gap at M hold also
for the Fermi velocity: PPA and MPA results converge
slowly with respect to k-points and the inclusion of χ0

D
greatly accelerates the convergence for PPA, without a
significant effect for MPA. Again, MPA@W-av with χ0

D
greatly accelerates the convergence.

D. The self-energy of graphene

. Given a self-energy, the reliability of the quasi-
particle correction and lifetime of the state |nk⟩ depends

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0
v(M) (eV)

-1.0
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[

(
)]

v x
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)
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FIG. 4: Frequency dependence of the real part of the self-
energy of graphene, calculated at the top of the valence band
at the M point. The blue line is obtained with the plasmon-
pole approximation (PPA), the yellow line with the multipole
approximation (MPA), the red line indicates the MPA re-
sult when χ0

D is included and the W-av method is applied.
Coloured dots indicate the self-energy computed at the KS
energy, i.e. ω′ = ω − εv(M) = 0. The grey straight line rep-
resents the condition Σ(ω)− vxc = ω− εv(M), thus providing
the graphical solution of Eq. (1).

on the accuracy of the real and imaginary parts of the
self-energy at energies close to the corresponding Kohn-
Sham eigenvalue εn(k), as indicated by either Eq. (1) or
Eq. (3). In Fig. 4, we show the frequency dependence of
the graphene self-energy calculated at the top of the va-
lence band at the M point, within PPA and MPA. The
effect of W-av used with MPA is also shown. For the
sake of clarity, the frequency axis is shifted with respect
to the KS eigenvalue corresponding to the top of the va-
lence band at M, i.e. ω′ = ω − εv(M).

As discussed in Section IV B, within PPA the plasmon
energy is evaluated to be around 6.22 eV, thus, only a
region of the tail of the PPA self-energy is represented
within the range of the plot in Fig. 4. In contrast, the
MPA self energy shows a complex structure in the same
energy range, both around the QP solution and the en-
ergy region associated with the π plasmon (ω′ ∼ −5 eV).
The value of the self-energy obtained with PPA and MPA
at ω = εv(M) is very similar, while its derivative dif-
fers due to the different behaviour of Σ(ω′) at small
negative frequencies. Therefore, the difference between
the PPA and MPA solutions of the linearized QP equa-
tion, Eq. (2), is mainly due to the Z factors. The use
of χ0

D with W-av impacts the MPA results through the
low energy features of the self-energy, corresponding to
the poles of W at low energies and transferred momenta,
where the inverse dielectric function varies quickly with q
(see Fig. 1). In particular, χ0

D adds an extra peak around
ω′ = 0, related to the vanishing energy transition close
to the Dirac point.

In Fig. 5, we present a zoom of the frequency depen-
dence of the graphene self-energy, real (left panel) and
imaginary (right panel) components. The self-energy is
calculated within an energy range close to the solution of
the QP equation, using MPA for different k-meshes with
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FIG. 5: Zoom of the frequency dependence of the graphene
real (left) and imaginary (right) part of the self-energy calcu-
lated for the top of the valence band at the M point (black
box in Fig. 4). From the top to the bottom: results obtained
with the multipole approximation (MPA), MPA plus the long-
wavelength contribution χ0

D (see Eq. (A5)), MPA including
the χ0

D contribution and application of the W-av method.
Yellow (light blue) lines indicate results obtained with the
60×60 grid, orange (blue) lines with the 120×120 grid, while
red (dark blue) lines obtained with the 180 × 180 grid. The
grey shaded lines match the condition Σ(ω)−vxc = ω−εv(M),
thus represents the graphical solution of Eq. (1). The grey
lines represent the linearization of the self-energy of Eq. (3).
Black crosses represent the linearized solution of the QP equa-
tion [see Eq. (3)].

and without χ0
D and W-av. Without the inclusion of the

χ0
D term (top panels), graphene behaves as a 2D semi-

conductor with decreasing gap as the grid size increases.
The onset in the imaginary part of the self-energy ap-
proaches zero for denser grids. However, the convergence
with respect to the grid size is very slow, since the spuri-
ous gap ∆ = 2γ∆q closes with the inverse of the number
of sampling point in each periodic direction (e.g. nq for
a nq × nq grid), similarly to the case of metals.91

Likewise, the value of the real part of the self-energy,
Re[Σnk(ω

′ = 0)], and its derivative, Znk, also converge
slowly, as shown by the solid black lines in the top left
panel. The pole, added when including χ0

D (central pan-
els), remains in the same energy position and decreases in
intensity for larger grids. This pole is located precisely in

LDA PPA MPA Exp.

γ (106 m/s) 0.88 1.18 1.09 1.07± 0.05
Gap M (eV) 4.00 4.88 4.54

TABLE I: Fermi velocity γ and gap at M of graphene calcu-
lated with DFT and G0W0 with the plasmon-pole approxi-
mation (PPA) and the multipole approximation (MPA). The
experimental measurement of the Fermi velocity from Ref. 70
is also reported. Other results from the literature are men-
tioned in the main text.

the region where Znk is evaluated, making it numerically
unstable. As shown in Fig. 5, the calculation of Znk by a
Newton difference quotient significantly depends on the
frequency interval used in the numerical differentiation.
For this reason, to compute the QP energy, we first cal-
culate Znk disregarding the Dirac cone contribution and
only afterwards include χ0

D to evaluate Σnk(ω
′ = 0).

Finally, when both χ0
D and W-av are included (bottom

panels), the pole introduced by χ0
D is partially overlapped

with the onset in the imaginary part of the self-energy, re-
sulting in a smother frequency-dependence. The smooth-
ing of the onset increases for denser k-grids, since the
W-av method averages the transition energies in a small
domain around each q. This averaging stabilizes the nu-
merical evaluation of the Znk factor in the q → 0 limit
and is able to accelerate the convergence of the solution
of the QP equation with respect to the BZ sampling.
Since χ0

D is static, it is its combination with the W-av
approach that provides an effective dynamical correction
to the MPA self-energy, improving the accuracy of the
QP energy. However, if we want to go beyond the de-
termination of the QP energies and improve on the de-
scription of the imaginary part of the self-energy in the
region corresponding to ω ≲ −0.2 eV, we would need ei-
ther a denser k-grid or an accurate dynamical treatment
of the long-wavelength limit, e.g., through a dynamical
extension of the intraband χ0

D model.

Last, we discuss the computational advantage in using
the MPA@W-av approach. Despite the fact that we have
not explicitly performed converged calculations with FF
in the real axis formulation, we may reasonably assume
that around 1000 frequency steps would have been re-
quired (Nω = ωmax/∆ω ≈ 4Ha/0.1eV ≈ 1000). The
computational gain due to MPA is thus approximately a
factor 50. Using a 60×60 grid already provides converged
results with W-av, while the 210 × 210 grid is still too
coarse to obtain converged gaps without. Taking the k
and q grids to be identical, G0W0 typically scales as N2

k .
When this is the case, within W-av the computational
cost of a G0W0 calculation is reduced by at least a factor
150. Thus, the proposed combined method (MPA@W-
av) has a total computational speedup of 50×150 = 7500,
with respect to more straight forward approaches.
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energy range from -8 eV up to the Fermi energy, we show the
ARPES experimental measurements reported in Ref. 70.

E. Comparison with experiments and existing
literature

In Fig. 6, we compare the DFT-LDA with the QP band
structure obtained within PPA and MPA. The calcu-
lated occupied π bands are compared with experimental
ARPES measurements from Ref. [70]. Additional exper-
imental data, though limited to the Dirac cone region,
can be found in Ref. [92]. As expected, DFT fails in
describing key features of the graphene band structure.
In particular, it underestimates the Fermi velocity, the
gap at M and the bandwidth of the π band. While PPA
improves on the first two features, yielding a reasonable
QP band structure near the Fermi energy, its accuracy
diminishes for deeper states, for which it tends to over-
estimate the QP corrections. Conversely, MPA provides
a more comprehensive description of the band structure
over a broader energy range, in agreement with ARPES
results.

In Tab. I, we report the converged values of the Fermi
velocity and gap at M obtained with PPA and MPA, with
a grid of 120× 120 k-points. DFT results are also shown
for completeness. For the Fermi velocity, the experimen-
tal measure from Ref. [70] is included both in Tab. I
and in the bottom panel of Fig. 3, with the error bar
shown in gray. The Fermi velocity measured in Ref. [59]

is within the error bar of Ref. [70]. The Fermi velocity
computed within PPA is 1.18×106 m/s, consistent with
previously reported GW values, which range from 1.12 to
1.25(5)×106 m/s. More specifically, 1.12×106 m/s was
reported from both PPA and the contour deformation
methods in Ref. [63], 1.15×106 m/s from PPA56 and
1.25(5)×106 m/s again from PPA.57 Within MPA, the
Fermi velocity is around 1.1×106 m/s, smaller than our
PPA result, so that both approximations yield a very
good agreement with the experiment.70

Significant differences between PPA and MPA are ob-
served in the estimation of the QP gap at the M point,
with PPA providing a larger correction to the DFT eigen-
values. Specifically, the difference between PPA and
MPA at the M point is approximately 0.34 eV, which
is notably larger than the differences reported for quasi-
particles in semiconductors and simple metals.32,33 As in
the case of more complex metals such as Cu,33 this can be
explained by the improved description of the low-energy
features of the screened interaction, which are relevant
in the case of graphene. As expected from other full fre-
quency results,90 the difference between the MPA and
PPA descriptions builds up for the states further away
from the Fermi energy. For example, the state near the
Γ point at around −8 eV, is over-corrected by PPA by
0.47 eV with respect to MPA. This can be indeed as-
cribed to the incomplete description of the self-energy
structures below -4 eV (see Fig. 4), more important for
deeper states. Moreover, as shown in Fig. 6, other rep-
resentations issues of the PPA self-energy are apparent
in the noise of the bands corresponding to quasi-particles
between -14 and -21 eV.

The QP band structure obtained from MPA is, in
general, in good agreement with experimental measure-
ments in the whole considered energy range, even if,
in the present calculations, electron-phonon (e-ph) cou-
pling and vertex corrections are not included, and no
self-consistency is considered. The e-ph coupling reduces
the Fermi velocity by around 4% with respect to the
DFT value,93,94 an amount smaller than the difference
between PPA and MPA values. The inclusion e-ph cou-
pling would be important instead if we were to calculate
QP lifetimes,95,96 which are however out of the scope of
this work. To the best of our knowledge, neither the
effect of self-consistency nor the inclusion of vertex cor-
rections have been investigated beyond the Dirac Hamil-
tonian model.97–100

F. Velocity renormalization at the Dirac cone

In this Section, we examine the band structure of
graphene in proximity to the Dirac point, in particular
we aim at elucidating the logarithmic behavior of the π
band and the divergence of the Fermi velocity.58,59 For
that purpose, we have performed a series of calculations
using the PPA and MPA@Wav methods. We define a
k-dependent electron velocity γ(k) ≡ dε(k)/dk, with k
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arbitrarily chosen along the ΓK direction of a K centred
k-grid, i.e. k = 0 corresponds to K, and consequently,
the Fermi velocity can be expressed as γ(k = 0).

The energy variations in the vicinity of K are abrupt
enough to hinder the accurate description of the band
with a finite number of k-points. To circumvent this
difficulty, we have designed a hyperbolic model of the
QP energies near the Dirac cone based on the derivation
presented in App. B. According to this model, the energy
dispersion is described by the expression:

εD(k) = γck + fγc
k

2

[
cosh−1

(
2kc

k + ks

)
+

1

2

]
(14)

where kc is the ultraviolet cutoff fixed to the boundary of
the Brillouin zone, here kc = 1/2.15 Å−1,57,59 and ks ac-
counts for the smearing of the band occupations close to
the Fermi energy (see below). In the above expression, γc
and f are parameters of the model related, respectively,
to the electronic velocity for large k, and to the (dimen-
sionless) weight of the electron-electron interactions.

Models previously used to fit experimental data58,59

and GW calculations,14,57 take into account only the first
terms of a Taylor expansion around k = 0. The present
model, as detailed in App. B, has the same Taylor ex-
pansion of the exact Hartree-Fock solution of the Dirac
Hamiltonian, at all orders for k → 0. Moreover, it follows
very closely the exact solution for the whole k range (see
Fig. 9), with a maximum deviation, for k = kc, of about
0.8% for what concerns the nonlinear part and less than
0.1% if we consider εD(k).

As explained in Sec. IV D, GW calculations with dis-
crete grids present a discontinuity at the Dirac point, hin-
dering the accurate description of the Dirac cone. It is
common to address this issue by making use of a Fermi-
Dirac distribution with a small smearing s, compatible
with the distance between the points of the discretized
k-grid.57,63 The effect of s is included in Eq. (14) by
shifting the k points by ks, modelled through the linear
dependence, ks = s/γc. The presence of a finite smear-
ing preserves the logarithmic dependence of the Fermi
velocity but removes the divergence at K, similarly to
what happens in graphene with doping.57,63,101 The de-
pendence of the parameters of the model on the value of
the smearing is analysed in detail in the Supplemental
Materials76.

In Fig. 7 we compare the π-band of graphene close to
the Dirac point, computed at different levels of theory,
with the model in Eq. (14) parameterized on ab initio
data. In Tab. II we summarise the parameters of the
model. We also report the electronic velocity in the linear
regime, γL = εD(kL)/kL at kL = 0.085 Å−1, for a model
without smearing, i.e. ks = 0. The calculations were
done within DFT-LDA, GW -PPA and GW -MPA@W-
av, considering a 120 × 120 k-grid, complemented with
an additional set of points around K, as shown in Fig. 7,
and described in Sec. III. The adopted smearing value is
s = 0.0136 eV (see Supplemental Materials76).
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FIG. 7: Graphene valence π band in the region close to
the Dirac point (k = 0), computed with DFT-LDA, GW -
PPA@Wav and GW -MPA@Wav, with a 120×120 k-grid plus
6 extra points (see Ref. [57]) and a Fermi-Dirac smearing of
0.0136 eV (1 mRy) for the GW calculations. The lines show
the fit of the numerical values using the hyperbolic model
of Eq. (14). We compare with a logarithmic model fitted to
ARPES measurements from Ref. [59]. The values of the fitted
parameters are shown in Tab. II.

The model follows very closely the numerical values for
the three approaches, and the computed values of γL are
consistent with the ones reported in Tab. I, with differ-
ences below 5% and 3% for PPA and MPA respectively.
Regarding instead the asymptotic velocity in the model,
γc, GW calculations with PPA shows an increase with re-
spect to DFT while MPA presents a similar value, which
is also close to the value fitted with a logarithmic model
to ARPES measurements from Ref. [59].

As expected, for LDA the fitted model has a zero f ,
whereas for both GW calculations f is finite. As a re-
sult of the screening, the GW values are smaller than the
Hartree-Fock value estimated for the fine structure con-
stant of graphene from empirical models, fHF = α/4 ≃
0.55 with α = 2.2.102 If we use the model derived in
Ref. [58] for the RPA screening, consistent with our
Eq. (A5), and relate the fine structure constant with
the parameter f , we obtain f = α

4(1+πα/2) ≃ 0.12,
which is very close the present GW values, fPPA = 0.10
and fMPA = 0.15. In Refs. [102,103], the influence of
screening is estimated, from inelastic x-ray scattering
on graphite, to renormalize the effective fine structure
constant of graphene giving α∗ ≃ 0.25-0.35, while the
fit of ARPES measurements from Ref. [59] results in
α∗ = 0.40 ± 0.01 and therefore f = α∗/4 ≃ 0.1, again
consistent with the GW values found here for f . Among
the three approaches, the MPA Dirac cone, with its larger
f , is the one that most deviates from the linear behav-
ior, revealing the importance of the dynamical nature of
W , that is accounted for only in a simplified way within
PPA.
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γc (106 m/s) f γL (106 m/s)

DFT-LDA 0.87± 0.005 0 γc
GW -PPA 1.04± 0.06 0.10± 0.04 1.24
GW -MPA 0.87± 0.04 0.15± 0.03 1.12

Exp59 0.86± 0.02 0.10± 0.002 1.16

TABLE II: Parameters of the hyperbolic model of Eq. (14)
as fitted to the numerical values of the DFT, GW -PPA and
GW -MPA calculations of the graphene π band close to the
Dirac point. The parameters of a logarithmic model fitted to
ARPES measurements from Ref. [59] are also included. To
compare with other results in the literature, we also report
γL, the electronic velocity in the linear regime computed nu-
merically as γL = εD(kL)/kL, where kL = 0.085 Å−1. The
same procedure is use to compute γL with the logarithmic
model from Ref. [59]. Notice that all the reported velocities
correspond to their absolute values.
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FIG. 8: Momentum dependent electronic velocity of the
graphene band close to the Dirac point computed as the
derivative of the model in Eq. (14), evaluated with the
MPA@W-av parameters listed in Tab. II for different values
of the Fermi-Dirac broadening. As in Fig. 3, the gray bar
corresponds to the experimental value of the velocity in the
linear regime and its uncertainty, measured in Ref. [70].

The small value of f , even in MPA, elucidates why
the exact behavior of the velocity close to K is difficult
to assess using solely numerical results obtained from a
discrete k-grid. In Fig. 8 we show the velocity disper-
sion derived from Eq. (14), with the parameters fitted to
the MPA results for the valence π band, with different
ks values. As a reference, we represent also two extra
lines corresponding to a linear dispersion with γ = γc
and γ = 2γc. The logarithmic renormalization of the ve-
locity is well described, including the case ks = 0, where
the divergence is restored. Only in a very small vicin-
ity of K and for ks = 0, there is a significant change in
the velocity: it reaches 2γc for a distance from K of ap-

proximately k = 1.3× 10−6 Å−1, which corresponds to a
k-points Monkhorst-Pack grid of the order of 106 × 106.
Obtaining a reliable γ(k) from the QP energies using
finite differences would require a very large number of
points computed in very close proximity to K and, in
practice, no smearing. This also suggests that, in order
to capture experimentally the doubling of the electronic
velocity, one would need a graphene sample with a size
exceeding 10−4 m.

V. CONCLUSIONS

In this work we propose a method that combines to-
gether the MPA32 approach and the W-av50 scheme (la-
belled MPA@W-av here), aimed at efficiently computing
the G0W0 self-energy with coarse-grained frequency and
BZ samplings. First we provide and discuss the theoret-
ical formulation of the approach, which has been imple-
mented in the yambo package. Then, in order to illus-
trate the method, we apply it to the calculation of the
self-energy and QP band structure of graphene.

We show that MPA@W-av describes very accurately
the sharp dependence of the dynamic inverse dielectric
function on the momentum transfer. The comparison
with PPA reveals the importance of the accurate de-
scription of the frequency dependence of the screening
provided by MPA. W-av accelerates the convergence of
both real and imaginary parts of Σ, in particular in the
frequency region around the solution of the QP equation.
This affects the QP corrections, reducing, for example,
the MPA gap at M and improving the agreement with
the experimental values. The comparison with ARPES
measurements shows that, while the PPA description is
qualitatively accurate for energies close to the Fermi en-
ergy, MPA extends the agreement to a significantly larger
energy range.

Moreover, given the accuracy of the approach, we have
also addressed the electronic velocity renormalization at
the Dirac point, focusing in particular on the logarithmic
behavior approaching the Dirac point. Our findings show
that this behavior is difficult to render with a finite set of
quasi-particle energies on a discrete k-grid. To circum-
vent this difficulty we have designed a simple but very
accurate model, that reproduces very accurately the ex-
act solution of the Hartree-Fock self-energy for a Dirac
Hamiltonian, then generalized to account for screening
effects at the GW level. The model was used to fit the
sets of numerical results in order to give an analytical
description of the Dirac cone and of the renormalization
of the Fermi velocity.

Overall, the proposed MPA@W-av method combines
the efficiency and the accuracy gains already delivered by
the separate implementation of MPA and W-av. It pro-
vides GW converged results using k-point grids not much
denser than those needed for DFT calculations, as previ-
ously reported for semiconductor using PPA,50 while pro-
viding an accuracy similar to full-frequency methods, but
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using around few tens of frequency sampling points (20
here), instead of hundreds or thousands.32,33 Finally, we
would like to emphasise that MPA@W-av can be easily
used to treat systems with different dimensionalities (1D
and 3D) and with different screening properties (such as
metals), with the potential to become a widespread tool
within the GW methodology.
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Appendix A: Graphene Dirac model for the
polarizability

As detailed in Sec. II C, the W-av method uses an aux-
iliary function, f(q), to interpolate W c between nearest
neighbour points within the BZ. In practice, it is con-
venient to tailor the analytical form of this function to
the behavior of W in the region of small q vectors. For
2D semiconductors, for which W-av was originally formu-
lated,50 f(q) depends quadratically on q in this regime.51
However, freestanding graphene has a semimetallic be-
havior at the Dirac cone and, in the static limit (ω → 0)
and for q → 0, the fG=G′=0(q) element depends linearly
on q, thus requiring a different interpolating function.

Moreover, in the q → 0 limit, the contributions from
vanishing transition energies, such as intra-band tran-
sitions in metals, are not trivially included in the cal-
culation of the polarizability. When neglected, a spu-
rious gap opens, which dramatically slows the conver-
gence with respect to the BZ sampling.91 For metallic
systems, several computational schemes have been de-
veloped to overcome the problem, e.g. computationally
intensive Fermi-surface integrations,104–106 sub-sampling
methods52 or fitting schemes over the BZ.91 A semi-
empirical alternative is the inclusion of a Drude correc-
tion in the irreducible polarizability.106 In graphene, van-
ishing transition energies occur near the Dirac point K.
In the following, we show how this contribution can be
taken into account by considering the long-wavelength
(q → 0) contribution of the Dirac cone transitions to χ0

as based on a Dirac Hamiltonian.107

The 2D macroscopic independent-particle polarizabil-
ity χ0 reads:

χ0
G=G′=0(q, ω) = 2

∑
v,c

∫
dk

(2π)2
|ρcv(k,q,G = 0)|2×[

1

ω − (εck − εvk−q) + iη
− 1

ω + (εck − εvk−q)− iη

]
,

(A1)

where c and v refer to conduction and valence band in-
dexes, the limit η → 0+ is implicit as in Eq. (4), and the
factor 2 accounts for the spin degeneracy. For metals or
semimetals, as ω and q approach zero, the term in square
brackets diverges due to the simultaneous vanishing of
the frequency ω, and the energy difference εck − εvk−q.
However, since the matrix elements ρcv(k,q,G = 0) also
vanish for q → 0, this leads to numerical difficulties when
computing χ0

G=G′=0(q, ω) in these limits.
In the case of graphene, we split the integration over

the BZ in Eq. (A1) into two intervals, k ∈ DK and k ̸∈
DK , where DK is a small circular region around the Dirac
cone centred at K. For sufficiently small DK , only the
π/π∗ bands contribute to the polarizability, from here on
denoted as v/c. We can then write the long wavelength
contribution to the polarizability in this region as:

χ0
D(ω) ≡ lim

q→0
4

∫
DK

dk

(2π)2
|ρvc(k,q)|2×

[
1

ω − (εck − εvk−q) + iη
− 1

ω + (εck − εvk−q)− iη

]
,

(A2)

where the factor 4 accounts for both the spin and valley
degeneracy.

As an alternative to numerical integration, Eq. (A2)
can be evaluated analytically by considering a Dirac
model of the cone, with band dispersion and square mod-
ulus of matrix elements ρvc(k,q) given by:

εc/vk = ±γ|k|,

|ρ±(k,q)|2 =
1

2
[1± cos(θk,k−q)] ,

(A3)

where ρvv = ρ+ and ρvc = ρ−, k = 0 now corresponds
to the Dirac point K, γ is the Fermi velocity, and θk,k−q

the angle between the vectors k and k − q. By insert-
ing Eqs. (A3) into Eq. (A2), the integral in Eq. (A2) is
straightforwardly calculated in elliptic coordinates. After
taking the limits η → 0+ and q → 0, we find:

χ0
D(ω) = −q2

4

[
Θ(γq − ω)√
γ2q2 − ω2

+ i
Θ(ω − γq)√
ω2 − γ2q2

]
, (A4)

where Θ is the Heaviside step function. Finally, we eval-
uate Eq. (A4) in the static limit as:

χ0
D(ω = 0) = − q

4γ
, (A5)
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which allows one to compute the Dirac cone contribu-
tion to the static-independent particle polarizability. We
note that this expression was used in Refs. [77–83], for
all values of momentum transfer q in the whole BZ,
while, in our approach, Eq. (A4) is considered only in the
long wavelength limit and within the DK region. Oth-
erwise, the polarizability is calculated fully ab-initio via
Eq. (A1).

In Sec. IVD we have discussed the advantages of in-
troducing the correction χ0

D in the polarizability, as it
accelerates the convergence of the quasi-particle calcula-
tion with respect to the number of k-points. Moreover,
Eq. (A5) may be used to describe the Dirac cone contri-
bution to the polarizability in other 2D Dirac semimetals
and it can be generalized to different Dirac cone occupa-
tions, as in doped graphene.

Appendix B: Graphene Dirac Model for the
self-energy

Following Ref. [59], and in analogy with the quasi-
particle equation, Eq. (2), the QP dispersion of the occu-
pied π band of graphene can be written in atomic units
as:

εQP
vk = εvk + 2γcf

∫
dq

(2π)2
v(q)|ρvv(k,q)|2, (B1)

where we have used the Dirac model of Eq. (A3) redefin-
ing the Fermi velocity as γc. The factor 2 accounts for the
spin degeneracy and the Coulomb potential is given by
v(q) = 2π/q. The integral corresponds to the Hartree-
Fock (HF) self-energy Σx

vk, rescaled by the factor f , in-
troduced to account for screening effects, such as those
arising from the electronic screening within the GW ap-
proximation and/or the dielectric environment60. There-
fore, f = 1/γc in the case of the HF approximation when
applied to suspended graphene. In practice, γc and f
are used as free parameters when fitting DFT and GW
numerical results.

Here we focus of the integration of the rescaled HF
term, which modifies the linear dispersion of the v bands
around the Dirac point, set at k = 0. The integration is
performed up to a maximum radial cutoff value kc,58,60
the ultraviolet limit within the framework of the renor-
malization group theory.60 We then rescale all the mo-
mentum vectors by kc, q′ ≡ q/kc and k′ ≡ k/kc, and
choose a coordinate system q′ = (qx, qy) in which k′ has
only one component, k′ = (k, 0). Substituting Eq. (A3)
into Eq. (B1), the rescaled self-energy, Σ′

vk ≡ Σvk/kc, in
Cartesian coordinates reads:

Σ′
vk = −γcf

2π

∫
dq′

|q′|

1− k − qx√
(k − qx)2 + q2y

 , (B2)

where the integration domain is given by 0 ≤ q2x+q2y ≤ 1.
In Eq. (B2) only k dependent terms are relevant, since

the other term will only change the energy reference for

the vacuum level.60 Using polar coordinates, the integral
of interest can be written as:

Σ′
vk = −γcf

2π

∫ 2π

0

dθ

∫ 1

0

dr
k − r cos θ√

k2 − 2kr cos θ + r2
. (B3)

We present here a slightly different solution with respect
to the one in Refs. [108,109], stressing the importance of
higher order terms of its Taylor expansion. Working out
the radial integral, we get:

Σ′
vk =

γcf

2π

∫ 2π

0

dθ

{
cos θ

(
k −

√
k2 − 2k cos θ + 1

)
+

+k sin2 θ

[
tanh−1(cos θ) +

+ tanh−1

(
1− k cos θ√

k2 − 2k cos θ + 1

)]}
. (B4)

Even if the angular integral cannot be solved exactly in
terms of elemental functions, it can however be evaluated
numerically up to any desirable precision. In order to
arrive to an approximated analytical expression we derive
the Taylor expansion of Eq. (B4), both for small and large
k.

We consider the momentum-dependent electronic ve-
locity, γ(k) ≡ dε/dk, so that we can deal with the hyper-
bolic inverse tangents and get

dΣ′
vk

dk
=

1

k

[
Σ′

vk +
γcf

2π

∫ 2π

0

dθ
k − cos θ√

k2 − 2k cos θ + 1

]
.

(B5)
The remaining integral can be expressed in terms of com-
plete elliptic integrals:∫ 2π

0

dθ
k − cos θ√

k2 − 2k cos θ + 1
=

2

k

[
(k + 1)EK

(
−4k

(k − 1)2

)
+ (k − 1)EE

(
−4k

(k − 1)2

)]
,

(B6)

where, for a value m < 1, the complete elliptic integrals
of type 1 and type 2 are defined respectively as:

EK(m) ≡
∫ π/2

0

dθ(1−m sin2 θ)−1/2,

EE(m) ≡
∫ π/2

0

dθ(1−m sin2 θ)1/2.

(B7)

The series expansion of EK(m) and EE(m) are known.
If we consider the region of small k values around the
Dirac cone, we get

Σ′
v(k ≪ 1) = γcf

[
−k

2
log k + c1k − k3

32
− 3k5

512
−O(k7)

]
,

(B8)
where c1 = 1/4 + log 2. The logarithm is the dominant
term in the expansion, which diverges for k → 0, a direct
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FIG. 9: Top panel: comparison between Σ′
vk obtained nu-

merically from the exact expression given by Eq. (B4) (black
dots), the first (orange) and the first two (blue) terms of the
Taylor expansion for k = 0 in Eq. (B8), and the hyperbolic
model in Eq. (B10) (green). Bottom panel: difference be-
tween the models and the numerical solution.

consequence of the finite integration cutoff, kc. On the
other hand, if we consider the region close to the ultravi-
olet cutoff, k → 1−, we can define u ≡ 1−k and perform
a Taylor expansion for u → 0+:

Σ′
v(u ≪ 1) = γcf

[
a0 − a1u+O(u2)

]
, (B9)

where a0 = (2G + 1)/π ≈ 0.901432, a1 = (2G − 1)/π ≈
0.264812 and G is the Catalan’s constant.

In order to reproduce both behaviors in Eqs. (B8) and
(B9) and better understand our numerical results, we
propose the following analytical model:

ΣD(k) = γcf

[
k

2
cosh−1

(
2

k

)
+

k

4

]
. (B10)

Around k = 0, ΣD(k) has the exact same Taylor expan-
sion (up to infinite orders) of the one in Eq. (B8), while
for k → 1−:

ΣD(u ≪ 1) = γcf
[
a10 − a11u+O(u2)

]
, (B11)

with the coefficients, a10 = (1 + 2 cosh−1 2)/4 ≈ 0.908479
and a11 = (3+cosh−1 2−4)/12 ≈ 0.331129, that are very
similar to the ones in Eq. (B9). More insights about the
construction of the model in Eq. (B10) are provided in
the Supplemental Materials76.

In Fig. 9 we compare the results for the self-energy
obtained numerically from the exact expression given by
Eq. (B4) (black), the first term (orange) and the first two
terms (blue) of the Taylor expansion for k = 0, with the
model in Eq. (B10). In the bottom panel of Fig. 9 we
show the difference between the numerical solution and
the models. The models previously used to fit experimen-
tal data58,59 and GW calculations14,57, take into account
only the first one or two terms of a Taylor expansion
around k = 0. It can be seen that the logarithm follows
the numerical solution only in the region very close to
k = 0. In contrast, accurate results are obtained in a
much wider region when considering the first two terms
of the expansion and the proposed model. The model
with the hyperbolic cosine is particularly accurate, start-
ing to deviate monotonically from the numerical result
only above k = 0.5 up to a maximum difference of about
0.8% for k = 1. We have used the model of Eq. (B10),
with the additional linear term in Eq. (B1), εvk = −γck,
to fit the GW results presented in the main text.
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