
Journal of Computer and System Sciences 82 (2016) 1161–1179
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Multidimensional range queries on hierarchical Voronoi
overlays

L. Ferrucci b,∗, L. Ricci a,b,∗, M. Albano d,∗, R. Baraglia b, M. Mordacchini c

a Department of Computer Science of the University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
b Information Science and Technologies Institute of CNR (ISTI-CNR), Via Moruzzi 1, 56124 Pisa, Italy
c Institute of Informatics and Telematics of CNR (IIT-CNR), Via Moruzzi 1, 56124 Pisa, Italy
d CISTER, INESC-TEC/ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 431, Porto, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 March 2015
Received in revised form 18 March 2016
Accepted 8 April 2016
Available online 30 April 2016

Keywords:
Distributed systems
Range queries
Voronoi

The definition of a support for multi-attribute range queries is mandatory for highly
distributed systems. Even if several solutions have been proposed in the last decade, most
of them do not meet the requirements of recent platforms, like IoT or smart cities. The
paper presents an approach that builds a multidimensional Voronoi graph by exploiting
the attributes of the objects published by a node. Our solution overcomes the curse of
dimensionality issue affecting Voronoi Tessellations in high dimensional spaces by defining
a Voronoi hierarchy. The paper formally defines the structure, analysis the complexity of
the operations and presents experimental results.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The recent diffusion of smart-“things” such as smart-phones and RFID tags has produced the diffusion of new computing
platforms like cyber-physical networks, smart-cities platforms, which can be generally grouped under the broader definition
of the Internet of Things (IoT) [1]. In this context, an important building block for IoT infrastructures is the ability to sustain
widely distributed, dynamic, and autonomic services [2], in particular an efficient, scalable and adaptable discovery service
is essential.

Most IoT services share a set of common characteristics, in particular, they all use a representation of resources by multi-
ple attributes, and need to provide resource finding methods through structured selection criteria that include range queries
over more than one attribute. A support for the resolution of multi-attribute range queries is therefore mandatory in these
systems to support several higher level services. Consider, for instance, a scenario where mobile users issue location-based
range queries, in order to discover points of interest in a geographical region. For instance, a user may submit a query to
find out all the restaurants located in a given region with desired features such as average price of a meal, seating capacity
etc. The corresponding query may include constraints on the spatial location of the restaurant and on an additional set of
attributes.

Recent distributed computational platforms proposed for IoT, like those based on Fog computing [3], share several com-
mon traits with the peer-to-peer computational paradigm. As a matter of fact, these platforms require to run services
throughout the network and the result is that intelligence is not localized on centralized cloud computing nodes, but spread
throughout in the network resulting in a highly distributed platform. These platforms enable to improve user performance

* Corresponding authors.
E-mail address: laura.ricci@unipi.it (L. Ricci).
http://dx.doi.org/10.1016/j.jcss.2016.04.008
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:laura.ricci@unipi.it
http://dx.doi.org/10.1016/j.jcss.2016.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.04.008&domain=pdf

1162 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
and enhance security and privacy of users’ data. For instance, next generation social networks can benefit from these new
platforms, since increasing concerns about privacy are leading their architecture from the current centralized paradigm
towards a more distributed one, where a user’s information leaves its own computer on a need-only basis. Distributed plat-
forms can be used to manage the connections between nodes to allow the user to interact efficiently with its own contacts,
while still being guaranteed to reach every other node in the network.

Despite of the similarities with the peer-to-peer networks, not all the service discovery supports proposed in the last
decade for these platforms can be directly ported to the new ones, since they do not meet all the distinguishing traits of
the new computational paradigms.

Consider the problem of defining a distributed support for multi-dimensional range-queries. Several proposals have been
presented in the last decade for peer-to-peer networks. Many of them are based on Distributed Hash Tables (DHTs) and
exploit data delegation, i.e. the data published by a peer is generally stored on another peer chosen according to a mapping
strategy guaranteeing efficient routing. Even if this solution offers several benefits, such as logarithmic bounds for routing
and the possibility of employing uniform hashing to guarantee load balancing, delegation requires an high level of replication
in a highly dynamic environment and may be not appropriate for platforms targeting data privacy. Furthermore, even if
DHTs offer high performance in searching exact, single-attribute values, they are not suitable for handling multi-attribute
range queries. In the literature, several proposals try to address the problem of enhancing DHT overlays in order to support
multidimensional range queries [4–12]. The majority of these solutions has high maintenance costs, high replication costs,
or need a high number of messages to solve range queries, especially when conditions over related attributes are not
sufficiently selective. Other approaches to query resolution return results with probabilistic guarantees [13,14].

The problem of data delegation affects a further class of solutions based on the definition of peer-to-peer tree-based
overlays [15–17,2]. As a matter of fact, these solutions partition the domain of values among the peers and delegate data to
the node paired with the range including it. Furthermore, multi attributes queries are not always supported.

A widely-accepted class of solutions for placing and retrieving objects in highly distributed systems are those based
on the definition of Voronoi Tessellations, these include VoroNet [18], SWAM-V [19], VoRaQue [20], GeoPeer [21]. In these
solutions, each peer publishes and stores one or more objects characterized by a set of attributes, thus avoiding delegation.
The attributes of the objects are exploited to pair the peer with a point of the multi-dimensional space. The attribute
space is partitioned according to some notion of distance such that each peer is paired with all the points of the space
that are closer to it with respect to any other peer. Since objects with similar attributes are close in the network, data
locality is preserved and all the objects satisfying a multi-dimensional range-query can be localized within a region of the
space. Moreover, locality constitutes an advantage for fault tolerance with respect to delegation-based approaches, since
object insertion/removal causes changes only on the object neighbourhood. Finally, even if routing cannot be based on data
mapping strategies, efficient routing algorithms can be defined by exploiting the mathematical properties of the Voronoi
Tessellations [22], with additional long range links for fast searching to support query resolution.

The main drawback of these solutions is their poor scalability when the number of attributes and, correspondingly, of the
dimensions of the space increases. While Voronoi-based approaches have been proposed on 2-dimensional spaces, higher
dimensionality leads to an impractical runtime for the high average number of neighbours of a peer [18].

In order to take advantage of the Voronoi overlays’ features and give a support for multi-attribute searches, we propose
Hivory (HIerarchical VOronoi Range querY), a Voronoi-based solution able to efficiently perform multi-attribute (i.e. greater
than two) range queries in highly distributed systems. In the following we will use the term peer to refer a generic node of a
highly distributed system. The proposed solution is based on a multilevel hierarchical structure that takes the form of a tree
of Voronoi Tessellations; each level of the tree maps a different pair of attributes of the object, and each node of the tree
is constituted by a 2-dimensional tessellation. In case a set of objects have the same coordinates in the multi-dimensional
space, and thus a cluster of peers gets paired with the same point of the Voronoi space, a new tessellation comprising the
cluster is created and inserted at a lower level of the hierarchy. Moreover, a clustering mechanism based on an absorption
radius is exploited to gather peers that are close in the space. To have an upper limit on the number of neighbours, for
each cluster a number (that depends on the cluster size) of peers are elected super-peers. They are the only peers that are
visible (i.e. can interact) in the Voronoi Tessellation the cluster belongs to. They act as gateways between successive levels
of the Hivory network. This mechanism allows to further limit the number of messages required to solve queries.

This paper improves the preliminary version of Hivory presented in [23] in several directions:

• We give a formal definition of Voronoi Tessellation Tree (VTT).
• We provide a formal proof of the soundness of the super-peer election mechanism.
• We give a detailed description of the Leave operation.
• We present a comprehensive evaluation of the complexity of all the operations defined by Hivory (Super-Peer election,

join, leave and multi-range queries).
• We present a new set of experiments, including an experimentation on data taken from a real platform.

The remainder of this paper is organized as follows. Section 2 discusses some approaches proposed in the literature for
supporting multi-attribute range queries. A preliminary discussion on the implementation of multi-attribute range queries
on Voronoi networks is presented in Section 3. The architecture of Hivory is described in Section 4. Section 5 details Hivory’s

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1163
operations, while Section 6 presents an analysis of the complexity of the operations. The experimental results are presented
in Section 7. Finally, Section 8 reports some conclusions.

2. Related work

In the last decade a large set of supports for multidimensional range queries targeted to peer-to-peer systems have been
presented, while only a few recent proposals target IoT environments.

A first class of proposals for peer-to-peer systems extends DHTs [24–26] to support multi-dimensional range queries. The
first fundamental work in this direction is MAAN (Multi-Attribute Addressable Network) [4]. In MAAN objects are identified
by a set of attribute-value pairs, and each attribute is mapped on a Chord ring [24] through an hash function which
computes, for each resource, a target node, storing the full resource description. This way a resource is stored as many times
as its number of attributes. The resolution of a multi-attribute range query consists in executing a single 1-dimensional
query on the most selective attribute, while the other attributes are checked using the replicated data.

In SWORD [8], nodes are divided in reporting nodes, sending periodic updates of the object values, and DHT Server nodes
that form the DHT overlay and receive and store resource values and handle users queries. The possible values of each
attribute are stored into contiguous regions of the DHT key space using a proper mapping function. A range query on an
interval of values of an attribute is solved by querying all the nodes holding the keys in the range defined by the query.

Mercury [6] is a multi-level DHT network that uses a different DHT (called Hub) for each attribute. Each resource registers
all the values of its attributes in each corresponding Hub to reduce the messages needed to solve a multi-attribute query.
In fact, only the Hub with the lowest requested range is queried. Since attribute values are stored in each DHT using
locality preserving functions, range queries are solved proceeding from the lowest value in the range to the biggest one. The
resources matching all the request attribute constrains are finally sent to the user.

Andrzejak et al. [27] extends the CAN DHT [25] in order to support multidimensional range queries. CAN (Content
Addressable Network) is a DHT based on a n-dimensional Cartesian Coordinates Space, where the entire space is partitioned
amongst all the peers. Each peer owns a zone in the overall space and manages the objects that are mapped to that
zone by the hashing function, thus exploiting object delegation. In [27], a proper CAN DHT layer is used separately for
each attribute. In each layer, each node handle a subinterval of the corresponding attribute domain. Each sub-query of a
multiattribute query is resolved separately and results are intersected at the querying node, in order to obtain the final list
of matching resources.

All the above approaches suffer of at least one of the following drawbacks: 1) the delegation of the objects published
by a peer to other peers, which can be an issue for privacy; 2) the use of one DHT per attribute, which leads to high
maintenance costs; 3) the exploitation of the most selective attributes to limit the diffusion of queries, which requires high
replication costs in terms of number of messages exchanged. The works in [5,6] and more recent proposals [7–11] have
similar drawbacks.

Another class of approaches studied in the literature [18,28,23,19] directly exploit a multidimensional graph to support
multi-dimensional query resolution. These approaches overcome the delegation issue by storing the objects published by a
peer on the peer itself and by exploiting the attributes of the objects to position the peer in a multidimensional space. Most
of these approaches exploit a Voronoi Tessellation of the multi-dimensional space. Even if other space partitioning strategies
can be exploited, the Voronoi approach presents several advantages, like the possibility of defining efficient AOI-cast algo-
rithms, based on Voronoi properties, which permit an efficient propagation of a range-query within the area defined by it.
For this reason, this paper focuses the attention on this structure, even if the idea of defining a hierarchy of low dimensional
spaces can be applied to other multidimensional space partitioning approaches.

The Voronet P2P network [18] maps each peer to a bidimensional attribute Voronoi space where the values of two
properly selected attributes of the object published by the peer specify its coordinates in the space. A overlay link is defined
between peers that are Voronoi neighbours. These links correspond to those of the Delaunay Triangulation paired with the
Voronoi Tessellation. Complexity bounds are given, both for routing and for the routing tables size. The main drawback of
this approach is that it can be applied to bidimensional Voronoi space only, and that it does not support range queries.

SW AM (Small World Access Methods) [19] is a family of distributed access methods to efficiently execute range and
k-nearest neighbours queries. They guarantee that finding an object defined by an exact query is logarithmic in the size of
the network, and that all the similar objects would be located in neighbouring nodes. A range query is considered as an
exact-match query for a point chosen in the AoI of the query, then flooding is adopted to propagate the query to all the
nodes of the AoI. The main drawback of this approach is the high cost introduced by flooding.

The protocol in [29] builds a distributed Delaunay triangulation based on the equiangular property [30]. Periodically, each
node checks whether it respects this property and whether its neighbours do too, otherwise they create new triangles to
maintain a correct structure. [20] optimizes the notification of a query within its AoI by introducing Compass Routing [22],
which has the characteristic to always find a finite path between two nodes of a Delaunay Triangulation, although it is not
cycle free for general graphs. [29] suggests to exploit Compass Routing to define a Spanning Tree supporting an applica-
tion layer multicast. [31–33,21,28] propose protocols to build and maintain Delaunay triangulation-based overlay networks.
[32] describes an incremental algorithm to construct and manage bi-dimensional Delaunay overlay networks where nodes
communicate only with neighbouring nodes and build the overlay network incrementally. Nodes communicate with each
over a virtual collaborative space that exploits the overlay network, and employ multi-hop communication between dis-

1164 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
tant nodes. This approach is applicable to geographical networks with large diameter and GIS (Geographical Information
Systems). [33] proposes a distributed algorithm to build spherical Delaunay networks where nodes operate independently
to generate incrementally a local area network according to the geometrical proximity of neighbour nodes. It can be used
in the context of Collaborative Virtual Space. In [21] it is proposed a location-based query support, Geopeer, whose nodes
arrange themselves to form a Delaunay triangulation augmented with long range links. [28] defines a peer sampling layer
based on the Cyclon and Vicinity gossip protocols [34] to build a Delaunay network. The information returned by this layer
is passed to an upper layer, which exploits the mathematical properties of Voronoi Tessellation [30] to detect the neighbours
of a node.

It is worth noticing that, despite several Voronoi-based approaches have been proposed, they focus on low dimensional
Voronoi Tessellation and do not face the problem of the curse of dimensionality.

Finally, [2,35] present proposals specifically designed for IoT scenarios. [2] supports multi-attribute range-queries and
adopts a peer-to-peer approach for guaranteeing scalability, robustness, and maintainability of the overall system. The Dis-
covery Service linearises multi-attributes through space filling curves and exploits an indexing structure built on top of
the Kademlia DHT overlay network. [35] provides a simplified programming abstraction for IoT defining an API including
functions for querying distributed data.

3. Preliminary discussion

The Voronoi approaches mentioned in Section 2 are based on the assumption that each peer publishes an object charac-
terized by k attributes, mapping it into a point of a k-dimensional space, which is called the site of the object. The position
of peers in this space defines the Voronoi Tessellation. We briefly recall the notion of Voronoi Tessellation:

Definition 1. Given M sites in a n-dimensional space, a Voronoi Tessellation is the partitioning of the space into M convex
areas such that each area contains exactly one site and every point in a given area is closer to the site paired with that area
than to any other site.

If the borders of two areas of a Voronoi Tessellation overlap, the corresponding sites are called Voronoi neighbours.
A Delaunay triangulation is the graph obtained by connecting neighbours sites.

The main problem for the application of Voronoi-based solutions to real scenarios is the curse of dimensionality [36].
In fact, while the number of Voronoi neighbours of a site has a probabilistic bound of O (1) for bidimensional Voronoi
Tessellations, it grows as O (n� d

2 �−1) for a number of dimensions d > 2 [36].
A simple solution to this problem is to partition the set of attributes so that each subset is paired with a different

Voronoi Tessellation, obtaining a set of disjoint tessellations for each object. In this section we show that this solution,
which is based on the reduction of the space dimensionality, overcomes the curse of dimensionality problem, but is not
suitable for realising efficient distributed supports. This discussion is intended to justify the novel hierarchical approach
introduced in the next section.

Consider a dimension reduction where each Tessellation is defined by considering a subset of the attributes of an object.

Definition 2. Given a set O of objects characterized by the attributes A = {a1, ..., ak} and A′ ⊆ A, |A′| = t , V A′ is a
t-dimensional Voronoi Tessellation such that

• each dimension of V A′ corresponds to an attribute ai ∈ A′
• V A′ includes a set S of sites such that the coordinates of any s ∈ S correspond to the values of the attributes ∈ A′ of at

least an object o ∈ O .

Definition 3. Given an object o ∈ O , map(o, V A′) denotes the site s ∈ V A′ whose coordinates are defined by the values of
the attributes of o in A′ .

Based on this, given a partition P of the set of attributes of the objects, each object is paired with a set of Voronoi
Tessellation, V or Set(P), containing one tessellation for each element of the partition P . Note that this implies that each
peer should join a set of overlays, one for each tessellation.

Definition 4. Given a partition P of the set of attributes A,

• V or Set(P) = ⋃
p∈P V p

• map(o, P) = ⋃
p∈P map(o, V p) .

Let us consider now how range queries may be supported on these overlays. Given the partition P of the set of attributes,
a range query q can be resolved according to two alternative strategies. We denote with AoI(q, V A) the region of V A defined
by the constraints of q referring the attributes in A. Given a partition P of the attributes, the first solution visits in parallel

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1165
all the AoI(q, V p), ∀p ∈ P . The matches for the query belong to the intersection of the sets of objects returned by each visit.
As discussed in [4], the peer submitting the query may be overwhelmed by a huge amount of unrequired notifications, since
AoI(q, V p) may contain objects that do not match the query due to attributes not in p. The second strategy restricts the
search to the most selective AoI. Each peer in this AoI checks if its object matches the constraints on attributes not in p and,
in this case, it returns its object as a solution of the query. This approach reduces the number of unrequired notifications,
but the number of peers involved in the query resolution may be much higher than the number of its matches also in this
solution, especially when the selectivity of the AoI is not high and/or when the distribution of the objects is skewed so that
very densely populated AoIs exist.

Furthermore, these strategies do not take into account the problem of clustering. A cluster C is a set of objects charac-
terized by the same attributes values, leading to being paired with the same Voronoi site.

Definition 5. Consider a partition P of the attributes, a Voronoi Tessellation V p paired with the set of attributes p ∈ P and
a site s ∈ V p . The cluster of objects paired with s is defined as follows:

C(s, V p) = {o ∈ O such that map(o, V p) = s}

The main problem of clustering is that the probabilistic bound in the number of neighbours of an object is not O (1)

anymore, even for bi-dimensional Voronoi Tessellations. Since all the objects in a cluster are paired with the same site, it
is not possible to exploit the Delaunay triangulation edges efficiently for the resolution of a range query. A solution where
a peer n sends the query to all or a subset of the peers of the cluster is not feasible, because the huge amount of needed
connections, or the necessity of flooding to propagate the query to the other peers, which introduce a large amount of
redundant messages. Clustering occurs often in real applicative scenarios. For instance, a large amount of restaurants can be
characterized by the same amount of seating capacity and average price. Note that the reduction of a n-dimensional Voronoi
Tessellation to a set of lower-dimensional Voronoi Tessellation increases the level of clustering, because the probability to
coming across objects characterized by the same attribute values is inversely proportional to the number of attributes
exploited to map an object on a Voronoi site.

4. Hierarchical Voronoi Tessellations

Hivory exploits Voronoi Tessellations in a different way with respect to what discussed in Section 3, in fact, it exploits
object clustering to define a hierarchy of 2D Voronoi Tessellations.

In the rest of the paper we will consider, for the sake of simplicity, a one-to-one mapping between objects and peers, and
we will use the terms object and peer interchangeably. We will exploit the notation Object(p) to refer the object published
by the peer p, and Peer(o) to refer the peer paired with the object o. The obtained results can be easily extended to the
case where a peer publishes several objects, by pairing a Voronoi site to each object, and relating multiple sites to each
peer.

We first give an informal definition of the hierarchical structure we propose, afterwards we formalize it. Let us suppose,
for the sake of simplicity, that each object is characterized by an even number k of attributes. Hivory defines a hierarchy of
at most lmax = k

2 levels, each level corresponding to a pair of different attributes. Whenever a cluster C of objects is paired
with a Voronoi site s at level l ∈ 1, .., lmax , and the size of the cluster exceeds a predefined threshold T , a new Voronoi
Tessellation V is defined at level l + 1, and all the objects of C are mapped to V by exploiting the attributes paired with the
next level l + 1. This implies that each cluster of level l exceeding the threshold, defines a different Voronoi Tessellation at
level l + 1 except at level lmax , because all the attributes have already been exploited to define the lower level Tessellations.

Example 1. Fig. 1a shows an example of Voronoi Tessellation hierarchy defined by Hivory. In the figure the notation O i --O k
denotes the cluster including the objects O j such that i ≤ j ≤ k. The threshold T is set equal to 3, i.e. a new Voronoi
Tessellation is created if a cluster size is larger than 3. Therefore, the cluster O 7--O 8 is not expanded, while the clusters
O 2--O 6 and O 9--O 20 are expanded generating a further hierarchy level. Note that a subset of the objects of the cluster
O 9--O 20 at Level1 is paired with the same site at Level2 so that they define the cluster O 11--O 15, which is recursively
expanded at Level3. �

Let us now describe formally the hierarchical Voronoi Tessellation we propose. To reduce the overhead needed by a
dynamic ordering of the attributes, we statically order them and define a static mapping between each pair of attributes
and one level of the hierarchy.

Definition 6. Given a set of sites S , V (S) is the Voronoi Tessellation defined by the sites ∈ S .

Definition 7. Let A be the set of k = 2 ∗ lmax attributes of a set O of objects. Let us consider an ordered sequence S of the
attributes in A:

1166 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
Fig. 1. Hierarchical Voronoi Tessellations.

• Given a level l ∈ [1, lmax], the attributes of O of level l, referred as Al , are those whose rank in S is, respectively, 2 ∗ l − 1
and 2 ∗ l.

• Given a level l ∈ [1, lmax], the attributes of O of level less than l, referred as A<l , are those whose rank in S is < 2 ∗ l −1.
• Given an object o ∈ O and the attributes A<l , value<l(o) is the sequence of the values of the first 2 ∗ l − 2 attributes

of o.

Let us now formalize the notion of Voronoi Tessellation of level l labelled by a sequence of values val. It is worth noticing
that, while all the objects in O are mapped onto the root Voronoi Tessellation by exploiting the attributes of level 1, A1,
only a subset of the objects are mapped onto the Tessellations of level l > 1. These objects are characterized by having the
same values of the attributes A<l , because they all belong to the same clusters of objects at the lower levels. We exploit
the sequence of values of A<l to uniquely label a Tessellation of level l > 1.

Definition 8. Given a level l ∈ [1, lmax] and a sequence val of (2 ∗ l) − 2 attribute values, we define a Voronoi Tessellations
Vl,val of level l labelled by val as follows:

Vl,val =
{

V ({s : ∃o ∈ O , s = map(o, A1)}) if l = 1 ∧ val = ε

V ({s : ∃o, value(o, A<l) = val ∧ s = map(o, Al)}) if l �= 1 ∧ val �= ε

Example 2. Consider the Voronoi Tessellation in Fig. 1a. Even if there are two Voronoi Tessellations at the level 2 of the
hierarchy, both paired with the attributes {A2, A3}, they correspond to two different clusters at level 1 of the hierarchy.
Each Tessellation at level 2 is uniquely identified by the coordinates of the corresponding cluster at level 1. �

We can now define formally a Voronoi Tessellation Tree, VTT.

Definition 9. Given an integer threshold T , a Voronoi Tessellation Tree (VTT) is a hierarchical structure defined recursively
as follows. Vl,val is a VTT if one of the following conditions holds:

• (∀s ∈ Vl,val, | C(s, Vl,val) |< T) ∨ (∃s such that | C(s, Vl,val) |> T ∧ l = lmax).
• If ∃ a set S = {s1, . . . sk} of sites of Vl,val such that | C(si, Vl,val) |> T , the structure obtained by connecting each site

si ∈ S of coordinates xi, yi to Vl+1,vali , where vali = val · xi · yi is a VTT, if Vl+1,vali is a VTT.

Example 3. Consider a Voronoi Tessellation V 1,ε , and its site s whose coordinates are x = 8, y = 7 and suppose that a set
S of more than T objects is paired with s. Then a Voronoi Tessellation V 2,8·7 is created, i.e. a tessellation of level 2 whose
sites are all characterized by having at level 1 the x-coordinate equal to 8 and the y-coordinate equal to 7. The sequence
val = 8 · 7 uniquely identifies the tessellation among those of the same hierarchy’s level. �

The Voronoi tree is exploited to define a set of distributed overlays where the nodes correspond to the peers and the
overlay connections to the Delaunay graph paired with each tessellation. Each peer joins all the overlays where the object
it published is mapped. In the rest of this paper, we will mainly focus on the management of the hierarchy, while we refer
to [28,18] for the techniques defined to manage a single overlay, and for the routing algorithms that exploit the Delaunay
graph properties.

Assuming that each peer is visible at each level of the hierarchy where its object is mapped, the hierarchy may be
exploited to optimize the query resolution process, refining it recursively by visiting in top down fashion the hierarchy

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1167
itself. Whenever a query is forwarded to a peer of a cluster, it does not broadcast the query to the other peers of the same
cluster, but instead it switches the query to the next level of the hierarchy. This way, at each step, the AoI paired with the
next level is exploited to reduce the number of candidate matches for the query, which decreases step by step. Note that the
cost of the creation of a new Voronoi Tessellation may be balanced by the reduction of the candidate matches by choosing
a proper threshold T . Clustering is also exploited to distribute the load of query forwarding as well. When a query reaches
the neighbour of a cluster, it chooses at random a peer of the cluster to forward the query to. This way, load is balanced
because different queries are statistically distributed to different peers.

Despite its advantages, clustering may introduce a high number of connections between neighbour peers and reduce the
advantages of considering 2D-dimensional Voronoi Tessellations. In fact, a single edge between two Voronoi neighbours may
correspond to a set of links in the overlay, in the case the sites connected by that edge are paired with clusters of objects
and, correspondingly to a set of peers. In the following section we will describe a super-peer election mechanism able to
reduce the number of peers paired to the same site.

4.1. Super-peer election

Let us suppose that a cluster C occurs at a site s at level l, Hivory elects a subset m of the peers belonging to C , with
m = �log(|C |)�, as the representative peers of the cluster C . The operation considers to maintain the correct number of these
representative peers in the overlay at any time; still, the elected peers are currently chosen at random among the eligible
peers. Only such peers belong to the overlay at level l, i.e. are visible at level l. This strategy guarantees a logarithmic bound
on the number of neighbours of each peer [37]. Each peer elected as representative of a cluster, called super-peer (SP), acts
as a gateway between different levels of the hierarchy, i.e. it is responsible of propagating the query from the level l to
the level l + 1 where it has been elected. Among the peers of the same cluster at level l we aim at electing log(k) only as
SPs, with the rationale that they will be the only ones visible at level l + 1. Current approach considers exploiting a bottom
up SP election algorithm to collect candidate super-peers, and then choose the super-peers at random. Future work will
leverage heuristics to select SPs that are characterized by high computational power and bandwidth, to facilitate support of
a higher traffic load since they are visible on more overlays. All the other peers of the same cluster are not visible at level l.
The log(k) SPs elected at level l are guaranteed to be visible at level l + 1 exploiting a bottom up SP election algorithm.

Example 4. Fig. 1b shows the result of SPs election with reference to the Voronoi Tessellations hierarchy shown in Fig. 1a.
Let us suppose peers P3 and P5 have been elected SPs of the cluster P2--P6 (�log(5)� = 2). Even if all the peers of the
cluster P2--P6 are logically mapped at a Level1’s site, only two of them are visible at such level. Note also that P14, which
is a SP of the cluster P9--P20, is visible at different hierarchy levels, since it has been recursively elected SP at those
levels. �

The following theorem states that, starting from a level l with l �= 1, it is always possible to elect a number of SPs equal
to the logarithm of a cluster size, thus proving the soundness of the SP election mechanism.

Theorem 1. Let us consider a Voronoi diagram Vl,val and a site s ∈ Vl,val such that |C(s, Vl,val)| > T , where T ≥ 2 is a fixed threshold.
At least log(|C(s, Vl,val)|) peers are visible from the Voronoi diagram of level l + 1 rooted at s.

Proof. By induction.
Base case: Consider a site s ∈ Vlmax−1,val such that |C(s, Vlmax−1,val)| > T . Since the underlying Voronoi Diagram at level lmax

includes all the peers in C(s, Vlmax−1,val), their number is greater than log(|C(s, V oronoil,val)|).

Induction hypothesis: Given a Vl,val rooted at a site s of a Voronoi diagram V ′ of level l, with |C(s, V ′)| = N > T , for each site
t ∈ Vl,val such that |C(t, Vl,val)| = k > T , at least log(k) peers are visible from the Voronoi diagram at level l + 1 rooted in t .

Inductive step: Suppose that Vl,val includes a set S of sites, with a total number N of associated peers. Moreover, for each
site t ∈ S , let | C(t, Vl,val) |= Nt . Let us consider the sets A = {t ∈ S : Nt > T } and B = {t′ ∈ S : Nt′ ≤ T }. Using this partition,
we can express the number of peers paired with the sites of Vl,val as:

N =
∑
t∈A

Nt +
∑
t′∈B

Nt′ (1)

However, only a subset of these peers are visible in Vl,val . By the inductive hypothesis, for each t ∈ A, log(Nt) peers are
visible at level l from the Voronoi diagram at level l + 1 rooted in t . On the other hand, all the peers paired with each site
in B are visible in Vl,val . Then, the total number of peers that is visible in Vl,val is:∑

t∈A

log(Nt) +
∑
t′∈B

Nt′

We have to prove that this value is greater than or equal log(N), that is:

1168 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
log(N) ≤
∑
t∈A

log(Nt) +
∑
t′∈B

Nt′

We can re-write the previous expression as:

log(N) ≤
∑
t∈A

log(Nt) +
∑
t′∈B

log(2Nt′)

and, by applying the properties of logarithms, we obtain:

log(N) ≤ log(
∏
t∈A

Nt ×
∏
t′∈B

2Nt′) (2)

Using Formula (1), Formula (2) becomes:

log(
∑
t∈A

Nt +
∑
t′∈B

Nt′) ≤ log(
∏
t∈A

Nt ×
∏
t′∈B

2Nt′) (3)

Inequality (3) is always true, thus demonstrating the theorem. This fact follows by noting that:∑
t∈A

Nt ≤
∏
t∈A

Nt since | Nt |> 2,∀Nt ∈ A

and ∑
t′∈B

Nt′ ≤
∏
t′∈B

2Nt′

Hence, the right-side of Inequality (3) is always greater or equal to the left side of the expression. As a consequence,
more than (or at least) log N peers are visible at Vl,val at any level l > 1, so that the required number of SPs can be elected
to be visible at level l − 1. �

Finally, Hivory adopts a strategy to increase clustering in regions that include a huge amount of close sites, to decrease
the query resolution cost. Whenever a new object o is inserted into a Voronoi Tessellation at any level, Hivory checks the
distance of the object o to the closer Voronoi site s and if it is smaller than a predefined threshold – called the absorption
radius – the mapping of the object is forced so that o is paired with s.

Note that the size of the cluster paired with s increases, but since the number of peers visible at s is logarithmic with
respect to the number of peers in the cluster, the amount of visible peers in the crowded region decreases.

5. Hivory: the operations

This section describes the join, leave and super-peer election operations, and the algorithm adopted to resolve multi-
attribute range queries. To simplify the description, we consider these operations as executed sequentially.

First of all, a peer p maintains a set of data structures for each Voronoi tessellation of every level where p is visible,
which store p’s Voronoi neighbours at the corresponding level. For each level l where p is visible and a cluster occurs,
p stores a reference to all the other peers of the cluster. Finally, p maintains a reference to the SPs within the upper level
l − 1, if any.

5.1. The Join operation

The insertion of a peer p always starts from the root level l = 0 and goes down the hierarchy until it reaches the insertion
level l, i.e. a level where either:

• the attributes of p place it far away from any other site in l, generating a new site, or
• a cluster C absorbs p at level l, and C size is smaller than the threshold T or l = lmax , so there is no corresponding

Voronoi tessellation at level l + 1.

Note that, while p results visible at level l, it is visible on upper levels only if it is elected SP also at these levels.
The insertion procedure is executed recursively for each level m ≤ l, where l is the insertion level of p. For each of

such level, p joins an existing cluster, while it joins the corresponding overlay only if it is elected SP at that level. The SP
election procedure, when required, is executed bottom–up after the joining peer has completed the insertion procedure; it
is described in Section 4.1, while in this section we describe the insertion procedure at a generic level l.

Let us consider a peer p logically joining Vl,val where l is a generic level and val is the sequence of values of the first
(2 ∗ l) − 2 attributes of p when l �= 1, and the empty sequence ε when l = 1. First of all, a peer p detects the site s of Vl,val
closest to the values of its attributes at level l. Afterwards, p issues a join message, targeted to one of the peers paired with s

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1169
Fig. 2. The Join operation.

called ml , and propagates it into Vl,val; ml is the manager of the insertion of p at level l. The join message is propagated to
the other levels by a bootstrap peer at the root level, i.e. retrieved by an off-line procedure, or by a SP acting as a gateway
between the levels l − 1 and l.

When ml receives the join message, it checks whether the coordinates of p are within the absorption radius of s, otherwise
it must update the Voronoi tessellation at level l as in [18], so we will not discuss this case here.

Recalling Definition 5, if the coordinates of the insertion point are within the absorption radius of s and the threshold
value is T , the following cases may occur:

• |C(s, Vl,val)| < T . In this case, p joins the existing cluster, avoiding the generation of a new level.
• |C(s, Vl,val)| = T . A new Voronoi Tessellation at level l + 1 is created where all the peers belonging to C(s, Vl,val) are

mapped.
• |C(s, Vl,val)| > T . The join request of p is propagated on the Voronoi Tessellation already existing at level l + 1.

In the first case, ml notifies the identity of p to all the cluster’s peers and the neighbours, and vice versa, so that it may
define its local view of the Voronoi overlay.

In the second case, ml acts as a bootstrap peer to build the new Voronoi Tessellation V at level l + 1. After creating V ,
it propagates within V the join message tagged by the new level l + 1 for each peer p ∈ C(s, Vl,val) until it reaches the
insertion point of p in the new level.

Finally, in the third case, a Voronoi Tessellation already exists at level l + 1, so the join message is switched by ml to
this level and it is recursively propagated until the insertion point of p in l + 1 is reached. At the end of the procedure,
p has logically joined a set of clusters whose size was ≥ T , one for each level between 1 and its insertion level. The identity
of the super-peer from level l to level l + 1, called g wl , is stored in the join message sent to the level l + 1, such that a
further super-peer g wl+1 may store the identity of g wl before eventually propagating the join message to a level l + 2. In
this way, a distributed chain of backward links is defined to implement the bottom up SP election. When the insertion of p
is completed, a notification message is sent back over this chain so that each super-peer is able to verify the logarithmic
bound on the number of peers of its cluster, which may be violated due to the insertion of the new peer, triggering a new
SP election.

Example 5. Fig. 2 shows an example of the Join operation of a peer O 4 in an existing overlay, starting by its insertion level.
O 4 issues the join message join(O 4), which is propagated to O 1 from the upper level. Let us suppose that O 4 is mapped
to the Voronoi region of O 3, at this level, so the join message is propagated to O 3. The figure shows the cases where the
position of O 4 is within the absorption radius of O 3 – the left part of the figure – or not – the right part of the figure; in
the latter case, a new site is paired with O 4 and the Voronoi tessellation is modified accordingly. �
5.2. The Leave operation

In Hivory each peer is responsible only for the objects it has published, so its leaving does not affect objects published
by other nodes, but it may require a rearrangement of more than one level of the Hivory hierarchy. In fact, due to the
departure of a peer p, the condition m = �log(|C |)�, where m is the number of SPs paired with a cluster C including p, may
be violated.

The algorithm implementing the leave of a peer p includes the following phases:

• removal of p from the Voronoi Tessellation corresponding to its insertion level;
• removal of p from every level where it is visible;
• starting from the insertion level, for each cluster C including p, the condition m = �log(|C |) is checked, involving the

revoke/election of further SPs.

1170 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
The first phase involves the update of the Voronoi Tessellation at the insertion level of p, and, if p belongs to a cluster
at that level, the notification of the leave of p to the other peers of the cluster. A distributed algorithm to update a Voronoi
network due to a peer leave is described in [37] and we will not discuss it here.

The second and third phases are executed bottom up, starting from the insertion level l of p. If p is not a SP, it contacts
one of the elected SP of l. For this reason, each SP stores and keeps updated the list of the other SPs for each level where
it is visible, while the other peers exploit a lazy policy whose main goal is to minimize both the number of messages
exchanged and the probability that all the SPs in the list are not up to date. The complete description of the algorithm is
reported in [37]. Here we only outline some scenarios that may occur after removing p:

• m = �log(|C |)�. This may occur, for instance, if p is a SP and log(|C |) = �log(|C |)�.
• m > �log(|C |)�. In this case, our algorithm revokes one of the SPs paired with the cluster, repeating it at every level

where it is visible.
• m < �log(|C |)�. This may occur because the leaving peer is a SP or because a SP has been revoked from an upper level.

In this case a new SP must be elected.

Example 6. As examples of the three different scenarios above, we refer to Fig. 1b, in particular to the Tessellation labelled
V 2,s , where s is the site at Level1 that is the root of the Tessellation at Level2 on the left. The first scenario happens if,
for instance, P6 leaves the network, since, in this case, m = 2 = �log(|C |)�, where |C | = 4. The second scenario happens if
both P2 and P4 leave the network, since m > �log(|C |)�, where |C | = 3, m = 2 and �log(|3|)� = 1. One of the SPs should
be revoked. The third scenario happens if P5, visible on V 1,ε as SP of V 2,s , leaves the network since m < �log(|C |)�, where
|C | = 4, m = 1 and �log(|4|)� = 2. Thus, a new SP has to be elected on Level2 to be visible on Level1. �
5.3. The super-peer election operation

The election of a new super-peer takes place when the number of SPs paired with a cluster, at any level, is not larger or
equal to the logarithm of its size any more. Theorem 1 guarantees the existence of a new eligible peer, provided that any
cluster of the underlying levels respects the logarithmic bound. For this reason, the election must be executed bottom–up
starting from the insertion level of the joining/leaving peer. Current approach is that we collect eligible super-peers, and
then we choose randomly the super-peers, with the constraint of maintaining the correct number of super-peers at any
time.

In case a new peer joins in the overlay, the election is started by the super-peer that has relayed the join message to the
insertion level of the joining peer, then an insertion message is propagated backward to the super-peers at the upper levels.
In case of the leave of a peer, the election is started by the leaving peer itself.

The algorithm executed to elect a SP is structured according to two phases: 1) Selection of the peer to be elected,
2) Election of the selected peer.

Peer selection. A new SP to be elected into a cluster C paired with the site s of the level l may be any peer of the
Voronoi tessellation V of the level l + 1 rooted at s that was not a SP. The algorithm we propose tries to reduce the
complexity of the peer selection phase. First, if a new peer p has become visible in V because the level l + 1 is its insertion
level or it has been elected SP from the underlying levels, p is selected to become SP at s, avoiding a search for a new SP.

Another scenario occurs when a new Voronoi tessellation is created at level l + 1 because the size of a cluster of the
level l has reached the threshold value T . To reduce the cost of the bottom up election, Hivory elects T − 1 peers belonging
to the cluster before the insertion of the new peer, as SPs of the Voronoi tessellation just created. Note that, in this case,
the underlying level includes exactly T peers and T ≈ log(T) whenever T is small.

When no one of previous conditions occurs, a distributed algorithm is executed, which is based on Theorem 1 that
guarantees the existence of an eligible peer at the level l + 1. It is easy to verify that at least one of the peers that are
eligible as SPs is a Voronoi neighbour of one of the current SPs. Let us suppose, by contradiction, that no one of the eligible
peers is a Voronoi neighbour of a SP, then the Voronoi neighbours of any SP are all SP themselves. This implies that the
Voronoi tessellation at the level l + 1 is partitioned into two sets including, respectively, the peers elected SPs at level l and
those that are eligible. This implies a contradiction, since any Voronoi tessellation is connected.

The super-peer performs the following steps:

• Verifies if among all its Voronoi neighbours there is an eligible peer, which would then get elected SP.
• If all the neighbours are already SPs, a broadcast message is sent to them to inquire whether among their Voronoi

neighbours there is an eligible peer. Then, its identifier is sent to the super-peer. The peer included in the first received
message will be elected SP, and the subsequent response messages are ignored.

Peer election. The super-peer adds the selected peer p in its list of SPs, and sends a notification message to the other SPs,
such that they can add it to their list. Then, it notifies p to its Voronoi neighbours, so that they can update the list of their
Voronoi neighbours too. Finally, the super-peer sends to p an election message containing all the information required for
its insertion in the SP list and in the Voronoi tessellation of the level l − 1. The super-peer then propagates the notification
election message to the super-peer of the upper level.

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1171
5.4. Multidimensional range query resolution

A range query may be submitted by any peer p belonging to the overlay hierarchy. The first step of a query resolution
is its propagation to a peer belonging to the first level, if p is not visible in it. Since each peer stores a reference to its SPs,
these references may be exploited for a bottom up forwarding of the query up to the level 1. When the query has reached
any peer at this level, a peer belonging to the AoI defined by the query at level 1 is reached through a greedy routing, then
compass routing [29], an efficient routing algorithm for Delaunay overlays, is exploited to propagate the query to any peer
located within the AoI.

When a peer belonging to a cluster whose size is smaller than the threshold T , receives a query, it matches the attributes
not mapped on the lower levels of the hierarchy against the corresponding constraints of the query and, if all the matches
are successful, it sends a positive reply to the querying peer and propagates it to the other peers of the cluster. On the other
hand, if the peer belongs to a cluster whose size is larger than the threshold T , it makes its own local check and then it
switches the query to the lower level, without propagating it to the other peers of the cluster; this way, peers will receive
the query at any lower level of the hierarchy only if they belong to the AoI defined by the constraints on the attributes of
that level.

6. The operations complexity

In this section, we show an analysis of the theoretical complexity of the operations described above, aimed at computing
complexity upper bounds for two critical statistic distributions of the peers. These distributions have to be considered
as critical, since each of them produces a challenging scenario for one of the operations described in this section. The
complexity is computed as a function of the number of exchanged messages with respect to the total number of peers in
the Voronoi network. The validity of this complexity function is due to the fact that the computation time on each peer
is negligible with respect to the data transmission time and the data traffic on the network. The chosen critical statistic
distributions cited above are the following, which lead to two different but opposite scenarios:

• an uniform distribution over the attribute values, implying a uniform distribution of nodes among the clusters at all
levels;

• an unbalanced distribution – a power-law one – where a Voronoi diagram x at a level l is characterized by a number
of cells Nx that is almost equal to the number of peers N in the whole overlay network.

6.1. The Join operation

To compute an upper bound of the number of messages exchanged for the Join operation, we suppose that a new peer
p must be inserted in a Voronoi diagram at the last level, denoted with lmax . We must recall that, since the number of
neighbouring sites is statistically constant in a 2D tessellation [18], the complexity of the creation of a new Voronoi region
or the insertion in a cluster with size smaller than the threshold T at lmax is O (1) respect to N , which is the number of
nodes in the overlay network. At every level l < lmax , these operations take O (log N) due to the logarithmic bound on the
number of SPs visible at l in the neighbouring sites.

For the above reasons, the more complex operation is to find the proper insertion point for p. At every level l < lmax ,
a greedy routing is required to find the site on l that is associated with p. Concerning the uniform distribution case, if in
the first level there are N1 clusters (corresponding to N1 sites), the subtree rooted at each cluster contains N/N1 peers. The
same situation is replicated at every level until lmax , excluded. We have that N = ∏lmax

l=1 Nl . Given that a routing on a 2D
Voronoi plane requires O (log2 N) messages [18], the cost of finding the right cells across all the levels is:

log2 N1 + log2 N2 + . . . + log2 Nlmax (4)

With the given assumptions, we have that:

log2 N =
⎛
⎝log

⎛
⎝lmax∏

l=1

Nl

⎞
⎠

⎞
⎠

2

= (
log N1 + . . . + log Nlmax

)2 ≥

≥ log2 N1 + log2 N2 + . . . + log2 Nimax (5)

Thus, in this situation the complexity is potentially lower than in the 2D case.
Concerning the unbalanced case, where there is only one network x at a level l that has a number of cells Nx ≈ N , and

where Ni � N, ∀l �= x, the complexity is:

log2 N1 + . . . + log2 Nx + . . . + log2 Nlmax → log2 Nx ≈ log2 N (6)

In this case the complexity is approximately the same of the 2D case.

1172 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
6.2. The super-peer election operation

Since the election of a peer is not executed any time a peer is inserted/removed, we do an amortized of the complexity
of this operation. Currently, we consider that the super-peer is chosen at random between the eligible peers; in future
work we will use high-performance/lightweight heuristics to select the best peer as super-peer according to given criteria,
without impacting the performance of the system. As shown in section 5.3, searching for an eligible peer requires the SP
managing the election to send at most a message to its Voronoi neighbours, except if the new inserted peer becomes visible
as a new SP of the underlying levels. Then, it sends to the other SPs in the cluster and to the Voronoi neighbours of the
tessellation at level l − 1 a message to notify the election of the new SP so that they can update their lists of SPs and
Voronoi neighbours, respectively.

Concerning the balanced case, all the three phases have the same cost. Supposing to insert a peer at level l, all the
Voronoi Tessellations at level l + 1 have size equal to N∏l

k=0 Nk
. The number of peers belonging to the clusters at level l is

equal to log

(
N∏l

k=0 Nk

)
, since the peers in such cluster were previous elected SPs. Since each site on this tessellation has a

statistically constant number of neighbouring sites, then the total election cost is log

(
N∏l

k=0 Nk

)
. The number of elections

carried out by a network at level l + 1 is equal to the current number of SPs of the network, i.e. log

(
N∏l

k=0 Nk

)
. Then, the

total cost to perform all of the elections in a network at level l is log2
(

N∏l
k=0 Nk

)
. Since the number of tessellations at level

l + 1 is equal to the number of sites in the tessellation at level l, the cost due to the election made by the networks at level

l + 1 is equal to Nk ∗ log2
(

N∏l
k=0 Nk

)
.

Generalizing the formula for any tessellation, we obtain that the total cost of all elections at each level is:

N1 ∗ log2 N

N1
+ N2 ∗ log2 N

N0N1
+ . . .

. . . + Nlmax ∗ log2 N∏lmax
k=1 Nk

≤ log2

⎛
⎝N ∗

lmax∑
k=1

Nk

⎞
⎠ (7)

and the amortized cost is equal to
∑lmax

k=1 Nk ∗ log2 N
N .

Concerning the unbalanced case, there is only one tessellation at level lmax that has a number of cells Nx ≈ N , so in each
level l < lmax there is only one cluster containing logNx SPs. Therefore, the total number of elections is equal to lmax ∗ log Nx .
Since all the tessellations at all level have approximatively only a site, the costs of the other phases except the notification
to the other SPs of the same cluster are negligible. Therefore, the amortized cost of such operation is equal to lmax ∗ log N

N ,
since Nx ≈ N .

In conclusion, the amortized cost of the elections is in all cases less than O (log N), thus negligible compared to the
complexity of the other operations.

6.3. The Leave operation

To perform an analysis of the complexity of the Leave operation in terms of upper bounds for the exchanged messages,
we suppose that the peer p to be deleted is SP at all levels of the hierarchy. Since, for this operation, there are no routing
algorithms involved, the complexity is proportional to the deletion of p in the tessellation at level lmax , its revocation as SP
at all level and the election of new SPs, if needed. We can note that the deletion of p at level lmax costs O (1), in every case,
since the number of neighbouring sites is statistically constant.

The operations needed to perform the revocation of p at a generic level l are similar to the election ones, except for the
absence of the peer selection phase, so its cost is O (logN −1) at every level l ≤ lmax . Concerning the unbalanced case, where
there is only a tessellation x at a level k that has a number of cells Nx ≈ N , we can note that an election never occurs since
the number of SPs remains valid also after the deletion of p and corresponds to logN − 1.

Concerning the balanced case, we have at the level lmax a number of peers equal to N∏lmax
i=1 Ni

, and, consequently, a number

of SPs equal to log N∏lmax
i=1 Ni

. So, revocation of p as SP at level lmax costs O
(

log N∏lmax
i=1 Ni

)
, which is the same complexity of

the election of a new peer, if needed. At every level l < lmax , this operation takes O (log N) due to the logarithmic bound
on the number of SPs visible at l in the neighbouring sites. So, the Leave operation, in both cases, has complexity equal to
O (lmax ∗ (logN − 1)) = O (logN).

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1173
6.4. Multidimensional range query resolution

To compute an upper bound for the complexity of the resolution of multi-attribute range queries, we estimate the total
number of nodes that have to be contacted when performing a query Q , i.e. all the nodes contained in all AoIs defined
by Q . Let us then consider the number of nodes contacted by the compass routing algorithm.

Concerning the balanced case, we have that N = ∏lmax
i=1 Ni . If a tessellation at a level l has a combined selectivity s ∈ (0, 1]

over its attributes, s ∗ Nl nodes will be involved by the query. The total number of requested nodes is

lmax∑
i=1

i∏
j=1

s j N j (8)

where we consider that ∀. js j N j ≥ 1. In fact, even a small s j represents a fraction of the area of a Voronoi tessellation at
level j in the hierarchy. Thus, this fraction is comprised in at least a Voronoi cell. Hence, at least one node will be in charge
of handling the query at that level. Moreover, note that each Ni can be written as Ni = N∏lmax

j=1, j �=i N j
. Thus, we can express

formula (8) as:

N ∗
⎛
⎝lmax∏

i=1

si +
lmax−1∑

i=1

∏i
j=1 s j∏lmax

k=i+1 Nk

⎞
⎠ (9)

Please note that, ∀i ∈ [1, lmax − 1], we have that∏i
j=1 s j∏lmax

k=i+1 Nk

≤
lmax∏
j=1

s j (10)

In fact, we can re-write the inequality above as

i∏
j=1

s j ≤
lmax∏
j=1

s j

lmax∏
k=i+1

Nk

Thus

i∏
j=1

s j ≤
⎛
⎝ i∏

j=1

s j

lmax∏
k=i+1

sk

⎞
⎠ lmax∏

k=i+1

Nk

With simple algebraic manipulations, we obtain

i∏
j=1

s j ≤
i∏

j=1

s j

lmax∏
k=i+1

sk Nk

that, with the given assumptions (sk Nk ≥ 1, ∀k), is always true. Thus, using inequality (10), we can write that

N ∗
⎛
⎝lmax∏

i=1

si +
lmax−1∑

i=1

∏i
j=1 s j∏lmax

k=i+1 Nk

⎞
⎠ ≤ N ∗ lmax ∗

lmax∏
i=1

si = lmax ∗ s1 . . . slmax ∗ N

So, the upper bound for the complexity of the multidimensional range query resolution process is proportional to the number
of levels and the combined selectivity of all the attributes.

Concerning the unbalanced case, where there is only one tessellation x at a level k that has a number of cells Nx ≈ N , if
Q is directed to x, the selectivity expressed at the previous levels do not have a great impact on the final global selectivity,
since the most populated tessellation is included in the range. Thus, since the majority of nodes is concentrated in x, the
highest cost in term of visited nodes is paid in x. Hence, we can assume that the cost of such a query is O (sk ∗ Nx), where
sk is the combined selectivity of the attributes at level k, being it the same of x.

7. Experimental results

In this section we provide experimental findings regarding the proposed system. The evaluation was conducted by simu-
lation using PeerSim [38] with three different data distributions. We used the average number of messages exchanged as a
metric of performance, to validate the theoretical complexity analysis described in section 6. A further test was conducted
by using a dataset with real-life measurements taken on PlanetLab [39]. Finally, we conducted a set of tests to compare
Hivory with the MAAN, a multi-attribute range query support briefly presented in Section 2.

1174 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
Fig. 3. Join operation costs with three different data distributions.

Messages are divided in Greedy, Control, and Compass. The Greedy ones are sent during the execution of greedy routing,
the Control ones are sent during insertion/removal of a node in/from a specific site, and the Compass ones are sent during
the execution of compass routing. The system was tested under different conditions. We present the results related with
the multi-attribute range queries resolution, and the maintenance cost (i.e. the cost to run the Join and Leave operations) of
the network. In all the experiments we used the following assumptions and settings:

• Each peer is associated to an integer type multi-attribute vector. Every position of the vector represents the value, after
algebraic transformations if needed, of the peer’s owned resources.

• The size of all the two-dimensional networks that make up the various overlay network levels was set, for simplicity, to
a fixed number of 1, 000 · 800 = 800, 000 points. This means that the odd and even attributes have domains [0; 1, 000]
and [0; 800], respectively.

• The network size varies from 10, 000 to 50, 000 nodes, with an absorption radius equal to 1.
• In order to obtain stable values, all simulations were repeated 100 times with different random peer attribute values,

except those conducted on PlanetLab.

Fig. 3 shows the performance results obtained in the tests conducted by using three different data distributions: a uni-
form and two power-law distributions, one with α = 2 and one with α = 3. In the power-law distributions, values (and
peers) are more concentrated at one end of each attribute domain than to the other, thus creating an unbalanced tree-
shaped network.

Figs. 3a and 3b show the average number of greedy and control messages required to execute a Join operation in an
overlay network fixed to 50, 000 nodes varying respectively the number of attributes and the threshold T . In Fig. 3a we
fixed a threshold value T = 4, while in Fig. 3b we fixed a number of attributes equal to 6, which leads to an overlay network
with lmax = 3. It can be seen that, for all the data distributions, changing the number of attributes and the value of T does
not affect the number of exchanged greedy messages, while the number of control messages grows almost linearly. This
is due to the fact that the number of exchanged greedy messages is a function of the number of sites in each tessellation
while, on the contrary, the number of control messages rises with the number of attributes and the threshold value. In fact,
control messages are sent only to Voronoi neighbours of the level in which a peer p is inserted. For example, adopting a

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1175
threshold value T = 16, a site s can have up to 16 peers visible as SPs before a lower level Voronoi tessellation rooted in
s is built or, for a lower threshold value, to have 16 SPs, the number of peers in s must be at least 216. Therefore, if the
number of peers in the network is fixed, the number of exchanged control messages is a linear function of the threshold.

The rest of the experiments with simulated data have been performed with a fixed number of attributes, equal to 6 and
a threshold value T = 4. These parameters allow us to keep low the complexity of the tests, and therefore a lower test
execution time. Fig. 3c shows the average number of messages required to execute a Join operation where the values shown
in the graph were obtained averaging the sum of the Greedy and Control messages needed to manage a peer insertion.
It can be seen that the number of messages scales well with the number of nodes, requiring less than 80 messages in
the case featuring the largest network size. The best performance is obtained with the uniform distribution. It happens
because nodes are also uniformly distributed in each Voronoi level they belong to. Thus, they are more likely to have (i) less
neighbours and (ii) less nodes falling in the same Voronoi cell. Hence, less communications are required to insert a node,
while more messages are needed when dealing with more concentrated distributions, like the two power-law ones.

For example, in the case of N = 1, 000 and the uniform distribution, according to the theoretical complexity, we should
have log1, 000 = 10 messages exchanged, while we obtained approximately 3.6, following far below the theoretical limit of
complexity. The same phenomenon is repeated for all other values of N thus showing that the algorithm adopted for the
Join operation achieves a good level of scalability.

The tests to evaluate the system performance in solving multi-attribute range queries were conducted by using the three
node distributions and three different query selectivities, in an overlay network fixed to 50, 000 nodes. Query selectivity is
defined as a percentage of the area of a Voronoi tessellation defined by the restraint on each pair of attributes. Hence, a 0.05
query selectivity over a pair of attributes means that the query covers an area that corresponds to 5% of the whole Voronoi
tessellation formed by the attributes related to that plane. The query has the same selectivity on both the attributes, thus
each attribute has approximately 22.361% (

√
0.05) of selectivity in its domain. The lowest selectivity (highest percentage)

ranges in [0.22361; 1], while the highest selectivity ranges in [0.05; 0.22361]. The tests were conducted by executing, for
each network size, 100 random generated queries with the three different attributes selectivities reported above. Each
query contains all the attributes, and the selectivity on each pair of attributes is determined by randomly choosing the
selectivity of one attribute of the couple and by adjusting the second one in accordance with the global selectivity constraint.
The queries were solved sequentially, after entering all the nodes in the network and are injected from nodes chosen
at random on any level of the network. Hivory’s experimental results are compared with the same tests performed on
MAAN [4], a well-known P2P system for handling multi-attribute range queries. In Fig. 4 the number of messages was
obtained averaging the sum of the Greedy and Compass messages needed to solve a query. The results are presented in a
log scale along the y axis in order to allow the perception of the differences in the behaviour for different query selectivity
that were otherwise hard to see.

Fig. 4a shows the number of messages required for solving queries with the given selectivity, varying the number of the
attributes in a query. MAAN uses a DHT with the highest selectivity (i.e. smallest area) for each query. Thus, its results are
almost independent from the number of attributes. On the contrary, as explained in section 4, our system combines the
selectivity of all the involved attributes, thus obtaining more discriminating power. As a consequence, when more attributes
are involved, less messages are required. The results shows that our system outperforms MAAN from one to two orders of
magnitude.

Next, we studied the system behaviour when the network size changes. The results, using the different data distributions
with both Hivory and MAAN, are shown in Figs. 4b, 4c and 4d.

It can be seen that the system performance scales well with the number of peers, maintaining the number of messages
under control with all the considered selectivities. The best performances are achieved using power-law distributions, since
nodes are more concentrated in some areas where they may collapse in one single cell, due to the absorption radius. Thus,
it is easier to contact all the nodes when a query falls into heavily concentrated areas. On the other hand, if a query requests
less populated zones, we will have also few nodes falling into them, thus requiring less messages to solve the whole query.
Also in this case, the combined selectivity used by Hivory allows to obtain a considerable performance gain with respect to
MAAN.

Finally, we tested the performance of Hivory in real scenarios using a dataset with real-life measurements taken on
PlanetLab. Services like the content distribution network CoDeeN [40] are available on such platform. One of CoDeeN’s sub
projects is CoMon [41], whose goal is monitoring the state of PlanetLab’s machines. Each of these services is running over
a slice, which is a set of resources distributed on a subset of nodes; each machine may handle more active slices at the
same time, making the measurements both heterogeneous and realistic for our tests. Every 5 minutes CoMon records the
measurements on all the nodes of PlanetLab. From the whole database we selected eight dynamic attributes: CPU load and
usage, CPU frequency, available memory, bits transmitted and received on/from the network per second, and both latitude
and longitude of the position of the connected workstations.

The tests were carried out on a dataset (node centric) of connections made by different users from 20/6/2008 to
23/6/2008. It was obtained by executing a data pre-analysis, which reduced the whole data to 100,000 records for each
of the four datasets (a dataset for day). Since not all attributes are present in each record, a subset of 12 attributes was
selected. This way, we obtained graphs with 6 levels of two attributes each. The minimum threshold to generate a new level
was set equal to 4 in all of these experiments. Moreover, the tests for the Join operation and for query solving have been
performed with random permutations of the order of attributes, to assess its impact on the performance.

1176 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
Fig. 4. Range queries: comparison between Hivory and MAAN.

Fig. 5. Join/Leave operation costs on the PlanetLab dataset.

Fig. 5a shows the average number of messages required to execute a Join operation in an overlay network made up
of 50000 nodes, which corresponds to the maximum number of machines in the dataset. Such number of messages was
obtained averaging the sum of the Greedy and Control messages needed to manage a peer insertion. It can be seen that the
cost related to greedy routing remains under 20 messages even when a network is composed by 50.000 nodes. Instead, the
cost due to control messages range from 43 to 105 messages. Like for previous tests, we performed 100 different insertions
for each network size and took the final mean value. We observed that the Join operation presents good scalability.

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1177
Fig. 6. Query resolution costs on the PlanetLab dataset, varying network size.

Fig. 5b shows the average number of Control messages required to execute a Leave operation of a node from an overlay
network made up of 50,000 nodes. It is computed by changing the percentage of nodes removed from the network in
each experiment. The graph shows that removing a higher percentage of nodes leads to a lower cost on the single removal
operation. This is because the first removal operations are more expensive than the last ones, since the network already
contains a smaller number of peers after some of them are erased. The results show that this operation presents good
scalability.

Figs. 6a, 6b, 6c show the number of messages required for solving queries with the selectivities used in the previous
tests. Such number of messages was obtained averaging the sum of the Greedy and Compass messages needed to solve a
query. Again, to reduce the fluctuations due to the randomness of the query and the number of nodes belonging to a AoI,
which does not necessarily correspond to its size, 500 queries were randomly generated for each value of selectivity. It can
be seen that the query resolution has good scalability. With larger AoIs, the number of exchanged messages gets higher.
Such number reaches a maximum value of about 40 when the AoI measures 20% of the area of the level were the query
was solved.

8. Conclusions

This paper has presented Hivory, a P2P support for multidimensional range queries based on a hierarchy of Voronoi
Tessellations. The search of the matches that solve a query is performed by a top down visit of the hierarchy, by restricting
the search space at every level. The theoretical analysis of the complexity of the main operations show that the system
requires a small number of messages to solve multi-attribute range queries, with respect to similar state-of-the-art systems.
Hivory combines the good properties of classical Voronoi-based networks with the support for a high number of attributes.
Even if the system has been evaluated through a simulator, the data for building the hierarchy of Voronoi Tessellations
are taken from a set of real-traces of Planet Lab. The analytical observations and the experimental results show a great
scalability respect to the number of nodes and the number of attributes. With respect to the latter, the ability of the system
to combine the selectivity of all the attributes allows Hivory to exchange a smaller number of messages when dealing with
systems characterized by a large number of attributes. As a future work, we plan to deploy Hivory in a real scenario and to

1178 L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179
experiment it on further data sets. Another research direction we want to endeavour regards the selection of the super-peers
that act as gateway, and in that sense we plan to study high-performance heuristics to decide the best super-peers without
hurting the system performance.

References

[1] L. Atzori, A. Iera, G. Morabito, The Internet of things: a survey, Comput. Netw. 54 (15) (2010) 2787–2805.
[2] F. Paganelli, D. Parlanti, A dht-based discovery service for the Internet of things, J. Comput. Netw. Commun. 2012 (2012).
[3] B. Flavio, A.M. Rodolfo, N. Preethi, J. Zhu, Fog computing: a platform for Internet of things and analytics, in: Big Data and Internet of Things: A Roadmap

for Smart Environments, 2014, pp. 169–186.
[4] M. Cai, M. Frank, J. Chen, P. Szekely, MAAN: a multi-attribute addressable network for grid information services, in: GRID’03: Proc. of the 4th Int.

Workshop on Grid Computing, IEEE Computer Society, Washington, DC, USA, 2003, p. 184.
[5] Y. Shu, B.C. Ooi, K.-L. Tan, A. Zhou, Supporting multi-dimensional range queries in peer-to-peer systems, in: IEEE International Conference on Peer-to-

Peer Computing, 2005, pp. 173–180.
[6] A.R. Bharambe, M. Agrawal, S. Seshan, Mercury: supporting scalable multi-attribute range queries, in: Proc. ACM SIGCOMM 2004 Conf. on Applications,

Technologies, Architectures, and Protocols for Computer Communication, ACM Press, 2004, pp. 353–366.
[7] T. Pitoura, N. Ntarmos, P. Triantafillou, Saturn: range queries, load balancing and fault tolerance in dht data systems, IEEE Trans. Knowl. Data Eng.

24 (7) (2012) 1313–1327.
[8] J. Albrecht, D. Oppenheimer, A. Vahdat, D.A. Patterson, Design and implementation trade-offs for wide-area resource discovery, ACM Trans. Internet

Technol. 8 (4) (2008) 1–44.
[9] H. Shen, C.-Z. Xu, Leveraging a compound graph-based dht for multi-attribute range queries with performance analysis, IEEE Trans. Comput. 61 (4)

(2012) 433–447.
[10] S. Lodi, G. Moro, C. Sartori, Distributed data clustering in multi-dimensional peer-to-peer networks, in: Proceedings of the Twenty-First Australasian

Conference on Database Technologies, vol. 104, Australian Computer Society, Inc., 2010, pp. 171–178.
[11] R. Giordanelli, C. Mastroianni, M. Meo, A self-organizing p2p system with multi-dimensional structure, in: Proceedings of the 8th ACM International

Conference on Autonomic Computing, ACM, 2011, pp. 51–60.
[12] E. Carlini, L. Ricci, M. Coppola, Flexible load distribution for hybrid distributed virtual environments, Future Gener. Comput. Syst. 29 (6) (2013)

1561–1572.
[13] V. Bioglio, R. Gaeta, M. Grangetto, M. Sereno, Rateless codes and random walks for p2p resource discovery in grids, IEEE Trans. Parallel Distrib. Syst.

25 (2014) 1014–1023.
[14] S. Sioutas, T. Triantafillou, G. Papaloukopoulos, E. Sakkopoulos, K. Tsichlas, Y. Manolopoulos, Art: sub-logarithmic decentralized range query processing

with probabilistic guarantees, IEEE Trans. Parallel Distrib. Syst. 31 (1) (May 2013) 71–109.
[15] H.V. Jagadish, B.C. Ooi, Q.H. Vu, BATON: a balanced tree structure for peer-to-peer networks, in: Proceedings of the 31st International Conference on

Very Large Data Bases, Trondheim, Norway, August 30–September 2, 2005, 2005, pp. 661–672.
[16] M.A. Arefin, M.Y.S. Uddin, I. Gupta, K. Nahrstedt, Q-tree: a multi-attribute based range query solution for tele-immersive framework, in: 29th IEEE

International Conference on Distributed Computing Systems, ICDCS 2009, 22–26 June 2009, Montreal, Québec, Canada, 2009, pp. 299–307.
[17] S. Ramabhadran, S. Ratnasamy, J.M. Hellerstein, S. Shenker, Prefix hash tree: an indexing data structure over distributed hash tables, in: Proc. of the

23rd ACM Symposium on Principles of Distributed Computing, 2004.
[18] O. Beaumont, A. Marie Kermarrec, L. Marchal, E. Riviere, E. Lyon, Voronet: a scalable object network based on Voronoi tessellations, in: Proceedings of

the 21st International Parallel and Distributed Processing Symposium, IPDPS 2007, Society Press, 2007.
[19] F. Banaei-Kashani, C. Shahabi, SWAM: a family of access methods for similarity-search in peer-to-peer data networks, in: CIKM’04: Proceedings of the

Thirteenth ACM International Conference on Information and Knowledge Management, ACM, New York, NY, USA, 2004, pp. 304–313.
[20] M. Albano, M. Baldanzi, R. Baraglia, L. Ricci, Voraque: range queries on Voronoi overlays, in: Proceedings of 13th IEEE Symposium on Computers and

Communications, July 2008.
[21] L. Rodrigues, F. Araujo, Geopeer: a location-aware p2p system, in: 3rd IEEE International Conference on Network Computing and Applications, NCA’04,

2004.
[22] E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric networks, in: Proceedings of 11th Can. Conf. on Computational Geometry, CCCG, August

1999.
[23] M. Mordacchini, L. Ricci, L. Ferrucci, R.B.M. Albano, Hivory: range queries on hierarchical Voronoi overlays, in: Proceedings of 10th IEEE P2P Computing

Conference, Jul. 2010.
[24] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup protocol for Internet

applications, IEEE/ACM Trans. Netw. 11 (1) (2003) 17–32.
[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker, A scalable content-addressable network, in: Proc. SIGCOMM’01, ACM Press, New York, NY,

USA, 2001, pp. 161–172.
[26] A.I.T. Rowstron, P. Druschel, Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems, in: Middleware 2001: Proc.

of the IFIP/ACM Int. Conf. on Distributed Systems Platforms, Heidelberg, Springer-Verlag, London, UK, 2001, pp. 329–350.
[27] A. Andrzejak, Z. Xu, Scalable, efficient range queries for grid information services, in: R.L. Graham, N. Shahmehri (Eds.), Peer-to-Peer Computing, IEEE

Computer Society, 2002, pp. 33–40.
[28] R. Baraglia, P. Dazzi, B. Guidi, L. Ricci, Godel: Delaunay overlays in p2p networks via gossip, in: IEEE P2P, 2012, pp. 1–12.
[29] J. Liebeherr, M. Nahas, W. Si, Application-layer multicasting with Delaunay triangulation overlays, IEEE J. Sel. Areas Commun. 20 (8) (2002) 1472–1488.
[30] F. Aurenhammer, Voronoi diagrams-a survey of a fundamental geometric data structure, ACM Comput. Surv. 23 (September 1991).
[31] D. Lee, S. Lam, Efficient and accurate protocols for distributed Delaunay triangulation under churn, in: IEEE International Conference on Network

Protocols, ICNP 2008, IEEE, 2008, pp. 124–136.
[32] M. Ohnishi, R. Nishide, S. Ueshima, Incremental construction of Delaunay overlaid network for virtual collaborative space, in: Third International

Conference on Creating, Connecting and Collaborating Through Computing, C5 2005, IEEE, 2005, pp. 75–82.
[33] H. Kato, T. Eguchi, M. Ohnishi, S. Ueshima, Autonomous generation of spherical p2p Delaunay network for global Internet applications, in: The Fourth

International Conference on Creating, Connecting and Collaborating Through Computing, C5’06, IEEE, 2006, pp. 184–191.
[34] R. Baraglia, P. Dazzi, M. Mordacchini, L. Ricci, A peer-to-peer recommender system for self-emerging user communities based on gossip overlays,

J. Comput. Syst. Sci. 79 (2) (2013) 291–308.
[35] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, B. Koldehofe, Mobile fog: a programming model for large-scale applications on the Internet of

things, in: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, MCC’13, ACM, New York, NY, USA, 2013, pp. 15–20.
[36] H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, 2006.
[37] L. Ferrucci, Un sistema gerarchico basato su voronoi per la risoluzione di query multiattributo, Master Thesis, University of Pisa etd-11102009-151747,

December 2009.

http://refhub.elsevier.com/S0022-0000(16)30020-4/bib61747A6F726932303130696E7465726E6574s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib706167616E656C6C6932303132646874s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib426F6E6F6D693134s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib426F6E6F6D693134s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6D61616Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6D61616Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib7A6E6574s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib7A6E6574s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6D657263757279s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6D657263757279s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib35363737353237s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib35363737353237s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib73776F7264s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib73776F7264s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib35373130383830s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib35373130383830s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6C6F6469323031306469737472696275746564s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6C6F6469323031306469737472696275746564s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib67696F7264616E656C6C693230313173656C66s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib67696F7264616E656C6C693230313173656C66s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib52696363693133s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib52696363693133s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib476165746132303133s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib476165746132303133s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib53696F7574617332303132s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib53696F7574617332303132s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4261746F6Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4261746F6Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib512D74726565s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib512D74726565s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib72616D616268616472616E32303034707265666978s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib72616D616268616472616E32303034707265666978s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib766F726F6E6574s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib766F726F6E6574s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib7377616Ds1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib7377616Ds1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib766F7261717565s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib766F7261717565s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib526F64726967756573303367656F70656572s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib526F64726967756573303367656F70656572s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4B72616E616B6973s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4B72616E616B6973s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6869766F7279s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6869766F7279s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib63686F7264s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib63686F7264s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib63616Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib63616Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib706173747279s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib706173747279s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib78753032s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib78753032s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib503250476F64656C32303132s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6C6965626568657272323030326170706C69636174696F6Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib417572656E68616D6D6572s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6C656532303038656666696369656E74s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6C656532303038656666696369656E74s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6F686E6973686932303035696E6372656D656E74616Cs1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6F686E6973686932303035696E6372656D656E74616Cs1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6B61746F323030366175746F6E6F6D6F7573s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib6B61746F323030366175746F6E6F6D6F7573s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4D6F726461636368696E693133s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4D6F726461636368696E693133s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4D6F62696C65466F67s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4D6F62696C65466F67s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib73616D6574s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4665727275636369s1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib4665727275636369s1

L. Ferrucci et al. / Journal of Computer and System Sciences 82 (2016) 1161–1179 1179
[38] M. Jelasity, A. Montresor, G.P. Jesi, S. Voulgaris, The Peersim simulator, http://peersim.sf.net.
[39] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, M. Bowman, Planetlab: an overlay testbed for broad-coverage services, SIGCOMM

Comput. Commun. Rev. 33 (3) (Jul. 2003) 3–12 [Online], available http://doi.acm.org/10.1145/956993.956995.
[40] L. Wang, K. Park, R. Pang, V.S. Pai, L.L. Peterson, Reliability and security in the CoDeeN content distribution network, in: USENIX Annual Technical

Conference, General Track, June 2004, pp. 171–184.
[41] K. Park, V.S. Pai, Comon: a mostly-scalable monitoring system for planetlab, SIGOPS Oper. Syst. Rev. 40 (1) (Jan. 2006) 65–74 [Online], available:

http://doi.acm.org/10.1145/1113361.1113374.

http://peersim.sf.net
http://doi.acm.org/10.1145/956993.956995
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib436F4465654Es1
http://refhub.elsevier.com/S0022-0000(16)30020-4/bib436F4465654Es1
http://doi.acm.org/10.1145/1113361.1113374

	Multidimensional range queries on hierarchical Voronoi overlays
	1 Introduction
	2 Related work
	3 Preliminary discussion
	4 Hierarchical Voronoi Tessellations
	4.1 Super-peer election

	5 Hivory: the operations
	5.1 The Join operation
	5.2 The Leave operation
	5.3 The super-peer election operation
	5.4 Multidimensional range query resolution

	6 The operations complexity
	6.1 The Join operation
	6.2 The super-peer election operation
	6.3 The Leave operation
	6.4 Multidimensional range query resolution

	7 Experimental results
	8 Conclusions
	References

