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ABSTRACT

We present the results of a detailed analysis of the projected velocity dispersion of the globular cluster Palomar 14
performed using recent high-resolution spectroscopic data and extensive Monte Carlo simulations. The comparison
between the data and a set of dynamical models (differing in fraction of binaries, degree of anisotropy, mass-to-light
ratio M/L, cluster orbit, and theory of gravity) shows that the observed velocity dispersion of this stellar system
is well reproduced by Newtonian models with a fraction of binaries fb < 30% and an M/L compatible with the
predictions of stellar evolution models. Instead, models computed with a large fraction of binaries systematically
overestimate the cluster velocity dispersion. We also show that, across the parameter space sampled by our
simulations, models based on the modified Newtonian dynamics theory can be reconciled with observations only
assuming values of M/L lower than those predicted by stellar evolution models under standard assumptions.
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1. INTRODUCTION

Palomar 14 (Pal 14) is one of the least luminous globular
clusters (GCs) of the Milky Way (MV = −4.95 ± 0.12) and
it is located in the outer halo of the Milky Way at a distance
from the Sun d ∼ 71 kpc (Sollima et al. 2011, hereafter S11).
These characteristics make this object particularly interesting
from a kinematical point of view: both its internal and external
accelerations are weaker than the characteristic acceleration of
the modified Newtonian dynamics (MOND; Milgrom 1983)
a0 � 1.2 × 10−10 m s−2 and its low binding energy makes this
stellar system prone to a significant tidal stress.

In recent years, this cluster has been the object of many inves-
tigations focused on its peculiar structure and kinematics. Pal
14 has indeed been indicated as one of the best candidates to test
MOND (Baumgardt et al. 2005; Sollima & Nipoti 2010; Haghi
et al. 2009, 2011) because the global projected velocity disper-
sions predicted by the classical Newtonian theory and MOND
differ significantly for this stellar system. Unfortunately, the dis-
tance and mass of Pal 14 imply that only a bunch of red giant
branch (RGB) stars within the half-mass radius appear brighter
than the limiting magnitude (V ∼ 20) of high-resolution spec-
trographs mounted on 8 m class telescopes. For this reason,
the only high-resolution spectroscopic analysis available for Pal
14 (Jordi et al. 2009, hereafter J09) derived accurate radial ve-
locities for only 17 member stars. J09 compared the projected
velocity dispersion of the system with the outcome of a set of
N-body simulations, reporting that the expected velocity disper-
sion in MOND is more than three times higher than the observed
value. They concluded that the measured velocity dispersion of
Pal 14 represents a problem for MOND. Gentile et al. (2010), us-
ing a Kolmogorov–Smirnov test on the observed and predicted
MOND distributions of velocities, claimed that the confidence
level achievable using the small sample of stars used by J09
does not allow us to rule out MOND.

On the other hand, Küpper & Kroupa (2010) used a large
set of N-body realizations of Pal 14 in the framework of

the classical Newtonian dynamics including the effect of a
variable fraction of binaries and found that a fraction of binaries
fb > 10% would be incompatible with the observed velocity
dispersion. They argued that Newtonian gravity is challenged
by the observed kinematics of Pal 14, unless the cluster hosts an
unusually small number of binaries. However, a larger binary
fraction is expected to be present in this loose cluster both from
theoretical arguments (Kroupa 1995) and from considerations
on the observed fraction of blue straggler stars (Beccari et al.
2011). In this case, according to Küpper & Kroupa (2010),
the observational evidence would suggest a gravitational force
weaker than the Newtonian one in the low-acceleration regime
(i.e., in the opposite direction to what MOND predicts).

Recent attempts to model the kinematics of Pal 14 with
N-body simulations have also revealed difficulties in reproduc-
ing the present-day mass function and structure of this stellar
system starting from a standard initial mass function (IMF;
Zonoozi et al. 2011). Therefore, peculiar starting conditions
(like a flattened IMF and/or primordial mass segregation) could
characterize this cluster. The situation recently became even
more complicated: a pair of tidal tails surrounding the cluster
has been discovered (S11), suggesting that the Galactic tidal
field is important and questioning the validity of models that
treat the cluster as isolated.

In this paper we try to shed light on the controversial
interpretation of the kinematics of Pal 14 by presenting a
statistical analysis of its projected velocity dispersion based on a
Monte Carlo approach. We use the sample of radial velocities of
J09 and a set of N-body simulations in both Newtonian gravity
and MOND, investigating the effect of different assumptions on
M/L, binary fraction, degree of anisotropy, and cluster orbit.

2. RADIAL VELOCITIES

For the present analysis we used the sample of radial ve-
locities obtained by J09. It consists of 27 stars observed
in the innermost 4 arcmin of Pal 14 selected along the
cluster of RGB. It has been constructed from high-resolution
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(45,000 <R < 60,000) spectra collected with two different
spectrographs: UVES-VLT and HIRES-KeckI. A detailed de-
scription of the reduction procedure and of the radial velocity
measure can be found in J09. The high resolution allows us to
obtain very accurate radial velocities with errors of ∼0.3 km s−1.
A number of outliers (field stars) can be easily identified at ve-
locities Δv ≡ |v−v| > 5 km s−1. The bona fide cluster members
turn out to constitute a sample of 16 stars plus one star (15) lying
at Δv = 2.35 km s−1 (∼4σ ) so that it is not clear if it is a true
cluster member, a binary star, or a field outlier. In the follow-
ing analysis we will always consider the two samples defined
including and excluding this star. The error weighted averages
of the bona fide cluster members are v = 72.34 ± 0.05 km s−1

(without star 15) and v = 72.31 ± 0.05 km s−1 (with star 15).
To calculate the velocity dispersion we searched for the value
of σv that maximizes the logarithm of the probability density
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where vi and δi are the velocity of the ith star and its associated
uncertainty (see Pryor & Meylan 1993). The calculated velocity
dispersions turn out to be σv = 0.39+0.14

−0.09 km s−1 (without star
15) and σv = 0.66+0.19

−0.12 km s−1 (with star 15).

3. MODELS

The models adopted in this paper are based on a set of N-body
simulations performed in the framework of both the Newtonian
and MOND theories of gravity considering the cluster immersed
in the gravitational field of the Milky Way. As we will show
in Section 3.2, the effect of the external field is an essential
ingredient for a proper comparison of the velocity dispersion
of this low-mass cluster with observations, in particular when
the MOND theory is considered. It is however instructive to
show also the predictions of a set of isolated analytical models
to provide the necessary reference to quantify the effect of the
external field and to investigate the effect of different degrees
of anisotropy. In the following sections we will describe the
complete set of models and simulations used in this paper.

3.1. Analytical Models

Under the hypothesis that the cluster is isolated and spheri-
cally symmetric, simple models can be constructed by solving
the Jeans equation
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where ρ is the density, Φ is the gravitational potential,
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is the anisotropy parameter, and σr and σt are, respectively,
the radial and tangential components of the velocity dispersion
tensor at the radius r. If the system is self-gravitating, ρ and Φ
are related in Newtonian gravity by the Poisson equation

∇2Φ = 4πGρ, (4)

and in MOND by the corresponding modified field equation
(Bekenstein & Milgrom 1984)

∇ ·
[
μ

(‖∇Φ‖
a0

)
∇Φ

]
= 4πGρ, (5)

where μ(x) is the so-called interpolating function such that
μ(x) ∼ x at x 
 1 (the so-called deep-MOND regime) and
μ(x) ∼ 1 at x � 1 (the Newtonian regime). In the following
we use the “simple” interpolating function μ(x) = x/(1 + x)
(Famaey & Binney 2005). For finite-mass isolated systems the
boundary conditions of Equations (4) and (5) are |∇Φ| → 0 for
|r| → ∞, where r is the position vector.

For given density distribution and β(r), Equation (2) can be
solved to obtain σr . The tangential component of the velocity
dispersion σt is then derived from Equation (3) and the line-of-
sight (LOS) velocity dispersion at any given projected distance
R from the center is given by
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∫ rt

R

ρr√
r2 − R2

dr (7)

is the projected density at R and rt is the tidal radius. The above
procedure allows us to calculate an LOS velocity dispersion
profile for any given choice of M/L and β(r) according to both
Newtonian and MOND theories.

We adopted the density profile of the King (1966) model
that best fits the data of S11 defined by the parameters
(W0, rc, μV,0) = (7, 0.′61, 25.04 mag arcsec−2) which have
been converted in physical units assuming a distance of d =
71 kpc and two different values of the mass-to-light ratio:
M/LV = 1.885 (derived for Pal 14 from stellar population syn-
thesis by McLaughlin & van der Marel 2005) and M/LV =
0.747 (corresponding to the minimum mass estimated by J09
from star counts in the color–magnitude diagram). Hereafter,
we will refer to the M/L ratio in the V band simply as M/L.
Regarding the degree of anisotropy, we considered, besides the
isotropic case (β = 0), two extreme anisotropic cases: purely
tangential (β = −∞) and maximally radial. In the latter case we
adopted the Osipkov–Merritt parameterization (Osipkov 1979;
Merritt 1985)

β(r) = r2

r2 + r2
a

, (8)

where ra is the anisotropy radius, which sets the boundary
where orbits become significantly radially biased (systems
with smaller ra are more radially anisotropic). We assumed
ra = ra,min, where ra,min is the bona fide minimum value of
ra for stability against radial-orbit instability. In particular, we
adopt ra,min = 2.8rc for the Newtonian model and ra,min = 3.1rc

for the MOND one, corresponding to the marginal condition for
stability 2Tr,half/Tt,half � 1.5 (where Tr,half and Tt,half are the
radial and tangential kinetic energies computed within the half-
mass radius rhalf ; Nipoti et al. 2011; Ibata et al. 2011a).

The LOS velocity dispersion profiles of all these models,
calculated by integrating numerically the above equations, are
shown in Figure 1. It is evident that, at least as long as the cluster
is treated as isolated, MOND models predict a significantly
larger velocity dispersion with respect to Newtonian ones (see
also Baumgardt et al. 2005; Sollima & Nipoti 2010; Haghi et al.
2009, 2011). Newtonian and MOND velocity dispersion profiles
are clearly distinct, regardless of the assumed anisotropy profile.
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Figure 1. LOS velocity dispersion profiles predicted by Newtonian (black lines; colored red in the online version) and MOND (gray lines; blue in the online version)
models of Pal 14, assuming that the cluster is isolated. In the left panel isotropic models with different M/L ratios (M/L = 1.885: solid lines; M/L = 0.747: dashed
lines) are shown. In the right panel models with M/L = 1.885 and different degrees of anisotropy (isotropic: solid lines; pure tangential: dashed lines; extremely
radial: dotted lines) are shown. The radial locations of the target stars are marked at the bottom of both panels with black crosses. The thick cross (colored green in
the online version) marks the location of star 15.

(A color version of this figure is available in the online journal.)

3.2. N-body Simulations

As already reported above, all the models presented in
the previous section are based on the assumption that the
cluster is isolated. However, it is known that the presence
of the Galactic field is important for Pal 14 (see Section 1),
with different effects depending of the gravity law considered.
In particular:

1. In Newtonian gravity, the tidal interaction with the Galactic
potential can alter the velocity dispersion of the system by
heating stars at large distances from the center, by producing
virial oscillations after tidal shocks, and influencing its
structural evolution.

2. In MOND, besides the above tidal effects, even the presence
of a uniform external field breaks the spherical symmetry
of the gravitation field and can lead the cluster toward a less
deep MOND regime (Bekenstein & Milgrom 1984).

To account properly for the above effects we used a set of
N-body simulations performed in both Newtonian gravity and
MOND. In the Newtonian case we studied the tidal effects
by simulating the evolution of the cluster orbiting within
the Galactic potential. In the MOND case we used N-body
simulations to model the cluster in the presence of a uniform
external field, so for simplicity we neglected the tidal effects. We
note that, given the very long two-body relaxation time of Pal 14
(trh ∼ 19.9 Gyr; S11), its time evolution can be simulated also
with collisionless N-body codes, which is especially convenient
in MOND because of the difficulty in realizing a collisional
N-body code in this nonlinear theory.

3.2.1. Newtonian Simulations

As already discussed in Section 3.2, the tidal interaction
between Pal 14 and the Milky Way is expected to heat the
outskirts of the cluster. This can be the result of both compressive
shocks occurring during the disk crossing and perigalactic
passages (Ostriker et al. 1972; Gnedin & Ostriker 1997) and the
sudden change in the underlying potential (like in the case of the
Sagittarius galaxy; Taylor & Babul 2001). After these episodes,
the kinetic energy of a fraction of the cluster stars can exceed the
boundaries of the cluster potential well and these stars become

“potential escapers” (Küpper et al. 2010). These stars might have
a velocity dispersion larger than the other bound stars and remain
within the cluster in spite of their positive energy for a timescale
comparable to the cluster orbital period (Lee & Ostriker 1987).
Moreover, the strong perturbations occurring after every disk
passage affect the cluster virial equilibrium (and consequently
its internal kinematics) producing damped oscillations which
go on for many dynamical times (Gnedin & Ostriker 1999).
Finally, the structural evolution of the cluster is also influenced
by tides which accelerate the process of mass loss (Gnedin et al.
1999). The overall effect on the cluster velocity dispersion is
therefore extremely complex and does not obviously result in a
heating/freezing.

To evaluate the effect of tides on the velocity dispersion of
Pal 14 we ran a set of N-body simulations. We used the last ver-
sion of NBSymple (Capuzzo-Dolcetta et al. 2011), an efficient
N-body integrator implemented on a hybrid CPU + GPU (graph-
ics processing unit) platform exploiting a double-parallelization
on CPUs and on the hosted GPUs. The precision is guaran-
teed by resorting to direct summation (to avoid truncation errors
in force evaluation) and on the usage of high-order, symplec-
tic time integration methods (Kinoshita et al. 1991; Yoshida
1991). In particular the code allows us to choose between two
different symplectic integrators: a second-order algorithm (com-
monly known as leapfrog) and a much more accurate (but also
time consuming) sixth-order method. The effect of the external
Galactic field is taken into account using an analytical repre-
sentation of its gravitational potential. We adopted a leapfrog
scheme with a time step of Δt = 3.7 × 104 yr and a softening
length of 0.2 pc (following the prescription of Dehnen & Read
2011). Such a relatively large time step and softening length do
not affect the accuracy of the simulation because, as mentioned
above, the effects of two-body encounters have been found to
be negligible in this cluster even in its innermost region (S11;
Beccari et al. 2011) and the relaxation times at the half-mass
radius of our models are larger than the cluster age during the
entire simulation. The cluster was launched within the three-
component (bulge + disk + halo) static Galactic potential of
Johnston et al. (1995) on two orbits with different eccentricities
(e ∼ 0 and e = 0.5). First of all, we integrated backward in time,
within the adopted potential, the orbit of a test particle from the
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Figure 2. Projected density profiles (left panels) and LOS velocity dispersion profiles (right panels) of the outcome of the N-body simulations performed in Newtonian
dynamics assuming a quasi-circular orbit (e = 0.002; black open circles, red in the online version) and an eccentric orbit (e = 0.5; gray circles, blue in the online
version). Upper panels refer to M/L = 1.885, bottom panels to M/L = 0.747. The density profile measures of S11 are marked with filled points with error bars in
the left panels. The radial locations of the target stars are marked at the bottom of the right panel with black crosses and the thick cross (colored green in the online
version) indicates the location of star 15. The predictions of the isolated Newtonian King (1966) model are also shown in all panels with dashed lines.

(A color version of this figure is available in the online journal.)

apocenter (assumed to be the present-day location of the cluster
at R = 45.75 kpc, z = 47.68 kpc, in cylindrical coordinates
centered on the Galactic center) to the epoch t = 2Porb ago.4

At the end of the simulation, the model is within 40 pc of the
current position of Pal 14 and the energy has been conserved
within ΔE/E ∼ 10−7 for both the orbits considered. Then
the simulation has been launched with a cluster represented by
61,440 equal-mass particles5 distributed according to an equi-
librium King (1966) model having initial mass, core radius, and
concentration empirically determined so that the projected den-
sity profile after two complete orbits reproduces the present-day
cluster configuration (see Section 3.1). The initial conditions of
the simulation for the two adopted orbits are reported in Table 1.

In Figure 2, the final projected density and LOS velocity
dispersion profiles are shown for the combinations of values
of orbital eccentricity and M/L considered. It can be noted
that in all cases the effect of tidal heating is visible only in the
outermost radial bins of the projected density profiles, but a
significant deviation from the predicted behavior of the isolated
model is clearly visible in the velocity dispersion profiles beyond
a distance from the cluster center which depends on the orbital
eccentricity and the adopted M/L ratio. On the other hand,

4 We conducted the simulations only for the last two orbital periods as
potential escaper stars generated in previous orbits are expected to be already
evaporated from the cluster, thus not affecting its kinematics.
5 The adoption of equal-mass particles instead of a mass spectrum is not
expected to affect the structural and dynamical evolution of the cluster because
of the lack of relaxation in Pal 14 (S11; Beccari et al. 2011).

Table 1
Initial Conditions of the Newtonian N-body Simulations

Model e E Lz Porb M W0 rc

(km s−2) (km s−1 kpc) (Gyr) (M�) (pc)

37/39 0.002 15962.05 9100 2.04 50000 9 12.6
41/43 0.5 5661.36 6300 2.23 380000 12 12.6
45/47 0.002 15962.05 9100 2.04 105000 12 12.6
49/51 0.5 5661.36 6300 2.23 170000 12 12.6

Notes. e, orbital eccentricity; E, orbital energy; Lz, orbital angular momentum;
M, cluster mass; W0, King (1966) central adimensional potential; rc, core radius.

the isolated model remains a good representation of the cluster
velocity dispersion at small distance from the cluster center,
where most of the stars of the J09 sample reside.

3.2.2. MOND Simulations

The gravitational field of the Galaxy at the location of Pal 14 is
estimated to be, in modulus, gext ∼ 0.16a0 (Johnston et al. 1995)
and directed approximately toward the Galactic center. During
its orbit the cluster will occupy different Galactic regions where
the external field differs both in direction and in magnitude.
The effect of such a variation on the internal kinematics of
the cluster can in principle be significant (Kosowsky 2010) and
is linked to the ratio between the timescale necessary for the
cluster to reach a new equilibrium configuration (tadj, which is
of the order of the internal dynamical time tdyn) and the orbital
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Figure 3. Bottom panel: external acceleration exerted by the Milky Way on Pal
14 as a function of time elapsed from the present-day position (which is assumed
to be the apocenter) for two different orbital eccentricities (e = 1: gray line;
e = 0: black line; colored blue and red in the online version). Top panel: fraction
of cluster stars with a timescale of adjustment with the external field (tadj)
shorter than the time elapsed from the initial position. The cases of tadj/tdyn =
1, 2, and 5 are shown with solid, dashed, and dotted lines, respectively. For
instance, in the case e = 0.5, ∼0.56 Gyr before the apocentric passage the
modulus of the external field is twice the apocentric value (lower panel), but
this time interval corresponds to more than two dynamical times for ∼90% of
the stars of the clusters (upper panel), which are thus likely to be already in
equilibrium with the current external field.

(A color version of this figure is available in the online journal.)

period (Porb). Although the orbit of Pal 14 is unknown we can
set an upper limit to this ratio by assuming that the cluster
is presently at its apocenter and considering different orbital
eccentricities. As a first-order approximation, we calculated
the orbital period assuming planar orbits within a spherical
isothermal Galactic potential ΦMW = v2

circ ln dGC (where dGC

is the Galactocentric distance) with vcirc = 198.9 km s−1, so
gext = 0.16a0 at dGC = 66 kpc (the present-day Galactocentric
distance of Pal 14). The dynamical time has been calculated as

tdyn(r) = 2π

√
r

dΦ(r)/dr

adopting the cluster potential Φ(r) as in the isotropic MOND
model of Pal 14 with M/L = 1.885.

The ratio tdyn/Porb is relatively small: even in the extreme case
of a free-falling orbit (e = 1) we get tdyn/Porb = 0.23 at the
half-mass radius. To visualize the effect of the variation of the
external acceleration on the internal cluster kinematics, we plot
in Figure 3 the external acceleration exerted on the cluster after
a time interval Δt from the current position (bottom panel) for
two different eccentric orbits (e = 0.5 and 1) and the fraction
of mass comprised within the radius where tadj/tdyn(r) = 1,
2, and 5. It is evident that, assuming tadj/tdyn = 1, more than
80% of the cluster stars reach equilibrium with the external
field within 100 Myr, a timescale during which the cluster feels
an almost constant external acceleration (always smaller than
0.2a0), regardless of its orbit. A more significant variation is

instead noticeable assuming tadj of the order of few dynamical
times: if tadj/tdyn = 5 the external field doubles in the case of an
orbit with eccentricity e = 0.5 before ∼40% of the cluster stars
reached equilibrium and the effect can be even more significant
in the case of the free-falling orbit.

To evaluate the effect of the external field on the predicted
velocity dispersion we used the MOND N-body code n-mody
(Londrillo & Nipoti 2009), in which we implemented the
external field effect as described in Ibata et al. (2011a). The
presence of a uniform external field −∇Φext is accounted for
in the boundary conditions of Equation (5), which become
∇Φ → ∇Φext for |r| → ∞ (Bekenstein & Milgrom 1984).
We recall that, due to technical difficulties, in MOND we do
not simulate self-consistently the evolution of Pal 14 orbiting
in the Galaxy (including tidal effects), but we limit ourselves to
simple numerical experiments that should allow us to estimate
reasonably well the effect of a uniform external field on the
cluster velocity dispersion. In the simplest of our experiments
we simulate the cluster in the presence of a uniform external
field gext = −∇Φext that remains constant in modulus and
direction throughout the simulation (see also Ibata et al. 2011a).
In particular, in the attempt to model the cluster on a circular
orbit, we fix gext = 0.16a0 (the value of the external field
at the present-day location of Pal 14). In these simulations
(which hereafter we refer to, loosely speaking, as e = 0 MOND
simulations) we let the cluster evolve for ∼2.3 Gyr (i.e., slightly
more than a complete orbital period).

If the cluster is on an eccentric orbit, not only the direction,
but also the modulus of the external field varies during the orbit.
In particular, if Pal 14 is currently at the apocenter it must have
experienced a stronger external field in the past, which might
affect to some degree its present-day velocity dispersion. In
order to explore this effect, we also ran simulations in which the
external field varies in time (in modulus, but not in direction)
as expected for the e = 0.5 orbit discussed above (see Figure 3,
bottom panel). In these simulations we follow the evolution
of the cluster for ∼1.12 Gyr (i.e., half an orbit, starting at the
apocenter): so, in this case the external field is gext � 0.16a0
at t = 0, it reaches its maximum gext � 0.32a0 at ∼0.56 Gyr,
and at the end of the simulation is again gext � 0.16a0 (loosely
speaking, hereafter we refer to these simulations as the e = 0.5
MOND simulations).

For each value of M/L (M/L = 0.747 and M/L = 1.885)
we ran both the e = 0 and the e = 0.5 MOND simulations.
In all cases, we initialized our N-body simulations with quasi-
equilibrium distributions of 8 × 105 particles: in practice we
generate the initial conditions as follows. We first build an
equilibrium Newtonian model with density given by the best-
fitting King model of Pal 14 described in Section 3, and
we then multiply the velocity of each particle by a factor
[(1 + g̃ref)/g̃ref]1/2 (trying to reproduce the expected “quasi-
Newtonian” behavior), where g̃ref ≡ gref/a0 and gref is a
reference gravitational field modulus. The value of gref is
empirically chosen in each case in order to have at the end
of the simulation a mock cluster with a surface-density profile
consistent with the observed profile of Pal 14. In the case of
the e = 0 simulations gref = gext = 0.16a0; in the case of
the e = 0.5 simulations gref = 〈gext〉 = 0.22a0, where 〈gext〉
is the time-averaged modulus of the external field for the orbit
considered.

In the e = 0 simulations the system readjusts itself in a few
dynamical times into a new equilibrium configuration. In the
e = 0.5 simulations the cluster is continuously evolving slowly
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Figure 4. Projected density profiles (left panels) and LOS velocity dispersion profiles (right panels) of the outcome of the e = 0 (open black circles, red in the online
version) and e = 0.5 (gray circles, blue in the online version) MOND N-body simulations (see the text for details). The upper panels refer to M/L = 1.885 and
the bottom panels refer to M/L = 0.747. The density profile measures of S11 are marked with filled points with error bars in the left panel. The radial locations of the
target stars are marked at the bottom of the right panel with black crosses and the thick cross (colored green in the online version) indicates the location of star 15. The
corresponding isolated MOND models are represented in all panels with dashed lines.

(A color version of this figure is available in the online journal.)

due to the variation of the external field. In both cases the end
products of the simulations are axisymmetric configurations
with symmetry axis along the direction of the external field.
When projected along the LOS to Pal 14 (assuming that the
field of the Galaxy points toward the Galactic center) the
systems appear almost circular (with ellipticity ε ∼ 0.01) and
with circularized surface-density distribution very similar to
the observed light distribution of Pal 14 (see Figure 4, left
panels). In Figure 4, we also show the velocity dispersion
profiles of the end-products of the e = 0 and e = 0.5 MOND
simulations (right panels). It is apparent that when the external
field is taken into account the velocity dispersion profile is at all
radii significantly lower than that of the corresponding isolated
model. As we will see in Section 5.1, this effect is crucial in
the comparison between the MOND predictions and the data, in
particular when low values of M/L are assumed. On the other
hand, the orbital eccentricity does not significantly affect the
velocity dispersion profile, indicating that the cluster quickly
reaches equilibrium with the external field at the apocenter and
does not keep memory of the stronger external field experienced
in the past.

3.3. Binary Population

It is well known that a significant population of undetected
binaries can inflate the measured velocity dispersion (Blecha
et al. 2004) because in a binary system the relative projected
velocity of the primary component is added to the motion of the

center of mass, introducing an additional spread in the velocity
distribution of the whole population. To account for the effect of
a binary population on the velocity dispersion, we constructed
a library of binaries which has been used in the Monte Carlo
procedure.

Following McConnachie & Côté (2010) the projected veloc-
ity of the primary component in a binary system is given by

v = 2πa1 sin i

P (1 − e2)1/2
[cos(θ + ω) + e cos ω],

where m1 and m2 are the masses of the primary and secondary
components, a1 is the semimajor axis of the primary component,
P is the orbital period, e is the eccentricity, i is the inclination
angle to the LOS, θ is the phase from the periastron, and ω is the
longitude of the periastron. For each simulated binary we ran-
domly extracted a combination of (m1,m2, P , e, θ, ω, i) from
suitable distributions and derived the corresponding projected
velocity v.

We randomly extracted a large number (N > 106) of stars
from the IMF of Kroupa (2002) with masses 0.08 < M/M� < 7
and paired them imposing that the distribution of mass ratios in
the primary component mass range 1 < m1/M� < 7 must
be equal to that measured by Fisher et al. (2005) in the solar
neighborhood. To do this, an iterative algorithm has been used:
at every iteration stars are paired randomly and a “chance of
pairing” as a function of the mass ratio has been computed as
the ratio between the output mass ratio normalized distribution
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calculated in the above primary component mass range and that
of Fisher et al. (2005).6 Then, a subsample of binaries has been
extracted according to the chance of pairing associated with their
mass ratio and added to the library, while the components of the
rejected binaries are used as input in the next iteration until all
stars are paired. Then, we selected from the library all binaries
whose primary component is within |m1 − MRGB| < 0.05 M�,
where MRGB = 0.83 M� is the typical mass of an RGB star
calculated by comparing the color–magnitude diagram of Pal 14
of S11 with a suitable isochrone of Marigo et al. (2008). We
followed the prescriptions of Duquennoy & Mayor (1991) for
the distribution of periods and eccentricities. The semimajor
axis has been calculated using the third Kepler law:

a1 = 1

1 + m1
m2

[
P 2G(m1 + m2)

4π2

]1/3

.

We removed all those binaries whose corresponding semimajor
axes lie outside the range amin < a < 100 AU where amin is
linked to the radius of the secondary component (according to
Lee & Nelson 1988). The distribution of the angles (i, θ, ω)
has been chosen according to the corresponding probability
distributions (Prob(i) ∝ sin i; Prob(θ ) ∝ θ̇−1; Prob(ω) =
constant).

For a given fraction of binaries fb the effective fraction f RGB
b

is calculated as the ratio between the number of binaries with
|m1 − MRGB| < 0.05 M� (Nb,RGB) and the number of objects
(singles + binaries) in the same mass range (Ns,RGB + Nb,RGB)
as

f RGB
b = fbNb,RGB

(1 − fb)Ns,RGB
Nb,tot

Ns,tot
+ fbNb,RGB

.

Note that in our Monte Carlo simulations we assumed that
the binary population has the same radial distribution as single
stars. This assumption is justified by the observed lack of mass
segregation observed in this cluster (Beccari et al. 2011).

4. MONTE CARLO SIMULATIONS

To compare the velocity dispersion measured in Section 2
with the models described in Section 3 we adopted a Monte
Carlo approach. In particular, we first defined a rejection
criterion and selected a subsample of member stars from the J09
radial velocities accordingly. Here, we adopted a preliminary
exclusion of all stars with |v − v| > 5 km s−1, and a subsequent
σ clipping rejection. We considered the cases of a 3σ and a 5σ

threshold—where σ ≡
√

σ 2
v + δ2

i + δ(v)2 includes the intrinsic
velocity dispersion σv , the individual error δi , and the error on
the mean δ(v)—which define two samples with N = 16 and
N = 17 stars (including star 15), respectively. Then, having
selected a model and a binary fraction fb, for each star of the
observed sample the following steps have been performed.

1. We compute the distance of the star from the cluster center
Ri and extract a velocity corresponding to the local LOS
velocity dispersion in the model. The extraction algorithm
depends on the kind of model:
(a) for the analytical models, the velocity is randomly

extracted from a Gaussian distribution with dispersion
σLOS(Ri), i.e., the projected velocity dispersion at the
star distance from the center;

6 Of course, in this algorithm we implicitly assume that the chance of pairing
depends only on the mass ratio. Although this assumption is clearly a
simplification, it allows us to reproduce the observed mass ratio distribution in
star clusters better than a simple random pairing (Sollima et al. 2010).

Figure 5. Projected velocity dispersion and range comprising 68% of realiza-
tions predicted by the whole set of Monte Carlo simulations. Black dots mark
the prediction of Newtonian models, gray dots (red in the online version) the
predictions of MOND models. Filled symbols refer to M/L = 1.885, open
symbols refer to M/L = 0.747.

(A color version of this figure is available in the online journal.)

(b) for the N-body models, the velocity is extracted from
the last snapshot of the N-body simulation: for each star
a random position angle is extracted and the projected
velocity of the closest particle in the N-body system is
adopted.

2. We extract a random velocity from a Gaussian distribution
with dispersion δi and sum it to the previous one to compute
a simulated observational velocity.

3. A random number between 0 and 1 is extracted from
a uniform distribution. If this number is smaller than
the effective binary fraction f RGB

b (see Section 3.3) a
binary is randomly extracted from the library defined in
Section 3.3 and its apparent velocity is added to the
simulated velocity.

Then the rejection criterion is applied to the simulated sam-
ple and for every rejected velocity another extraction is made
at the same location. In this way, every realization contains
the same number of objects at the same location as the ob-
served sample. Finally, the velocity dispersion of the simu-
lated sample is calculated using Equation (1). The above pro-
cedure is repeated 1000 times to compute the distribution of
predicted velocity dispersions. The outcome of all the simu-
lations performed is summarized in Table 2 and illustrated in
Figure 5.

5. RESULTS

5.1. Newtonian versus MOND Models

In Figures 6 and 7, the distributions of predicted velocity
dispersions are shown for isolated models with no binaries and
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Table 2
Summary of the Monte Carlo Simulations

Model Gravity Anisotropy M/L e fb Rejection Threshold σv

M�/LV,� % σ f(16%) f(50%) f(84%)

1 Newtonian Isotropic 1.885 Isolated 0 3 0.30 0.42 0.56
2 MOND Isotropic 1.885 Isolated 0 3 1.52 1.84 2.27
3 Newtonian Isotropic 1.885 Isolated 0 5 0.32 0.41 0.58
4 MOND Isotropic 1.885 Isolated 0 5 1.45 1.90 2.19
5 Newtonian Isotropic 0.747 Isolated 0 3 0.16 0.27 0.41
6 MOND Isotropic 0.747 Isolated 0 3 1.25 1.48 1.90
7 Newtonian Isotropic 0.747 Isolated 0 5 0.15 0.29 0.40
8 MOND Isotropic 0.747 Isolated 0 5 1.19 1.50 1.80
9 Newtonian Tangential 1.885 Isolated 0 3 0.38 0.48 0.67
10 MOND Tangential 1.885 Isolated 0 3 1.59 2.06 2.33
11 Newtonian Tangential 1.885 Isolated 0 5 0.39 0.49 0.68
12 MOND Tangential 1.885 Isolated 0 5 1.72 1.97 2.47
13 Newtonian Radial 1.885 Isolated 0 3 0.31 0.47 0.59
14 MOND Radial 1.885 Isolated 0 3 1.60 2.04 2.41
15 Newtonian Radial 1.885 Isolated 0 5 0.32 0.45 0.59
16 MOND Radial 1.885 Isolated 0 5 1.56 1.95 2.37
17 Newtonian Isotropic 1.885 Isolated 10 3 0.26 0.49 0.68
18 Newtonian Isotropic 1.885 Isolated 10 5 0.32 0.51 0.91
19 Newtonian Isotropic 0.747 Isolated 10 3 0.13 0.31 0.50
20 Newtonian Isotropic 0.747 Isolated 10 5 0.16 0.32 0.77
21 Newtonian Isotropic 1.885 Isolated 20 3 0.27 0.57 0.94
22 Newtonian Isotropic 1.885 Isolated 20 5 0.42 0.77 1.20
23 Newtonian Isotropic 0.747 Isolated 20 3 0.01 0.34 0.61
24 Newtonian Isotropic 0.747 Isolated 20 5 0.24 0.59 1.09
25 Newtonian Isotropic 1.885 Isolated 30 3 0.36 0.71 1.33
26 Newtonian Isotropic 1.885 Isolated 30 5 0.65 1.00 1.47
27 Newtonian Isotropic 0.747 Isolated 30 3 0.15 0.56 1.12
28 Newtonian Isotropic 0.747 Isolated 30 5 0.48 0.92 1.39
29 Newtonian Isotropic 1.885 Isolated 40 3 0.61 1.15 1.70
30 Newtonian Isotropic 1.885 Isolated 40 5 0.84 1.17 1.74
31 Newtonian Isotropic 0.747 Isolated 40 3 0.31 0.66 1.41
32 Newtonian Isotropic 0.747 Isolated 40 5 0.74 1.14 1.71
33 Newtonian Isotropic 1.885 Isolated 50 3 0.98 1.43 2.05
34 Newtonian Isotropic 1.885 Isolated 50 5 1.04 1.52 1.93
35 Newtonian Isotropic 0.747 Isolated 50 3 0.59 1.31 1.77
36 Newtonian Isotropic 0.747 Isolated 50 5 0.77 1.31 1.69
37 Newtonian Isotropic 1.885 0.002 0 3 0.31 0.42 0.59
38 MOND Isotropic 1.885 0 0 3 0.80 0.95 1.23
39 Newtonian Isotropic 1.885 0.002 0 5 0.32 0.46 0.58
40 MOND Isotropic 1.885 0 0 5 0.76 0.97 1.20
41 Newtonian Isotropic 1.885 0.5 0 3 0.30 0.42 0.57
42 MOND Isotropic 1.885 0.5 0 3 0.61 0.81 1.14
43 Newtonian Isotropic 1.885 0.5 0 5 0.29 0.39 0.57
44 MOND Isotropic 1.885 0.5 0 5 0.60 0.83 1.13
45 Newtonian Isotropic 0.747 0.002 0 3 0.14 0.27 0.37
46 MOND Isotropic 0.747 0 0 3 0.45 0.59 0.76
47 Newtonian Isotropic 0.747 0.002 0 5 0.15 0.28 0.38
48 MOND Isotropic 0.747 0 0 5 0.48 0.59 0.78
49 Newtonian Isotropic 0.747 0.5 0 3 0.11 0.25 0.41
50 MOND Isotropic 0.747 0.5 0 3 0.32 0.54 0.71
51 Newtonian Isotropic 0.747 0.5 0 5 0.01 0.29 0.36
52 MOND Isotropic 0.747 0.5 0 5 0.33 0.51 0.72

Notes. The table lists the model ID, the adopted theory of gravity, the kind of anisotropy, the M/L ratio, the cluster orbital eccentricity
(e), the binary fraction (fb), the rejection threshold, and the derived velocity dispersion quantiles 50% (median), 16%, and 84% (∼1σ ).

different values of M/L and degrees of anisotropy, respectively.
It is apparent that while Newtonian models with M/L =
1.885 predict velocity dispersions which are compatible with
the observed value, Newtonian models with M/L = 0.747
tend to underpredict the systemic velocity dispersion, while
all extractions from isolated MOND models predict velocity
dispersions larger than the observed ones (even when M/L is as

low as 0.747).7 It is interesting to note that anisotropy has only a
small effect on the predicted distribution of velocity dispersions.

7 In Newtonian simulations with small M/L the intrinsic velocity dispersion
is smaller than the statistical uncertainty: as a consequence, in these cases a
significant number of Monte Carlo realizations have σv ∼ 0 (see Figures 6
and 13).
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Figure 6. Distribution of predicted velocity dispersions for Newtonian (red
histograms) and MOND (blue histograms) isolated isotropic models with fb = 0
and M/L = 1.885 (upper panels) and M/L = 0.747 (bottom panels). The left
panels refer to the 3σ rejection threshold, right panels to the 5σ rejection
threshold. The shaded areas indicate the range (centered on the median)
comprising 68% of realizations. The observed velocity dispersions are also
marked in all panels with dashed lines.

Figure 7. Same as Figure 6, but for models with purely tangential (upper panels)
and extremely radial (bottom panels) anisotropy (assuming M/L = 1.885).

This is because most of the J09 sample is constituted by stars
located between 1′ < R < 2′, a region where all the models
predict a similar velocity dispersion regardless of the degree of
anisotropy (see Figure 1).

In Figures 8 and 9 the distributions of velocity dispersions
predicted by MOND models including the external field effect
(for the orbits and M/L ratios considered) are compared
with that of the isolated MOND model. As anticipated in
Section 3.2.2, it is apparent that the inclusion of the external
field significantly affects the predicted velocity dispersion,
reducing the systemic velocity dispersion. For M/L = 1.885
(the value predicted by stellar evolution models for Pal 14), it is
clear that the predicted velocity dispersion, though significantly

Figure 8. Distribution of predicted velocity dispersions for isolated isotropic
MOND models with M/L = 1.885 and fb = 0 (black histograms) and
models immersed in the external Galactic field (gray histograms), assuming
a circular orbit (upper panels) and an eccentric orbit with e = 0.5 (lower
panels). The left panels refer to the 3σ rejection threshold, right panels to the
5σ rejection threshold. The shaded areas indicate the range (centered on the
median) comprising 68% of realizations. The observed velocity dispersions are
marked in all panels with dashed lines.

Figure 9. Same as Figure 8, but for models with M/L = 0.747.

influenced by the external field, remains in any case higher
than the observed value (Figure 8). A small, but not negligible
(∼20%), number of realizations compatible with observations
are noticeable when a stronger external field and a 5σ rejection
threshold are considered. Note that a non-zero binary fraction
and tidal heating (not included in these simulations) could inflate
the model velocity dispersion making the discrepancy between
the MOND predictions and the data even larger. Instead, for
a lower M/L = 0.747 ratio the predictions of MOND models
agree with the measured velocity dispersion (see Figure 9). So
we conclude that the adoption of a low M/L ratio, in association
with the adoption of a 5σ rejection criterion and/or a large
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Figure 10. Distribution of predicted velocity dispersions for isotropic Newto-
nian models with fb = 20% (upper panels) and fb = 40% (bottom panels),
assuming M/L = 1.885. The left panels refer to the 3σ rejection threshold, right
panels to the 5σ rejection threshold. The gray areas indicate the range (centered
on the median) comprising 68% of realizations. The observed velocity disper-
sions are marked in all panels with dashed lines.

Figure 11. Median (solid line) and range including 68% of realizations (gray
shaded area) for isotropic Newtonian models with M/L = 1.885 as functions of
the adopted binary fraction. The left panels refer to the 3σ rejection threshold,
right panels to the 5σ rejection threshold. The upper panels refer to M/L =
1.885, bottom panels to M/L = 0.747. The observed velocity dispersions are
marked in all panels with dashed lines.

orbital eccentricity, could reconcile MOND with the observed
properties of Pal 14.

5.2. Binary Fraction

In Figure 10 the distributions of predicted velocity dispersions
are shown for (isolated) isotropic Newtonian models with
M/L = 1.885 and two different binary fractions (fb = 20% and
fb = 40%). As expected, as the fraction of binaries increases the
distribution appears to be shifted to higher velocity dispersions.
In Figure 11 the median of the distribution and the range
including 68% of realizations are plotted as functions of the
adopted binary fraction for the two M/L ratios considered.
From the comparison with the observed velocity dispersion of

Figure 12. Distribution of predicted velocity dispersions for isolated isotropic
Newtonian models with M/L = 1.885 and fb = 0 (black histograms) and
models immersed in the external Galactic tidal field (gray histograms). In the
upper and bottom panels models of quasi-circular orbits (e = 0.002) and of
eccentric (e = 0.5) orbits are considered, respectively. The left panels refer
to the 3σ rejection threshold, right panels to the 5σ rejection threshold. The
shaded areas indicate the range (centered on the median) comprising 68% of
realizations. The observed velocity dispersions are marked in all panels with
dashed lines.

the sample of J09 we conclude that models with fb < 30% in the
case of M/L = 1.885 and slightly larger fb < 40% for M/L =
0.747 are still acceptable.

These upper limits are larger than those derived by Küpper
& Kroupa (2010; fb � 10%). There are three noticeable differ-
ences between the analysis presented here and that performed
by these authors: (1) they adopt a different rejection criterion
which rejects stars outside a fixed velocity window, (2) they
adopt different characteristics for their binary population, and
(3) they compute the velocity dispersion from subsamples of
stars selected randomly across the cluster. We note that while
the first two choices are somewhat arbitrary, the latter represents
a limitation of the Küpper & Kroupa (2010) analysis. Such a
difference may well be responsible for the higher predicted
velocity dispersion and the corresponding smaller limit to the
cluster binary fraction found by Küpper & Kroupa (2010).

5.3. The Effect of Tidal Heating in the J09 Sample

The N-body simulations described in Section 3.2.1 allow us
to evaluate the effect that tides have in the stellar kinematics of
Pal 14 in the framework of the classical Newtonian dynamics.
Quantifying this effect is important since it can potentially affect
the cluster velocity dispersion measured through the J09 sample
(Küpper et al. 2010).

The output distributions of predicted velocity dispersions for
the two orbits are compared to the isolated model in Figures 12
and 13 for M/L = 1.885 and M/L = 0.747, respectively. It
is apparent that the effect of tidal heating is negligible in all
cases. A small difference is noticeable only in the M/L =
0.747 case when eccentric orbits are considered: in this case
the distribution, while having the same peak value, presents
a larger dispersion and a tail extending toward larger velocity
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Figure 13. Same as Figure 12, but for models with M/L = 0.747.

dispersions. The reason for this result can be found by looking
at the spatial distribution of the J09 sample: 16 out 17 target
stars reside in the inner 2 arcmin, a region where tides have only
a minor heating efficiency (see Figure 2). The effect is indeed
slightly more evident when a small M/L and an eccentric orbit
are considered, since the effect of heating penetrates deeper into
the cluster affecting the velocity of the two outermost targets.
We conclude that the upper limit in the binary fraction derived
in Section 5.2 is not altered by this effect, at least for the two
orbits considered.

6. DISCUSSION

Using a Monte Carlo approach, we performed an accurate
comparison of the velocity dispersion of the GC Pal 14 measured
from high-resolution radial velocities with the predictions of a
set of dynamical models spanning a wide range in M/L ratio,
degree of anisotropy, binary fraction, and orbital eccentricity
in both Newtonian and MOND gravity. The results obtained
indicate that Newtonian models with a binary fraction fb < 30%
and an M/L ratio compatible with the predictions of stellar
evolutionary models are in good agreement with the kinematics
of this stellar system. On the other hand MOND models with
the same M/L ratio appear to systematically overpredict the
velocity dispersion for any assumption of the cluster anisotropy.
The same conclusion has been reached previously by J09
but questioned by Gentile et al. (2010). Note that all these
previous approaches compared the velocity dispersion with
the prediction of theoretical models neglecting information
on the radial distribution of targets. This has an important
impact in increasing the significance of the comparison as most
of the targets are actually located in the central part of the
cluster where the difference between Newtonian and MOND
models is maximized. Moreover, our simulations showed the
importance of the inclusion of the external field in determining
the velocity dispersion profile of MOND models for this cluster.
This warns against using isolated MOND models for clusters
with masses and Galactocentric distances similar to Pal 14 (see
also Baumgardt et al. 2005; Haghi et al. 2009, 2011). Similar

difficulties for MOND in explaining the internal kinematics of
GCs have been already found in previous studies on NGC 2419
(Baumgardt et al. 2009; Sollima & Nipoti 2010; Ibata et al.
2011a, 2011b). In this last case the effect of the external
field, which is a factor 1.4 weaker in modulus and ∼23 times
smaller with respect to the cluster internal acceleration than
in Pal 14, has been estimated to be negligible (Ibata et al.
2011a).

The conclusions are different when significantly lower values
of M/L are considered for Pal 14. In this case the predictions of
MOND models are close to the observed velocity dispersion (in
particular when a 5σ rejection criterion is adopted and eccentric
orbits are considered), while Newtonian models predict a lower
velocity dispersion. So, a combination of small M/L ratio,
small binary fraction, relatively large orbital eccentricity, and
the adoption of a permissive rejection criterion provides a way
out for MOND. As the M/L ratio is a crucial parameter in the
analysis presented, it is interesting to discuss in more detail the
possibility of constraining its value.

From a theoretical point of view, the M/L ratio of an old,
metal-poor stellar population composed mainly of subsolar-
mass stars is expected to be systematically larger than unity
(1.5 < M/L < 2.5; Fioc & Rocca-Volmerange 1997; Bruzual
& Charlot 2003) and can reach M/L > 3 if dark remnants
are taken into account (Kruijssen 2009). On the other hand,
observational analyses performed on GCs in the Milky Way
and M31 have shown the occurrence of a sparse number
of clusters with M/L values as small as M/L ∼ 0.6 (Strader
et al. 2009, 2011). It is worth noting that the low M/L =
0.747 ratio adopted here corresponds to the minimum mass
calculated by J09 assuming a decreasing mass function for
stellar masses smaller than the limiting magnitude of deep
photometric Hubble Space Telescope observations of Pal 14
and neglecting the effect of dark remnants. So M/L = 0.747
must be considered a strong lower limit. On the other hand,
while the value of M/L = 1.885 derived by McLaughlin &
van der Marel (2005) assumes a standard Chabrier (2003)
IMF, J09 measured a shallower mass function slope in the
limited mass range covered by their observations which could
in turn suggest a lower M/L as appropriate. In general, the
dynamical M/L ratios measured in GCs appear generally
smaller than those predicted by population synthesis models
((M/L)dyn/(M/L)syn = 0.82 ± 0.07 with some clusters having
even smaller values; McLaughlin & van der Marel 2005).
Furthermore, in stellar systems with a small binding energy like
Pal 14, the recoil speed of white dwarf remnants could exceed
the cluster escape velocity, causing a substantial loss of dark
remnants (Fellhauer et al. 2003). Primordial mass segregation
can also play a role favoring the losses of low-mass stars (with
high individual M/L ratios; Zonoozi et al. 2011). Therefore,
mass-to-light ratios substantially lower than that predicted by
stellar evolution models cannot be excluded. A very low binary
fraction also appears disfavored (see below), although direct
estimates of the binary fraction in this cluster are still missing.

The comparison between the observed velocity dispersion and
the Newtonian predictions sets an upper limit for the fraction
of binaries in this cluster fb < 30% (fb < 40% for the case
of low M/L = 0.747), significantly higher than the upper limit
(fb < 10%) estimated by Küpper & Kroupa (2010; see the
discussion in Section 5.2). These upper limits must be compared
with independent estimates of the binary fraction of Pal 14.
Unfortunately, the deepest photometric studies on this cluster
(Dotter et al. 2008) barely reach ∼3 mag below the cluster
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turnoff, therefore preventing any direct estimate of the binary
fraction. However, an indirect estimate of the binary content of
Pal 14 fb ∼ 30%–40% has recently been provided by Beccari
et al. (2011) on the basis of the comparison between the fraction
of blue straggler stars and binary fraction in clusters with similar
mass and density. So, on the basis of the above estimate we
conclude that the observed velocity dispersion of this cluster
is consistent with the Newtonian theory of gravity. Also in
this case, this result has been validated only for orbits with
eccentricities e < 0.5. Orbits with a larger eccentricity can in
principle also lead to a significant heating of the cluster in its
innermost region, where most of the J09 targets are located.
However, we suggest that the available data do not provide any
significant indication of a failure of the Newtonian theory of
gravity.

The present analysis can also be used to gain insight into the
question of the dark matter content of Pal 14: in the framework
of the classical Newtonian dynamics the low observed velocity
dispersion implies a dynamical M/L � 1.5–2 (for reasonable
assumptions on the binary fraction and on the rejection crite-
rion). This result, combined with the observation that Pal 14 has
significant tidal tails (S11), suggests that dark matter does not
contribute substantially to the mass of this remote GC.
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Baumgardt, H., Côté, P., Hilker, M., et al. 2009, MNRAS, 396, 2051
Baumgardt, H., Grebel, E. K., & Kroupa, P. 2005, MNRAS, 359, L1
Beccari, G., Sollima, A., Ferraro, F. R., et al. 2011, ApJ, 737, 3
Bekenstein, J. D., & Milgrom, M. 1984, ApJ, 286, 7
Blecha, A., Meylan, G., North, P., & Royer, F. 2004, A&A, 419, 533
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Maschietti, D. 2011, New

Astron., 16, 284
Chabrier, G. 2003, ApJ, 586, L133
Dehnen, W., & Read, J. I. 2011, Eur. Phys. J. Plus, 126, 55

Dotter, A., Sarajedini, A., & Yang, S.-C. 2008, AJ, 136, 1407
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
Famaey, B., & Binney, J. 2005, MNRAS, 363, 603
Fellhauer, M., Lin, D. N. C., Bolte, M., Aarseth, S. J., & Williams, K. A.

2003, ApJ, 595, L53
Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950
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