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1  | INTRODUC TION

Researchers have striven for many decades to find better and better 
methods to estimate the size, or the density, of natural populations, 
and the development of camera traps (CT) has stimulated the re-
search of new methods for population assessment (see Keuling et al., 
2018 for a recent review). In a recent paper in the Journal of Animal 
Ecology, using CT to assess the size of natural populations, Campos‐
Candela et al. (2018), hereafter CC, claimed that ‘the absolute den-
sity is given by the average number of animals counted per frame’. 
Ideally, the method proposed by CC is perfect for wildlife managers: 
easy to use and cheap. CC developed their approach according to 
a theoretical framework where animals are assumed to behave as 
particles of an ‘ideal gas’ (Hutchinson & Waser, 2007). Since such 
an assumption appears difficult to be respected or even reasonably 
approached in actual animals, CC correctly verified that such a re-
sult remains valid also when the animals behave in more realistic 
ways, specifically when they exhibit home range (HR) behaviour. 
Considering the potential relevance of this work to wildlife conser-
vation and management, we have carefully read the paper and noted 
several problems in the method used to simulate the home ranges 
and CT detections.

In section 1, we show that the model of CC is unable to properly 
account for the actual behaviour of animals. Accordingly, we propose 
a different method of simulation which circumvents the problems 
found in CC's model. However, our main interest in this forum paper 
is not to discuss the best methods to be used to simulate home ranges 
but to verify whether the proposed method for population estima-
tion can be reliable in practice. Taking the moose (Alces alces) (one of 

the archetypes used by CC) as an example, in section 2 we replicate 
their numerical experiments using a more realistic set‐up and re-
jected their conclusion that “the results…..of the model demonstrate 
that density can be precisely and accurately estimated after an em-
phasized sampling effort“ (our emphases). On the contrary, we found 
that the proposed method, albeit being asymptotically correct, does 
not provide appropriate density estimates under realistic survey de-
signs (survey duration, number of cameras and their radius of detec-
tion, Rovero, Zimmermann, Berzi, & Meek, 2013).

Information about population size is necessary to improve our 
understanding of fundamental ecological processes such as den-
sity dependence, functional response, dispersal, epidemiology and 
so forth. For rare and endangered populations, correct information 
about their size is indispensable to estimate the extinction risk and 
may help to allocate the (usually scarce) resources for conservation 
where they are most needed. On the other hand, for invasive species, 
one needs to know whether eradication/control programmes have 
been successful, while for game species, the knowledge of popula-
tion size can be useful to develop sustainable harvest programmes.

Estimation methods based on capture–mark–recapture (CMR) 
have been largely used and present many different ramifications 
including non‐invasive genetics (Rodgers & Janečka, 2013) and 
removal methods (St. Clair, Dunton, & Giudice, 2013). Managers 
usually do not use CMR methods because animals have to be indi-
vidually identified. This approach is, however, used routinely when 
animals are naturally recognizable, for example tigers or whales 
(Karanth & Nichols, 2017). Distance sampling, where detectability 
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is estimated by the distance of the animal from a reference point 
or transect, has been widely used to assess the population size of 
marine and terrestrial organisms (Buckland, et al., 2004). Since CT 
are cheap and easy to use, recently several methods have been 
proposed to estimate the population size of unmarked individuals 
such as Random Encounter Model (REM; Rowcliffe, Field, Turvey, 
& Carbone, 2008), point transects (Howe, Buckland, Després‐
Einspenner, & Kühl, 2017), REST model (Nakashima, Fukasawa, & 
Samejima, 2018), N‐mixture models (Keever et al., 2017) and SECR 
models (Chandler and Royle, 2013). Available methods assume 
that the population to be assessed is demographically closed. In 
practice, this means to perform a snapshot survey, very short 
in relation to the demography of the species of interest so that 
deaths, births, immigration and emigration can be overlooked. For 
instance, for a large terrestrial mammal, it is reasonable that a sur-
vey can last, at most, 30 days in periods when the species is known 
to be not dispersing, migrating or reproducing, and mortality is 
low.

When evaluating the simulation results, it is fundamental to 
consider the coefficient of variation in the estimates, to understand 
the capacity of the method to perform trend detection (Gerrodette, 
1987); accordingly, Skalski, Ryding, and Millspaugh (2010) suggested 
that a coefficient of variation <0.2 (20%) is appropriate for sound 
management.

The main reason for this paper is that we believe that given the 
fundamental importance of population assessment in research and 
applications, scientists have to avoid statements which may cause 
an erroneous use of the statistical methodology and, as a conse-
quence, to determine negative impacts on wildlife conservation and 
management.

2  | WE AK POINTS IN CC MODEL

Our criticism to the methodology used by CC in the simulations can 
be summarized in four points:

1.	 The derivation of the species‐dependent parameters, at the 
base of their model is incorrect;

2.	 The rescaling of the detection radius has no reason and is highly 
misleading;

3.	 The time step used is too large to yield correct results;
4.	 For some of the archetypes proposed by CC, their model is inap-
propriate to the biology of the species.

The equation at the base of the CC model:

describes the evolution of the position X of a Brownian particle sub-
jected to a noise R in a quadratic potential, for example subjected to 
a restoring force such as a particle attached to a spring, where k rep-
resents the elastic constant and XC is the centre of the HR. The noise R 

is Gaussian (white noise) with zero mean, zero covariance between the 
two dimensions (i.e. spatial coordinates) and the same variance (�

√
Δt) 

in each spatial dimension. The HR radius depends on the two parame-
ters of model 1, k and �, as:

where the constant C1 depends on how the HR radius is defined. To get 
sensible simulations for the species of interest (in our case the moose), 
we need to estimate k and � from actual data.

For estimating two parameters, we need two equations. One is 
given by the home range radius (which is usually known). For the sec-
ond equation, CC used the animal velocity which can be estimated 
from GPS data. CC used the following equation:

where <|V|> is the velocity magnitude, and Δt is the time step. This is 
the critically wrong passage in CC, since in model 1 it is not possible 
to define a mean absolute velocity of the particle since the displace-
ment scales as 

√
dt and in performing the limit:

For the moose, CC used a HR of 82  km2 by McCauley et  al. 
(2015) and the mean speed of 0.033 m/s from Vander Vennen et al. 
(2016), which is based on 1 hr fix sampling. As shown in Equation 3, 
the mean speed depends on Δt, k and �, and to solve this equa-
tion, CC were obliged to fix arbitrarily the relation Δt  =  0.1/k. 
Unfortunately, this approach yields a Δt of 10 hr, quite different 
from the actual time used for fix sampling by Vander Vennen et al. 
(2016). However, as seen in Equation 3, the movement model 
(Brownian motion) used by CC implies that the speed is dependent 
on Δt. If we compute back the speed at 1‐hr intervals using the 
value found for 10 hr, we find that the animals move at the speed 
of 0.112  m/s instead of the true velocity of 0.033  m/s, almost 
four times faster, which is clearly wrong. In the case of moose, for 
which we have made the computation, this implies that the simula-
tions of CC reduce very much the CV of the population estimates, 
simply because a larger number of animals walk through the cross 
section of the CT field since the animals move too fast. Note also 
that at least three of the other archetypes (Campostoma anom-
alum, Testudo graeca, Brachyramphus marmoratus) are subjected to 
a similar error, while Chaetodon baronessa cannot be evaluated due 
to lack of data.

According to CC, the ‘Invariant settings were preferred to fa-
cilitate the archetype comparisons. Accordingly, the radius of the 
circular area within which any animal is detected (camera radius) 
was defined in a way that, on average, m animals per frame are 
counted’. This approach makes any comparison with actual CT ex-
periments impossible since only this length scale is rescaled and not 
all the other parameters, such as the distance between cameras or 
the HR size. For a detailed discussion of the topic, see Section S3 in 

(1)dX

dt
=−k(X−XC)+R,

(2)radiusHR=C1

√
�

k
,

(3)< �V�>=
√
𝜖(1−e−2kΔt)∕k

Δt
,

(4)v= lim
dt→0

dx

dt
∝ lim
dt→0

√
dt

dt
=∞.
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Supporting Information. In particular in the case of the moose, the 
camera detection radius was set to 630 m by CC; therefore, the huge 
HR radius of the moose is almost nine times the camera detection 
radius which is completely absurd. Told in another way, such a de-
tection area needs an equivalent of 4,900 ‘true’ CT with a detection 
radius of 9 m to be sampled.

CC is not mentioning explicitly the type of camera used (motion‐
triggered or time‐lapse); however, from the discussion (p. 833), it 
appears that CC's method can be applied also to motion‐triggered 
cameras, which are the most frequently used CT (Rovero et  al., 
2013). For motion‐triggered cameras, the value of Δt ∼ 10 hr used 
by CC is probably too high to avoid round‐off errors in the detection 
of the animals as sketched in Figure 1. Since in 10 hr, the average 
displacement is about 1.26 km, an animal can very easily cross the 
detection area without being recorded in the simulation, as shown in 
Figure 1a. Another source of error is represented by the tortuosity 
of the Brownian motion between two fixes as shown in Figure 1b. 
Indeed, it is possible that an animal whose fixes are outside the de-
tection area may have crossed the detection area during the 10‐hr 
interval. These errors can considerably reduce the efficiency of the 
CT‐simulated survey, and one needs a very long survey duration 
to get reasonably high precision even with 10 cameras with 630 m 
detection radius as done by CC. We note also that this part of the 
description of the method of CC is quite unclear. This criticism is not 
appliable in case of the use of time‐lapse CT. Usually, wildlife man-
agers use motion‐triggered cameras because this method is more 
informative than time‐lapse sampling. However, there are monitor-
ing methods that require time‐lapse methods (Moeller et al., 2018).

Finally, for one of the archetypes used by CC, Diomedea calonec-
tris, the motion of birds at large scales is not Brownian‐like diffusive 
as supposed by CC model, but on the contrary Lévy‐like super‐dif-
fusive (Abolaffio, Reynolds, Cecere, Paiva, & Focardi, 2018, and ref-
erences therein).

3  | SIMUL ATION MODEL AND RESULTS

We propose a model where the equation of the velocity is the sum 
of three terms. The first one tends to bring the velocity of the animal 

close to the characteristic speed of the species Va, the second one 
is an acceleration towards the centre of the HR and the third com-
ponent is a random noise. The velocity yields the displacement X of 
the animals:

where V(t) is the velocity magnitude of the animal at time t and τ is 
the time‐scale of the fluctuation on the magnitude of the velocity. In 
our model, the velocity, not the displacement, tends to be oriented to-
wards the centre; note that K has dimension 1/t2 while k (Equation 1) 
has dimension 1/t. An instance of a simulated trajectory is shown in 
Figure S3.

According to a large body of literature, for short times the di-
rection of movement, that is the angular component of V(t) has a 
persistence (correlated random walk, Turchin, 1998), while for long 
times the trajectory resembles the one of the model 1. While CC's 
model assumed a complete independence of movement direction 
from step to step, more realistically, we assume that, in the short 
term, directions are correlated, that is animals perform a correlated 
random walk. More detailed explanations are reported in Section S1.

We define an arena of 10  ×  10  km with periodic boundary 
conditions. Inside this arena, we set a squared grid of equidistant 
cameras, from a minimum of 16 to a maximum of 100 samplers 
(i.e. 4 × 4 to 10 × 10), as commonly done in these kinds of studies. 
Here, we report only the scenario with 8 × 8 cameras but in the 
Section S2.2, we report also the other cases. We simulated three 
different animal densities: low, 0.1 animals/km2, normal, 0.4/km2 
(the same value used by CC), and high, 1/km2. The coordinates 
of the HR range centre are randomly assigned. Animals move ac-
cording to Equation 5 and are recorded by cameras when the cam-
era–animal distance is lower than the detection radius (we used a 
‘usual’ detection radius, 5 m, and an ‘optimistic’ radius of 9 m). We 
performed two sets of simulations. In the first scenario, simulated 
moose maintain a constant speed as assumed by CC. However, 
to assume that the speed is constant during the day is clearly 
wrong in moose (and in any other animal) as shown, for instance, 
by Van Ballenberghe and Miquelle (1990) where active displace-
ments take a short part of the daytime while the remaining time 
is allocated to resting/rumination and grazing. Thus, in the second 
scenario, we simulated a moose population with two possible be-
havioural modes: active and resting (which also include grazing). 
According to Van Ballenberghe and Miquelle (1990) movements 
take about 7% of the activity budget. We also assumed that in 
resting mode there is no movement. In a third scenario, we assume 
a more realistic 3‐mode activity patterns where we differentiate 
among no movement, grazing and moving, respectively, 62.7%, 
30.4% and 6.9% of the activity budget. Since this set of simula-
tions have yielded very similar results to the one of scenario 2, 
the results are presented in Section S2.3. To be consistent, the 
velocity of the moose in scenarios 2 and 3 is calculated in order to 

(5)V(t+Δt)=V(t)
Va+ (V(t)−Va)e

−Δt∕�

V(t)
−K(X−Xc)Δt+R,

(6)X(t+Δt)=X(t)+V(t)Δt,

F I G U R E  1  We show the path followed by an animal in relation 
to the detection area (blue). Cross indicates the fix used by CC to 
determine whether the animal is detected by the CT. (a) The animal 
has crossed the detection area but it remained undetected. (b) Via 
linear interpolation, the animal has not crossed the detection area 
(broken line), but the actual path can have crossed it (red line)
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have the same mean overall velocity as in scenario 1, calculated as 
a weighted mean.

The statistical estimator proposed by CC yields asymptotically 
unbiased estimates of population size (Figure 2). In case of con-
stant animal speed and large detection radius of CT (Figure 2a), the 
estimate attains the prescribed CV threshold in less than 30 days 
at least for large and intermediate populations, while, unsurpris-
ingly, for the lowest density value, the precision is too low to be 
acceptable. On the contrary, if we simulate animals characterized 
by two different activity patterns, we observe a rapid decay of 
the precision of the statistical estimator (Figure 2b). Even for the 
highest density populations, the result remains quite unsatisfac-
tory. Since we know a priori that there are important differences in 
speed within each individual animal, we may conclude, with some 
degree of generality, that the method proposed by CC cannot rep-
resent a practical method for estimating the population size of 
moose. As one could expect, when the detection radius is lowered 
to a more realistic value (5 m), the system generally fails to provide 
acceptable estimates. We have also performed one numerical ex-
periment with more realistic activity patterns including resting/
ruminating, foraging and moving, but the results remain qualita-
tively the same (Section S2.3). Of course, we should not exclude 
that there can be situations characterized by a set of parameter 
values (density, HR radius, etc.) where the estimator proposed by 
CC can work appropriately, but wildlife managers should test, by 
simulation, if the situation of interest can be precisely surveyed 
by this method.

4  | DISCUSSION

The simulation model of CC was affected by errors which could 
improve but also deteriorate the efficiency of the proposed esti-
mator. Such concerns obliged us to develop a simple but more con-
sistent model to describe the behaviour of the animals in order to 
correctly evaluate the efficiency of the estimator proposed by CC. 

We showed that under ideal condition (cf. Figure 2a) the estimator 
is able to correctly evaluate the population size under reasonable 
study conditions (high/medium density, large camera detection ra-
dius). However, the introduction of more realistic constraints (e.g. 
two or more different activity modes) led to a strong deterioration 
in the performance of the estimator. In other words, the method is 
scarcely robust to variations in parameter values.

We have to stress that under natural conditions, where there is 
an intrinsic and uncontrolled variability, one needs statistical meth-
ods robust to limited violations of the assumptions and characterized 
by a reduced propagation of uncertainty. If a statistical estimator is 
very sensitive to the details of the movement patterns, or to random 
fluctuations in parameter values, the system becomes practically 
useless, or it may request a complicated modelling study which is 
usually outside the skills of wildlife managers. Hayward and Laupacis 
(1993) made it clear that statistical robustness is fundamental to de-
velop appropriate wildlife monitoring programmes.

Note that we have assumed that our samplers detect all animal 
in areas of 78.5 and 254.5 m2. In the second case, the resulting 
cross section of our monitoring design is quite optimistic since, in 
the field, the area where a CT has a certain detection probability 
is no larger than 4 m2 (with a dependence on several parameters 
such as body mass, movement speed, etc., Nakashima et al., 2018); 
further, the shape of the camera field of view (FOV) is not cir-
cular but roughly triangular. If we should have used more realis-
tic values for the FOV, we would have obtained worse CV values 
than the ones we reported in Figure  2; however, we used very 
conservative values because we wished to show that discouraging 
results were independent of the camera detection area. A basic 
problem of naive methods used to estimate the population size 
via camera trapping is that one has to assume a certain probability 
of detection, an assumption which, to be respected, reduces a lot 
the area covered. Howe et al. (2017) showed experimentally that 
in CT the detection probability gets <1 at distance around 6–7 m 
(for Philantomba maxwelli, a small antelope) and wildlife managers 
should take very seriously this limitation of CT.

F I G U R E  2  The coefficient of variation 
(CV) is reported as a function of the 
duration of the monitoring programme for 
three different values of animal density 
(0.1, 0.4 and 1 animal/km2, red, green and 
blue, respectively) and two different CT 
radius and patterns of animal movement. 
In (a) and (b), the animal moves with 
constant speed and, in (c) and (d), the 
animal exhibits two different speeds. In 
(a) and (c), the camera radius is set to 9 m, 
while in (c) and (d) to 5 m. The horizontal 
purple line represents the prescribed CV 
threshold set to 0.2 (i.e. 20%)

Camera radius 9 m (a) (b)

(c) (d)
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To evaluate monitoring methods, it is important to keep in mind 
what are the practical constraints encountered in the field, which 
is not the case when CC used, for moose, a detection radius of 
630.8 m, which yields a covered area of 1.28 km2, a surface which 
needs almost 5,000 CT to be sampled. The problem here it is that 
CT can be used in practice whether their number is limited because 
a huge amount of manpower is necessary to review the videos/pic-
tures and to install/remove the CT from the field. In agreement with 
CC, in Section S2.2 we showed that good results can be obtained 
using hundreds or thousands of cameras but such numbers are out-
side any practical possibility of use.

The technical evolution of more and more efficient camera traps 
has stimulated the development of new methods of population as-
sessment which is of the greatest interests for ecological research, 
conservation and management. The different methods proposed 
in literature are all correct in mathematical–statistical sense, when 
their assumptions are respected. However, this analysis of CC meth-
ods showed that this condition it is necessary but not sufficient 
given the limitation in the sampling effort and the sensibility to the 
violation of the assumptions, violations which for sure are present 
during a field survey. Now, we miss a comparative analysis of the 
different proposed methods in order to indicate to wildlife managers 
and practitioners the best method and its precision that can be used 
in different field conditions. With this paper, we hope to stimulate 
deeper insights on the matter.
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