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1  | INTRODUC TION

Researchers	have	striven	for	many	decades	to	find	better	and	better	
methods	to	estimate	the	size,	or	the	density,	of	natural	populations,	
and	 the	 development	 of	 camera	 traps	 (CT)	 has	 stimulated	 the	 re-
search	of	new	methods	for	population	assessment	(see	Keuling	et	al.,	
2018	for	a	recent	review).	In	a	recent	paper	in	the	Journal of Animal 
Ecology,	using	CT	to	assess	the	size	of	natural	populations,	Campos-
Candela	et	al.	(2018),	hereafter	CC,	claimed	that	‘the	absolute	den-
sity	is	given	by	the	average	number	of	animals	counted	per	frame’.	
Ideally,	the	method	proposed	by	CC	is	perfect	for	wildlife	managers:	
easy	 to	use	and	cheap.	CC	developed	 their	approach	according	 to	
a	 theoretical	 framework	where	animals	 are	 assumed	 to	behave	as	
particles	 of	 an	 ‘ideal	 gas’	 (Hutchinson	&	Waser,	 2007).	 Since	 such	
an	assumption	appears	difficult	to	be	respected	or	even	reasonably	
approached	in	actual	animals,	CC	correctly	verified	that	such	a	re-
sult	 remains	 valid	 also	when	 the	 animals	 behave	 in	more	 realistic	
ways,	 specifically	 when	 they	 exhibit	 home	 range	 (HR)	 behaviour.	
Considering	the	potential	relevance	of	this	work	to	wildlife	conser-
vation	and	management,	we	have	carefully	read	the	paper	and	noted	
several	problems	in	the	method	used	to	simulate	the	home	ranges	
and	CT	detections.

In	section	1,	we	show	that	the	model	of	CC	is	unable	to	properly	
account	for	the	actual	behaviour	of	animals.	Accordingly,	we	propose	
a	 different	method	 of	 simulation	which	 circumvents	 the	 problems	
found	in	CC's	model.	However,	our	main	interest	in	this	forum	paper	
is	not	to	discuss	the	best	methods	to	be	used	to	simulate	home	ranges	
but	to	verify	whether	the	proposed	method	for	population	estima-
tion	can	be	reliable	in	practice.	Taking	the	moose	(Alces alces)	(one	of	

the	archetypes	used	by	CC)	as	an	example,	in	section	2	we	replicate	
their	 numerical	 experiments	 using	 a	 more	 realistic	 set-up	 and	 re-
jected	their	conclusion	that	“the	results…..of	the	model	demonstrate	
that	density	can	be	precisely	and	accurately	estimated	after	an	em-
phasized	sampling	effort“	(our	emphases).	On	the	contrary,	we	found	
that	the	proposed	method,	albeit	being	asymptotically	correct,	does	
not	provide	appropriate	density	estimates	under	realistic	survey	de-
signs	(survey	duration,	number	of	cameras	and	their	radius	of	detec-
tion,	Rovero,	Zimmermann,	Berzi,	&	Meek,	2013).

Information	about	population	 size	 is	 necessary	 to	 improve	our	
understanding	 of	 fundamental	 ecological	 processes	 such	 as	 den-
sity	dependence,	 functional	 response,	dispersal,	epidemiology	and	
so	forth.	For	rare	and	endangered	populations,	correct	information	
about	their	size	is	indispensable	to	estimate	the	extinction	risk	and	
may	help	to	allocate	the	(usually	scarce)	resources	for	conservation	
where	they	are	most	needed.	On	the	other	hand,	for	invasive	species,	
one	needs	to	know	whether	eradication/control	programmes	have	
been	successful,	while	for	game	species,	the	knowledge	of	popula-
tion	size	can	be	useful	to	develop	sustainable	harvest	programmes.

Estimation	methods	based	on	capture–mark–recapture	(CMR)	
have	been	 largely	used	and	present	many	different	ramifications	
including	 non-invasive	 genetics	 (Rodgers	 &	 Janečka,	 2013)	 and	
removal	methods	 (St.	Clair,	Dunton,	&	Giudice,	2013).	Managers	
usually	do	not	use	CMR	methods	because	animals	have	to	be	indi-
vidually	identified.	This	approach	is,	however,	used	routinely	when	
animals	 are	 naturally	 recognizable,	 for	 example	 tigers	 or	whales	
(Karanth	&	Nichols,	2017).	Distance	sampling,	where	detectability	
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is	estimated	by	the	distance	of	the	animal	from	a	reference	point	
or	transect,	has	been	widely	used	to	assess	the	population	size	of	
marine	and	terrestrial	organisms	(Buckland,	et	al.,	2004).	Since	CT	
are	 cheap	 and	 easy	 to	 use,	 recently	 several	methods	 have	 been	
proposed	to	estimate	the	population	size	of	unmarked	individuals	
such	as	Random	Encounter	Model	(REM;	Rowcliffe,	Field,	Turvey,	
&	 Carbone,	 2008),	 point	 transects	 (Howe,	 Buckland,	 Després-
Einspenner,	&	Kühl,	2017),	REST	model	(Nakashima,	Fukasawa,	&	
Samejima,	2018),	N-mixture	models	(Keever	et	al.,	2017)	and	SECR	
models	 (Chandler	 and	 Royle,	 2013).	 Available	 methods	 assume	
that	 the	population	 to	be	assessed	 is	demographically	 closed.	 In	
practice,	 this	 means	 to	 perform	 a	 snapshot	 survey,	 very	 short	
in	 relation	 to	 the	 demography	 of	 the	 species	 of	 interest	 so	 that	
deaths,	births,	immigration	and	emigration	can	be	overlooked.	For	
instance,	for	a	large	terrestrial	mammal,	it	is	reasonable	that	a	sur-
vey	can	last,	at	most,	30	days	in	periods	when	the	species	is	known	
to	 be	 not	 dispersing,	 migrating	 or	 reproducing,	 and	mortality	 is	
low.

When	 evaluating	 the	 simulation	 results,	 it	 is	 fundamental	 to	
consider	the	coefficient	of	variation	in	the	estimates,	to	understand	
the	capacity	of	the	method	to	perform	trend	detection	(Gerrodette,	
1987);	accordingly,	Skalski,	Ryding,	and	Millspaugh	(2010)	suggested	
that	 a	 coefficient	of	 variation	<0.2	 (20%)	 is	 appropriate	 for	 sound	
management.

The	main	reason	for	this	paper	is	that	we	believe	that	given	the	
fundamental	importance	of	population	assessment	in	research	and	
applications,	 scientists	have	 to	avoid	statements	which	may	cause	
an	 erroneous	 use	 of	 the	 statistical	methodology	 and,	 as	 a	 conse-
quence,	to	determine	negative	impacts	on	wildlife	conservation	and	
management.

2  | WE AK POINTS IN CC MODEL

Our	criticism	to	the	methodology	used	by	CC	in	the	simulations	can	
be	summarized	in	four	points:

1.	 The	 derivation	 of	 the	 species-dependent	 parameters,	 at	 the	
base	 of	 their	 model	 is	 incorrect;

2.	 The	rescaling	of	the	detection	radius	has	no	reason	and	is	highly	
misleading;

3.	 The	time	step	used	is	too	large	to	yield	correct	results;
4.	 For	some	of	the	archetypes	proposed	by	CC,	their	model	is	inap-
propriate	to	the	biology	of	the	species.

The	equation	at	the	base	of	the	CC	model:

describes	the	evolution	of	the	position	X	of	a	Brownian	particle	sub-
jected	to	a	noise	R	in	a	quadratic	potential,	for	example	subjected	to	
a	restoring	force	such	as	a	particle	attached	to	a	spring,	where	k	rep-
resents	the	elastic	constant	and	XC	is	the	centre	of	the	HR.	The	noise	R 

is	Gaussian	(white	noise)	with	zero	mean,	zero	covariance	between	the	
two	dimensions	(i.e.	spatial	coordinates)	and	the	same	variance	(�

√
Δt)	

in	each	spatial	dimension.	The	HR	radius	depends	on	the	two	parame-
ters	of	model	1,	k and �,	as:

where	the	constant	C1	depends	on	how	the	HR	radius	is	defined.	To	get	
sensible	simulations	for	the	species	of	interest	(in	our	case	the	moose),	
we	need	to	estimate	k and �	from	actual	data.

For	estimating	two	parameters,	we	need	two	equations.	One	is	
given	by	the	home	range	radius	(which	is	usually	known).	For	the	sec-
ond	equation,	CC	used	the	animal	velocity	which	can	be	estimated	
from	GPS	data.	CC	used	the	following	equation:

where	<|V|>	is	the	velocity	magnitude,	and	Δt	is	the	time	step.	This	is	
the	critically	wrong	passage	in	CC,	since	in	model	1	it	is	not	possible	
to	define	a	mean	absolute	velocity	of	the	particle	since	the	displace-
ment	scales	as	

√
dt	and	in	performing	the	limit:

For	 the	moose,	CC	used	 a	HR	of	 82	 km2	 by	McCauley	 et	 al.	
(2015)	and	the	mean	speed	of	0.033	m/s	from	Vander	Vennen	et	al.	
(2016),	which	is	based	on	1	hr	fix	sampling.	As	shown	in	Equation	3,	
the	mean	speed	depends	on	Δt,	k and �,	 and	 to	 solve	 this	equa-
tion,	 CC	 were	 obliged	 to	 fix	 arbitrarily	 the	 relation	Δt = 0.1/k. 
Unfortunately,	 this	approach	yields	a	Δt	of	10	hr,	quite	different	
from	the	actual	time	used	for	fix	sampling	by	Vander	Vennen	et	al.	
(2016).	 However,	 as	 seen	 in	 Equation	 3,	 the	 movement	 model	
(Brownian	motion)	used	by	CC	implies	that	the	speed	is	dependent	
on Δt.	 If	we	 compute	back	 the	 speed	at	1-hr	 intervals	using	 the	
value	found	for	10	hr,	we	find	that	the	animals	move	at	the	speed	
of	 0.112	 m/s	 instead	 of	 the	 true	 velocity	 of	 0.033	 m/s,	 almost	
four	times	faster,	which	is	clearly	wrong.	In	the	case	of	moose,	for	
which	we	have	made	the	computation,	this	implies	that	the	simula-
tions	of	CC	reduce	very	much	the	CV	of	the	population	estimates,	
simply	because	a	larger	number	of	animals	walk	through	the	cross	
section	of	the	CT	field	since	the	animals	move	too	fast.	Note	also	
that	 at	 least	 three	 of	 the	 other	 archetypes	 (Campostoma anom-
alum, Testudo graeca, Brachyramphus marmoratus)	are	subjected	to	
a	similar	error,	while	Chaetodon baronessa	cannot	be	evaluated	due	
to	lack	of	data.

According	 to	 CC,	 the	 ‘Invariant	 settings	were	 preferred	 to	 fa-
cilitate	 the	 archetype	 comparisons.	 Accordingly,	 the	 radius	 of	 the	
circular	 area	 within	 which	 any	 animal	 is	 detected	 (camera	 radius)	
was	 defined	 in	 a	 way	 that,	 on	 average,	m	 animals	 per	 frame	 are	
counted’.	This	approach	makes	any	comparison	with	actual	CT	ex-
periments	impossible	since	only	this	length	scale	is	rescaled	and	not	
all	the	other	parameters,	such	as	the	distance	between	cameras	or	
the	HR	size.	For	a	detailed	discussion	of	the	topic,	see	Section	S3	in	

(1)dX

dt
=−k(X−XC)+R,

(2)radiusHR=C1

√
�

k
,

(3)< �V�>=
√
𝜖(1−e−2kΔt)∕k

Δt
,

(4)v= lim
dt→0

dx

dt
∝ lim
dt→0

√
dt

dt
=∞.
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Supporting	Information.	In	particular	in	the	case	of	the	moose,	the	
camera	detection	radius	was	set	to	630	m	by	CC;	therefore,	the	huge	
HR	radius	of	the	moose	is	almost	nine	times	the	camera	detection	
radius	which	is	completely	absurd.	Told	in	another	way,	such	a	de-
tection	area	needs	an	equivalent	of	4,900	‘true’	CT	with	a	detection	
radius	of	9	m	to	be	sampled.

CC	is	not	mentioning	explicitly	the	type	of	camera	used	(motion-
triggered	 or	 time-lapse);	 however,	 from	 the	 discussion	 (p.	 833),	 it	
appears	that	CC's	method	can	be	applied	also	to	motion-triggered	
cameras,	 which	 are	 the	 most	 frequently	 used	 CT	 (Rovero	 et	 al.,	
2013).	For	motion-triggered	cameras,	the	value	of	Δt ∼	10	hr	used	
by	CC	is	probably	too	high	to	avoid	round-off	errors	in	the	detection	
of	 the	animals	as	sketched	 in	Figure	1.	Since	 in	10	hr,	 the	average	
displacement	is	about	1.26	km,	an	animal	can	very	easily	cross	the	
detection	area	without	being	recorded	in	the	simulation,	as	shown	in	
Figure	1a.	Another	source	of	error	is	represented	by	the	tortuosity	
of	the	Brownian	motion	between	two	fixes	as	shown	in	Figure	1b.	
Indeed,	it	is	possible	that	an	animal	whose	fixes	are	outside	the	de-
tection	area	may	have	crossed	the	detection	area	during	the	10-hr	
interval.	These	errors	can	considerably	reduce	the	efficiency	of	the	
CT-simulated	 survey,	 and	 one	 needs	 a	 very	 long	 survey	 duration	
to	get	reasonably	high	precision	even	with	10	cameras	with	630	m	
detection	radius	as	done	by	CC.	We	note	also	that	this	part	of	the	
description	of	the	method	of	CC	is	quite	unclear.	This	criticism	is	not	
appliable	in	case	of	the	use	of	time-lapse	CT.	Usually,	wildlife	man-
agers	 use	motion-triggered	 cameras	 because	 this	method	 is	more	
informative	than	time-lapse	sampling.	However,	there	are	monitor-
ing	methods	that	require	time-lapse	methods	(Moeller	et	al.,	2018).

Finally,	for	one	of	the	archetypes	used	by	CC,	Diomedea calonec-
tris,	the	motion	of	birds	at	large	scales	is	not	Brownian-like	diffusive	
as	supposed	by	CC	model,	but	on	the	contrary	Lévy-like	super-dif-
fusive	(Abolaffio,	Reynolds,	Cecere,	Paiva,	&	Focardi,	2018,	and	ref-
erences	therein).

3  | SIMUL ATION MODEL AND RESULTS

We	propose	a	model	where	the	equation	of	the	velocity	is	the	sum	
of	three	terms.	The	first	one	tends	to	bring	the	velocity	of	the	animal	

close	to	the	characteristic	speed	of	the	species	Va,	the	second	one	
is	an	acceleration	towards	the	centre	of	the	HR	and	the	third	com-
ponent	is	a	random	noise.	The	velocity	yields	the	displacement	X	of	
the	animals:

where	V(t)	 is	 the	velocity	magnitude	of	 the	animal	at	 time	t and τ	 is	
the	time-scale	of	the	fluctuation	on	the	magnitude	of	the	velocity.	In	
our	model,	the	velocity,	not	the	displacement,	tends	to	be	oriented	to-
wards	the	centre;	note	that	K	has	dimension	1/t2	while	k	(Equation	1)	
has	dimension	1/t.	An	instance	of	a	simulated	trajectory	 is	shown	in	
Figure	S3.

According	 to	 a	 large	body	of	 literature,	 for	 short	 times	 the	di-
rection	of	movement,	 that	 is	 the	 angular	 component	 of	V(t)	 has	 a	
persistence	(correlated	random	walk,	Turchin,	1998),	while	for	long	
times	the	trajectory	resembles	the	one	of	the	model	1.	While	CC's	
model	 assumed	 a	 complete	 independence	 of	movement	 direction	
from	 step	 to	 step,	more	 realistically,	we	 assume	 that,	 in	 the	 short	
term,	directions	are	correlated,	that	is	animals	perform	a	correlated	
random	walk.	More	detailed	explanations	are	reported	in	Section	S1.

We	 define	 an	 arena	 of	 10	 ×	 10	 km	 with	 periodic	 boundary	
conditions.	Inside	this	arena,	we	set	a	squared	grid	of	equidistant	
cameras,	 from	 a	minimum	of	 16	 to	 a	maximum	of	 100	 samplers	
(i.e.	4	×	4	to	10	×	10),	as	commonly	done	in	these	kinds	of	studies.	
Here,	we	report	only	the	scenario	with	8	×	8	cameras	but	 in	the	
Section	S2.2,	we	report	also	the	other	cases.	We	simulated	three	
different	animal	densities:	 low,	0.1	animals/km2,	normal,	0.4/km2 
(the	 same	 value	 used	 by	 CC),	 and	 high,	 1/km2.	 The	 coordinates	
of	the	HR	range	centre	are	randomly	assigned.	Animals	move	ac-
cording	to	Equation	5	and	are	recorded	by	cameras	when	the	cam-
era–animal	distance	is	lower	than	the	detection	radius	(we	used	a	
‘usual’	detection	radius,	5	m,	and	an	‘optimistic’	radius	of	9	m).	We	
performed	two	sets	of	simulations.	In	the	first	scenario,	simulated	
moose	maintain	 a	 constant	 speed	 as	 assumed	 by	 CC.	 However,	
to	 assume	 that	 the	 speed	 is	 constant	 during	 the	 day	 is	 clearly	
wrong	in	moose	(and	in	any	other	animal)	as	shown,	for	instance,	
by	Van	Ballenberghe	and	Miquelle	 (1990)	where	active	displace-
ments	take	a	short	part	of	the	daytime	while	the	remaining	time	
is	allocated	to	resting/rumination	and	grazing.	Thus,	in	the	second	
scenario,	we	simulated	a	moose	population	with	two	possible	be-
havioural	modes:	active	and	 resting	 (which	also	 include	grazing).	
According	 to	Van	Ballenberghe	 and	Miquelle	 (1990)	movements	
take	 about	 7%	 of	 the	 activity	 budget.	We	 also	 assumed	 that	 in	
resting	mode	there	is	no	movement.	In	a	third	scenario,	we	assume	
a	more	realistic	3-mode	activity	patterns	where	we	differentiate	
among	 no	 movement,	 grazing	 and	 moving,	 respectively,	 62.7%,	
30.4%	and	6.9%	of	 the	activity	budget.	 Since	 this	 set	of	 simula-
tions	 have	 yielded	 very	 similar	 results	 to	 the	 one	 of	 scenario	 2,	
the	 results	 are	 presented	 in	 Section	 S2.3.	 To	 be	 consistent,	 the	
velocity	of	the	moose	in	scenarios	2	and	3	is	calculated	in	order	to	

(5)V(t+Δt)=V(t)
Va+ (V(t)−Va)e

−Δt∕�

V(t)
−K(X−Xc)Δt+R,

(6)X(t+Δt)=X(t)+V(t)Δt,

F I G U R E  1  We	show	the	path	followed	by	an	animal	in	relation	
to	the	detection	area	(blue).	Cross	indicates	the	fix	used	by	CC	to	
determine	whether	the	animal	is	detected	by	the	CT.	(a)	The	animal	
has	crossed	the	detection	area	but	it	remained	undetected.	(b)	Via	
linear	interpolation,	the	animal	has	not	crossed	the	detection	area	
(broken	line),	but	the	actual	path	can	have	crossed	it	(red	line)

 13652656, 2019, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13085 by C

ochraneItalia, W
iley O

nline L
ibrary on [03/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2014  |    Journal of Animal Ecology ABOLAFFIO et AL.

have	the	same	mean	overall	velocity	as	in	scenario	1,	calculated	as	
a	weighted	mean.

The	statistical	estimator	proposed	by	CC	yields	asymptotically	
unbiased	estimates	of	population	 size	 (Figure	2).	 In	 case	of	 con-
stant	animal	speed	and	large	detection	radius	of	CT	(Figure	2a),	the	
estimate	attains	the	prescribed	CV	threshold	in	less	than	30	days	
at	 least	 for	 large	and	 intermediate	populations,	while,	unsurpris-
ingly,	for	the	 lowest	density	value,	the	precision	is	too	low	to	be	
acceptable.	On	the	contrary,	if	we	simulate	animals	characterized	
by	 two	 different	 activity	 patterns,	we	 observe	 a	 rapid	 decay	 of	
the	precision	of	the	statistical	estimator	(Figure	2b).	Even	for	the	
highest	density	populations,	 the	 result	 remains	quite	unsatisfac-
tory.	Since	we	know	a	priori	that	there	are	important	differences	in	
speed	within	each	individual	animal,	we	may	conclude,	with	some	
degree	of	generality,	that	the	method	proposed	by	CC	cannot	rep-
resent	 a	 practical	 method	 for	 estimating	 the	 population	 size	 of	
moose.	As	one	could	expect,	when	the	detection	radius	is	lowered	
to	a	more	realistic	value	(5	m),	the	system	generally	fails	to	provide	
acceptable	estimates.	We	have	also	performed	one	numerical	ex-
periment	with	more	 realistic	 activity	 patterns	 including	 resting/
ruminating,	 foraging	and	moving,	but	 the	 results	 remain	qualita-
tively	the	same	(Section	S2.3).	Of	course,	we	should	not	exclude	
that	 there	can	be	situations	characterized	by	a	 set	of	parameter	
values	(density,	HR	radius,	etc.)	where	the	estimator	proposed	by	
CC	can	work	appropriately,	but	wildlife	managers	should	test,	by	
simulation,	 if	 the	 situation	of	 interest	 can	be	precisely	 surveyed	
by	this	method.

4  | DISCUSSION

The	 simulation	 model	 of	 CC	 was	 affected	 by	 errors	 which	 could	
improve	 but	 also	 deteriorate	 the	 efficiency	 of	 the	 proposed	 esti-
mator.	Such	concerns	obliged	us	to	develop	a	simple	but	more	con-
sistent	model	 to	describe	the	behaviour	of	 the	animals	 in	order	to	
correctly	evaluate	the	efficiency	of	the	estimator	proposed	by	CC.	

We	showed	that	under	ideal	condition	(cf.	Figure	2a)	the	estimator	
is	 able	 to	 correctly	 evaluate	 the	 population	 size	 under	 reasonable	
study	conditions	 (high/medium	density,	 large	camera	detection	ra-
dius).	However,	 the	 introduction	of	more	 realistic	 constraints	 (e.g.	
two	or	more	different	activity	modes)	led	to	a	strong	deterioration	
in	the	performance	of	the	estimator.	In	other	words,	the	method	is	
scarcely	robust	to	variations	in	parameter	values.

We	have	to	stress	that	under	natural	conditions,	where	there	is	
an	intrinsic	and	uncontrolled	variability,	one	needs	statistical	meth-
ods	robust	to	limited	violations	of	the	assumptions	and	characterized	
by	a	reduced	propagation	of	uncertainty.	If	a	statistical	estimator	is	
very	sensitive	to	the	details	of	the	movement	patterns,	or	to	random	
fluctuations	 in	 parameter	 values,	 the	 system	 becomes	 practically	
useless,	 or	 it	may	 request	 a	 complicated	modelling	 study	which	 is	
usually	outside	the	skills	of	wildlife	managers.	Hayward	and	Laupacis	
(1993)	made	it	clear	that	statistical	robustness	is	fundamental	to	de-
velop	appropriate	wildlife	monitoring	programmes.

Note	that	we	have	assumed	that	our	samplers	detect	all	animal	
in	areas	of	78.5	and	254.5	m2.	 In	 the	 second	case,	 the	 resulting	
cross	section	of	our	monitoring	design	is	quite	optimistic	since,	in	
the	field,	the	area	where	a	CT	has	a	certain	detection	probability	
is	no	larger	than	4	m2	 (with	a	dependence	on	several	parameters	
such	as	body	mass,	movement	speed,	etc.,	Nakashima	et	al.,	2018);	
further,	 the	 shape	 of	 the	 camera	 field	 of	 view	 (FOV)	 is	 not	 cir-
cular	but	 roughly	 triangular.	 If	we	should	have	used	more	 realis-
tic	values	for	the	FOV,	we	would	have	obtained	worse	CV	values	
than	 the	 ones	 we	 reported	 in	 Figure	 2;	 however,	 we	 used	 very	
conservative	values	because	we	wished	to	show	that	discouraging	
results	were	 independent	of	 the	 camera	detection	 area.	A	basic	
problem	 of	 naive	methods	 used	 to	 estimate	 the	 population	 size	
via	camera	trapping	is	that	one	has	to	assume	a	certain	probability	
of	detection,	an	assumption	which,	to	be	respected,	reduces	a	lot	
the	area	covered.	Howe	et	al.	(2017)	showed	experimentally	that	
in	CT	the	detection	probability	gets	<1	at	distance	around	6–7	m	
(for	Philantomba maxwelli,	a	small	antelope)	and	wildlife	managers	
should	take	very	seriously	this	limitation	of	CT.

F I G U R E  2  The	coefficient	of	variation	
(CV)	is	reported	as	a	function	of	the	
duration	of	the	monitoring	programme	for	
three	different	values	of	animal	density	
(0.1,	0.4	and	1	animal/km2,	red,	green	and	
blue,	respectively)	and	two	different	CT	
radius	and	patterns	of	animal	movement.	
In	(a)	and	(b),	the	animal	moves	with	
constant	speed	and,	in	(c)	and	(d),	the	
animal	exhibits	two	different	speeds.	In	
(a)	and	(c),	the	camera	radius	is	set	to	9	m,	
while	in	(c)	and	(d)	to	5	m.	The	horizontal	
purple	line	represents	the	prescribed	CV	
threshold	set	to	0.2	(i.e.	20%)
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To	evaluate	monitoring	methods,	it	is	important	to	keep	in	mind	
what	 are	 the	practical	 constraints	encountered	 in	 the	 field,	which	
is	 not	 the	 case	 when	 CC	 used,	 for	 moose,	 a	 detection	 radius	 of	
630.8	m,	which	yields	a	covered	area	of	1.28	km2,	a	surface	which	
needs	almost	5,000	CT	to	be	sampled.	The	problem	here	it	 is	that	
CT	can	be	used	in	practice	whether	their	number	is	limited	because	
a	huge	amount	of	manpower	is	necessary	to	review	the	videos/pic-
tures	and	to	install/remove	the	CT	from	the	field.	In	agreement	with	
CC,	 in	Section	S2.2	we	showed	that	good	results	can	be	obtained	
using	hundreds	or	thousands	of	cameras	but	such	numbers	are	out-
side	any	practical	possibility	of	use.

The	technical	evolution	of	more	and	more	efficient	camera	traps	
has	stimulated	the	development	of	new	methods	of	population	as-
sessment	which	is	of	the	greatest	interests	for	ecological	research,	
conservation	 and	 management.	 The	 different	 methods	 proposed	
in	 literature	are	all	correct	 in	mathematical–statistical	sense,	when	
their	assumptions	are	respected.	However,	this	analysis	of	CC	meth-
ods	 showed	 that	 this	 condition	 it	 is	 necessary	 but	 not	 sufficient	
given	the	limitation	in	the	sampling	effort	and	the	sensibility	to	the	
violation	of	the	assumptions,	violations	which	for	sure	are	present	
during	 a	 field	 survey.	Now,	we	miss	 a	 comparative	 analysis	of	 the	
different	proposed	methods	in	order	to	indicate	to	wildlife	managers	
and	practitioners	the	best	method	and	its	precision	that	can	be	used	
in	different	field	conditions.	With	this	paper,	we	hope	to	stimulate	
deeper	insights	on	the	matter.
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