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Abstract

Several daily activities, such as traveling to a tourist attraction or watching a movie in the cinema, are
better enjoyed with a group of friends. However, choosing the best companions may be difficult: we need to
consider either the relations among the chosen friends and their interest in the proposed destination/item.
In this paper, we address this problem from the perspective of recommender systems: given a user, her social
network, and a (recommended) item that is relevant to the user, our User-Item Group Formation (UI-GF)
problem aims to find the best group of friends with whom to enjoy such item. This problem differs from
traditional group recommendation and group formation tasks since it maximizes two orthogonal aspects:
i) the relevance of the recommended item for every member of the group, and ii) the intra-group social
relationships. We formalize the UI-GF problem and we propose two different approaches to address it. In
the first approach, the problem is modeled as the densest k -subgraph problem over a specific instance of
the social network of the user, while the second approach is based on a probabilistic collaborative filtering
method that exploit relevance-based language models. We perform an extensive assessment of several
algorithms solving the two approaches in the domain of location recommendations by exploiting five publicly
available Location-Based Social Network (LBSN) datasets. The experimental results achieved confirm the
effectiveness and the feasibility of the proposed solutions that outperform strong baselines. Indeed, results
reveal interesting and orthogonal properties of the two formulations. The probabilistic collaborative filtering
approach is more effective than the graph-based one on datasets with sparse social networks but with more
dense check-in data. On the contrary, the graph-based model performs very well on datasets which present
high sparsity on the ratings and check-ins but a higher number of links among users.

Research Highlights:

• The definition of the User-Item Group Formation (UI-GF) Problem.

• Two formalizations of the UI-GF problem with different properties.

• Experiments on five public Location-Based Social Network (LBSN) datasets.

• Comprehensive comparisons of several algorithms for solving UI-GF.

• Experiments showing the effectiveness and efficiency of the proposed methods.
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1. Introduction1

Nowadays, recommender systems are a pervasive tool supporting several daily activities. Examples range2

from recommendations for books and music provided by popular services (such as Amazon1 or Netflix2), to3

recommendations for attractions to visit and tour itineraries to follow (as the ones provided by TripAdvisor34

and Skyscanner4). In many cases, recommended activities are better enjoyed with travel companions, thus5

shifting the recommendation paradigm. Instead of recommending items to each user independently, we deal6

with items and groups of users with social relationships. Traditional recommender systems primarily focus7

on identifying relevant items to single individuals using well-known techniques such as collaborative filtering8

[1] or content-based recommenders [2]. When the recommendation targets groups of users, it is referred to9

as “group recommendation”, whose goal consists in identifying items that a given group of users may like10

[3]. The group recommendation problem is hard to solve as users have diverse preferences and finding a11

trade-off among these preferences may bring to unsatisfactory or even unsettling recommendations for some12

of the users involved.13

In this paper, we address a complementary and even more challenging problem: given a user and a14

recommended item, we want to suggest the “best” group of friends with whom to enjoy the item. Consider,15

for example, a user who has been recommended to visit Paris and we want to be able to suggest travel16

companions who can join her. Ideally, the members of the group should be willing to visit Paris and be17

friends with each other to enjoy the staying together. Therefore, we need to carefully balance intragroup18

friendships and interests. We investigated this scenario and designed recommendation techniques able to19

suggest the “best” group of k friends for a pair 〈user, item〉 taking into account both the social relationships20

and the preferences of the user and the group. Since this approach focuses on the formation of a group21

given an item and a user, we refer to it as the User-Item Group Formation problem. In the remaining of22

the paper, we often refer to it as UI-GF or simply group formation for the sake of readability.23

Let us consider the example with 7 users and 3 items depicted in Figure 1. Suppose that we are interested24

in finding the best group of 3 users who can enjoy item i2 together with user u0. Figure 1a reports the25

relevance score s (ranging from 1 to 5, the higher the value, the greater the relevance) of the items for26

each user, while Figure 1b shows the social network of user u0 (i.e., her ego network), where links represent27

friendship relationships. A trivial solution to our recommendation problem would be to choose those users28

with the highest relevance scores for the item i2: users u3, u4, and u2. However, when we look at the social29

relationships, the perspective changes, since Figure 1b shows that u0’s friend u2 is not friend of u3 and u4.30

Indeed, a better group of u0’s friends to enjoy item i2 should include u3, u4 and u5, since these three users31

are all friends of each other and they still have a good relevance score for item i2.32

This example motivates and stresses the importance of considering both the user-item relevance and the33

strength of interpersonal relationships when addressing the UI-GF problem. To the best of our knowledge,34

the first proposal considering both social relations and user-item relevance in the group formation problem35

was our previous conference paper [4]. In that paper, we formalized the UI-GF problem and we modeled36

it as a graph problem. Specifically, we reduced the UI-GF problem to the problem of finding the densest37

k -subgraph in a graph obtained by enriching the user social network with item relevance information. The38

evaluation was conducted on five publicly available LBSN datasets and we found that the proposed solutions39

outperformed strong baselines. In this extended work, we aim to deal with the following research questions:40

• Is it possible to model the UI-GF problem by means of probabilistic collaborative filtering?41

• How can we solve the new probabilistic formalization of the UI-GF problem?42

• What is the effectiveness/efficiency of the new proposals? How it behaves w.r.t. the graph-based43

approach previously introduced in [4]?44

1https://www.amazon.com
2https://www.netflix.com
3https://www.tripadvisor.com
4https://www.skyscanner.com
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s u0 u1 u2 u3 u4 u5 u6

i1 2 3 1 2 2 1 3
i2 2 1 4 5 5 2 2
i3 2 4 3 1 1 3 1

Figure 1: Toy instance of our group formation problem. Table (a) reports the relevance scores of three items for seven users,
while the graph in (b) shows the ego network of user u0 having the same set of users.

To answer the questions above, we present and discuss novel contributions that include:45

• an alternative approach to the UI-GF problem. The new modeling employs a probabilistic collaborative46

filtering method. Collaborative filtering algorithms exploit the interactions between users and items47

to compute personalized recommendations [1]. In particular, we adapt the IRM2 model presented in48

[5] and propose different probability estimators to introduce the constraints of the UI-GF problem.49

This alternative formulation is more computationally expensive than the previous one, but it can yield50

significantly better results when large amounts of data are available;51

• a new comprehensive experimental evaluation of both approaches that employs now five LBSN datasets52

and use new performance metrics. Experiments demonstrate the validity of the two approaches pro-53

posed for solving the UI-GF problem. In addition, results show that the behavior of the two approaches54

is complementary depending on the sparsity characteristics of the dataset employed.55

The rest of the paper is organized as follows. In Section 2, we discuss some related works. Section 356

formalizes the UI-GF problem and we discuss the proposed solutions in Sections 3.1 and 3.2. The experiments57

for assessing our proposals are reported in Section 4. Finally, Section 5 discusses the implications of this58

work, draws conclusions and outlines future work.59

2. Related Work60

One work close to our proposal is the one by Basu Roi et al. that discusses the problem of group61

formation from a group recommendation perspective [6]. The authors indeed consider a problem that is62

complementary to UI-GF: how to build groups such that their members are mostly satisfied with the top-k63

provided recommendations. The problem consists in building at most l non-overlapping groups of users64

by considering the similarity between their top-k recommended items. Different methods are proposed to65

measure the group satisfaction. Although groups are built by considering items recommendations, this66

proposal ignores the social relationships between the users, which are one of the main focuses of our work.67

Moreover, in contrast to us, they do not restrict the size of the group which might lead to very large groups.68

Some other important research topics are related to this work. In particular: i) Group Recommenda-69

tion, ii) Team Formation, iii) Community Discovery and iv) Spatial Social Networks. In the following, we70

summarize some results in these fields.71

Group Recommendation. This task consists in recommending a tailored list of items to a group of72

users considering the interests of each member of the group [7]. Ortega et al. present a classification of73

group recommendation techniques in collaborative filtering-based recommender systems [8]. Four different74

levels at which information about single users can be merged to obtain group-level information are surveyed:75

similarity metric, neighborhood analysis, prediction phase, determination of recommended items.76
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Hu et al. propose a group recommender system that accommodates both individual choices and group77

decisions in a joint model through a model built with collective deep belief networks and dual-wing restricted78

Boltzmann machines [9]. The authors claim that traditional methods aggregating users’ preferences or79

predictions are very sensitive to noise in the data and they may fail to learn group preferences when the80

data are slightly inconsistent due to strict aggregation assumptions.81

Garcia et al. introduce a recommender system for tourism able to provide suggestions to groups [10].82

Authors design a recommender system taking into account the tastes of the users, their demographic classifi-83

cation and the places they have visited on former trips. The group recommendation is built from individual84

recommendations through the application of aggregation and intersection mechanisms. While intersection85

considers the user preferences that are shared by all the members in the group, aggregation takes into86

account the union of preferences of users in the group, weighted by average user-interest.87

Gartrell et al. propose a group recommendation technique that integrates social, expertise, and interest88

dissimilarity of group members [11]. Amer-Yahia et al. propose a group recommendation model that takes89

into consideration the affinity between group members and its evolution over time [12]. They extend existing90

group recommendation semantics to include temporal affinity in recommendations and design an algorithm91

that produces temporal affinity-aware recommendations for ad-hoc groups. Kaššák et al. present a hybrid92

recommendation technique that combines both collaborative filtering and content-based approaches [13].93

This technique can provide recommendations to either individual user or groups and focuses on the top-94

N recommendation task. Pera and Ng propose another hybrid approach which combines user tags, item95

content and item popularity to deliver group recommendations [14].96

Recently, Anagnostopoulos et al. study the algorithmic implications of suggesting the best set of places97

that a group of people could perform together in the city [15]. Authors address the problem by providing98

several formulations that take into account the overall group preferences as well as the individual satisfaction99

and the length of the tour recommended. Authors provide a study of the computational complexity of these100

formulations, they provide effective and efficient algorithms, and, finally, they evaluate them on datasets101

constructed from real city data.102

In group recommendation, the group of users is assumed to be known in advance. The task, thus, deals103

with recommending a list of items to that group. In contrast, we address a different scenario where a104

recommended item and a user are given and the group that maximizes the relevance of the recommended105

item for every member and the intra-group social relationships has to be computed.106

Team Formation.107

The team formation problem asks to build a group offering an optimal match between its members and108

a set of functional requirements [16, 17, 18]. Lappas et al. formulate the team formation problem as: given109

a social graph where nodes are labeled with a set of skills that each node possesses and given a task that110

requires a certain set of skills to be satisfied, the objective is to find a subgraph in which all skills are present111

and the communication cost is small [19]. Although both problems exploit a weighted social graph and the112

selection process requires group members to be socially close, the team formation problem deals with the113

coverage of a set of expertizes that make it very different from our UI-GF problem.114

Community Discovery. The community discovery problem aims at finding, at the global level, groups115

(communities) of users with greater ties internally than to the rest of the network. In contrast, our approach116

focuses on finding the group that maximizes i) the relevance of the recommended item for every member of117

the group and ii) the intra-group social relationships, based on social network.118

An interesting approach is the one proposed by Sozio et al. [20]. Here, authors study a query-dependent119

variant of the community discovery problem, which they call the community search problem: given a graph120

G, and a set of query nodes in the graph, authors propose to find a subgraph of G that contains the query121

nodes and it is densely connected. The approach differs from ours as i) the problem does not consider122

information about items as it only relies on the network structure of the graph, ii) they use an undirected123

graph to model the community whereas our approach can explicitly model asymmetric relationships in the124

graph.125

A classification of community discovery methods is proposed in [21]. The authors classify the methods126

based on different definitions of communities in the literature. Communities may involve several features127
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like overlapping, weighted and/or directed links, and dynamics.128

These communities have been exploited in the recommendation process. Lee and Brusilovsky present129

a recommendation technique that leverage community membership of the users as a useful information130

source for dealing with cold-start users [22], i.e., users for whom the system do not have enough personal131

information to provide effective recommendations. However, the authors only focus on regular user-item132

recommendations and do not explore group recommendations.133

Spatial Social Networks Some approaches from the spatial social networks literature are also related to134

our proposals. Those approaches try to find groups of users with social relations among them that satisfy135

a given spatial constraint. In contrast, in this work, we model social networks with relevance information136

about items. Nevertheless, in some cases, we can argue that we can substitute the spatial distance with a137

metric based on item relevance to tackle the a similar problem to the UI-GF. For example, Yang et al. [23]138

propose Socio-Spatial Group Query (SSGQ) to select a group of nearby people with tight social relations.139

They show that the problem is NP-hard and design an efficient algorithm SSGSelect to solve it. Although140

we can replace the spatial distance with a notion of item relevance, the approach is different from the one141

proposed here for several reasons. First of all, Yang et al. model the SSGQ by introducing a parameter k142

which specifies the average number of unfamiliar people an invitee may have. In our proposed formulation,143

the notion of familiarity is implicitly modeled by the weighted links of our graph representation or explicitly144

enforced by probability distributions that takes into account both the social relationship and item relevance145

for the group members. In any case, it is not controlled by a fixed parameter k. Moreover, SSGQ aims at146

minimizing the total spatial distance while we address the problem from a user-item relevance point of view147

by employing aggregation measures that consider the interest of the users for the recommended item.148

Liu et al. [24] propose another similar socio-spatial approach. They present a new query called Circle149

of Friend Query (CoFQ) to allow finding a group of k people that are close to the target user in terms of150

physical distance and in terms of social distance. Authors show that the problem is NP-Hard and propose151

an ε-approximation for that. This method has some important differences w.r.t. our proposed approach152

because they aim to minimize the diameter, i.e., the maximum distance between every two vertices of the153

group formed. Moreover, they employ a new distance as a weighted average between the geographical154

distance and the closeness, in terms of social information while we maximize the density of the formed155

group. As they try to minimize a different function, this may lead to important differences in the resulting156

groups formed by the two approaches.157

3. User-Item Group Formation158

The User-Item Group Formation problem asks for a set of users U and a set of items I. The social159

network connecting users is modeled as a graph S = {U , E} where U is the set of users and E is the set160

of undirected edges representing the friendship relationship between pairs of users in U . We assume that161

each edge euv ∈ E has a weight w(u, v) indicating the strength of the friendship between u and v. Given162

the target user u, we call Su = {Fu, Eu} the subgraph of S representing the social network of u. The nodes163

Fu ⊆ U constitute the set of friends of u and Eu ⊆ E are the edges modeling the friendship relationships164

between these users.165

The User-Item Group Formation is a new recommendation problem that takes a user-item pair 〈u, i〉 as166

input and asks to find the best group of friends of u for enjoying i by considering two different dimensions:167

• Friendship. The best group to enjoy an item together should be preferably formed by people that168

are all friends of each other. Strong ties among users help to enjoy an item together. Thus, we take169

into account the strength of the friendship among all the members of the proposed group.170

• Item relevance for the group. The item should be interesting for all the members of the proposed171

group individually. The users in the group should have, at least, some affinity with the recommended172

item.173

Given these two orthogonal dimensions, the UI-GF problem can be defined as follows:174
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Definition 1 (User-Item Group Formation). Given a user u, her social network Su and an item i relevant to175

u, the UI-GF problem seeks to find the group of k friends of u, F k
u ⊆ Fu, that maximizes their “satisfaction”,176

i.e., a measure that takes into account both the relevance of item i for all the members of the group and the177

intra-group friendship.178

We propose two formalizations of the UI-GF by instantiating two different versions of the above measure179

of satisfaction. In the first approach we formulate UI-GF as a densest k-subgraph problem over an enriched180

graph built from Su and propose two algorithms to address it. The second approach is instead based on181

collaborative filtering and exploits a probabilistic technique to model the item relevance by taking into182

account friendship. The graph-based and the collaborative filtering formulations of UI-GF are discussed in183

Section 3.1 and Section 3.2, respectively.184

3.1. UI-GF as a densest k-subgraph problem185

We show how we can formulate UI-GF as a densest k-subgraph problem on an enriched instance of Su,186

called user-item ego network. First, we discuss how to estimate the item relevance. Then, we show how the187

enriched instance of Su is built and how UI-GF is modeled as a densest k-subgraph problem. Finally, we188

propose two algorithms to address the problem stemming from the aforementioned graph.189

Our graph-based approach relies on the possibility of estimating the relevance R(u, i) of any item in I190

for any user in U . We compute such estimates by means of a content-based technique that considers the191

similarity between the items with which the target user interacted in the past and item i [2].192

Without loss of generality, in this paper we estimate the relevance R(u, i) by exploiting the categories193

describing the venues since these are available in all the LBSN datasets used for the experiments. Let194

us denote the set of these categories as C. For each venue i ∈ I we can easily build its relevance vector195

~vi ∈ {0, 1}|C| where the j-th element of ~vi is set to 1 iff venue i belongs to category j. Moreover, for each196

user u ∈ U , we compute her preference vector ~vu ∈ [0, 1]|C| as the normalized sum of the relevance vectors of197

all the venues that u visited in the past [2, 25]. To estimate R(u, i) we exploit the cosine similarity because198

this metric has shown good results in previous work in recommender systems [26].199

Definition 2 (Item Relevance). Given a user u ∈ U and an item i ∈ I, the relevance R(u, i) of i for u is200

computed as the cosine similarity between ~vu and ~vi:201

R(u, i) =
~vu · ~vi

||~vu|| × ||~vi||
(1)

We can capture the group relevance for a given item using different aggregate strategies [27, 28, 3, 12, 7].202

We derived a pairwise version of Aggregated Voting and Least Misery to weight differently the interest of a203

given item for a pair of users since they are two popular and effective aggregation strategies.204

Definition 3 (Pairwise User-Item Relevance). Given an item i ∈ I and users u, v ∈ U , we define RP (u, v, i)205

to be a generic function measuring the pairwise user-item relevance of i for the two users u, v. We can206

derive two different pairwise user-item relevance measures RP (·, ·, ·) from well-known group recommendation207

counterparts: Aggregated Voting (the sum of the recommendation score of the item for each member) and208

Least Misery (the minimum of the recommendation scores of the item for each member).209

• Pairwise Aggregated Voting (PAV):210

RPAV (u, v, i) = R(u, i) +R(v, i) (2)

• Pairwise Least Misery (PLM):211

RPLM (u, v, i) = min
z∈{u,v}

R(z, i) (3)

Since our satisfaction function mixes two orthogonal dimensions, i.e., user-item relevance and friendship212

relationships, we are now able to define a pairwise satisfaction measure that considers both the “strength”213

of the relationship between users and the relevance of the given item i for those users.214
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Figure 2: PAV (a) and PLM (b) pairwise satisfaction in the user-item ego network for target user u0 and item i2.

Definition 4 (Pairwise Satisfaction). Given an item i ∈ I, two users u, v ∈ U , and the strength w(u, v) of215

their friendship, the pairwise satisfaction PS(u, v, i) of users u and v w.r.t. the item i is given by:216

PS(u, v, i) = w(u, v) ·RP (u, v, i) (4)

It is worth noticing that our formalization allows to use any strength measure w(·, ·). As an example, we217

could exploit information about the interactions between pairs of users in the social network, e.g., messages218

exchanged, common likes, common check-ins, common friends, etc. to measure the strenght of the relation.219

We use the pairwise satisfaction measure from Definition 4, using either Aggregated Voting (PAV) or220

Least Misery (PLM), to build the user-item ego network Γu,i for the target user u and item i:221

Definition 5 (User-Item Ego Network). Given an user u and an item i, the user-item ego network for the222

pair 〈u, i〉 is defined as an undirected weighted graph Γu,i = (Fu, Eu,i) where Fu ⊆ U is the set of friends of223

u in the original graph S, and Eu,i is the set of edges between nodes in Fu weighted by pairwise satisfaction224

PS(·, ·, i).225

Considering again the example reported in Figure 1. In Figures 2a and 2b, we show the user-item ego226

network for target user u0 and item i2 obtained by weighting edges according to the Pairwise Aggregated227

Voting and Pairwise Least Misery measures, respectively. The values on the edges represent thus the pairwise228

satisfaction PS(·, ·, i2).229

We model the graph-based UI-GF problem of finding the best group of friends of a user for a recommended230

item as the problem of finding the densest k-subgraph over the user-item ego network. In this formulation,231

we aim to find a subgraph of exactly k users that maximizes the following measure of pairwise satisfaction232

density:233

Definition 6 (Pairwise Satisfaction Density). Given the target user u ∈ U and the recommended item i ∈ I,234

the pairwise satisfaction density of the subgraph Gu,i = (FG
u , E

G
u,i) of Γu,i where |FG

u | = k is given by:235

ρ(Gu,i) =
2
∑
∀v,w∈FG

u
PS(v, w, i)

k(k − 1)
(5)

This density measure allows us to choose in Fu a group of k users characterized by strong friendship236

relationships and high interest to the proposed item i. The graph-based UI-GF problem can be thus237

formulated as the following maximization problem:238

Definition 7 (UI-GF as Densest k-Subgraph Problem). Given the target user u ∈ U and the recommended239

item i ∈ I, the user-item ego network Γu,i and an integer k, the User-Item Group Formation problem asks to240

find the subgraph Gu,i = (FG
u , E

G
u,i) of Γu,i where |FG

u | = k that maximizes the pairwise satisfaction density:241

242

Gu,i = arg max
G∗

u,i

ρ(G∗u,i)

s.t. G∗u,i ⊆ Γu,i, |FG∗

u | = k

(6)

7



The densest k-subgraph problem is NP-hard since it generalizes the clique problem [29]. Therefore,243

we address the graph-based UI-GF problem by means of an approximation algorithm (Greedy) and a244

k-Nearest-Neighbor heuristic (k−NN). Both these algorithms exploit a measure of pairwise satisfaction245

aggregated at the level of each user to maximize the pairwise satisfaction density. We call this measure246

aggregated user satisfaction.247

Definition 8 (Aggregated User Satisfaction). Given the user-item ego network Γu,i = (Fu, Eu,i), the aggre-248

gated user satisfaction, φ(v, i) for user v ∈ Fu and item i is defined as the sum of the pairwise satisfaction249

computed over all its neighbors:250

φ(v, i) =
∑
w∈Fu

PS(v, w, i) (7)

3.1.1. A greedy approximation algorithm to solve the graph-based UI-GF251

Greedy is an approximation algorithm to solve the densest k-subgraph problem. It works by repeatedly252

removing from Γu,i the node w with the minimum value of φ(w, i) (line 3), and by updating the values φ(v, i)253

of its neighbor nodes v accordingly. This process is repeated until exactly k nodes are left (condition in line254

2). The pseudo-code of the algorithm is shown in Algorithm 1. It has been introduced by Asahiro et al.255

[29]. Authors prove that the algorithm has tight bounds on the worst case approximation ratio.256

Algorithm 1 Greedy algorithm for UI-GF.

Input: User u, item i, Γu,i, integer k
Output: Gu,i = (FG

u , E
G
u,i), |FG

u | = k
1: Gu,i ← Γu,i

2: while |FG
u | > k do

3: w ← node with minimum φ(w, i) in Gu,i {use a Fibonacci heap to find the node w}
4: update φ(v, i) of every neighbor v of w
5: remove w from Gu,i

6: end while
7: return Gu,i

Complexity Analysis. The complexity of the algorithm depends on the values of aggregated user satis-257

faction, φ(·, ·). As claimed in [20, 30], Greedy can be implemented in linear time O(n+m), for m edges258

and n nodes, when the image of the function φ(·, ·) is a subset of N0. In many real applications, however,259

this function is not an integer value. In fact, in our case, the aggregated user satisfaction function pro-260

vides real values. The algorithm, in this case, needs to use a different strategy to efficiently find the node261

with minimum aggregated user satisfaction and update the values of its neighbors’ φ(·, ·). Charikar et al.262

suggested the use of a Fibonacci heap to hold the nodes indexed by their aggregated user satisfaction. In263

this way, we obtain a final complexity of O(m+ n log n) [30]. The Fibonacci heap enables us to extract264

the node associated with the minimum value in O(log n) and update the value of a given node in Θ(1) [31,265

Chapter 19]. As the algorithm removes at most n nodes and updates at most m neighbors (edges), Greedy266

with Fibonacci heap has a complexity of O(m+ n log n), for m edges and n nodes in the user-item ego267

network.268

3.1.2. A k-NN algorithm to solve the graph-based UI-GF269

The k Nearest Neighbor technique is a well-known non-parametric algorithm successfully employed in270

several domains ranging from recommender systems to clustering. Here, we employ k-NN on the user-item271

ego network (Algorithm 2) to retrieve the k neighbors of target user u having the highest values of aggregated272

user satisfaction (lines 1–2) to create the set of nodes FG
u . Then, the algorithm returns the subgraph Gu,i273

induced by set FG
u .274

8



Algorithm 2 k-NN algorithm for UI-GF.

Input: User u, item i, Γu,i, integer k
Output: Gu,i = (FG

u , E
G
u,i), |FG

u | = k
1: L← sort v ∈ F in descending order of φ(v, i)
2: FG

u ← first k nodes of L
3: Gu,i ← subgraph of Γu,i induced by FG

u

4: return Gu,i

Complexity Analysis. The algorithm sorts all the nodes in Γu,i in O(n log n). At most n nodes are275

selected to create the set FG
u in O(n). Finally, the subgraph induced by FG

u is created in O(m). Therefore,276

the final complexity of k-NN is bounded by O(m+ n log n).277

3.2. UI-GF as an item relevance modeling problem278

We propose to address the User-Item Group Formation by formulating it as an item relevance modeling279

task for probabilistic collaborative filtering. Collaborative filtering algorithms exploit the past interactions280

between users and items to generate personalized suggestions [1]. In contrast to content-based recommenders,281

they do not require metadata about the items: items are considered black boxes. Since we assess the282

proposed solutions in the context of LBSNs, we exploit past interactions between users and items, i.e.,283

venues. Additionally, some of these social networks allow users to emit a rating for the venue. We will284

consider this as an explicit interaction and ru,i will represent the rating that the user u gave to an item i.285

When ratings are not available, we will rely on the normalized count of check-ins to estimate ru,i. In the286

following, we show our proposal for the UI-GF problem based on an adaptation of an algorithm based on287

relevance-based language models [5].288

Relevance-based language models are a state-of-the-art technique for performing pseudo-relevance feed-289

back in a text retrieval scenario [32]. Even though these methods have originated in the field of Information290

Retrieval (IR), an emerging trend of applying techniques from IR to recommendation is gaining attention291

[33, 34]. Following this trend, Parapar et al. adapted the relevance-based language modeling framework to292

the collaborative filtering scenario obtaining high figures of precision [35].293

Recently, an item-based relevance modeling framework for collaborative filtering has been proposed in294

order to deal with a novel recommendation task: the liquidation of long tail items [5]. This task consists in295

identifying the most suitable users for offering them a given long tail product. This algorithm, called IRM2,296

creates a relevance model for every long tail item and estimates the probability of relevance of each user297

under these models. Each relevance model is built upon the users’ feedback which can be either explicit298

(e.g., ratings) or implicit (e.g., check-ins). This technique, which achieved excellent results in the task of299

liquidating long tail items, can be used to formalize our UI-GF problem in an alternative way. We propose300

to employ IRM2 to solve the UI-GF problem because, both in the long tail liquidation and in the group301

formation tasks, we aim to recommend the most appropriate users for a target item. However, its use is302

not straightforward because both tasks possess their own peculiarities. In particular, when addressing the303

UI-GF problem, we have to deal with all types of items, not only with long tail ones (i.e., the least popular304

venues). This is actually not a difficulty since recommending for long tail items is, in principle, harder than305

recommending for regular ones. The main difference between the long tail liquidation task and the UI-GF306

problem is that the latter exploits the friendship relationships among users whereas the former does not deal307

with this kind of information.308

Given the item i ∈ I, IRM2 estimates the relevance of a user v ∈ U under the relevance model Ri as309

follows [5]:310

p(v|Ri) ∝ p(v)
∏
w∈Ui

∑
j∈Ji

p(w|j) p(v|j) p(j)
p(v)

(8)

where Ui ⊆ U refers to the set of users who interacted with item i and Ji ⊆ I denotes the set of similar311

items to item i.312
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The User-Item Group Formation for the target user u and the recommended item i can be addressed by313

estimating the probability of relevance of each friend v ∈ Fu under the relevance model of the target item314

Ri. The recommended group consists of the k users with the highest estimated relevance. Formally, UI-GF315

can be defined as the following:316

Definition 9 (UI-GF as an Item Relevance Modeling problem). Given the target user u ∈ U , the recom-317

mended item i ∈ I and an integer k, the User-Item Group Formation problem asks to find the set FG
u ⊆ U318

where |FG
u | = k whose users v ∈ FG

u maximize the probability of relevance under the model of the recom-319

mended item:320

FG
u = arg max

F∗
u

∑
v∈F∗

u

p(v|Ri)

s.t. F ∗u ⊆ U , |F ∗u | = k

(9)

The pseudocode of IRM2 is shown in Algorithm 3. We consider the set Fu as candidate users which321

consists of only those users who are friends of the target user. Additionally, to fully specify this technique, we322

need to provide the details of how to compute the set of similar items as well as the estimates of conditional323

and prior probabilities. It is worth highlighting that the original formulation of IRM2 considers only the324

probability of relevance under the model of the recommended item [5]. To introduce the social relationships325

into the IRM2 model, we extend the model by defining novel prior probability estimators that take into326

account the social information.327

Algorithm 3 IRM2 algorithm for UI-GF.

Input: User u, item i, candidate users Fu, integer k
Output: FG

u , |FG
u | = k

1: FG
u ← {}

2: H ← build max-heap for each w ∈ Fu with values p(w|Ri)
3: while |FG

u | < k do
4: w ← retrieve node with maximum p(w|Ri) in H
5: add user w to FG

u

6: end while
7: return FG

u

We build the set of most similar items, Ji, by taking the l most similar items to i according to a pairwise328

similarity metric. Note that l is one of the parameters of this model. As before we employ the cosine329

similarity metric to compute the similarity between items. The cosine similarity between two items i and j330

is given by:331

s(i, j) =

∑
u∈Ui∩Uj ru,i ru,j√∑

u∈Ui r
2
u,i

√∑
v∈Uj r

2
v,j

(10)

The cosine similarity measures the similarity between items computing the dot product over the inter-332

section of users that rated both items. Since our aim is to maximize the satisfaction of the members of the333

group, the calculation of the similarities between items is mainly based on the agreement among users.334

The conditional probability of a user given an item is computed using the maximum likelihood estimate335

of a multinomial distribution over the count of interactions [5]. However, this estimate suffers heavily from336

data sparsity. To address this problem, the authors of IRM2 employed absolute discounting smoothing337

[5]. However, a recently published axiomatic analysis of different smoothing methods for relevance-based338

language models in recommendation has found that additive smoothing is a better option because it does not339

demote the IDF effect [26]. Additive smoothing (also referred to as Laplace smoothing) increments all the340

interactions by a parameter γ > 0. To the best of our knowledge, this is the first time that additive smoothing341

is applied to item relevance modeling. In previous studies it was applied only to the user counterpart [26].342

10



Finally, the estimate of the conditional probability of the user u given the item j is given by:343

p(u|j) =
ru,j + γ∑

v∈Uj rv,j + γ|U|
(11)

We now provide the details of the prior estimates, p(j) and p(v), used in Eq. 8. Both of them have been344

considered uniform in [5]. In this article, we use an uniform prior estimator for items, i.e., p(j), while we345

provide different priors for users, i.e., p(v), because we want to consider also the social graph generated by346

the friendship relationships to maximize the group satisfaction. Despite this information is not modeled347

in the original formulation of IRM2, one of the advantages of this relevance modeling framework is its348

sound statistical foundation which enables us to introduce different types of information in the probability349

estimates. In fact, previous work on relevance-based language models for recommendation has found that350

priors different from the uniform estimate can lead to significant improvements [36].351

Therefore, we use a uniform item prior and we propose four probability estimates for the user prior.352

With these non-uniform user priors, IRM2 is able to model a satisfaction function that takes into account353

both the “strength” of the relationship between users and the relevance of the given item i for those users.354

We describe below our proposals.355

• Uniform (U). As a baseline, we studied the uniform estimate for the user prior. Since the set356

of candidate users of the group recommendation task is Fu (the friends of the target user u), the357

formulation of this prior is the following:358

p(v) =
1

|Fu|
(12)

• Common Friends (CF). This prior promotes those users who share a large number of common359

friends with the target user. Since the user prior is in the denominator of (8), we formulate a prior360

which is inversely proportional to the number of common friends.361

p(v) ∝ 1

|Fu ∩ Fv|
(13)

• Common Group Friends (CGF). This estimate boosts those users who have more common friends362

with the members of the current group Gu,i. Initially, this group is constituted by the target user and363

this prior behaves as the CF prior. This prior should be updated in the group formation procedure.364

This modifies Algorithm 3 into Algorithm 4.365

p(v) ∝ 1∣∣∣(⋃w∈FG
u
Fw

)
∩ Fv

∣∣∣ (14)

• Group Closeness (GC). This estimate boosts those users who have more friends in the current group366

Gu,i. This prior estimate should also be updated incrementally in the group formation procedure using367

Algorithm 4.368

p(v) ∝ 1

|FG
u ∩ Fv|

(15)

369

Complexity Analysis. First, we analyze the complexity of (8) being n the number of users (n = |U|), m370

the number of items (m = |I|), l the number similar items and v the number of candidates users v = |Fu|.371

Uniform priors can be computed in Θ(1) and the rest of the user priors can be cached in O(n). Conditional372

probabilities, according to (11), can be computed in Θ(1) if the sum in the denominator is precomputed and373

cached for each item j. Having cached the priors and the sum of interactions, the cost of evaluating (8) is374

bounded by O(nl). Additionally, we have to compute the set Ji of similar items which is O(m).375
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Algorithm 4 IRM2 algorithm for UI-GF (modified version for prior CGF).

Input: User u, item i, candidate users Fu, integer k
Output: FG

u , |FG
u | = k

1: FG
u ← {}

2: while |FG
u | < k do

3: w ← retrieve node with maximum p(w|Ri) in Fu {evaluate p(w|Ri) ∀w ∈ Fu}
4: remove user w from Fu

5: add user w to FG
u

6: update prior with the new set FG
u

7: end while
8: return FG

u

Now, we study Algorithm 3. Building a max-heap is a linear operation. Since we have to compute376

(8) for each candidate user, line 2 has a complexity of O(vnl). The while loop runs k times performing a377

O(log n) operation (line 4) and a Θ(1) operation (line 5). Thus, the loop has a complexity of O(k log n).378

If we take into account the computation of similar items, the complexity of Algorithm 3 is bounded by379

O(m+ vnl + k log n).380

On the other hand, Algorithm 4 is more costly. Line 3 has a complexity of O(vnl) because it computes381

IRM2 for each candidate and lines 4 and 5 runs in constant time. Updating the cached priors is in O(v).382

Finally, since the while loop runs for k times, we obtain a final complexity of O(m+kvnl) for Algorithm 4.383

4. Experimental Evaluation384

We used five publicly available LBSN datasets to conduct a thorough evaluation of our proposals against385

state-of-the-art baselines. First, we present the datasets. Since we are dealing with a novel problem, we386

propose a new evaluation methodology based on ground-truth groups. Next, we detail the baseline algorithms387

and the metrics used for evaluation. Finally, we describe and discuss the results of the experiments.388

4.1. Datasets389

We employ five publicly available datasets collected from four popular LBSNs: Foursquare, Brightkite,390

Gowalla and Weeplaces. These datasets record information about the users registered in these social networks391

and the venues where the users checked-in. All datasets contain entertainment places such as restaurants,392

cinemas or tourist attractions among other venues. The social links between users are bidirectional friendship393

relationships.394

Foursquare is a popular LBSN where users check-in to inform their friends on the places where they395

are. Thanks to the authors of [37, 38], we downloaded a dataset containing users check-ins, places, users396

ratings of the places and the social graph connecting users5. Starting from this dataset, which is called397

hereinafter Foursquare, we built a second dataset by selecting only the check-ins falling in the bounding box398

of New York City6. This second dataset is called in the following Foursquare (New York). The rationale of399

taking a subset of the Foursquare dataset was to evaluate the proposed approaches in a less sparse scenario400

where all the information is concentrated in a single location. This enables us to test our solutions on a401

dataset with richer social connections. In addition, we used two other datasets, collected from Brightkite402

and Gowalla7 made available by the authors of [39]. These datasets, named in the following Brightkite and403

Gowalla, record user check-ins and the social network connecting users but they lack ratings of the visited404

venues. The appreciation of a user for a venue was thus estimated for the purpose of our work on the basis405

of the normalized number of check-ins made by the user in that venue: the more the check-ins, the higher406

the rating. Finally, we used the Weeplaces dataset8 which contains check-ins and friendship relationships of407

5https://archive.org/details/201309_foursquare_dataset_umn
6https://www.flickr.com/places/info/2459115
7Available at https://snap.stanford.edu/data
8Available at http://www.yongliu.org/datasets
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Table 1: Statistics regarding the five datasets used in the experiments: Foursquare, Foursquare (New York), Brightkite, Gowalla
and Weeplaces

Dataset Foursquare Foursquare (NY) Gowalla Brightkite Weeplaces

# users 2 138 367 103 663 196 591 58 228 15 799

# users w/ check-ins 485 381 82 469 107 092 51 406 15 793

# users w/ friends 1 880 404 55 252 196 591 58 228 15 538

# users w/ all 227 418 34 058 107 092 51 406 15 532

# items 83 999 7813 1 280 969 772 966 971 307

# links 27 098 472 1 890 844 1 900 654 428 156 114 131

# links per user 14.41 34.22 9.67 7.35 7.35

# check-ins 1 021 966 157 064 6 442 892 4 747 281 7 369 712

# check-ins per user 2.10 1.90 60.16 92.35 466.64

# check-ins per item 12.17 20.10 5.03 6.14 7.59

check-ins density (%) 0.003 0.024 0.005 0.012 0.050

# ratings 2 809 580 330 043

# ratings per user 4.24 3.09

# ratings per item 33.45 42.24

ratings density (%) 0.005 0.040

Foursquare users who used the Weeplaces application.408

We used the Foursquare API9 for all the datasets to obtain the categories for the venues used in the409

content-based approach described in Section 3.1.410

Table 1 shows the main statistics of these datasets. Foursquare is the largest dataset in terms of the411

number of users, with a very large social network made up of about thirteen million edges. Weeplaces has412

the largest number of check-ins. The degree distributions of the users in the social networks are shown in413

Figure 3. As expected, all the datasets present a power-law distribution in the node degrees: the majority414

of the users have a limited number of friends, while only a few users have thousands or more friends. This415

is an important consideration as the degree distribution affects the size of the user-item ego network Γu,i.416

The datasets are extremely sparse in terms of check-ins and ratings. We computed the density as the417

proportion of ratings/check-ins with respect to the number of users times the number of items. We discarded418

those users without check-ins to compute the metrics related to check-ins and we did the same for ratings.419

Even in this way we can observe that rating/check-in density is below 0.01% in all the cases. This poses420

a challenge for any recommender system and, in particular, for solving the UI-GF problem. In particular,421

Foursquare collections have an especially low density of ratings and check-ins while the other datasets have422

very sparse social networks. These particularities affect the performance of our proposals as reported in423

Section 4.5.424

4.2. Evaluation Methodology425

To assess the quality of the groups proposed by our solutions to the UI-GF problem, we propose to426

compare them against ground-truth groups, i.e., groups of friends that actually enjoyed a specific venue427

together. We extracted these ground-truth groups from the five datasets. In particular, we looked for sets of428

users who checked-in the same place within a fixed temporal window. We considered a user to be a member429

of a group only if this person is a friend of at least one of the other group members. In this way, we obtained430

groups of users who actually enjoyed the place where they checked-in, together with their friends.431

9https://developer.foursquare.com
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Figure 3: Degree distributions of the social networks of the datasets.

After an empirical analysis of the five datasets, we decided to set a temporal window of 4 hours. Different432

values of the temporal windows affect the number (and the size) of the ground-truth groups mined. In our433

experiments we consider only groups with at least 4 members. The 4-hours window allows us to mine434

1, 495 ground-truth groups on Foursquare, 258 on Foursquare (New York), 24, 996 on Brightkite, 27, 997 on435

Gowalla and 39, 148 on Weeplaces. Weeplaces has the largest number of ground-truth groups since it also436

has the largest number of check-ins (see Table 1).437

The evaluation methodology uses these ground-truth groups in the following way: from each of these438

groups, we select a random member as the target user and the venue where the group registered as an item.439

Then, we asked our proposals to form a group of k friends for this specific user and venue, with k ranging440

in {4, 6, 8, 10, 12}. The members of the ground-truth group are those who we would like to find in the group441

suggested by the algorithmic solution of the UI-GF problem. In the next section, we present three metrics442

for assessing the quality of the recommended groups with respect to the ground-truth groups.443

4.3. Performance Metrics444

We evaluate our proposals by using metrics that exploit the ground-truth groups above discussed. We445

denote with F̂u,i the ground-truth group for user u and venue i. To evaluate the quality of group FG
u formed446

by our techniques and by their competitors, we used set-based information retrieval metrics: precision, recall447

and F-measure [40]. We averaged these metrics over all the ground-truth groups in each dataset.448

4.3.1. Precision449

This metric computes the fraction of members in FG
u that also appear in the ground-truth group F̂u,i:450

precision(FG
u ) =

|F̂u,i ∩ FG
u |

|FG
u |

(16)

4.3.2. Recall451

This metric computes the fraction of actual group members in F̂u,i that are present in the suggested452

group FG
u :453

recall(FG
u ) =

|F̂u,i ∩ FG
u |

|F̂u,i|
(17)

4.3.3. F-measure454

The F-measure or F1 score is the harmonic mean of precision and recall. This metric ranges from 0 to 1455

and shows a high value when both precision and recall are high:456

F1(FG
u ) =

2× precision(FG
u )× recall(FG

u )

precision(FG
u ) + recall(FG

u )
(18)
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4.4. Baselines457

We compare the performance of the solutions proposed with two baselines: Top k-Nodes and Densest458

k-Subgraph.459

4.4.1. Top k-Nodes (k-Top)460

Top k-Nodes is a heuristic that computes a dense k-subgraph without considering the edges. It forms461

the group by retrieving the k nodes of the user-item ego network with the highest value of R(·, i). Note that462

in this approach the relationships among the users are not considered. Consequently, it does not use any463

pairwise satisfaction measure.464

4.4.2. Densest k-Subgraph (DkSP)465

Densest k-Subgraph (DkSP) is a well-known heuristic that aims at approximating the densest k-subgraph466

of a graph G [41]. It works by first identifying three candidate k-subgraphs by applying the following three467

procedures:468

• Procedure 1. Select k/2 arbitrary edges from the graph, then return the set of nodes incident with469

these edges, adding arbitrary nodes to this set if its size is lower than k.470

• Procedure 2. Create two disjoint sets H and C. The set H includes the k/2 nodes with the highest471

aggregated user satisfaction in the input graph G. The set C is created by selecting k/2 nodes from472

G \ H with the highest aggregated user satisfaction with respect to the nodes in H. Return the473

subgraph induced by the set H ∪ C.474

• Procedure 3. Let W2(u, v) be the function that returns the number of paths of length 2 between two475

nodes u and v and H be the set with k/2 nodes with the highest aggregated user satisfaction in the476

input graph G. For every node v in H, compute W2(v, w) for all w ∈ G and create a set Hv with477

k/2 nodes with the highest W2(v, w). Then, create the set Bv with the k/2 neighbors x of v with478

the highest aggregated user satisfaction with respect to the set Hv. Finally, return the subgraph G′v479

induced by the set Hv ∪Bv, adding arbitrary nodes to this set if its size is smaller than k.480

Each one of the previous procedures generates a candidate k-subgraph. The DkSP algorithm returns the481

densest k-subgraph among these three candidates.482

4.5. Effectiveness483

We now evaluate the proposed algorithms against the baselines using the performance metrics defined484

above. Our goal is to check if the groups formed by our proposed techniques are really relevant with respect485

to the ground-truth groups mined from the data. Figures 4, 5 and 6 depict the results for precision, recall486

and F-measure achieved on the five datasets for all the proposed algorithms and the baselines. We varied487

the parameter k, which controls the group size of the solution, from 4 to 12 people.488

Both Greedy and k-NN outperform k-Top and DkSP in terms of precision for both PAV and PLM489

metrics. We can observe that on average Greedy achieves better results on Foursquare datasets, while490

k-NN demonstrates a better performance on the Brightkite, Gowalla and Weeplaces datasets. It is worth491

highlighting that the improvement is higher for smaller values of k, while for larger groups the difference492

decreases. Moreover, Greedy and k-NN are able to suggest more precise groups when using the PLM user-493

item relevance. As shown in Table 2, the precision measured for k-NN using PLM results to be up to 14%,494

3%, 5%, 6% higher than the one with PAV for Foursquare, Foursquare (New York), Brighkite and Gowalla495

datasets, respectively. This result can be interpreted by observing that users tend to invite the friends who496

are expected to like the venue, while they rarely invite a friend when they know she would not like it. This497

behavior is captured specifically by the pairwise least misery relevance that considers the minimum among498

the user-item relevance scores for forming the group.499

On the other hand, IRM2 outperforms all the algorithms on the Brightkite and Weeplaces datasets using500

any prior (see Table 3). After an initial exploratory analysis for IRM2, we set the number of similar items501
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Table 2: Improvements (%) of Precision (p) and Recall (r) by varying k for Greedy and k-NN when using PLM instead of
PAV.

Algorithm k
FS FS (NY) Gowalla Brighkite Weeplaces

p r p r p r p r p r

Greedy

4 6.2 6.6 7.2 7.1 5.3 4.8 0.9 2.0 1.4 1.4
6 7.6 7.5 3.9 5.6 5.6 4.8 −1.0 0.4 1.0 −1.6
8 7.9 7.8 4.3 6.7 6.5 5.5 −1.7 −0.1 1.1 0.9
10 7.5 7.3 3.7 5.4 5.9 4.4 −1.5 −0.2 1.6 1.6
12 6.8 6.6 5.9 5.7 6.3 5.1 −1.8 −0.3 1.8 1.9

k-NN

4 5.2 5.5 2.7 2.6 6.2 6.5 14.6 11.0 1.6 1.5
6 4.9 4.9 2.0 3.8 5.6 4.9 7.5 6.4 0.8 0.4
8 5.4 5.3 2.1 4.2 4.6 4.0 4.1 3.7 1.2 0.9
10 5.0 4.9 3.0 2.8 4.3 3.8 4.4 3.7 1.5 1.5
12 4.4 4.4 3.5 2.9 4.3 3.8 2.8 2.6 1.7 1.7

Table 3: Improvements (%) of Precision (p) and Recall (r) of IRM2 (using different prior estimates) over GREEDY and k-NN
using PAV when k = 4.

Baseline Prior
Foursquare Foursquare (NY) Gowalla Brighkite Weeplaces
p r p r p r p r p r

GREEDY

U −60.2 −60.9 −4.4 4.8 −9.5 1.2 74.9 68.3 47.6 52.0
CF −58.5 −59.1 2.3 13.6 −8.8 1.9 77.2 69.2 48.5 52.5

CGF −53.5 −54.1 −2.5 8.1 8.3 20.3 93.4 85.6 48.0 52.1
GC −30.1 −30.4 0.5 10.6 59.4 76.5 90.8 84.4 48.9 53.3

k-NN

U −61.0 −61.8 0.2 7.4 −16.2 −6.0 54.9 48.2 38.5 42.8
CF −59.3 −60.0 7.3 16.4 −15.6 −5.4 57.0 49.0 39.3 43.3

CGF −54.5 −55.1 2.2 10.8 0.3 11.7 71.4 63.4 38.9 42.9
GC −31.5 −31.9 5.3 13.3 47.5 63.9 69.1 62.3 39.7 44.1

l to 400. In the same way, we set the smoothing parameter γ to 0.001. The proposed priors (CF, CGF and502

GC) demonstrates a better performance than the original uniform prior (U). In particular, GC constitutes503

the best estimate and outperforms also all the algorithms on the Gowalla dataset. Also, it provides a sig-504

nificant improvement in performance on the Foursquare datasets. Nevertheless, on the Foursquare datasets,505

GREEDY is a much better option.506

A similar behavior is confirmed when we take into account the recall metric. The plot shows that Greedy507

and k-NN when using PLM achieve higher recall figures on Foursquare datasets. Interestingly, when PAV508

is used, the k-Top baseline exhibits better recall than Greedy and k-NN on the Foursquare datasets. The509

advantage of Greedy using PLM instead of PAV is up to 7% on both Foursquare datasets. Moreover, it510

is up to 5% and 4% for k-NN on Foursquare and Foursquare (New York), respectively (see Table 2). These511

results confirm the previous findings from the analysis employing the precision metric. For the Brightkite512

and Weeplaces datasets, IRM2 provides the best results independently of the prior. Again, the GC prior is513

the best estimate outperforming also all the algorithms on Gowalla dataset. The relatively high values of514

precision and recall achieved by our solutions demonstrate that they are indeed able to suggest meaningful515

and relevant groups of friends with whom to enjoy a given venue.516

Finally, in terms of F-measure we can see that the trends are very similar to those from the previous517

plots. IRM2 with the Group Closeness prior is the best option on Gowalla, Brightkite, and Weeplaces518

dataset. Meanwhile, on both Foursquare datasets, GREEDY using PLM is the most effective method.519

By relating these results to the properties of the datasets (see Table 1), we can argue that, IRM2520

works better on datasets with sparse social networks but with more dense check-in data, while graph-based521

approaches as GREEDY and k-NN perform very well on Foursquare datasets which present high sparsity522

on the ratings and check-ins but a higher number of links among users. A possible explanation of this523
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Figure 4: Values of precision of the different algorithms w.r.t. the ground-truth groups on the five datasets.
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Figure 5: Values of recall of the different algorithms w.r.t. the ground-truth groups on the five datasets.
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Figure 6: Values of F-measure of the different algorithms w.r.t. the ground-truth groups on the five datasets.
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Figure 7: Average execution time per recommendation using k-Top, k-NN, Greedy, DkSP and IRM2 algorithms as a function
of group size k on the Foursquare (New York) dataset.

phenomenon rely on the robustness of graph-based approaches in capturing group dynamics analyzing the524

user-item ego network. In contrast, the original formulation of IRM2 does not consider social relationships525

among users [5]. We introduced this information—the friendship relationships—into IRM2 by defining novel526

user prior estimators. Since GREEDY and k-NN outperformed IRM2 on Foursquare datasets, which are527

the collections with the densest social connections, we believe that there is still room for improvement in528

the formulation of prior probability estimators that model social information.529

Additionally, note that GREEDY exploits the user-item relevance scores computed by a content-based530

technique meanwhile IRM2 follows a collaborative filtering approach. This result is consistent with the531

literature from the field of Recommender Systems: content-based approaches tend to work better on sparse532

collections whereas collaborative filtering algorithms perform very well on less sparse datasets [42]. Moreover,533

previous work has shown that IRM2 is a probabilistic collaborative filtering technique that tends to work534

better on dense datasets compared to other similar probabilistic approaches [43].535

4.6. Efficiency536

In this section, we report the results of an experimental evaluation of the computational efficiency of k-537

Top, DkSP, k-NN, Greedy and IRM2 algorithms. The purpose of this evaluation is to assess the scalability538

of these algorithms in real-world applications.539

We run these experiments on a single machine using a single-thread implementation. The machine has540

two Intel E5620 @ 2.4GHz and 108 GB of RAM. We run the experiments 5 times and we report the average541

running time per user-item recommendation when varying the size of the groups. Although we think that it542

is unlikely that users demand recommendations that involve large groups of people, we vary the group sizes543

from 4 to 48 members to study the scalability of our proposals. Figure 7 shows the measured times on the544

Foursquare (New York) dataset. For the sake of space, we do not report the results on the other datasets545

as they present similar trends. Apart from finding the same efficiency trends, we found that the magnitude546

of difference in time is proportional to the size of the dataset measured in terms of the number of check-ins,547

ratings and social links.548

The results show that the most efficient algorithm is k-Top since this technique does not exploit the549

relationships among users. The other baseline, DkSP, exhibits acceptable execution times with an average550

runtime lower than 100 milliseconds for values of k up to 48. DkSP uses three procedures to compute its551

solution and this process affects its efficiency compared to k-NN and GREEDY. In fact, our graph-based552

proposed solutions show low running times as they need around 10 milliseconds for forming a group.553

In contrast, IRM2 is the most expensive technique depending on the size of the group k and the prior554

estimate. We report the time needed to form a group of size k without any precomputed data so to provide555

the reader with the the worst case scenario for the efficiency. It is worth highlighting that the performance556
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of IRM2 can be notably improved by caching the computation of similar items. Experiments reveal that557

the use of CGF and GC priors requires substantially more computing time than U or CF priors because558

priors should be recomputed after we add a new candidate user to the group. Moreover, the experimentation559

explores a wide range of values for k. For values of k that are crucial for real-world applications, i.e., from 4560

to 8 members per-group, IRM2 with U and CF priors requires around 1 second to form a group. In addition,561

when using the CGF and GC priors, IRM2 needs from 4 to 10 seconds to build groups of the same kind.562

As we saw in the previous sections, those priors provided huge improvements in terms of effectiveness in563

three out of five datasets. To conclude, on the one hand, GREEDY and k-NN algorithms are very fast564

and provide good results on sparse datasets with good social network information. On the other hand, with565

more check-ins or rating data, IRM2 may provide much better results at the expense of an increase in the566

computational cost.567

5. Conclusions and Future Work568

Finding the best group of companions with whom to enjoy an item or a destination is the motivation that569

inspired our novel recommendation task. The definition of such novel task, formalized as User-Item Group570

Formation problem, poses several theoretical challenges and provides important practical implications. UI-571

GF differs from traditional group recommendation and group formation tasks since it asks for maximizing572

two orthogonal aspects: i) the relevance of the recommended item for every member of the group, and ii)573

the intra-group social relationships. In our formulation, we focused on the maximization of the satisfaction574

of the members of the group without constraining the scope of the concept of satisfaction on purpose. Our575

aim was in fact to easy the definition of different models addressing this problem. In particular we proposed576

two different models for the UI-GF task. Our first model uses a graph-based technique that exploits the577

user-item ego network to maximize the group satisfaction by means of two different measures (pairwise578

aggregated voting and pairwise least misery). The second one employs probabilistic collaborative filtering579

which is able to model the concept of group satisfaction through different user priors.580

Another contribution of the paper is the definition of an evaluation methodology for assessing the per-581

formance of the proposed solutions. To this end, we designed a methodology based on publicly available582

data from location-based social networks. From that data, we extract ground-truth groups that enable us to583

assess the quality of the recommendations by using traditional information retrieval metrics such as Preci-584

sion, Recall and F-measure. We evaluated both algorithmic proposals by using five publicly available LBSN585

datasets built with the above methodology. The results of extensive experiments showed that our solutions586

outperform the baselines and are able to effectively find groups of friends who can jointly appreciate a sug-587

gested location. Graph-based algorithms (GREEDY and k-NN) yielded the best results on the Foursquare588

datasets while, on the other collections employed, the relevance modeling approach (IRM2) provided better589

solutions at the expense of an increased computational cost. In general, when we have high-quality social590

data and sparse rating or check-in feedback, GREEDY and k-NN tend to work better. In contrast, if591

we have large amounts of ratings or check-ins, IRM2 may provide superior recommendations. In terms of592

efficiency, results confirm that the both the proposed techniques can be applied in real-world scenarios.593

Our work has practical implications and interesting applications from an industrial point of view. To the594

best of our knowledge, we are in fact not aware of any commercial service that suggests groups of friends595

with whom enjoying a recommended/purchased item. We believe that our techniques are very general and596

flexible and can be easily adapted to different domains where this kind of additional recommendation service597

can be provided, e.g., e-commerce, multimedia streaming, e-tourism, etc.598

This work opens the way for further research. For example, it would be interesting to automatically599

compute the optimal size of the recommended group. One approach to address this task consists in modeling600

the UI-GF task as an instance of the well-known “densest at most k-subgraph” problem. It would be also601

interesting to investigate an extension of the probabilistic model of IRM2 to estimate automatically the602

optimal value of k. This is a more complex formulation which also needs more experiments in real world603

applications. Additionally, we envision to study the suitability of different pairwise similarities for the graph-604

based algorithms as well as design new prior estimates for IRM2. Finally, the identification of proper index605
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structures to speed up the computation of the solution of UI-GF and the extension of our recommendation606

problem to other scenarios in addition to LBSNs deserves to be investigated.607
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