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ABSTRACT
In a decentralized machine learning system, data is typically par-
titioned among multiple devices or nodes, each of which trains a
local model using its own data. These local models are then shared
and combined to create a global model that can make accurate
predictions on new data. In this paper, we start exploring the role
of the network topology connecting nodes on the performance of
a Machine Learning model trained through direct collaboration
between nodes. We investigate how different types of topologies
impact the “spreading of knowledge", i.e., the ability of nodes to
incorporate in their local model the knowledge derived by learning
patterns in data available in other nodes across the networks. Specif-
ically, we highlight the different roles in this process of more or less
connected nodes (hubs and leaves), as well as that of macroscopic
network properties (primarily, degree distribution and modularity).
Among others, we show that, while it is known that even weak
connectivity among network components is sufficient for informa-
tion spread, it may not be sufficient for knowledge spread. More
intuitively, we also find that hubs have a more significant role than
leaves in spreading knowledge, although this manifests itself not
only for heavy-tailed distributions but also when “hubs" have only
moderately more connections than leaves. Finally, we show that
tightly knit communities severely hinder knowledge spread.

CCS CONCEPTS
•Theory of computation→ Social networks;Multi-agent learn-
ing; • Computing methodologies→ Supervised learning.
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1 INTRODUCTION
We are witnessing a paradigm shift from centralised AI systems to
decentralised ones, motivated by the fact that data generators at
the edge of the network are increasingly less inclined to share their
private data with third parties, even under the promise of gaining
an advantage from centralized AI-based services. Solutions based
on decentralised AI systems, such as Federated Learning (FL) [5],
are promising candidates to address these concerns. In FL, the idea
is to let the edge devices keep the data locally and have a central
role in the knowledge extraction process. Specifically, the devices
collaboratively train an AI model without sharing any raw data
with each other. The only information shared is the parameters of
the AI models that are trained locally. These parameters are subse-
quently aggregated to form a better and capable global model that
is iteratively refined through successive rounds of collaboration.

The standard definition of the FL framework assumes a starred
network topology, i.e., a central parameter server oversees the entire
process, coordinating the operations of many clients. However, the
presence of a centralised controller might also represent a single
point of failure, a potential bottleneck when the number of de-
vices collaborating scales up to millions of devices, and an obstacle
to spontaneous, direct collaborations among users. Decentralised
Federated Learning (DFL) represents an alternative to centralised
Federated Learning. In DFL the connectivity between devices is
represented by a generic graph, and the devices involved in the
learning process typically collaborate only with their neighbours.
The lack of a central controller overcomes the single point of failure
problem but introduces other aspects that need to be investigated.
Specifically, we claim that, in this scenario, the information locality
and the network topology strongly affect the dynamics of the learn-
ing process, i.e. how fast and effective the spreading of knowledge
about the class labels is.

While previous work [8] assumes that the network topology
can be controlled by the network operator and optimized to make
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the learning process more efficient or scalable, we argue that com-
plete decentralization can only be achieved by letting user devices
spontaneously organize themselves. This implies that the network
topology, in these settings, cannot be controlled by the operator. For
example, an edge between two nodes in the graph may represent
a trust relationship or willingness to cooperate. If the edges are
weighted, the strength of the weights expresses the intensity of
trust or cooperation. With this approach, users are free to cooperate
with whomever they want, and the operator has no control over
the cooperation patterns. Although this scenario poses a challenge
from a learning perspective, it also fully exploits the human-centric,
impromptu potential of fully decentralized learning systems.

In light of these considerations, the research questionwe tackle in
this paper is how the network topology affects the learning process
in a fully decentralized learning system. Specifically, we consider
a scenario where a set of devices that are connected through a
complex network topology collaborate to train a common AI model
in a completely decentralised fashion. According to the DFL frame-
work, each device in the system receives a set of models from its
neighbours in the graph. These models are first aggregated with the
local one (typically through a weighted average) to get a refreshed
aggregate model, which is further updated through a number of
local training epochs (on local data). Finally, the newly updated
models are shared between the neighbours. The devices repeat this
until a stopping condition is met.

In our paper, we consider three topologies: Erdos-Renyi, Barabasi-
Albert, and Stochastic Block Model, and we analyse through simu-
lations how the learning process is affected by them, considering
different non-IID data partitioning settings. The main take-home
messages are the following: (i) the initial data distribution on high
vs low degree nodes plays a key role in the final accuracy of a decen-
tralized learning process, (ii) when high-degree nodes possess more
knowledge, such knowledge spreads easily in the network, (iii) vice
versa, when low-degree nodes have more knowledge, knowledge
spreads better when the network is less connected (at first coun-
terintuitive, but connectivity dilutes knowledge in average-based
decentralized learning), (iv) when users are grouped in tightly knit
communities, it is very difficult for knowledge to circulate outside
of the community.

2 RELATEDWORK
DFL extends the typical settings of FL, e.g., data heterogeneity and
non-convex optimisation, by removing the existence of the cen-
tral parameter server. This is a relatively new topic that is gaining
attention from the community since it fuses the privacy-related
advantages of FL with the potentialities of decentralised and unco-
ordinated optimisation and learning. In [6], the authors define a DFL
framework for a medical application where a number of hospitals
collaborate to train a Neural Network model on local and private
data. In [3] the authors propose a Bayesian-like approach where
the aggregation phase is done by minimising the Kullback-Leibler
divergence between the local model and the ones received from
the peers. All these approaches are still considering that the nodes
perform just one local update before sharing the parameters (or
gradients) with the peers in the network. This aspect is relaxed in
[7] and [8]. In [7], the authors propose a federated consensus algo-
rithm extending FedAvg from [5] in decentralised settings, mainly

considering industrial and IoT applications. The authors of [8] pro-
pose a Federated Decentralised Average based on SGD where the
authors include a momentum term to counterbalance the possible
drift introduced by the multiple updates and a quantization scheme
to reduce communications.

Most of these papers assume a decentralised system made of a
few nodes connected through controlled network topologies, e.g.,
rings and full meshes. In this paper, we start exploring how the
network topology affects the learning process of different decen-
tralised learning schemes under data heterogeneity. To the best of
our knowledge, this is the first paper that considers complex net-
work topologies and relates their key features to the performance
of decentralised learning.

3 DECENTRALIZED LEARNING
We represent the network connecting the nodes as G (V, E), where
V denotes the set of nodes and E the set of edges. Without loss of
generality, we assume that the graph represents a social network.
Exactly the same concepts can be translated to different application
domains. We denote with ωi j the weights on the edge between
nodes i and j which, in the case of a social network, would represent
the trust/social intimacy between the two nodes. The self-trust ωii
is a pseudo-parameter withwhichwe capture the importance placed
by node i on itself. We assume that only nodes sharing an edge
are willing to collaborate with each other: effectively, we use the
existence of a social relationship as a proxy of trust.

Each node i ∈ V is equipped with a local training dataset Di
(containing tuples of features and labels (x ,y) ∈ X × Y) and a
local model hi defined by weights wi , such that hi (x;wi ) yields
the prediction of label y for input x. Let us denote withD = ⋃i Di
and with P the label distribution inD. In general, Pi (i.e., the label
distribution of the local dataset on node i) may be different from P.
This captures a realistic non-IID data distribution. At time 0, the
model h(·;wi ) is, as usual, trained on local data, by minimizing a
target loss function ℓ – i.e., wi = argminw

∑ |Di |

k=1 ℓ(yk ,wxk ), with
(yk , xk ) ∈ Di . We assume that nodes entertain a certain number
of communication rounds, where they exchange and combine local
models. At each communication round, a given node receives the
local models from its neighbors in the social graph, and averages it
with its local model. Specifically, at each step t , the local model of
the given node and the local models from the node’s neighbors are
averaged as follows:

wi (t ) ←

∑
j ∈N (i ) ωi jαi jwj (t − 1)∑

j ∈N (i ) ωi j
, (1)

where we have denoted with N (i ) the neighborhood of node i

including itself and αi j is equal to
|Pj |∑

j∈Ni |Pj |
(and captures the

relative weight of the local dataset of node j in the neighborhood
of node i). Once the aggregation of models is performed, the local
model is trained again on the local data (in this paper, we use
learning rate η and momentum µ).

This strategy (hereafter, DecAvg) is the natural extension of
FedAvg (the most well-known FL approach [5]) to a decentralized
setting and is a social-aware generalization of similar strategies
proposed in [7, 8]: the aggregation is performed not by the central
controller (as in federated settings) but by each node, whereby each



Effect of network topologies on decentralized learning NetAISys ’23 , June 18, 2023, Helsinki, Finland

node averages the model received from a given neighbor based on
the strength of the social link connecting them.

4 NETWORK TOPOLOGIES
In this paper, we analyze three different topologies to investigate
how their different properties impact knowledge diffusion in a fully
decentralized learning process: Erdos-Renyi (ER), Barabasi-Albert
(BA), and Stochastic Block Model (SBM) graphs.

The ER model is a model for generating random graphs with a
homogeneous structure, where nodes are connected to each other
with a fixed probability. ER is defined by two parameters: N , the
number of nodes in the network, and p, the probability of an edge
existing between any two nodes in the network (regardless of their
degree). The ER model shows a phase transition when the fixed
probabilityp approaches the critical valuep∗ = ln(N )/N [2]. Specif-
ically, the value p∗ is a sharp threshold for the connectedness of
the network: for values of p above p∗ the network goes from being
mostly disconnected to showing a growing clustering coefficient.

The BA is an algorithm for generating random scale-free net-
works, i.e., networks with a power-law (or scale-free) degree distri-
bution, using a preferential attachment mechanism [1]. In the BA
model, nodes are connected preferentially based on their degree.
Specifically, the probability of an edge forming between two nodes
is proportional to the nodes’ degree, which leads to the emergence
of a scale-free degree distribution. Since the degree distribution
follows a power law, few nodes have a very high degree while most
nodes have a low degree. This can result in a structure with few
well-connected hubs, which is known to facilitate information flow
across the network. A BA network is defined by two parameters: N ,
the number of nodes in the network, andm, the number of edges
added to the network for each new node (hence, the minimum
degree of nodes).

The SBM is a probabilistic model for networks that exhibit a
modular structure, i.e., the SBM generates a network with a clear
community structure where nodes are grouped together based on
their connectivity patterns [4]. Nodes belonging to the same group
are more closely connected to each other than to nodes in another
group. Formally, the SBM is defined by the following parameters: N ,
the number of nodes in the network; B, the number of communities
(called blocks); n1,n2, ...,nB , the sizes of the blocks where ni is
the number of nodes in block i; pi j , the probability of an edge
existing between a node in block i and a node in block j (with pii
the probability of links inside the block).

These three models each capture important properties of com-
plex networks. ER graphs are homogeneous in terms of degree and
with a low clustering coefficient. BA graphs are characterised by a
very skewed degree distribution with few high-degree nodes and
many low-degree nodes. Finally, SBM graphs feature a well-defined
community structure.

5 EVALUATION
5.1 Experimental settings
In this paper, we consider unweighted graphs with 100 nodes, where
edges are generated as follows.

ER. Three different conditions regarding the parameter p are
analyzed: just below the critical value (p ⪅ p∗), at the critical value
(p = p∗) and just above the critical value (p ⪆ p∗).

BA. Three different cases regarding the parameter of preferential
attachment are chosen: m = 2, 5, 10, leading to networks with
increasingly higher node degree.

SBM. Nodes are grouped into 4 communities of equal size (25
nodes each). The probability of extrinsic connections (pi j , j , i ) is
set to 0.01, whereas the probability of intrinsic connections (pii ) is
set to 0.8 in one case study and 0.5 in the second case study.

For our experiments, we choose the widely used MNIST image
dataset. This dataset contains a set of handwritten digits, thus data
are divided into 10 classes. The goal of the analysis is to characterise
the effect of the network topology in the knowledge spreading
process, i.e., the ability of nodes to learn data patterns they have
not seen locally, but that other nodes in the network have seen.
Therefore, we split the MNIST classes across nodes as follows. Note
that, on the assigned classes, each node gets the same amount of
images.

For ER and BA networks, we divide the 10 MNIST classes into
two groups: the first group (G1) is composed of classes 0, 1, 2, 3,
4, the second group (G2) of classes 5, 6, 7, 8, 9. All nodes receive
an equal share (selected randomly) of data from G1. Data from G2
are allocated only to subsets of nodes. Specifically, we consider
two different cases, whereby data in G2 are allocated to the 10%
highest-degree and lowest-degree nodes, respectively. The rationale
is thus to allocate “full knowledge" (i.e., a complete subset of all
classes) either to high-degree or to low-degree nodes, and study the
effect of the network topology in both cases. In the following, these
configurations are referred to as “hub-focused" and “edge-focused",
respectively. Specifically, starting from the node(s) with the highest
(lowest) degree, we pick nodes until we reach 10% of the network.
In case adding all nodes at a given degree results in more than 10%
of the network, we randomly pick, among nodes with that degree,
a subset that allows us to fill the 10% subset.

For SBM networks, we divide the dataset classes into subsets
based on the communities the nodes belong to, without overlap.
Therefore, since we study SBM topologies with 4 communities,
each community gets two classes: community 1 sees classes 0 and
1; community 2 sees classes 2 and 3; community 3 sees classes 4
and 5; community 4 sees classes 6 and 7. This data distribution
is designed to challenge the knowledge spreading process, since
maximum learning accuracy can only be achieved if information
from all the external communities is brought into the local one.

For the learning task, we consider a simple classifier as the
learned model and focus on two performance figures. On the one
hand, we consider the accuracy over time at each node, to assess the
effectiveness and speed of knowledge diffusion across the network.
On the other hand, for SBM networks, we also investigated the
average confusion matrix across nodes of the same community.
Specifically, for each node we compute the confusion matrix for
the MNIST classes, and then take the average across all nodes in
the same community.

We implemented the DecAvg scheme within the custom SAISim
simulator, available on Zenodo1. SAISim is developed in Python

1https://doi.org/10.5281/zenodo.5780042
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and leverages state-of-the-art libraries such as PyTorch and Net-
workX for deep learning and complex networks, respectively. On
top of that, SAISim implements the primitives for supporting fully
decentralized learning. The local models of nodes are Multilayer
Perceptrons with three layers (sizes 512, 256, 128) and ReLu acti-
vation functions. SGD is used for the optimization, with learning
rate 0.001 and momentum 0.5.

5.2 Results
5.2.1 ER. As explained in Section 5.1, for the ER model we want
to evaluate scenarios around the critical value of connectedness.
Considering our settings, the critical value p∗ is 0.046, hence the
chosen values of p are 0.03, 0.046, 0.05. In Figure 1 we show the evo-
lution of the accuracy per node over time (each curve corresponds
to one node). The top-row plots refer to the edge-focused case,
where the digits in class G2 are assigned to leaf nodes, while the
bottom-row plots correspond to the hub-focused scenario, where
the well-connected nodes get all the images in G2. The first interest-
ing result is that, in the edge-focused case, the separation between
the curves of the nodes having more data and those that have fewer
data is more evident. This means that when leaf nodes possess the
missing classes (G2 images), it is harder for knowledge to circulate.
This finding holds when we vary p (which increases from left to
right). However, in the edge-focused scenario with below-critical
p (top left corner), we see that some nodes are eventually able to
reach the accuracy of the nodes holding more data. But as we go
from left to right, i.e., from less to more connected networks, this
ability vanishes. This is quite interesting as well as counterintu-
itive. When the network is more connected, high-degree nodes
(we refrain from calling them hubs, as in ER networks hubs do
not exist) get proportionally more connected than leaf nodes. As
G2 data are present only in leaf nodes, the additional connectivity
plays against knowledge diffusion from leaves, as leaves’ models
are averaged among larger sets of nodes (due to higher degrees of
more connected nodes), and therefore their knowledge “weighs"
less in the average. This is also clear in Figure 2, where we show
the accuracy only for nodes that are only assigned G1 images, and
highlight the curves of the highest-degree nodes, which remain at
low accuracy. The more the network is connected, the more high-
degree nodes “drag" other nodes toward their performance. In the
hub-focused case (lower part of Figure 1) results are more intuitive,
as the highest degree nodes enjoy higher accuracy, and are able to
drag all the other nodes closer and closer to their performance.

In Figure 3, we aggregate the accuracy among all nodes in the
same experiment and we show the evolution over time of the av-
erage and standard deviation of the accuracy. Coherently with
Figure 1, the average accuracy in the edge-focus case is lower than
in the hub-focus case. This is again due to high-degree nodes (in
the former case) blocking the spreading of knowledge from leaves.
An interesting feature can be highlighted by comparing, in both
cases, the standard deviation curves for networks below the criti-
cal threshold (p = 0.03, blue and orange curves in the figure) and
the rest, which clearly show a lower rate of decay (after an initial
increase). This can be attributed to the effect of longer paths when
p = 0.03 (because the network is less connected), which hinders
the alignment of local models across nodes, which are in this case

farther away than for more connected networks (values of p at and
beyond the critical threshold). Also, the standard deviation values
are generally higher in the edge-focus case, as hubs hinder other
nodes to incorporate knowledge from leaves. This effect, again, is
less pronounced for less connected networks, where some nodes
are able to “escape" the dragging effect of high-degree nodes, thus
resulting in higher accuracy (but higher standard deviation) at the
level of the entire network.

Finally, we can observe another overall effect by jointly analysing
the accuracy per node, the average accuracy and the standard devi-
ation for the edge-focus case. Specifically, on average nodes in the
least connected network achieve lower accuracy (Figure 3, orange
and blue curves) even though, as a side effect of the higher standard
deviation, some non-leaf nodes are able to increase their accuracy
escaping the attraction effect of high-degree nodes. As the network
becomes more and more connected, no node in the “non-leaf and
non-hub" class is able to reach the same accuracy, even though, on
average, the overall accuracy increases. This means that, as a side
effect of additional connectivity, hubs tend to increase their accu-
racy, even though they block other nodes to efficiently incorporate
models of leaf nodes.

5.2.2 BA. As discussed earlier, for the Barabasi-Albert model we
analyze three different settings varying the parameter related to
the preferential attachment:m = 2, 5, 10. We show the accuracy
over time in Figure 4. First, in the hub-focused case (bottom row),
the performance for varying values of the minimum degreem is
basically indistinguishable (this is confirmed by looking at the av-
erage and standard deviation of the accuracy in Figure 6). This
means that hubs (in this case, high-degree nodes are real hubs)
spread knowledge extremely efficiently, irrespective of the connec-
tivity of the rest of the nodes. The edge-focused case (top row of
Figure 4) is more interesting. As was the case with ER networks,
leaf nodes are not able to spread their knowledge efficiently and
the accuracy gap between leaf nodes and non-leaf nodes remains
strong all throughout. In Figure 6, we observe that larger values of
m (i.e., stronger connectivity) help improve the average accuracy
but not significantly, while the variability is reduced. The hubs in
the edge-focused scenario seem to benefit from the existence of
lower-degree nodes, corresponding to smallerm (Figure 5). Vice
versa, when the degree of the other nodes increases, their accuracy
is dragged down by them. This results, though, in better average
accuracy and reduced variability.

5.2.3 SBM. The SBM topology is different from the previous two
as it features four clearly separated communities, with sporadic
intercommunity links. For the intracommunity connectivity, we
test two scenarios (lower and higher intracommunity connectivity,
corresponding to pii = 0.5 and pii = 0.8). Recall that each com-
munity holds two non-overlapping MNIST classes (hence, classes
8 and 9 are discarded). Using only intracommunity information,
nodes can at most achieve a 0.25 accuracy (perfect classification
of the two classes in their training data, zero knowledge on the
other six). In order to go beyond 0.25, knowledge must be circulated
across communities. The question is whether the occasional inter-
community edges are enough for that, and if the densely connected
communities will make it harder for external information to per-
colate internally. Figure 7 shows that the latter is happening: with
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Figure 1: Accuracy in ER networks (all nodes). From left to right: increasing values of p; from top to bottom: edge-focused
scenario and hub-focused scenario.

Figure 2: Accuracy in ER networks (nodes with only G1
images, edge-focused scenario), curves of the high-degree
nodes in red.

Figure 3: ER (all nodes): accuracy mean and std.

pii = 0.5 (less dense communities) the average accuracy grows
faster than with pii = 0.8. The figure also reveals the presence
of stragglers, for whom catching up with the rest of the network
takes some time. Interestingly, entire communities appear to be
stragglers. Table 1 shows that communities are, as expected, very
good at classifying classes they have in their local training data.
Vice versa, it is very hard for external knowledge to enter the com-
munities. Table 1 also shows the number of links pointing towards

Class Comm. 1 Comm. 2 Comm. 3 Comm. 4
(-, 5,9,7) (5,-,7,3) (9,7,-,8) (7,3,8,-)

0 0.9961 0.0002 0.0004 0.0043
1 0.9992 4e-05 0.0684 0.0079
2 0.0 0.9868 4e-05 0
3 0.0146 0.9802 0 0.0002
4 0.1824 0.0076 0.9971 0.0006
5 0.0011 4e-05 0.9972 0.0011
6 0.0039 0 0.0003 0.9979
7 0.272 0.0101 0.0225 0.9966

Table 1: Accuracy per MNIST class and community for SBM
with pii = 0.5. For each community, we report in square
brackets the number of edges pointing toward external com-
munity 1, 2, 3, 4, respectively.

external communities, which are the conduit for knowledge dif-
fusion. Community 2 enjoys fewer external links, and indeed its
learning process is very slow and mediocre (Figure 7). However,
Community 1 has only slightly fewer links than Community 3, but
its learning process is faster and more accurate. We argue that the
specific classes assigned to communities might play a role in this
case, and we will investigate this aspect in future work.
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Figure 4: Accuracy in BA networks (all nodes). From left to right, the parameterm increases; from top to bottom: edge-focused
and hub-focused scenario.

Figure 5: Accuracy in BA networks (nodes with only G1 im-
ages, edge-focused scenario), high-degree nodes in red.

Figure 6: BA (all nodes): accuracy mean and std.
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