
ProcessFast, a Java framework for the
development of concurrent and distributed

applications

Andrea Esuli and Tiziano Fagni

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

56124 Pisa, Italy
E-mail: {firstname.lastname@isti.cnr.it}

Abstract. Today, any application that requires processing information
gathered from the Web will likely require a parallel processing approach
to be able to scale. While writing such applications, the developer should
be able to exploit several types of parallelism paradigms in a natural way.
Most of the available development tools are focused on just one of these
parallelism types, e.g. the data parallelism, stream processing, etc. In this
paper, we introduce ProcessFast, a Java framework for the development
of concurrent/distributed applications, designed to allow the developer
to integrate both stream/task parallelism and data parallelism in the
same application and to seamlessly combine solutions to sub-problems
where each solution exploits a specific programming model.

1 Introduction

Most of the frameworks for parallel and distributed computing focus on a single
parallel computing paradigm, e.g., stream processing [6, 1, 5], map-reduce [3, 7,
8], task parallelism [4]. Complex applications could benefit from using a combi-
nation of different approaches. For example, a text mining system that classifies
a stream of tweets can be decomposed into a set of parallel tasks (crawling, NLP
processing, indexing, classification, aggregation, report) connected via streams,
with each task possibly exploiting data parallelism to efficiently apply the same
computation to batches of data. Implementing such a system usually requires to
combine several frameworks, with the added burden of implementing a commu-
nication layer among them. Moreover, the target architecture of the system, e.g.,
a single multi-core machine or a distributed environment, will result in different
choices of frameworks, since each framework is usually targeted to produce its
maximum efficiency on a specific architecture. Changing the runtime architec-
ture will often require to change the underlying parallel computing framework1,
with non trivial implementation cost.

1 Many tools have a standalone mode that simulates a distributed environment on a
single machine, but it is mainly thought as a development tool, not for production
use.



Fig. 1. Schema of a ProcessFast application

We are developing ProcessFast (PF), a Java framework that aims at provid-
ing a seamless integration of different parallel computing models, by combining
the functionalities provided by different parallel processing frameworks into an
homogeneous API. PF does not aim at implementing yet another parallel com-
puting framework, its purpose is to act as a higher-level API that abstracts the
functionalities of current parallel computing frameworks, allowing to write scal-
able applications that once developed can be deployed, and executed efficiently,
on different architectures by only switching the PF runtime layer that imple-
ments the API on the better suited frameworks. This paper introduces the PF
main concepts, structures, and functionalities. The current status of the devel-
opment consists of the PF API and a first implementation of the API on a single
machine architecture mainly based on wrapping the GPars library [2].

2 ProcessFast, an overview of the programming model

The PF API2 defines how the developer can write applications that use and
combine task/stream parallelism and data parallelism. It provides a lock-free
programming model in which an application can be defined in terms of a set of
asynchronous processes that are able to intercommunicate.

2.1 TaskSet, a logical container and a reusable “black box”

As shown in Figure 1, the topology of an application is defined inside a TaskSet.
A TaskSet is a logical container of Tasks (detailed in Section 2.2) and Connectors
(detailed in Section 2.3). A TaskSet is also a Task, and thus can be used as a
“black box” inside another TaskSet. A TaskSet allows to implement task/stream
parallelism through the use of Connectors to let the contained Tasks communi-
cate together. Barriers can be used to synchronize the execution of Tasks.

2 ProcessFast public repository: https://github.com/tizfa/processfast-api

2



Fig. 2. The internal structure of a Task

2.2 Task, a stateful and asynchronous logical process

A Task is the minimal unit of execution in PF. Every Task is a stateful logical
process which runs asynchronously with respect to the other tasks in the appli-
cation and can be created in multiple instances inside a single program. A Task
is able to communicate through Connectors only with the other Tasks defined
in the same TaskSet, or externally using the input and output Connectors of the
parent TaskSet (which define the entry and exit points of the TaskSet taken as
a black box). As shown in Figure 2, a Task internally can exploit the data paral-
lelism by operating concurrently on PartitionableDatasets (PDs). The concept
of PD is very similar to that of RDD in Spark [8]. A PD is a read-only data
structure which can be split in n partitions, where every partition can then be
processed concurrently as a data stream. PDs can be processed by applying two
types of operations, following a map-reduce model:

– transformations: each item in the input stream is transformed in some way
resulting in a new item in the output stream (e.g. T1 and T2 in Figure 2).

– actions: items from input data stream are collected and processed to produce
an aggregated result that is returned to the caller task (e.g. A1 in Figure 2).

2.3 Connectors, interprocess communication based on queues

A Connector is a shared queue, belonging to a TaskSet, uniquely identified by
a name. Connectors can have single or multiple Tasks attached as readers and
writers. A Task can consume exclusively an item read from a Connector (first
come, first served, data parallelism) or the Connector can provide to each reading
Task the same complete sequence of items as written to the connector (broad-
casting, task parallelism). Write operations are generally asynchronous (a Task
after posting a message on a specific connector can continue its computation)
while the read are synchronous and blocking, though is it also possible to define
synchronous read/write connections.

3



2.4 Shared permanent storage

The PF API defines a shared permanent storage which allows direct access to
some high levels data structures. The main purpose of the permanent storage is
to reduce the amount of information transmitted through connectors and to rely
instead on solutions that are best fit for the target architectures. The supported
data structures are:

– Array : a direct access unidimensional array. The structure supports PD
views, thus it is ready for parallel processing.

– Matrix : a direct access bidimensional array. The structure supports PD
views, allowing parallel processing by rows or by columns.

– Dictionary : a key/value collection.
– DataStream: a byte stream used to load/store data.

3 Conclusions

We have introduced the main ideas behind PF, whose grand goals are (i) to
allow developers to seamlessly integrate different parallel computing models into
their applications, and (ii) to implement a write once, run (efficiently) anywhere
model for parallel/distributed applications. We have recently completed the first
implementation of the ProcessFast API based on Groovy GPars library [2]. One
of our first tests, on a eight cores CPU, obtained a five-fold improvement against
a sequential implementation of matrix multiplication using matrixes with a size
of 10’000 by 10’000. Future development will focus on implementing the API on
a distributed architecture and on running comparative tests with the well-known
alternatives (e.g., Hadoop, Spark, Storm).

References

1. Apache Samza. http://samza.apache.org/.
2. Gpars: Groovy parallel system. http://gpars.codehaus.org/.
3. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, January 2008.
4. J. Dinan, S. Krishnamoorthy, D.B. Larkins, Jarek Nieplocha, and P. Sadayappan.

Scioto: A framework for global-view task parallelism. In Parallel Processing, 2008.
ICPP ’08. 37th International Conference on, pages 586–593, Sept 2008.

5. Gianmarco De Francisci Morales and Albert Bifet. Samoa: Scalable advanced mas-
sive online analysis. Journal of Machine Learning Research, 16:149–153, 2015.

6. Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@twitter. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’14, pages 147–156, New York, NY, USA, 2014. ACM.

7. Tom White. Hadoop: the definitive guide: the definitive guide. ” O’Reilly Media,
Inc.”, 2009.

8. Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, pages 10–10, 2010.

4


