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Abstract

We introduce the class of destructive run-time errors
as those errors after which the execution status of the
program can be so damaged that it is usually
impossible to perform any kind of program-driven
recovery. Programming errors causing this destructive
events are analysed, with particular attention to those
cases not related to the use of explicitly "dangerous”
low level constructs. It is shown how the risk of these
errors can be easily underestimated.

1 Introduction

One of the innovative aspects of Ada is the provision
of an exception mechanism, which allows the
detection of run-time errors. Above all, this
mechanism constitutes the base on which some kind
of recovery can be planned and performed by the
program itself, allowing the development of more
robust and safe software (e.g. introducing executable
annotations [1] in the source code, and performing
appropriate recovery actions when some inconsistency
occurs).

However, there is a class of errors which we will call
"destructive errors" for which the above scheme does
not work. In fact, the occurrence of a destructive error
can damage some system structure (data descriptors,
run-time system structures, program code) rendering
actually impossible the continuation of the program
execution.

Errors of this class are obviously far more severe and
dangerous than the standard run-time errors
manifested by the raising of an exception, especially
since in this case there cannot be any kind of recovery
plan to be followed by the malfunctioning program.

This kind of error is often identified with the so-called
"erroneous executions”. However, as we will see later,
not all cases of erroneous executions result in
destructive errors, and not all occurrences of
destructive errors are qualified in the current standard
as erroneous executions.

2 The sources of destructive errors

Language implementation (compiler, run-time system)
bugs, operating system bugs, and hardware troubles
are possible sources for this kind of destructive
behaviour. However, in this paper we are we are not
concemed with this kind of events.

Programming errors are the other reason for a
potentially destructive program behaviour.

First of all we should distinguish between simple
logical program design errors (the program is simply
wrong, i.e. its semantics is well defined, predictable,
correct, but functions differently from the intention of
the user), and another category of programming errors
related to the incorrect use of some dangerous, not
well defined, unsafe, highly implementation
dependent or unpredictable Ada features.

Errors of the first type may be, for example, the
unintentional deletion of an exteral file, or more
commonly, the wrong update of any, user data
involving the loss of some critical information. Of
course we are not interested in discussing this kind of
program design errors.

Errors of the second type are may be related, for
example, to the use of some low level features of Ada
(e.g. machine code insertions), to the generation of an
erroneous execution (e.g. an unchecked conversion
between objects of different size), to the use of a not




well defined, or completely implementation dependent
aspect of the language (e.g. concurrent I/O operations
on the same file object).

All the errors of this second type have the common
feature that, in the end, their occurrence might result
in the generation of an illegal address, used for a jump
or for a memory access.

In the following sections we will discuss in more
detail the classes in which this kind of errors can be
grouped. Our interest in this particular kind of error
derives from the desire to understand better some of
the obscure points of the language definition, with the
indirect aim of contributing to the reduction of the risk
in the usage of the language, providing some input
useful, for instance, for a better estimation of compiler
selection criteria, techniques for compiler
implementations, safe programming styles, and coding
standards.

3 Use of low level aspects of Ada

Sometimes the programmer can be assumed to be

conscious of the possibility of the occurrence of a

destructive error directly caused by the use of some

"low level" language feature. In some cases, in fact,

the risk in the use of some language aspects is rather

explicit ; essentially this is the case in:

» the use of pragma SUPPRESS to inhibit the
production of code for the execution of standard run
time checks.

If an error situation arises and the corresponding

check (e.g. a constraint check) is omitted, some

memory can be overwritten (e.g. when updating an
array component).

° the use of address clauses .

If an overlay between an Ada object and a system

structure is achieved, the latter may be irrecoverably

damaged.

* the use of machine code.

Anything may happen if machine codes are not used

safely.

* the use of pragma INTERFACE.

Note that, as far as we are concemned, an interface to
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assembler is not different from using machine code
hirectly.

Since the risk in the use of these features is rather
explicit we are not particularly interested in further
analysing these language aspects.

Two other language features, unchecked conversions
and unchecked deallocations, are also associated with

+ explicitly dangerous operations; this fact is properly

put in evidence by the reference manual in declaring
these subprograms in chapter 13 (Implementation
dependent aspects) and giving them expressive names.
While unchecked conversions do not have the
immediate effect of generating and using an illegal
address, but, at most result in the production of illegal
values and structures, the consequences of the wrong
use of unchecked deallocations can be more difficult
to detect.
The problem with unchecked deallocations is that they
have complex and difficult to control side effects on
other objects of the program, and on other high level
constructs of the language.
Let us consider the following example:
type ARRAY_TYPE is array (1..100) of INTEGER;
type REF_TYPE is access ARRAY_TYPE;
REF1, REF2: REF_TYPE := new ARRAY_TYPE;
procedure FREE is

new UNCHECKED_DEALLOCATION(
ARRAY_TYPE, REF_TYPE);

REF2:= REF1;

FREE(REF1);
In this case the execution of FREE(REF1) has the side
effect of rendering erroneous (and according to our
approach destructive) any use of the value of REF2 as
a prefix for a .all selection.
However, the relation between REF]1 (the object on
which the unchecked deallocation is performed) and
REF2 (the object that will contain an illegal access
value as a side effect of the unchecked deallocation),
in this case rather evident, is in general very difficult
(if not impossible) to detect.

The situation is made even more complicated in the




presence of object renaming declarations, as illustrated
below:

INT1: INTEGER renames REF1.all(100);

FREE(REF1),

In this case, the side effect of the unchecked
deallocation performed on REF1 extends to the
definition of the INTEGER variable INT1, rendering
erroneous any attempt to use it. A similar situation
arises in presence of subprogram calls:

procedure DO_SOMETHING (
VECTOR: in out ARRAY_TYPE;
COMPONENT: in out INTEGER);

DO_SOMETHING(REF1.all, REF1.ali(100) };

In this case, if FREE(REF1) is executed during the
execution of DO_SOMETHING (e.g FREE is
indirectly called by DO_SOMETHING, or
concurrently called by some other task), any attempt
to use the parameters VECTOR and COMPONENT
should be considered a potentially destructive error (if
the parameters are passed by reference any use of
them is a destructive error, while if parameters are
passed by copy, a destructive error occurs at the time
of the copy-back).

Further cases of complex side effects in the presence
of aliasing are possible, in a way very similar to the
inconsistent update of an unconstrained record
variable (see section 5.4).

4 "Potentially unpredictable" or extremely "lazy"
points of the reference manual

Sometimes the language definition is not explicit in
requiring the safety (predictability) of some language
feature, besides not being explicit in stating its
unsafety. As a consequence, there may be a lack of
certainty about the possibility of occurrence of
destructive errors. This uncertainty, however, will
hopefully be reduced when new Ada Commentaries
pointing out these unclear language aspects are

submitted to AJPO, discussed, approved and

transformed into official additions to the language
definition.

The result of the above process may be, for example,
introducing new cases of potentially unpredictable
executions into the language definition (as erroneous
executions), or adding new tests in the ACVC
validation suite, thus improving the safety of the
validated implementations.

Currently, most of these commentaries have not
reached a final official status, but are still subject to
discussion, revision, and update. In the following we
will present a short list of language aspects for which
an official position has not yet been assumed, but
which we believe may give an interesting contribution
to our survey of the possible sources of destructive
errors, pointing out the instability of the current
standard.

For example, the current trend in the discussion of
AI-00867 seems to be in the direction of requiring that
attempts to interact with a task after its master
program unit is terminated should be considered
erroneous. Fortunately this kind of interaction is very
unlikely to occur in practice (in meaningful
applications); indeed this possibility is considered a
genuine "anomaly” in the language definition.

An important clarification comes from AI-00837,
which is going to fix a small oversight in the language
definition, specifying as erroneous the evaluation of
any variable (not only a scalar one) which has become
undefined because a task was aborted while updating
it.

Another important commentary is AI-00591,
discussing the safety of concurrent 1/O operations
performed by several tasks in parallel on the same file
object. A possible consequence of this kind of parallel
interaction, in fact, is not only the risk of generating
"scrambled” input or output, but also the possibility of
unrecoverably damaging some file descriptor or some
internal descriptor used by the 1/O system or by the




run-time system.

Another relevant language aspect, on which no
tentative position has been taken so far, is the safety
of the execution of abort statements and of task
scheduling (see AI-00447). In some validated
implementations, for example, it is plainly stated that
the program execution becomes erroneous if a task is '
.aborted while performing some /O operation. If an
implementation is allowed to introduce new cases of
erroneous execution in consequence of the use of
abort statements, there is the danger that the program
execution will be considered erroneous also in the
case in which a task is aborted while evaluating an
allocator, or while aborting other tasks, or executing
any run-time system kemel routine.

Further issues are present in the AI-00xxx list
(containing nearly 900 issues) which might have an
impact on the possibility of destructive errors in Ada
programs; however, it is beyond the scope of this
paper to present and discuss them in a more detailed
or exhaustive way (see [6], [7], [8],[9]).

Finally, sometimes the language definition is clear, but
still Jeaves an undesiderable freedom to language
implementations (for example not imposing any
restriction on the possible effects of an erroneous
execution, also in the case of a simple dependence on
the parameter passing mechanism). The Uniformity
Rapporteur Group (URG), an ISO institution devoted
to the definition of language recommendations aimed
at the reduction of disuniformities among validated
language implementations, is going to play an
important role in approaching this side of the problem.
The degree of safety of those implementations which,
beyond being validated, will also take into account the
URG recommendations, can be expected to be highly
improved (e.g. see the discussion on UI-0018 in
section 5.1).

S High level features with intrinsic but implicit risk
Lastly we come to a third class of potentially
destructive errors, which we believe it is extremely
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important to analyse in detail. There are some cases, in
which we cannot in general assume that the
programmer is conscious of the danger of the
occurrence of a destructive error, since this risk is
implicit in the use of high level constructs.

Let us consider, for example, the use of a scalar
variable which is supposed to be initialized but is not.
As illustrated in Figure 1, and discussed in [UI-0018],
[2] [3] the use of such a scalar value as an index
selecting an array comporient used in the left-hand
side of an assignment might actually result in some
memory overwrite. However, unless very strict safe
programming rules are adopted (e.g.see [4)), it is very
difficult to ensure that no undefined values will be
present in the program.

The situation is even more difficult in the case of real-
time embedded programs in which, for example,
performance requirements do not permit initializing
all of the data structures at declaration time, tasking
cannot be avoided (e.g. in order to catch external
interrupts), exceptions and interfaces to external
devices are widely used, and no garbage collection can
be assumed.

In such situations the programmer may be aware of
the possibility that the program contains some errors
(e.g. it could make use of an undefined scalar value).
However this awareness is not localized on a
particular "explicitly dangerous” construct to be held
under control. ‘

Even worse, the programmer may be only partially
conscious of the possible consequences of these
errors. For example, it is not at all evident that when
an undefined value is used as an array index, the range
check on the index value might not be performed at all
(because of some dangerous optimizations the
implementations are allowed to perform), with the
consequence that an illegal address may be generated
and that some arbitrary memory location may in the
end be overwritten.

This is exactly the set of cases we are going to discuss;
i.e. those cases of destructive errors not particularly




related to the use of explicitly "dangerous” low level
constructs, and for which the programmer may
underestimate the level of risk.

subtype SMALL_INT is INTEGER range 1..10;
SMALL_VECT: array (SMALL_INT) of INTEGER;
SMALL_INDEX: SMALL_INT;

- SMALL_INDEX may become illegal

SMALL_VECT(SMALL_INDEX) :=0; .

-- The index check is usually optimized by the compiler
-~ (the subtype of the expression is exactly the subtype
-~ of the index range)

-~ If SMALL_INDEX has an illegal value an illegal

-~ address is computed and an arbitrary storage

-- location is overwritten.

Fig. 1 : Use of an illegal array index generating a
destructive error.

5.1 Use of illegal scalar values

In the following we will use the term "illegal value" of
a scalar type to denote a scalar value for which there
exists no legal literal of the same type with a
corresponding bit configuration.

This kind of illegal value can be introduced into the
program in several ways (discussed in section 6), the
most evident of which is leaving a scalar variable
uninitialized.

It is not true that any use of an illegal scalar value

- should be necessarily considered a potentially
destructive error. For example, even if the execution is
defined as erroneous, nothing strange should happen
after the execution of an assignment Y:=X (where
both variables are scalar variables), except for the
possible propagation of an illegal value from Xto Y.
In [UI-00018] the concept of "critical contexts"” is
introduced, referring to those contexts in which the
evaluation of an illegal scalar value results in the
generation of an illegal address subsequently used for
a jump or for an update operation. The purpose of this
Ul is simply to increase the safety and uniformity of
implementations by recommending not to optimize the
run-time checks needed to detect the presence of

illegal values in these "critical contexts".

From a certain point of view, in fact, the use of an
illegal address for a read operation is not effectively
destructive. Note, however, that depending on the
implementation, such an operation might result in an
abnormal program completion if some operating

system memory protection scheme is violated, still

. overcoming any attempt to recover this kind of error

from inside the program itseif. It seems therefore
reasonable to consider as cases of potentially
destructive errors also those uses of an illegal scalar
value which might result in the generation of an illegal
memory address for reading purposes.

In some cases a scalar value is used directly to
compute an illegal address.

This happens, in particular, when the scalar value is
used:

a) as an array index (or as a bound of slice)

b) as index of an entry family

c) as the expression defining the alternative of a case
statement (if the implemantation of the case

statement makes use of a jump table)

In cases a) and b) an implementation might not detect
the illegality of the scalar value, when the subtype of
the expression used as index is exactly the same as
that used as the array index_subtype. In these cases, in
fact, an implementation might decide to optimize the
standard range check on the index value, relying on
the fact that, in all the cases in which program
execution is not erroneous, the check would be
redundant (see Figure 1).

In case c), instead, no run-time check is required by
the standard on the legality (in the sense specified
above) of the value used for the case statement. The
program execution has probably already become
erroneous if the value of the expression results to be
illegal with respect to its type.

In two other cases the evaluation of an illegal scalar
value might result not necessarily in the direct and
immediate generation of an illegal address, but in the




generation of an inconsistent program status indirectly
generating a destructive error. This happens, in
particular, when the scalar vatue is used:

d) during the evaluation of a range definition

e) during the evaluation of a record discriminant.

As illustrated in Figure 2, in case d) the evaluation of
an illegal scalar value during the evaluation of the .
range constraint of a subtype declaration might result
in the definition of an illegal subtype which, when
subsequently used as the range of a slice, might
generate the same destructive effects discussed in

point a) above.

subtype SMALIL_INT is INTEGER range 1..10;
SMALL_VECT: array (SMALL_INT) of INTEGER;
SMALL _INDEX: SMALL_INT;
-~ SMALL _INDEX may become illegal
subtype SMALL_RANGE is

SMALL_INT range 1 .. SMALL_INDEX;
- The subtype check is usually optimized by the
-- compiler the subtype of the range bound is exactly
- the subtype of the range bound type)
SMALL_VECT(SMALL_RANGE) := (others => 0);
-- The index check for the slice bounds can be
-~ optimized by the compiler
- If SMALL INDEX has a (positive) illegal value an
-- illegal address is computed and an arbitrary storage
-- location is overwritten.

Fig. 2 : Definition and use of an illegal range
generating a destructive error.

Similarly, the evaluation of an illegal scalar value as a
discriminant value, during the elaboration of a subtype
declaration or during the creation of a record object,
can be considered to produce an inconsistent status
easily giving birth to destructive effects during the
creation of the object or during its subsequent use.
Figure 3 illustrates the case of the creation of a record
object with an illegal discriminant, in which the
discriminant is used as a subtype constraint for a
record component, resulting in the evaluation of an
inconsistent aggregate and in an inconsistent
initialization of the record object.

subtype SMALL_INT is INTEGER range 1..10;
SMALL_INDEX: SMALL_INT;
-- SMALL INDEX may become illegal
type VECT_TYPE is
array SMALL_INT range <> of INTEGER;
type STRUCT_TYPE (UPPER_B: SMALL_INT) is
record
VECTOR: VECT_TYPE( 1.. UPPER_B)
:= (others => 0);
end record;

MY_STRUCTURE: STRUCT_TYPE (SMALL_INT);
-- The subtype check on the discriminant value can be
-- optimized by the compiler

-- If SMALL_INDEX has an illegal value an illegal

-- range is computed and a sequence of arbitrary

-- storage locations is overwritten.

Fig. 3 : Definition and use of an illegal discriminant
as subcomponent subtype constraint.

Figure 4 illustrates the case of the creation of a record
object with an illegal discriminant, in which the
discriminant itself is used as value for a record variant
part, resulting in the creation of an object with an
inconsistent structure. In this case it is not guaranteed
that the object creation can proceed without generating
inconsistencies in the program status.

subtype SMALL_INT is INTEGER range 1..10;
SMALL_INDEX: SMALL_INT:
-~ SMALL _INDEX may become illegal

type STRUCT_TYPE (TAG: SMALL_INT) is record
case TAG is
when 1.5 => COMP1: INTEGER;
when 6..10 => COMP2: BOOLEAN;
end case;
end record;

MY_STRUCTURE: STRUCT_TYPE (SMALL_INT);
-- The subtype check on the discriminant value can be
-- optimized by the compiler

--If SMALL_INDEX has an illegal value an illegal

-- case variant is evaluated,

-- The object has a completely unpredictable structure.

Fig. 4 : Definition and use of an illégal discriminant
as record variant.

Note that if an implementation does not optimize also
the subtype checks associated to type conversions, it is
sufficient to include all expressions in the contexts a)
.. €) above in an explicit type conversion, to resolve
the problem at run-time detecting all dangerous uses




of illegal scalar values.

For tha sake of completeness it is interesting to
observe the existence of contexts "less critical” than
those of cases a) ... e) above, in which the use of an
illegal scalar value does not result in a destructive
behaviour (neither directly nor indirectly), but can still
originate a very "anomalous" program behaviour. The
use of illegal boolean values as conditions for loops
and if statements (In Figure 5 it is illustrated the case
of an endless loop), provides a typical examples for
this kind of anomalous behaviour.

COND: BOOLEAN;
EXITING : BOOLEAN := FALSE;

-- COND may become illegal

foop
if (COND = TRUE) and EXITING then ... ; exit;
end if;
if (COND = FALSE) and EXITING then ...; exit;

end if;
-- initially at least one cycle is performed
-~ (EXITING = FALSE)
EXITING := TRUE;
-- if COND contain an illegal value, even if
-~ EXITING becomes TRUE,
-- none of the above two exit conditions might
-- evaluate 1o true.
end loop;

Fig. 5 : An endless loop.

5.2 Use of illegal access values

Intuitively, an access value can be considered illegal
when it does not denote a currently accessible object
created by the execution of the standard allocator
inside the access type collection.

Ilfegal access values cannot be introduced into the
program by uninitialized variables, but can still be
generated as a consequence of other cases of
erroneous execution or destructive errors (see sect. 6).
Although not all uses of illegal access values
necessarily constitute a potentially destructive error
(consider for example the execution of a simple
assignment propagating an illegal access value from
one access variable to another), the association of
illegal access values with illegal memory addresses is
rather immediate, and any evaluation (implicit or

i

explicit) of the .all selector applied to an illegal
access value can be considered a ca§e of destructive
error.

We can observe that, in this case, unlike in the case of
illegal scalar values, there is no run-time check the
programmer can perform to detect the illegality of the
access value. It is therefore particularly important to
avoid the generation of illegal access values, when
program safety is a major requirement.

5.3 Use of illegal record structures

Record objects with discriminants constitute a very
powerful language feature, which however may give
rise to severe problems.

A record structure is considered to be illegal in two
cases:

a) Some of the record discriminants are illegal.

b) All the record discriminants are legal scalar values,
but the remaining record components do not reflect
the structure required by the discriminant values.

In both cases there is a basic uncertainty even on the
simple existence of the record components which
depend on the discriminant.

We have already said in section 5.1 that the attempt to
create of a record object with an initial illegal structure
(i.e. evaluating an initial illegal discriminant value)
should be considered a potentially destructive error.
The situations is not different if we consider the
possible effects of the use of a record object which has
become illegal (i.e. it has got an inconsistent structure)
during the program execution.

As in the case of access values, these inconsistent
record structures cannot be introduced into the
program by uninitialized variables, but can still be
generated in consequence of other cases of erroneous
execution or destructive errors (discussed in sect. 6) .
As well as for the case of access values, it is in general
impossible to detect at run-time the illegality of the
structure. On the contrary, there is no use of these
illegal structures which can in general be considered
safe.

The danger of using an inconsistent record structure




~ becomes apparent if we consider the possible
implementation choice of using hidden pointers for
allocating in the heap the memory used for the record
subcomponents corresponding to the record variant
parts or the record subcomponents depending from the
discriminant itself.

Once an inconsistent record structure is produced, any
use of the record itself may result in the evaluation of
an illegal memory address. It is therefore particularly

~ important, also in this case, to avoid the generation of
illegal structures when program safety is a major
requirement.

5.4 Non-atomic access to unconstrained record
objects and components

Unconstrained record variables constitute another high
fevel but "dangerous” aspect of the language.

The problem with this kind of objects is that their
internal structure changes according to the current
value of the discriminant, but their update is not
required to be atomic.

Consequently, when the use of an unconstrained
record (or of its subcomponents) overlaps with an
assignment changing the record structure, the result
can be a destructive error.

This may happen, typically, when an unconstrained
record is shared among several parallel tasks, and
accessed in a non synchronized way (e.g. written and
read simultaneously). This kind of erroneous
behaviour usually results in the generation or
evaluation of illegal values, but in this case it may also
cause the production and use of an illegal address,
thus generating a destructive error.

As already discussed for the case of unchecked
deallocations (in section 3), any use of a formal
parameter corresponding to an unconstrained record
(component) is erroneous and possibly destructive if
the variable used as actual parameter is updated during
the execution of the subprogram call directly by the
subprogram itself or by some other task.

Finally, the update of an unconstrained record as a
side effect of a function call can result in the

evaluation and use of an illegal address if the
evaluation of the function call occurs during the
evaluation of the name of a subcomponent of the
unconstrained record, or inside an assignment to a
subcomponent of the record. As illustrated in Figure 6,
this situation is not likely to occur frequently, and it
should not be difficult to devise some "safe
programming style” avoiding the generation of these
situations.

type VECT_TYPE is array (1..10) of INTEGER;
type STRUCT_TYPE (TAG: SMALL_INT := 1) is
record
case TAG is
when 1.5 => VECTOR: VECT_TYPE;
when 6..10 => COND: BOOLEAN;
end case;
end record;

MY_STRUCTURE: STRUCT_TYPE;
-- Unconstrained object: initial discriminant value is 1;
INT_VAR: INTEGER;

function BAD_FUNCT is
begin
MY_STRUCTURE:= (6,FALSE);
return 10;
end BAD_FUNCT;
INT_VAR :=
MY_STRUCTURE.VECTOR(BAD_FUNCT);
-- When the array prefix is evaluated, the object
-- Structure is correct.
-- When the index value is evaluated, the object
-~ structure is also changed, so that, when the selection
-- is performed, an illegal address is used.

Fig. 6 : Non atomic access to an unconstrained record
component.

6 Generation of scalar illegal values, access illegal
values, illegal structures

In the previous section we have pointed out how,
given the presence of various kinds of illegal values
and structures in the program, several high level
usually safe constructs (array indexing, access value
dereferencing, assignments) turn into potential sources
of destructive errors.

A first important source of illegal values and
structures is the set of low level language aspects
already mentioned in section 3: unchecked
conversions, unchecked deallocations, suppression of




exceptions, machine code insertions, interfaces to
other languages, address clauses. Most of these
features are also directly responsible for destructive
errors. We are not interested in discussing these
aspects in detail, the risk of their use being explicit.
Another important source of illegal values and
structures is obviously the occurrence of a destructive
error, as illustrated in sections 3,4 and 5. A
‘destructive error, in fact, instead of damaging some
system RTS descriptor, or performing an
unrecoverable jump to an illegal instruction, can
simply damage some user data. Neither in this case are
we interested in a more detailed discussion.

Finally, other high level constructs are often
responsible for the generation and propagation of
illegal values and structures, and these we are going to
discuss in more detail in the next subsections.

Lack of object initialization

Ada does not define default initial values to be
assigned to objects upon creation, neither is the
programmer required to provide them explicitly.
Consequently, uninitialized objects may have
undefined values. Exceptions to this rule are the case
of access types (objects are initialized by default with
a null value) and the case of records with
discriminants, for which an initial discriminant value
must be specified.

All scalar objects, and all scalar subcomponents of
record and arrays, are allowed to contain undefined
and possibly illegal values.

Once undefined scalar objects are created, their
undefined value is easily propagated when they are
used in right-hand sides of assignments and in
subprogram calls. Officially program execution
becomes erroneous when such an undefined value is
evaluated, but in practice nothing unpredictable
happens, and the undefined value is copied from one
object to another.

On the other hand, the evaluation of partially
undefined record and array values (i.e. record and
array values whose scalar subcomponents are
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undefined) is not considered erroneous, and the
assignment or use of these as actual parameters are
considered correct operations. It should be noted, in
fact, that there are no "critical contexts" which could
be used unsafely with these non-simple values.

Undefined copy-back value of out parameters

A situation very similar to the previous one arises
when no (defined) value is assigned to a scalar "out"
parameter of a subprogram before the completion of
the call. In this case, when the subprogram call is
completed (without raising an exception), the
execution of the copy-back propagates the undefined
value from the formal parameter to the actual one. On
the other hand, if the subprogram call is abandoned
because of an exception, no copy-back is performed
and the undefined value is not propagated.

Note that this kind of propagation occurs only in the
case of formal parameters (or subcomponents of
formal parameters) of scalar type, since, in the case of
parameters (or their subcomponents) of access type,
the copy-in for the component is performed also if the
formal parameter has mode "out". Similarly, copy-in
is always performed for the discriminants of formal
parameters (or their subcomponents) as well.

Not synchronized use of shared variables

The simultaneous access of two tasks to the same
shared variable may easily result in the production or
evaluation of an illegal scalar or access value, or of an
illegal record structure.

In particular, if both tasks attempt to simultaneously
update the same variable, the final value stored into
the variable may be different from any of the two
values which were intended to be assigned, resulting
as an interleaving of the two byte sequences.

On the contrary, if one task attempts to read a shared
variable (of any type), while another task is updating
it, the final value of the variable will certainly be the
newly assigned value, however nothing prevents the
other task from reading part of the old value and part
of the new value, thus cuasing the evaluation of an




illegal value.

In fact, the update and read of a shared variable
(scalar, access, record or array) is not required to be
atomic, but can be performed as a sequence of read or
update operations on a byte by byte basis.

This kind of behaviour is not restricted to parallel
architectures, in which several processors
simultaneously execute different, and possibly
interfering, tasks. On a mono-processor architecture as
well we might experience these effects if task
scheduling is implemented on a time-slice basis or
adopting a preemptive policy.

The impact of this unsafe language aspect on program
security is particularly high since it is not always
possible to adopt the safe policy of not using any
shared variables at all. Moreover, it is not at all easy to
‘prove the absence of unsynchronized accesses to a
shared variable in any possible program execution.
Last, but not least, once illegal access values and
illegal structures are evaluated or generated, it is
practically impossible to detect their illegality.

The pragma SHARED, even if in theory should allow
the user to require atomic read/update operations on
shared variables, in practice is rather useless being
rarely supported by an implementation, and being
applicable neither to non-scalar objects nor to
subcomponents of scalar objects.

Unchecked input

The Ada packages DIRECT_IO and
SEQUENTIAL_IO provide a means for reading any
type of data (except for values of a limited private
type) from an external file.

An implementation, at least in theory, is required to
raise the exception DATA_ERROR if the element
read cannot be interpreted as a value of the required
type. However, since this check can be omitted if
performing it "is too complex", the common practice

is not to perform the check even in the case of scalar
types.
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As a consequence, input/output becomes an open door

~ for illegal values and structures of any type. In

practice, input/output does not seem very much
different from the other low level features present in
the language. The problem here is that this danger is
not sufficiently exposed to the attenition of the
programmer, who tends to imagine that, after having
instantiated a generic package on its scalar subtype,
the read operations performed are safe operations
returning values of the scalar subtype in question, or
raising some exception. From this point of view
DIRECT_IO/SEQUENTIAL_JIO READ operations
can be considered low level features well disguised as
high level constructs.

A similar situation occurs in the case of GET
operations reading values of a CHARACTER or
STRING subtype (defined in the package TEXT_IO).
Note, in fact, that the representation of CHARACTER
requires only 7 bits, while most implementation
simply use one full byte for storing a character value.
As a consequence, when character GET operations are
used to read a binary file, 8 bit sequences are read
from the file (or device) thus generating potential
illegal caracter values. It is curious to observe that the
Reference Manual in this case does not even allow an
implementation to raise DATA__ERISOR when an
illegal character is found.

Abort statements

We have already pointed out in section 4 the possible
unsafety of abort statements whose effects are not
explicitly required to be safe, for instance when a task
is aborted while performing some critical activity on
some system structure. The conclusion was that this
language aspect was not clear and that it needed an
official clarification.

On the contrary it is explicitly specified in the
reference manual that update operations are not

required to be atomic with respect to abort statement




and that, if a task is aborted while updating a variable,
the variable itself becomes undefined.

This means, in particular, that illegal scalar values and
illegal access values can be produced as a
consequence of an aborted update operation, as well as
inconsistent record structures with illegal
discriminants.

We can observe that this risk is present only in those
implementations actually supporting "immediate
aborts", and that this risk is completely avoided by
implementing abort statements in a non-immediate
way, i.e. labelling the aborted task as "abnormal" and
allowing it to continue execution until it reaches a -

point at which it can be forced to complete safely.

The conclusion of this survey is that abort statements,
unchecked read operations, and shared variables are
three high level language features which allow the
production of illegal access values and illegal record
structures. The danger of their use is particularly high
since, once this illegal values are generated, their
illegality is almost impossible to detect performing
any kind of user-defined checks, and their use may
result in destructive errors.

Missing initializations and undefined out parameters
are additional sources of illegal scalar values. These
values as well can result in destructive errors when
used in a particularly "critical” context, however their
illegality can usually be checked by the programmer
performing explicitly the appropriate type checks.
Finally, remember that also the various kinds of side
effects caused by wrong unchecked deallocations may
produce illegal scalar and access values, and illegal
structures. Even if these errors are generated by the
wrong use of an explicitly dangerous low-level
feature, it may not be easy to understand the
association between the use of such an illegal value
and a previous use of this low level feature.

7 Destructive errors and erroneous executions.

The Ada concept of "erroneous execution” at a first
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glance seems to match exactly our definition of
“destructive error”, at least since the program
execution is officially said to become "unpredictable"
when an erroneous execution starts.

At a more detailed analysis, however, we can see that
several cases of officially "unpredictable" executions
in practice behave in a rather predictable and
relatively "safe" way.

Let us consider, for example, a dependence on the
parameter passing mechanism.

As illustrated in Figure 7, a subprogram whose
semantics depends on the parameter passing
mechanism (and this is yet another ambiguous point in
the LRM definition) may not follow the underlying
programming style encouraged by Ada, yet cannot be
considered a destructive error.

type VECT_TYPE is array (1..10) of INTEGER;
MY_VECT: VECT_TYPE;
procedure IMPLEMENTATION_DEPENDENT
(VECTOR: in out VECT_TYPE) is
SOME_EXCEPTION: exception;
begin
VECTOR:= (others => 0);
raise SOME_EXCEPTION;
end IMPLEMENTATION_DEPENDENT;

IMPLEMENTATION_DEPENDENT (MY _VECT);
-- the effect of the call depends from the parameter

-- passing mechanism selected by the implementation:
-- if copy-back is adopted, MY VECTOR is not

-- updated, otherwise MY VECTOR is initialized

-- withall 0's .

Fig. 7 : A subprogram whose semantics depends
on the parameter passing mechanism.

Figure 8 is alist a "robust” Ada types, in the sense
that all the possible bit patterns for type values are
legal Ada values. In this case, even in the presence of
undefined scalar values we are sure that no illegal
values can be produced. The evalﬁation of such an
undefined but legal value in any critical or non-critical
context might result in a certain degree of
nondeterminism in the program execution, but not in a
destructive error.




type MY_INTEGER is new INTEGER;
-- Usually there are no illegal values of the
- predefined INTEGER type;

type BYTE is new INTEGER range 0..255;
for BYTE'SIZE use §;

-- The length clause forces the use of no more than 8

- bits for the representation of the objects of this type..
-- Under these assumptions, no illegal values of this

-- type can be produced.

type SAFE_BOOLEAN is new BOOLEAN;

for SAFE_BOOLEAN'SIZE use 1;

-- Logical operations are more expensive, but TRUE
-- and FALSE are the only possible values.

Fig. 8 : Alist of "robust" Ada types.

Similarly, the use of an illegal scalar or access value in
any non-critical context is considered an erroneous

- execution by the language definition though it causes,
at most, a propagation of the undefined value.

In other cases the language definition requires the
program execution to become erroneous while in our
approach it only results in the generation of illegal
values. This is the case, for example, of unchecked
conversions not preserving the properties of the target
type, or the case of not synchronized accesses to a
shared scalar variable. From our point of view it is
only the subsequent use of these values or objects
which might actually be unpredictable, and not the
activity of producing them.

Finally, the current standard does not qualify as
erroneous several cases of unpredictable program
executions (e.g. the use of an illegal scalar value
obtained from a SEQUENTIAL_IO READ operation,
if the DATA_ERROR check is not performed by the
implementation, or from a TEXT_IO.GET operation
reading characters from a binary file). Sometimes
these language omissions are clearly to be considered
small Reference Manual oversights; in other cases
(e.g. those mentioned in section 4) it is not so clear
whether these omissions should be considered
oversights or just as reflecting an underlying rationale
taking more into consideration program performance
or implementation simplicity rather than program
safety.
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