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Abstract: The interplay of diffusion with phenomena like stochastic adsorption–desorption, absorp-
tion, and reaction–diffusion is essential for life and manifests in diverse natural contexts. Many
factors must be considered, including geometry, dimensionality, and the interplay of diffusion across
bulk and surfaces. To address this complexity, we investigate the diffusion process in heterogeneous
media, focusing on non-Markovian diffusion. This process is limited by a surface interaction with
the bulk, described by a specific boundary condition relevant to systems such as living cells and
biomaterials. The surface can adsorb and desorb particles, and the adsorbed particles may undergo
lateral diffusion before returning to the bulk. Different behaviors of the system are identified through
analytical and numerical approaches.

Keywords: anomalous diffusion; adsorption–desorption; surface effects

1. Introduction

Describing the physical world is complex and necessitates employing various methods,
both experimental and theoretical, to grasp and interpret the behavior of systems. Diffusion
is prevalent in various situations that can be usual or anomalous and may appear combined
with different processes, such as adsorption–desorption [1] and reaction–diffusion [2]. In
the case of normal diffusion, the system exhibits Markovian characteristics [3], particularly
the mean square displacement with a linear dependence on time, i.e., ⟨(r − ⟨r⟩)2⟩ ∼ t.
In contrast, anomalous diffusion results in stochastic processes that govern the system
exhibiting non-Markovian features [4], yielding a nonlinear relationship for the mean
square displacement, e.g., ⟨(r − ⟨r⟩)2⟩ ∼ tα, where α < 1 or α > 1 corresponds to sub-
or superdiffusion, respectively [5,6]. In conjunction with these situations, adsorption–
desorption or reaction processes may occur, directly impacting various aspects of the
system. These phenomena play a relevant role in many scenarios, such as antibody binding
and coupling to a receptor in a cell [7], electrical impedance [5,8], polymer dynamics at solid–
liquid interfaces [9], molecule traveling through a cellular membrane [10], the dynamics of
loci in a chromosome [11], the movement of a tracer particle [12], catalytic kinetics [13,14],
and, in particular, in living systems [15–17]. The particles (or molecules) adsorbed by
the surface can diffuse or become immobile and, after some time, can be desorbed to the
bulk. In this manner, the system can also present lateral diffusion associated with the
adsorbed particles. This behavior has been observed in different systems; for example,
lateral diffusion occurs in a cellular membrane by lipids and proteins, which may occur
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in different modes, such as homogeneous or hop diffusion [18,19], and, in addition, on a
tubular membrane, which plays a vital role in neuronal axons by transporting signaling
molecules and proteins [20]. Lateral diffusion is not restricted to biological systems and is
also found in graphene oxide sheets dispersed in solvents such as water [21], and charge
carriers find their place in semiconductors through the lateral photoelectric effect [22].

This study investigates a heterogeneous diffusion process for a three-dimensional
system subjected to an adsorption–desorption process on a surface. The diffusion equation
governs the bulk particles with spatial dependence on the diffusion coefficient in the
z−direction. The adsorption–desorption process occurs on the surface located at the point
z = 0. The surface is made up of the plane (x, y), and the kinetic terms explain the
interaction with the particles in the bulk. These terms represent the adsorption–desorption
process of the particles from the bulk to the surface (adsorption) and from the surface
to the bulk (desorption). Adsorbed particles can diffuse on the surface and, after some
time, are desorbed to the bulk. However, some particles will be desorbed in the next step
since the process is stochastic. We consider that the particles can diffuse on the surface
prior to desorption. We only consider inhomogeneity in the bulk, represented by a spatial
dependence on the diffusion coefficient in the z−direction. These features imply a coupling
between the processes in the bulk and on the surface, where each process influences the
other. This analysis explores the relationship between bulk processes and surface processes,
particularly examining the role of bulk heterogeneity in regulating surface behavior. This
is performed in Section 2, where the analytical and numerical calculations are presented
and discussed. In Section 3, we discuss the results and offer some conclusions about the
behavior exhibited in the problems analyzed here.

2. The Problem: Diffusion and Kinetics

Let us initiate our analysis by considering that the subsequent equation controls the
diffusion process in the bulk:

∂

∂t
ρbulk(r, t) = Db,∥∇2

∥ρbulk(r, t) +∇⊥ · [Db,⊥(r)∇⊥ρbulk(r, t)]. (1)

Equation (1) is the typical continuity equation applied to Fick’s law, i.e.,

∂

∂t
ρbulk(r, t) +∇ · Jbulk(r, t) = 0 (2)

combined with Jbulk(r, t) = −Db,∥∇∥ρbulk(r, t)−Db,⊥(r)∇⊥ρbulk(r, t), which states that
the time variation in the density of particles in the bulk is equal to the spatial change
caused by concentration gradients. We assume that the spatial term is composed by a
diffusion process taking place in the bulk, where there is heterogeneity in the ẑ direction,
but particles can diffuse in 3D. More specifically, Db,⊥(r) = Db,⊥r−η

⊥ (−1 ≤ η gives the

degree of heterogeneity for the z direction), ∇⊥ ·
[
r−η
⊥ ∇⊥ρ(r, t)

]
= ∂z

[
|z|−η∂zρ(r, t)

]
, and

∇2
∥ = ∂2

x + ∂2
y, where r∥ = xx̂ + yŷ and r⊥ = zẑ. Db,∥ and Db,⊥ are the diffusion coefficients

in the parallel and perpendicular directions, and ρbulk(r, t) represents the distribution of
particles in bulk, in units of particles per volume. Note that the diffusion coefficients
Db,|| and Db,⊥ are connected to diffusion in the plane (x, y) and in the perpendicular
direction z, respectively. We should mention that the form of the diffusion coefficient
poses a scale-dependent dispersivity for diffusion in the ẑ direction and thus creates
heterogeneity in the bulk. These forms of the diffusion coefficients allow us to consider
anisotropic diffusion and enable us to analyze scenarios related to anomalous diffusion,
where the mean square displacement has a nonlinear time dependence. We underline
that similar spatial dependence on the diffusion coefficient has successfully been used to
investigate diffusion on fractals [23–25], turbulence [26], solute transport in fractal porous
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media [27,28], and atom deposition in a porous substrate [29]. For the isotropic situations,
we have Db,|| = Db,⊥ in the bulk.

For the processes that occur on the surface, we assume that the bulk particles can
be adsorbed by the surface located in z = 0. Once adsorbed, particles can diffuse within
the surface and a reaction process may take place; this is intimately related to several
technologies, such as catalysts for the production of biochemical sensors [30], fuel [31],
energy devices [32], and many others. Hence, the following equation is considered:

∂

∂t
ρsurf(r∥, t) = Ds∇2

∥ρsurf(r∥, t) +
∫ t

0
dt′kads(t − t′)ρbulk(r, t′)|z=0

−
∫ t

0
dt′ktotal(t − t′)ρsurf(r∥, t),

(3)

where Ds is the diffusion coefficient for the particles’ concentration (or distribution) on the
surface, ρsurf(r∥, t) represents the density of particles on the surface (particles per area),
ktotal(t) is a kernel that can be connected to the desorption and reaction processes, i.e.,
ktotal(t) = ksurf,r(t) + kdesor(t), which may be present on the surface. kdesor(t) is related
to the desorption rate, and ksurf,r(t) is related to the reaction processes on the surfaces
during the diffusion process on the surface. Equation (3) can be obtained by considering
the continuity with additional terms related to the interaction between the surface and
bulk, i.e.,

∂

∂t
ρsurf(r∥, t) +∇∥ · Jsurf(r∥, t) =

∫ t

0
dt′kads(t − t′)ρbulk(r, t′)|z=0

−
∫ t

0
dt′ktotal(t − t′)ρsurf(r∥, t′),

(4)

combined with Fick’s law, i.e., Jsurf(r∥, t) = −Ds∇∥ρsurf(r∥, t). In this manner, Equation (3)
(or Equation (4)) has terms that represent an interaction between the surface and the parti-
cles after the adsorption processes, where they can be desorbed or promote the formation
of other particles. In the latter case, the kernel may also be connected to the presence of
intermediate processes during the reaction. The kernel kads(t) governs the adsorption pro-
cess, i.e., it tells us what the interaction is between the surface particles and the bulk ones.
Thus, depending on the nature of this interaction, the adsorption–desorption phenomena
may or may not follow nonexponential decay behavior. For example, when we consider
pure physisorption processes, the subsequent state of a particle depends on its preceding
state, which is a way to characterize a non-Markovian process, i.e., a process involving a
memory effect [33]. For kads(t) ∝ δ(t), the kernel is a localized function of time, implying
that the preceding state does not matter to the actual state. These important features show
that the kernel related to adsorption–desorption may account for a large class of effects that
can be short- or long-ranged, depending on the processes occurring on the surface.

Equations (1) and (3) are coupled by the following condition

n ·
[
Db,⊥r−η

⊥ ∇⊥ρbulk(r, t)
]∣∣∣

z=0
=

d
dt

ρsurf(r∥, t) +
∫ t

0
dt′kr(t − t′)ρbulk(r, t)|z=0. (5)

In Equation (5), the adsorption–desorption processes are represented by the first term on
the right-hand side; it couples the processes present on the surface with the ones in the
bulk. The other term, i.e., the second term, represents a reaction process (see, for example,
Refs. [34,35]), where the particles are removed from the bulk to the surface. The additional
boundary conditions to analyze the problem defined above are

∂zρbulk(r, t)|z→∞ = 0, ∂xρbulk(r, t)|x→±∞ = 0, ∂yρbulk(r, t)
∣∣
y→±∞ = 0,

∂xρsurf(r||, t)
∣∣∣
x→±∞

= 0, and ∂yρsurf(r||, t)
∣∣∣
y→±∞

= 0.
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For the initial condition, we consider ρbulk(r, 0) = φbulk(r) (so any initial configuration is
allowed in the bulk) and, for simplicity, ρsurf(r||, 0) = 0, which implies that, initially, there
is no concentration of particles on the surfaces.

Performing some calculations, we can show that the processes on the surface modify
the bulk, i.e.,

d
dt

[∫
dr⊥

∫
dr∥ρbulk(r, t) +

∫
dr∥ρsurf(r∥, t)

]
= −

∫ t

0
dt′kr(t − t′)ρbulk(r, t)|z=0 , (6)

where
∫

dr⊥ ≡
∫ ∞

0 dz,
∫

dr∥ ≡
∫ ∞
−∞ dx

∫ ∞
−∞ dy, and, consequently, for kr(t) = 0, we have∫

dr⊥
∫

dr∥ ρbulk(r, t) +
∫

dr∥ ρsurf(r∥, t) = constant, (7)

which is a direct consequence of conserving the total number of particles in the system.
We now investigate the spatial and time behavior of the density of particles on the

surface and in the bulk from analytical and numerical points of view. Thus, we start by ob-
taining the analytical solution for this problem, that is, closed expressions for ρbulk(r, t) and
ρsurf(r∥, t). To do this, we use integral transforms and the Green function approach [36,37].
One of the integral transforms is the Laplace transform, defined as

L{ρbulk(r, t); s} =
∫ ∞

0
dt e−stρbulk(r, t) = ρ̂bulk(r, s), (8)

and its inverse,

L−1{ρ̂bulk(r, s); t} =
1

2πi

∫ i∞+c

−i∞+c
ds estρ̂bulk(r, s) = ρbulk(r, t). (9)

In addition, we use the special integral transform that can be constructed from the eigen-
functions of the Sturm–Liouville problem related to the following differential equation:

∂

∂z

{
z−η ∂

∂z
ψ(z, kz)

}
= −k2+η

z ψ(z, kz) , (10)

subjected to the boundary condition |ψ(∞, kz)| < ∞. The eigenfunctions obtained from
Equation (10) are given by

ψ(z, kz) = (z kz)
1
2 (1+η)J−ν

[
2

2 + η
(kz z)

1
2 (2+η)

]
(11)

where Jν(x) denotes the Bessel function [37] with order ν = (1 + η)/(2 + η). Equation (11)
allows us to define the following integral transform:

Fη{ρbulk(r, t); z} =
∫ ∞

0
dz ψ(z, kz)ρbulk(r, t) = ρ̃bulk(r∥, kz, t) , (12)

F−1
η

{
ρ̃bulk(r∥, kz, t); kz

}
=

∫ ∞

0
dkz ψ(z, kz)ρ̃bulk(r∥, kz, t) = ρbulk(r, t) . (13)

We observe that Equations (12) and (13) may be related to a generalized Hankel trans-
form [38–41]. By using these integral transforms and Fourier transform

Fx,y{ρbulk(r, t); x, y} =
∫ ∞

−∞
dxe−ikx x

∫ ∞

−∞
dye−ikyyρbulk(r, t) = ρ̄bulk(k∥, z, t) (14)

and it inverse
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F−1
x,y {ρ̄bulk(k∥, z, t); kx, ky} =

1
2π

∫ ∞

−∞
dkxeikx x 1

2π

∫ ∞

−∞
dky eikyyρ̄bulk(k∥, z, t) = ρbulk(r, t), (15)

where k∥ = (kx, ky), we have

̂̄ρbulk(k∥, z, s) = −
∫ ∞

0
dz′ φ̃bulk(k∥, z′)Ĝ(k∥, z, z′, s)

+
[
ŝ̄ρsurf(k∥, s)− k̂r(s)̂̄ρbulk(k∥, 0, s)

]
Ĝ(k∥, 0, z, s),

(16)

and

̂̄ρsurf(k∥, s) =
k̂ads(s)

s +Ds|k∥|2 + k̂total(s)
̂̄ρbulk(k∥, 0, s), (17)

for the initial condition previously defined, which assumes that the particles are initially in
bulk. The Green function is given by

G(k∥, z, z′, t) = − e−Db,∥ |k∥ |2t

(2 + η)Db,⊥t
(
zz′
) 1

2 (1+η)e
− 1

(2+η)2Db,⊥ t (z2+η+z′2+η)
I−ν

[
2(zz′)

1
2 (2+η)

(2 + η)2Db,⊥t

]
, (18)

where I−ν(x) is the Bessel function of the modified argument [37]. From the inverse of the
Fourier transform, we obtain the Green function in the form

G(r∥, z, z′, t) = − 1
4πDb,∥t

e
|r∥|

2

4Db,∥ t

× (zz′)
1
2 (1+η)

(2 + η)Db,⊥t
e
− 1

(2+η)2Db,⊥ t (z2+η+z′2+η)
I−ν

[
2(zz′)

1
2 (2+η)

(2 + η)2Db,⊥t

]
.

(19)

It is illustrative to look at the behavior of the Green function (Equation (19)) exhibited in
Figure 1a,b. These are depicted for η = −0.5, while Figure 2a,b illustrate the behavior of the
Green function for η = 0.5. The spatial dependence on the diffusion coefficient obtained
for different values of η is responsible for different behaviors of the Green function and,
consequently, for the spread of the distributions when the system is characterized by this
type of heterogeneity.

Figure 1. A three-dimensional density plot for the Green function (Equation (19)) when η = −0.5.
In (a) a cut is represented through the center in the y direction, while (b) shows the behavior of the
Green function around the point r = (0, 0, 1), i.e., how the particles are distributed. For simplicity, we
consider Db,∥t = Db,⊥t = 0.5 and z′ = 1.0, in arbitrary units.
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Figure 2. A three-dimensional density plot for the Green function (Equation (19)) when η = 0.5. In
(a) a cut is represented through the center in the y direction, while (b) shows the behavior of the
Green function around the point r = (0, 0, 1), i.e., how the particles are distributed. For simplicity, we
consider Db,∥t = Db,⊥t = 0.5 and z′ = 1.0, in arbitrary units.

Before proceeding, we underline that Equation (18) is obtained by solving the follow-
ing equation

Db,⊥
∂

∂z

{
z−η ∂

∂z
Ḡ(k∥, z, z′, t)

}
− Db,∥|k∥|2Ḡ(k∥, z, z′, t)

− ∂

∂t
Ḡ(k∥, z, z′, t) = δ(z − z′)δ(t) ,

(20)

subjected to the boundary conditions

Db,⊥z−η ∂

∂z
Ḡ(k∥, z, z′, t)

∣∣∣∣
z=0

= 0 , Db,⊥z−η ∂

∂z
Ḡ(k∥, z, z′, t)

∣∣∣∣
z=∞

= 0, (21)

taking into account that Ḡ(k∥, z, z′, t) = 0 for t < 0.
Using these results, it is possible to obtain the profile of the density of particles in the

bulk and on the surface. In particular, before the inversion procedures, we may notice that

̂̄ρsurf(k∥, s) = − k̂ads(s)

(s +Ds|k∥|2 + k̂total(s))(1 − kr(s) ̂̄G(k∥, 0, 0, s))− sk̂ads(s) ̂̄G(k∥, 0, 0, s)

×
∫ ∞

0
dz′ φ̄bulk(k∥, z′) ̂̄G(k∥, 0, z′, s) ,

(22)

and

̂̄ρbulk(k∥, z, s) = −
∫ ∞

0
dz′ φ̃bulk(k∥, z′) ̂̄G(k∥, z, z′, s)

−
(s +Ds|k∥|2 + k̂total(s)) ̂̄G(k∥, 0, z, s)

(s +Ds|k∥|2 + k̂total(s))(1 − kr(s) ̂̄G(k∥, 0, 0, s))− sk̂ads(s) ̂̄G(k∥, 0, 0, s)

×
[

skads(s)
s +Ds|k∥|2 + k̂total(s)

+ kr(s)

] ∫ ∞

0
dz′ φ̄bulk(k∥, z′) ̂̄G(k∥, 0, z′, s) .

(23)

At this point, we have the tools in the Laplace–Fourier space that are needed to consider
the following two particular cases of the previous equations.

The first refers to the absorption process of particles by the surface in the absence of re-
action processes, that is, when k̂total(s) = 0 and k̂r(s) = 0, at a constant absorption rate, that
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is, k̂ads(s) = kads, with the particles initially in bulk. In this case, Equations (22) and (23)
are reduced, respectively, to

̂̄ρsurf(k∥, s) = − kads

s +Ds|k∥|2 − skads
̂̄G(k∥, 0, 0, s)

∫ ∞

0
dz′ φ̄bulk(k∥, z′) ̂̄G(k∥, 0, z′, s) (24)

and

̂̄ρbulk(k∥, z, s) = −
∫ ∞

0
dz′ φ̃bulk(k∥, z′) ̂̄G(k∥, z, z′, s)

−
skads

̂̄G(k∥, 0, z, s)

s +Ds|k∥|2 − skads
̂̄G(k∥, 0, 0, s)

∫ ∞

0
dz′ φ̄bulk(k∥, z′) ̂̄G(k∥, 0, z′, s) .

(25)

After obtaining the inverses of the Laplace and Fourier transforms of both equations,
we arrive at the final expressions for the density of particles on the surface and in the
bulk, namely,

ρsurf(r∥, s) = −kads

∫
dr′∥

∫ t

0
dt′G(1)(r∥ − r′∥, t − t′)

×
∫

dr′′∥

∫ ∞

0
dz′φbulk(r

′
∥ − r′′∥ , z′)G(r∥, 0, z′, t′)

(26)

with

G(1)(r∥, t) =
n

∑
m=0

(
n
m

) ∫ t

0
dt′

(t − t′)
1+η
2+η n−1t′m

Γ
(

1+η
2+η n

)
Γ(1 + m)

×
∫

r′∥GDs ,xy(r′∥, t − t′)
∂m

∂t′m
GDb,∥ ,xy(r∥ − r′∥, t′),

(27)

where

GDi ,xy(r∥, t) =
1

4πDit
exp

(
−

r2
∥

4Dit

)
, (28)

and

ρbulk(r∥, z, s) = −
∫

dr′∥

∫ ∞

0
dz′φbulk(r

′
∥, z′)G(r∥ − r′∥, z, z′, t)

− kads

∫
dr′∥

∫ t

0
dt′G(1)(r∥ − r′∥, t − t′)

∫ t′

0
dt′′

∫
dr′′∥G(r

′
∥ − r′′∥ , 0, z, t′ − t′′) (29)

×
∫

dr′′′∥

∫ ∞

0
dz′φbulk(r

′′
∥ − r′′′∥ , z′)G(r′′′∥ , 0, z′, t′′) .

Figure 3 illustrates an important analytical result, the survival probability, which can
be constructed from the solution that accounts for the particles absorbed by the surface.
Indeed, from Equation (29), we obtain the survival probability, i.e.,

Sbulk(t) =
∫

dr∥
∫ ∞

0
dzρbulk(r∥, z, t), (30)

and evaluate

Ssurf(t) =
∫

dr∥ρsurf(r∥, t) = 1 − Sbulk(t) . (31)

Both equations are related to the probability of finding particles in bulk (Sbulk(t)) or on the
surface (Ssurf(t)) and, consequently, correspond to the fractions of particles present in bulk
and on the surface.
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Figure 3. Trends of the survival probability for the adsorption–desorption case for different values of
η. As described in this section, the black solid lines correspond to the numerical simulations using
the Langevin equation, and the red dashed–dotted lines correspond to the analytical model. For
the analytic model, we consider, with illustrative purposes, kdesor = 0.0, kads → ∞ (total absorption
process), Db,∥ = Db,⊥ = 2.0, and z′ = 4.0, in arbitrary units. In the numerical simulations, we
considered 200 k particles with the same starting conditions as in the analytical model; the desorption
process is absent (rh = 0%/step), D = 2.0, and h = 0.01.

In Figure 3, we also show the result obtained by numerical simulation using the
Langevin equation for the particles on the surface and in the bulk. They are defined as
follows for the x − y direction:

xt+h = xt +
√

Dhζx(t), −∞ < x < ∞
yt+h = yt +

√
Dhζy(t), −∞ < y < ∞ ,

(32)

and, consequently, we have information on r∥ = x(t)x̂ + y(t)ŷ. Note that the Langevin
equations for the x and y directions were used to simulate the particles on the surface and
in bulk. For the z direction, the Langevin equation for the particles, in bulk, is given by

zt+h = zt −
[(

ηDh
2

sign(zt)(|zt|)−η−1
)
− (

√
Dh(|zt|)−

η
2 )ζz(t)

]
, 0 ≤ z < ∞ . (33)

In these stochastic equations, ζi(t) (i = x, y, and z) is white Gaussian noise with a nor-
malized deviation generated using the Box–Muller method [42]. In addition, ⟨ζi(t)⟩ = 0,
⟨ζi(t)ζ j(t′)⟩ = 0 for i ̸= j and ⟨ζi(t)ζi(t′)⟩ ∝ δ(t − t′). The pseudorandom number gen-
erator utilized in this work was the maximally equidistributed combined Tausworthe
generator [43] implemented via the tauss88 function from the C++ library Boost [44] (for
more details, see Appendix A). For this case, we consider that the surface only absorbs
particles governed by the Langevin equations, i.e., Equations (32) and (33). Figures 4 and 5
illustrate the results obtained by using the previous Langevin equations for the directions
x, y, and z when η = −0.5 and η = 0.5. These figures correspond to the projections (x, z)
and (x, y) to show how heterogeneity influences the dynamics aspects of the system. An
animated version of the (x, z) projections can be seen at https://youtu.be/lF6WpIQI-c4
(accessed on 6 March 2024).

https://youtu.be/lF6WpIQI-c4
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Figure 4. Probability density maps for simulations with η = −0.5. (a,b) represent the (x, z) and
(x, y) of the bulk and surface densities at a time equal to 1.0. (c,d) correspond to (a,b) at the time 2.5.
Note that the spatial dependence of the diffusion coefficient, as in Figure 1a,b directly influences the
system’s behavior. This was a short run with 250 steps and 50M particles with the initial position on
(x0 = 0, y0 = 0, z0 = 4.0). In this simulation, h = 0.01, D = 2.0, and the desorption process is absent.

Figure 5. Probability density maps for simulations with η = 0.5. (a,b) represent the (x, z) and (x, y)
projections of the bulk and surface densities at a time equal to 1.0. (c,d) advance the time to 2.5. Apart
from the value of η, all coefficients were the same as in Figure 4 and the desorption process is absent.
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The second case is characterized by a surface that can adsorb and desorb at some rates,
i.e., k̂total(s) = kdesor, k̂r(s) = 0, and k̂ads(s) = kads. In this case, for the particles initially in
bulk, from Equations (22) and (23), we obtain

̂̄ρsurf(k∥, s) = − kads

s +Ds|k∥|2 + kdesorb − skads
̂̄G(0, 0, z′, s)

×
∫ ∞

0
dz′ φ̄bulk(k∥, z′) ̂̄G(k∥, 0, z′, s) ,

(34)

and

̂̄ρbulk(k∥, z, s) = −
∫ ∞

0
dz′ φ̃bulk(k∥, z′) ̂̄G(k∥, z, z′, s)

−
skads

̂̄G(k∥, 0, z, s)

s +Ds|k∥|2 + kdesor − skads
̂̄G(k∥, 0, 0, s)

∫ ∞

0
dz′ φ̄bulk(k∥, z′) ̂̄G(k∥, 0, z′, s) .

(35)

After obtaining the inverses of the Fourier and Laplace transforms, we obtain the following
analytical results:

ρsurf(r∥, s) = −kads

∫
dr′∥

∫ t

0
dt′G(2)(r∥ − r′∥, t − t′)

×
∫

dr′′∥

∫ ∞

0
dz′φbulk(r

′
∥ − r′′∥ , z′)G(r∥, 0, z′, t′)

(36)

with

G(2)(r∥, t) =
n

∑
m=0

(
n
m

) ∫ t

0
dt′

(t − t′)
1+η
2+η n−1t′m

Γ
(

1+η
2+η n

)
Γ(1 + m)

×
∫

dr′∥e−kdesor(t−t′)GDs ,xy(r′∥, t − t′)
∂m

∂t′m

[
e−kdesort′GDb,∥ ,xy(r∥ − r′∥, t′)

]
,

(37)

and

ρbulk(r∥, z, s) = −
∫

dr′∥

∫ ∞

0
dz′φbulk(r

′
∥, z′)G(r∥ − r′∥, z, z′, t)

− kads

∫
dr′∥

∫ t

0
dt′G(2)(r∥ − r′∥, t − t′)

∫ t′

0
dt′′

∫
dr′′∥G(r

′
∥ − r′′∥ , 0, z, t′ − t′′) (38)

×
∫

dr′′′∥

∫ ∞

0
dz′φbulk(r

′′
∥ − r′′′∥ , z′)G(r′′′∥ , 0, z′, t′′) .

In Figure 6, the number of particles adsorbed, obtained from the analytical and
numerical points of view, is represented. We underline that the numerical simulations were
performed considering that the desorption process of the particles, from the surface to the
bulk, follows the conditions

zt+h = 0.5 – desorption probability (surface to the bulk) – pdes = rh
zt+h = zt = 0 – non-desorption probability – pstay = 1 − rh

(39)

(for more details, see Appendix A).
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Figure 6. Trends of the survival probability for the adsorption–desorption case with different values of
η. The black solid lines correspond to the numerical simulations, as described in the text, whereas the
red dashed–dotted lines correspond to the analytical model. We have used the model to adjust the data
obtained from the numerical simulations with the Langevin equations. Thus, the kinetic parameters,
i.e., kads and kdesor, adjusted both the model and the numerical simulations. The parameter values
for η = 0.5 were kdesor = 1.5 and kads = 0.9; for η = 0.0 were kdesor = 0.45 and kads = 2.9; and
for η = −0.5 were kdesor = 0.2 and kads = 4.5. For simplicity, we consider Db,∥ = Db,⊥ = 2.0 and
z′ = 4.0, in arbitrary units. These numerical simulations utilized the parameters shown in Figure 3,
except for rh, which is equal to 5%/step.

3. Discussion and Conclusions

This work investigates a diffusion process in a heterogeneous medium with adsorption–
desorption occurring on a surface. The particles adsorbed can diffuse on the surface and
may desorb back into the bulk after some time. The bulk process is governed by a dif-
fusion equation with a spatially dependent diffusion coefficient. The surface adsorption–
desorption process is described by the kinetic functions kads(t) and kdesor(t), which repre-
sent the kernels in Equation (3).

We performed numerical simulations using the Langevin equation with multiplicative
noise to gain additional insight into the diffusion process from a different perspective.
This approach complements the analytical model. Figures 3 and 6 compare the analytical
and numerical results, showing good agreement for the cases analyzed. The first case
was considered to have a purely adsorbing surface, which means that desorption was
absent and all particles were adsorbed. The second case incorporated desorption, allowing
particles to return to the bulk after some time. For this case, we adjusted the parameters
related to adsorption–desorption in the analytical model to match the numerical results.

These findings extend previous work in [45,46] by incorporating bulk inhomogene-
ity and surface diffusion. We believe the results presented here can contribute to the
study of diffusion processes with surface adsorption–desorption and the possibility of
surface diffusion.
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Appendix A. Numerical Approach

Let us describe, in more detail, the numerical procedure to simulate the first and
second scenarios handled in Section 2. We will begin by presenting the Langevin equations
that govern the dynamics of the particles in the system. They are

xt+h = xt +
√

Dhζx(t), −∞ < x < ∞ ,
yt+h = yt +

√
Dhζy(t), −∞ < y < ∞ ,

zt+h = zt −
(
( ηDh

2 sign(zt)(|zt|)−η−1)− (
√

Dh(|zt|)−
η
2 )ζz(t)

)
0 ≤ z < ∞ .

(A1)

For simplicity, we consider the same diffusion coefficient for the surface and bulk. We
assume that the desorption process of the particles on the surface follows these stochas-
tic equations:

zt+h = 0.5 — desorption probability (surface to the bulk) — pdes = rh
zt+h = zt = 0 — non-desorption probability — pstay = 1 − rh.

(A2)

Once the system’s dynamics are given, we can start with the C++ code. The setup is
as follows.

Figure A1. pxyz represents the position matrix. The first index is the i-th — particle, and the second
is the direction modulus. It is important to emphasize that the calculation of diffusion in both the x
and y directions is always performed. The function “gauss ( )” generates the Gaussian noise, which
will be shown at the end of the Appendix A.

If the particle is on the surface, we check for desorption.
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Figure A2. This part of the code applies Equation (A2) to model stochastic desorption. RNG means
random number generator.

If the particle is not on the surface, it is in the bulk. The code will compute the diffusion
in z and check if the particle was absorbed.

Figure A3. Here, we calculated diffusion in z and checked for adsorption. Then, “nsurf” can be used
to calculate the ratio of particles on the surface.

Finally, we can generate the Gaussian distribution.

Figure A4. This code initializes the RNG and applies the Box–Muller method. Note that 0 < u1 ≤ 1
and 0 ≤ u2 ≤ 1.
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