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ABSTRACT

This paper deals with a semi-blind source separation strategy which is applicable
in the cases where the mixing operator can be described by just a few parameters.
In these cases, unlike the independent component analysis approaches, our method
only needs the covariance matrix of the data for learning the mixing operator, even
if the original source processes to be separated are not totally uncorrelated. We are
also able to estimate the probability density function of the source processes by a
simple deconvolution procedure. Our algorithm has been tested with a database that
simulates the one expected from the instruments that will operate onboard ESA’s
Planck Surveyor Satellite to measure the CMB anisotropies all over the celestial sphere.
The assumption was made that the emission spectra of the galactic foregrounds can be
parametrized, thus reducing the number of unknowns for system identification to the
number of the foreground radiations. We performed separation in several sky patches,
featuring different levels of galactic contamination to the CMB, and assuming several
noise levels, including the ones derived from the Planck specifications. In all the cases,
the CMB reconstruction was satisfactory on all the angular scales considered in the
simulation; the average performance of the algorithm and its dispersion were checked
and quantified against a large set of noise patterns.
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background.

1 INTRODUCTION

Any radiometric measurement on sky emission results from a
superposition of different radiating sources. Separating the
individual radiations from the measured signals is thus a
common problem in astrophysical data analysis (Tegmark
et al. 2000). As an example, in cosmic microwave back-
ground anisotropy surveys, the cosmological signal is nor-
mally combined with radiation of both extragalactic and
galactic origin, such as the Sunyaev-Zeldovich effects from
clusters of galaxies, the effect of the individual radiogalax-
ies, the emission from galactic dust, the galactic synchrotron
and free-free emissions. If one is only interested in estimat-
ing the CMB anisotropies, the interfering signals can just be
treated as noise, and reduced by suitable cancellation proce-
dures. However, the source signals have an interest of their
own, and it could be useful to extract all of them from multi-
channel data, by exploiting their different emission spectra.

From measurements on different frequency channels, it
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is possible to extract a number of individual radiation data,
assuming that the physical mixture model is perfectly known
(Hobson et al. 1998, Bouchet et al. 1999). Unfortunately,
such an assumption is rather unrealistic and could overcon-
strain the problem, thus leading to unphysical solutions. At-
tempts are being made to avoid this shortcoming by relax-
ing the strict requirement on the data model (Barreiro et al.
2003).

A class of techniques capable of estimating the source
signals as well as identifying the mixture model has re-
cently been proposed in astrophysics (Baccigalupi et al.
2000, Maino et al. 2002, Baccigalupi et al. 2002, Delabrouille
et al. 2002). In digital signal processing, these techniques
are referred to as blind source separation (BSS) and rely on
statistical assumptions on the source signals. In particular,
mutual independence and nongaussianity of the source pro-
cesses are often required (Hyvérinen and Oja 2000). This
totally blind approach, denoted as independent component
analysis (ICA), has already given promising results, proving



2 Bedini et al.

to be a valid alternative to assuming a known data model.
On the other hand, most [CA algorithms do not permit to
introduce prior information. Since all available information
should always be used, semi-blind techniques are being stud-
ied to make astrophysical source separation more flexible
with respect to the specific knowledge often available in this
type of problem (Kuruoglu et al. 2003).

The first blind technique proposed to solve the sep-
aration problem in astrophysics (Baccigalupi et al. 2000)
was based on [CA, allowing simultaneous model identifica-
tion and signal estimation to be performed. In order to get
independence, the statistics of all orders should be taken
into account, and this can be achieved by explicit cumu-
lant calculation or by suitable nonlinear transformations on
the estimated source signals (Comon 1994, Cardoso 1998,
Hyvérinen and Oja 2000).

The problem of estimating all the model parameters and
source signals cannot be solved by just using second-order
statistics, since these are only able to enforce uncorrelation.
However, this has been done in special cases, where addi-
tional hypotheses on the spatial correlations within the in-
dividual signals are assumed (Tong et al. 1991, Belouchrani
et al. 1997). Another possibility of solving the separation
problem on the the basis of second-order statistics alone is
when the relevant constraints are such that the total number
of parameters to be estimated can be reduced. This is the
case in the problem of separating astrophysical foregrounds
from cosmic microwave background, provided that a struc-
ture for the source covariance matrix is assumed. Indeed, on
the basis of a possible parametrisation of the mixing oper-
ator and the assumption of decorrelation between the dif-
ferent sources, it is possible to reduce the total number of
model parameters. We will show that, under these hypothe-
ses, a very fast model learning algorithm can be devised,
based on matching the estimated zero-shift covariance ma-
trix with the one obtained from the available data. This
strategy also offers additional advantages, such as the possi-
bility of estimating the source probability density functions
and relaxing the strict assumption of uncorrelation between
the source signals.

This paper is organised as follows. In Section 2, we for-
malise the problem and introduce the relevant notation. In
Section 3, we describe our method, and, in Section 4, we
present some experimental results. Some remarks and fu-
ture directions are reported in the final section.

2 ASTROPHYSICAL SOURCE SEPARATION

As usual (Hobson et al. 1998, Baccigalupi et al. 2000), we
assume that each radiation process §.(¢,n, v) from the mi-
crowave sky has a spatial pattern s.(¢,n) that is independent
of its frequency spectrum F.(v):

56(5777711) = 56(57’7)FC(V) (1)

Here, ¢ and n are angular coordinates on the celestial sphere,
and v is frequency. The total radiation observed in a certain
direction at a certain frequency is given by the sum of a
number N of signals (processes, or components) of the type
(1), where subscript ¢ has the meaning of a process index.
Assuming that the effects of the telescope beam on the angu-
lar resolution at different measurement channels have been

equalised (Salerno et al. 2000), the observed signal at M
different frequencies can be modelled as

x(¢,n) = As(&,n) +n(é,n) (2)

where x={zq4, d = 1,..., M} is the M-vector of the ob-
servations, d being a channel index, A is an M X N ma-
trix whose entries, aq., are related to the spectra of the
radiation sources and the frequency responses of the mea-
suring instruments on the different frequency channels,
s ={s., c=1,...,N} is the N-vector of the individual
source processes and n={ngq, d = 1,..., M} is the M-vector
of instrumental noise. Hereafter, matrix A will be referred
to as the mixing matrix.

The separation problem consists in estimating the
source vector s from the observed vector x. Several estima-
tion algorithms have been derived assuming a perfect knowl-
edge of the mixing matrix. As already said, however, this ma-
trix is related both to the instrumental frequency responses,
which are known, and to the emission spectra F.(v), which
are normally unknown. For this reason, relying on an as-
sumed mutual independence of the source processes s.(&,n),
some blind separation algorithms have been proposed (Bac-
cigalupi et al. 2000, Maino et al. 2002, Patanchon et al.
2003), which are able to estimate both the mixing matrix
and the source vector. For any procedure of this type, the
estimation of A will be referred to as system identification
(or model learning), and the estimation of s will be referred
to as source separation. In this paper, we will only emphasise
aspects related to learning; indeed, once the model has been
identified, a number of standard reconstruction procedures
are available to separate the individual sources. Assuming
that the source signals are mutually independent, the M N
unknown coefficients can be estimated by finding a linear
mixture that, when applied to the data vector, nullifies the
cross-cumulants of all orders. If, however, some prior infor-
mation allows us to reduce the number of unknowns, the
identification problem can be solved by only using second-
order statistics. This is the case with our approach, which
is based on a parametrisation of matrix A. This approach
is described in the following section. Here we only intro-
duce some additional notation that will be used. Learning
the model on the basis of second-order statistics alone is
also advantageous with respect to robustness against noise;
indeed, estimation of second-order statistics is much more
immune from erratic data than estimation of higher-order
statistics.

The elements of A are related to the source spectra and
to the frequency responses through the following formula:

Age = /Fc(l/)bd(l/)dl/ (3)

where bgq(r) is the instrumental frequency response on the
d-th measurement channel, which i1s normally very well
known. If we assume that the source spectra are constant
within the passbands of the different channels, equation (3)
can be rewritten as

Age = Fc(l/)/bd(l/)dl/ (1)

The element agq. is thus proportional to the spectrum
of the c-th source at the center-frequency rg of the d-th
channel. While in a general source separation problem the
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elements agq. are totally unknown, in our case we have some
knowledge about them. In fact, the integral in (4) is related
to known instrumental features and to the emission spectra
of the single source processes, on which we do have some
knowledge. As an example, if the observations are made in
the microwave and millimeter-wave range, the dominant ra-
diations are the cosmic microwave background, the galac-
tic dust, the free-free emission and the synchrotron (see De
Zotti et al., 1999). Another significant signal comes from
the extragalactic radio sources. Here we assume that the
latter has been removed from the data by one of the spe-
cific techniques proposed in the literature (Tenorio et al.,
1999, Cayén et al., 2000, Vielva et al., 2001). As a matter
of fact, the mentioned techniques cannot remove totally the
extragalactic point sources, but they remove the brightest
ones (that are the most important, since they are the ones
that affect more the the study of the CMB, see Vielva et al.
2001). As far as the other signals are concerned, the emission
spectrum of the cosmic microwave background is perfectly
known, being a blackbody radiation. In terms of antenna
temperature, it is:

7? exp(¥)
— (5)
[exp(P) — 1]
where © is the frequency in GHz divided by 56.8. From (4)
and (5), the column of A related to the CMB radiation is

thus known up to an inessential scale factor. For the syn-
chrotron radiation, we have

Feus(v) =

Foyn(v) cc ™" (6)

Thus, the column of A related to synchrotron only depends
on a scale factor and the spectral index ns. For the thermal
galactic dust, we have

pmtl

Faust(v) (7)

exp(r) — 1
where v = hv/kTqust, and where h is the Planck constant,
k is the Boltzmann constant and Tg,s¢ 1s the physical dust
temperature. If we assume this temperature constant, the
frequency law (7), that is, the column of A related to dust
emission, only depends on a scale factor and the parameter
m. In general, if we assume to have a perfectly known source
(such as CMB) and N — 1 sources with one-parameter spec-
tra, the number of unknowns in the identification problem
is N — 1 instead of NM.

For the sake of simplicity, although other foregrounds
(such as SZ and free-free) could be taken into account, in our
experiments we only considered synchrotron and dust emis-
sions, which are the most significant in the Planck frequency
range.

3 A SECOND-ORDER IDENTIFICATION
ALGORITHM

Let us consider the source and noise signals in (2) as rea-
lisations of two stationary vector random processes, whose
components are mutually independent. The covariance ma-
trices of these processes are, respectively,

Ci(r,¥) = (&) —psl[S(E+Tn+¢) —ps]’), (8
C, = (nn") (9)
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where (.) denotes expectation under the appropriate joint
probability, e is the mean vector of process s, and the su-
perscript T means transposition. As usual, the noise pro-
cess is assumed signal-independent, white and zero-mean,
with known variances. Thus, C, is a known diagonal ma-
trix whose elements are the noise variances in all the mea-
surement channels. For the assumed mutual source indepen-
dence, we know that Cs must be diagonal. In the following,
however, we will see that this assumption can be somewhat
relaxed.

By exploiting equation (2), the covariance of the ob-
served data at shift (7,¢) = (0,0) can be written as:

Cx(0,0) = ([x(&m) — ] [X(&m) —px]T) =
ACs(0,00AT + C,, . (10)

Let us now define the matrix
H = AC.(0,0)A" = Cx(0,0) — Cy. (11)

As already proved (Belouchrani et al. 1997, Barros and Ci-
chocki 2001), covariance matrices, i.e. second-order statis-
tics, permit blind separation to be achieved when the sources
show a spatial structure, namely, when they are spatially
correlated. In these cases, the independence requirement of
the ICA approach (Comon 1994) is replaced by an equiv-
alent requirement on the spatial structure of the signal. In
other words, finding matrices A and Cs is generally not pos-
sible from equation (11) alone; higher-order statistics or the
covariance matrices at several shifts (7,¢) must be taken
into account (Belouchrani et al. 1997).

As assumed in the previous section, in this applica-
tion we are able to reduce the number of unknowns by
parametrising the mixing matrix. This allows us to rely on
zero-shift covariance alone to solve the problem. Let A only
depend on N —1 parameters a;, t =1,...,N—1, and Cg on
its N diagonal elements o;;, ¢ =1,..., N. Once H is given,
relationship (11) yields M (M + 1)/2 nonlinear equations,
one for each element of the symmetric matrix H, and 2N —1
unknown parameters. Note that the number of equations is
larger than the number of unknowns as soon as M = N and
N > 2. Actually, we do not possess matrix H as defined by
(10) and (11), but we are able to get an estimate of it from
the known matrix C, and the following estimate of Cx(0,0):

Cyx = NLP D Ix(Em) = ] x(€m) = " (12)
&m

where the summation is extended over all the N, available
data samples, and p, is the mean vector of the data se-
quence. Let

H=C,-C, (13)
be our estimate of matrix H. Matrices A and Cg can be
estimated from

(ozl,...,ozN_l,a'll,...,a'NN):

arg Hlil'l”A(oq,...,o¢N_1)Cs(o'll,...,O'NN)AT(oq,...,aN_l)—I:I”7 (14)

where the minimisation is performed over all the possible
values of «a1,...,anx—1,011,...,0N8N, and an appropriate
matrix norm should be selected. Our present strategy to
find the minimiser is to alternate a componentwise minimi-
sation in «; with fixed Cg, and the evaluation of Cg, whose
elements, {o11,...,0nn~}, can be calculated exactly once A



4 Bedini et al.

is fixed. A more accurate minimisation strategy is now being
studied.

Even though the sources are not totally uncorrelated,
we still have possibilities of estimating A, provided that we
know which sources are actually correlated and the number
of available equations is still sufficient. More precisely, for
each pair of significantly correlated sources, we can add an
extra unknown in matrix Cg, and this can be evaluated in
the same way as for the diagonal elements. Since in our case
the foreground maps are correlated, we will see a realistic
example of this possibility in the experimental section below.

By exploiting the results of model learning, we are able
to estimate the individual source maps, and, also, their prob-
ability density. As already said, many choices are possible
for source estimation. We now show a strategy to estimate
their densities as well. Let us assume of having an estimate
of A. Let B be its Moore-Penrose generalised inverse. In our
case we have M > N, thus, as is known,

B=(ATA)" A" (15)
From (2) we have

Bx=s+Bn (16)
Let us denote each of the N rows of B as an M-vector b;,
1 = 1,...,N, and consider the generic element y; of the
N-vector Bx,

y,'::b,'T~X:s,'—|—b,'T~n::s,'—|—ntl (17)

The probability density function of y;, p(yi), can be
estimated from b; and the data record x(¢,n), while the
probability density function of n,, p(n:), is a Gaussian,
whose parameters can be easily derived from C, and b;.
The pdf of y; is the convolution between p(s;) and p(n,):

ply:) = p(si) * p(ne,). (18)

From this relationship, p(s;) can be estimated by deconvolu-
tion. Asis well known, deconvolution is normally an ill-posed
problem and, as such, it lacks a stable solution. In our case,
we can regularise it by the obvious positivity constraint and
the normalisation condition for pdfs.

Equation (16) already gives a rough estimate of the
source processes. As can be seen, applying the generalised
inverse to our data gives the original source vector, cor-
rupted by amplified noise. A simple source estimation strat-
egy could be to apply first equation (16) and then suitably
filter the result, to reduce the influence of noise. More so-
phisticated strategies can also be adopted, such as differ-
ent types of probabilistic estimates. To this purpose, the
availability of the source distributions can be very useful.
Indeed, any probabilistic estimation approach can exploit
their knowledge to regularise the solution. In other words,
being the linear estimate of s in (16) corrupted by Gaus-
sian noise, a Bayesian procedure can refine the estimation
by exploiting functions p(s;) as prior source distributions. In
the case examined here, the source distributions should be
estimated from the data, since they are normally unknown,
save for the one of the CMB, which should be Gaussian.
This strategy has been attempted for astrophysical source
separation by Kuruoglu et al. (2003), using the Independent
Factor Analysis (IFA) approach (Moulines et al., 1997, At-
tias 1999). The source densities are modelled as mixtures
of Gaussians, and the related parameters are estimated by
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Figure 1. Source maps from a 15° x 15° patch centered at 0°
galactic latitude and 20° galactic longitude, at 100 GHz: a) CMB;
b) synchrotron; c¢) thermal dust.

means of a very expensive algorithm. Minimisation in (14)
followed by deconvolution of equation (18) is not very expen-
sive computationally, thus, if included in the IFA strategy,
our learning procedure can reduce the overall computational
cost, of the whole identification-separation task.
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Figure 2. Data maps containing CMB, synchrotron and dust
emission as well as instrumental noise at a) 100 GHz; b) 30 GHz.

4 EXPERIMENTAL RESULTS

We tested our technique against a simulated data set that
is a simplified version of the one expected from the Planck
surveyor satellite (Mandolesi et al., 1998, Puget et al., 1998).
The source maps we considered were the CMB anisotropy,
the galactic synchrotron and thermal dust emissions over the
four measurement channels centred at 30 GHz, 44 GHz, 70
GHz and 100 GHz. The test data maps have been generated
by extracting several sky patches at different galactic coor-
dinates from the simulated database, scaling them exactly
according to formulas (5)-(7), generating the mixtures for
the channels chosen, and adding realisations of Gaussian,
signal independent, white noise. Several noise levels have
been used, from a ten percent to more than one hundred
percent of the CMB standard deviation. The range chosen
contains noise levels within the Planck specifications (see
the Planck homepage™).

[t is to remark that model learning and separation failed
with sky patches taken at high galactic latitudes, where the
only dominant signal is the CMB, and the foregrounds are
often well below the noise signal. Some other techniques,
such as ICA (see Baccigalupi et al. 2000), did obtain good

* http://astro.estec.esa.nl/SA-general /Projects/Planck/
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Figure 3. Norm of the residual in eq. (14) as a function of the
iteration number.

results even in these regions, but the noise levels introduced
in those cases were much lower than the ones we have used
in this work. In these regions, however, CMB is almost the
only measured radiation at the considered frequencies, and
is estimated very well with all the assigned signal-to-noise
ratios. At lower galactic latitudes, conversely, the situation
is rather different. Here, the dust emission is stronger than
CMB, and separation is strictly necessary if CMB is to be
distinguished from the foregrounds. Our method performed
very well with these data, and all the relevant parameters
were satisfactorily estimated even with the strongest noise
components.

In this section, we report a specific example and de-
scribe the results of extensive trials on different sky patches.
In figure 1, we show the three source maps we used for a
typical experiment. These maps were extracted from a sky
patch of 15° x 15°, centred at 0° of galactic latitude and
20° galactic longitude. Their size is 512 x 512, and thus
each pixel is about 1.7 arcminutes wide. The standard devi-
ations of the source processes at 100 GHz were 0.084 mK for
CMB, 0.043 mK for synchrotron, and 0.670 mK for dust, in
antenna temperature. We assigned the sources s; to CMB,
s2 to synchrotron and s3; to dust, and the signals z1, x2,
xs and x4 to the measurement channels at 100, 70, 44 and
30 GHz, respectively. Therefore, the columns of the mixing
matrix will be related to CMB, synchrotron and dust in the
order mentioned above; the rows will be related to the four
measurement channels, in the order mentioned above. The
true mixing matrix, Ao, has been derived from equations
(5)-(7), with spectral indices n. = 2.9 and m = 1.8 (see for
example Banday and Wolfendale, 1991, and Giardino et al.
2002):

1 1 1
1.135 2.813 0.548
1.224 10.814 0.246
1.257 32.836 0.126

A, =

The noise covariance matrix we adopted, in mK?, is:
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Figure 4. Real (blue) and estimated (red) source density func-
tion. Top panel: CMB; middle panel: synchrotron; bottom panel:
dust.

0.08467 0 0 0
0 0.11282 0 0
Cn = 0 0 0.09822 0 (20)
0 0 0 0.13062

Note that the noise standard deviation at 100 GHz is
the same as the CMB standard deviation. The other values
have been established by scaling the standard deviation at
100 GHz in accordance with the expected Planck sensitiv-
ity at each channel. We only retained the relative scalings
among the sensitivities, and not the expected noise vari-
ances, in order to analyse our algorithm with a wide range
of noise levels. In figure 2, we show the noisy data maps for
the 100 GHz and the 30 GHz channels. Also, note that the
case examined does not fit the assumptions of the indepen-
dent component analysis approach to blind source separa-
tion. Indeed, there is a significant correlation, of the order
of 62%, between the dust and synchrotron maps, whereas
the empirical correlations between CMB and synchrotron
and CMB and dust are, respectively, 0.9% and 1.9%. The
original source covariance matrix at zero shift is:

0.00716  0.00003 —0.00112
Cs = 0.00003  0.00183  0.01778 . (21)
—0.00112 0.01778  0.44990

For the data described above, we ran our learning al-
gorithm for 500 different noise realisations; for each run,
10000 iterations of the minimisation procedure described in
the previous section were performed. The unknown parame-
ters were the spectral indices ns and m and the covariances
011, 022, 033 and 023, assuming a negligible correlation be-
tween the CMB and the foregrounds and a significant corre-
lation between the synchrotron and dust radiations. In im-
plementing our algorithm, we adopted the Frobenius norm
in the objective function (14). The behaviour of this norm
as a function of the iteration number in a particular run is
shown in figure 3. The typical elapsed times per run were
tens of seconds on a 2 GHz CPU computer, with a Matlab
interpreted code. In a typical case, we estimated ns = 2.8904
and m = 1.8146, corresponding to the mixing matrix

1 1 1
1.135 2.804 0.546
A= 1.224 10.729 0.244 ' (22)
1.257 32.459 0.124

As a quality index for our estimation, we adopted the ma-
trix Q=(ATC;*A)"*(ATC;*A,), which, in the ideal case,
should be the M x M identity matrix I. For the matrices in
(19), (20) and (22), we have:

1.0000 —0.0516  0.0042
Q= —0.0000 1.0134 —0.0001 . (23)
0.0000 0.0400 0.9960

The Frobenius norm of matrix Q—1I should be zero in the
case of perfect model learning. In this case, it is 0.0669. The
estimated source covariance matrix, to be compared with
the matrix in (21), is

0.00717 0 0
C.(0,0) = 0 0.00188 0.01802 |, (24)
0 0.01802  0.44803

where, of course, the values of o12 and o135 were kept fixed to
zero. The accordance between the estimated and the original
matrices is apparent.

The reconstructed probability density functions of the
source processes, estimated from equations (17) and (18),
are shown in figure 4. The reconstructed densities are often
indistinguishable from the original functions. In any case,
the ranges of the individual processes have been identified
very sharply. Although estimates of the prior densities are
available, we separated the sources simply by multiplying
the data matrix by the Moore-Penrose generalised inverse,
as in (16). As already said, this is not the best choice re-
construction algorithm at all, especially when the data are
particularly noisy. However, the results we obtained are vi-
sually very good, as shown in figure 5. Part of the noise still
present in the results of figure 5 was then reduced by Wiener
filtering the reconstructed maps. The final result is shown
in figure 6. To evaluate more quantitatively the results of
the whole learning-separation procedure, we compared the
power spectrum of the CMB map with the one of the recon-
structed map. This comparison is shown in figure 7, where
we also show the possibility of correcting the reconstructed
spectrum for the known theoretical spectrum of the noise
component ny,, obtained as in (17). As can be seen, the re-
constructed spectrum is very similar to the original within
a multipole { = 2000.

Averaging the learned results over the 500 runs, we have
found mean values 2.8894 for n. and 1.8146 for m, with stan-
dard deviations of 0.0015 and 0.0019, respectively. The slight
bias of the results with respect to the assumed real values is
currently under study, and it could depend on a lack of con-
vergence of the minimisation algorithm we have been using
so far. We compared all the reconstructed sources with the
original ones, and computed the averaged power spectrum
of the residual maps. The result for 100 runs with different
noise realizations is shown in figure 8, where the averaged
residual spectrum almost coincides with the theoretical noise
spectrum. The detected bias in the results is thus not visible
in the scale displayed in figure 8.

We repeated this analysis for several patches and differ-
ent noise levels. Besides the already mentioned failure of the
algorithm at high galactic latitudes, we have found that, in
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Figure 5. Pseudo-inverse reconstructed maps: a) CMB; b) syn-
chrotron; c) dust.

all the patches taken into account, the average parameters
estimated are the same as the ones reported above. As an
example, the analysis carried out on a patch centered at a
galactic latitude of 15° and longitude 20°, with the noise
level specified by the matrix in (20), gave average values
2.8897 and 1.8157 for ns and m, respectively, almost iden-
tical to the previously shown values. However, note that,
since the noise covariance is the same as before but the sig-
nal power is smaller than the one we had for the patch in
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Figure 6. Wiener-filtered versions of the maps in figure 5.

the galactic plane, the signal-to-noise ratio is in this case
significantly smaller than before. This fact makes the sin-
gle estimations much more dispersed than in the previous
case. In fact, we have standard deviations of 0.0094 for n.
and 0.1959 for m, about 9 and 100 times, respectively, larger
than the values found on the previous patch. In figure 9, we
show the averaged residual spectrum for this case.

As a general observation, we can say that, obviously, the
noise on the estimated source maps will increase as the noise
on the data maps increases. Wiener filtering can be used to
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Figure 7. a) Real (blue) and estimated (red) CMB power spec-
tra. The green line represents the theoretical power spectrum of
the noise component n¢, in (17), evaluated from the noise co-
variance and the Moore-Penrose pseudoinverse of the estimated
mixing matrix. b) Real (blue) and estimated (red) CMB power
spectrum, corrected for theoretical noise.

improve the appearance of the final maps. Conversely, spec-
trum estimation has been found fairly insensitive to system
noise, and this is a good point in favour of our algorithm.
All the power spectra have been calculated on the output
maps before the application of the Wiener filter.

5 REMARKS

Obviously, the semi-blind identification technique described
here cannot be seen as a general approach to separation.
However, it relies on a parametric knowledge of the emission
spectra, a fairly common assumption in astrophysical data
analysis. Our approach permits a very fast and robust model
identification, thus enabling an accurate source estimation
procedure to be implemented. We also envisage a method
to estimate the source probability densities, which, in their
turn, can help the separation task.

[t has been observed that it does not make sense to
try source separation in those regions where the foreground
emissions are much smaller than CMB anisotropy and well
below the noise level. As a matter of fact, in many of our
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Figure 8. Averaged power spectrum of 100 CMB residual maps
on the (0°,20°) sky patch. The curve is almost indistinguishable
from the theoretical noise spectrum and the dispersion band.

0os T T T T

008 - q

q+1
2x
°
&

4 .
o / |

ooe - / 4

Figure 9. Averaged power spectrum of 100 CMB residual maps
on the (15°,20°) sky patch (blue curve). The red curve represents
the theoretical noise spectrum and the green curves delimit the
dispersion band of the individual spectra.

experiments, we introduced a noise component which is
stronger than the one expected from the Planck radiometers.
In any case, the CMB angular power spectrum has always
been estimated fairly well up to a multipole { = 2000. The es-
timation of the source densities has also given very good re-
sults. Source separation by our method has been particularly
interesting with data from low galactic latitudes, where the
foreground level is often higher than the CMB signal. Note
that many separation strategies, both blind and non-blind,
have failed their goal in this region of the celestial sphere.
As an example, WMAP data analysis (see Bennett et al.,
2003) was often performed by using pixel intensity masks
that exclude the brightest sky portion from being consid-
ered. Another interesting feature is that, when a significant
cross-correlation between a pair of sources is expected, this
can be estimated as well by introducing an extra unknown
in the problem. Our method is suitable to work directly with
all-sky maps, but it could be necessary to apply it to small
patches, as is shown in the above experimental section, to
cope with the expected variability of the spectral indices and
the noise variances in different sky regions.
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We will further investigate this approach in the future,
aiming at improving its identification and separation perfor-
mances. One of the directions of research will be the use of
covariance matrices at nonzero shift values, as already made
by Belouchrani et al. (1997). This strategy should both im-
prove the performance of the method with respect to uncor-
related noise and make it possible to relax the assumptions
on the mixing matrix to be estimated. One problem that
is still open with the expected Planck data is the different
resolution of the data maps in some of the measurement
channels. The identification part of our method can work
with maps whose resolution has been degraded in order to
be the same in all the channels. The result should be an
estimate of the mixing matrix, which can be used in any
non-blind separation approach with channel-dependent res-
olution, such as maximum entropy. However, the possible
asymmetry of the telescope beam patterns should be taken
into account in verifying this possibility.
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