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1. Introduction

1.1. Foreword

Let V ∈ L2
loc(RN ) be a real-valued potential such that V ≤ 0 and let us consider the 

Schrödinger operator HV := −Δ + V , acting on the domain

D(HV ) := H2(RN ) ∩ {u ∈ L2(RN ) : V u ∈ L2(RN )}.

Observe that the hypothesis V ∈ L2
loc(RN ) entails the inclusion

C∞
0 (RN ) ⊂ D(HV ),

thus D(HV ) is dense in L2(RN ). The operator HV : D(HV ) → L2(RN ) is symmetric and 
self-adjoint as well, thanks to the fact that V is real-valued (see [15, Example, p. 68]). 
The spectrum of HV is the set

σ(HV ) = R \ ρ(HV ),

where ρ(HV ) is the resolvent set of HV , defined as the collection of real numbers λ such 
that HV − λ is bijective and its inverse is a bounded linear operator.

A distinguished subset of σ(HV ) is given by the collection of those λ such that the 
kernel of HV − λ is nontrivial. In this case, the stationary Schrödinger equation

HV u = λu, (1.1)
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admits a nontrivial solution u ∈ D(HV ). Whenever this happens, λ is called an eigenvalue
of the Schrödinger operator. Correspondingly, the solution is said to be an eigenfunction
corresponding to λ.

The operator HV comes with the associated quadratic form

ϕ �→ QV (ϕ) =
ˆ

RN

|∇ϕ|2 dx +
ˆ

RN

V ϕ2 dx, ϕ ∈ D(HV ).

From classical Spectral Theory, we have (see [15, Theorem 2.20])

inf σ(HV ) = inf
ϕ∈D(HV )

⎧⎨
⎩QV (ϕ) :

ˆ

RN

ϕ2 dx = 1

⎫⎬
⎭ . (1.2)

We call such a value ground state energy of HV .
This quantity is important in classical Quantum Mechanics, since it is the lowest 

energy that a particle in RN interacting with the force field generated by the potential 
V can attain (and which will eventually attain by emitting energy). From a mathematical 
point of view, we observe that the stationary Schrödinger equation (1.1) is precisely the 
Euler–Lagrange equation of the minimization problem appearing in (1.2).

An issue of main interest is providing a lower bound on the ground state energy (and 
thus on the spectrum) of HV .

It is well-known that when V ≡ 0, then inf σ(HV ) = 0. On the other hand, if we 
take V ≤ 0, the kinetic energy 

´
RN |∇ϕ|2 dx and the potential energy 

´
RN V ϕ2 dx are in 

competition in the quadratic form QV and one could expect that

inf σ(HV ) < 0.

Actually, this depends on the potential V . For example, by recalling the Hardy inequality 
on RN (for N ≥ 3)

(
N − 2

2

)2 ˆ

RN

ϕ2

|x|2 dx ≤
ˆ

RN

|∇ϕ|2 dx, ϕ ∈ C∞
0 (RN \ {0}),

we get that if the potential V is such that

0 ≥ V ≥ −
(
N − 2

2

)2 1
|x|2 ,

then the spectrum of HV is still non-negative. This is an example of how Hardy-type 
inequalities can be exploited in order to identify classes of negative potentials with non-
negative spectrum.
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1.2. Aim of the paper

In this paper we deal with a confined version of this problem. More precisely, we turn 
our attention to prescribed open sets Ω ⊂ R

N . We fix a potential V ∈ L2
loc(Ω) such that 

V ≤ 0 and consider the localized Schrödinger operator with homogeneous boundary 
conditions HΩ,V = −Δ + V , this time acting on the domain

D(HΩ,V ) := H2(Ω) ∩H1
0 (Ω) ∩ {u ∈ L2(Ω) : V u ∈ L2(Ω)}. (1.3)

Here H1
0 (Ω) is the closure of C∞

0 (Ω) in the Sobolev space H1(Ω). This is still a symmetric 
and self-adjoint operator HV : D(HΩ,V ) → L2(Ω), with real spectrum σ(HΩ,V ). Observe 
that the hypothesis V ∈ L2

loc(Ω) entails as before the inclusion

C∞
0 (Ω) ⊂ D(HΩ,V ),

thus the operator is densely defined. We define the associated quadratic form

QΩ,V (ϕ) =
ˆ

Ω

|∇ϕ|2 dx +
ˆ

Ω

V ϕ2 dx, ϕ ∈ D(HΩ,V ).

The stationary equation (1.1) now reads
{

HΩ,V u = λu in Ω,

u = 0, in R
N \ Ω.

(1.4)

Equation (1.4) can be formally considered as a peculiar form of (1.1), where the potential 
V has the trapping property V = +∞ in RN \Ω. This models the physical situation where 
the particle is “trapped” in the confining region Ω.

The issue we tackle is the following

“find explicit pointwise bounds on the potential V
assuring that the ground state energy of HΩ,V stays positive”

In the vein of the example discussed above using Hardy’s inequality in the entire 
space, we will approach this problem by proving localized Hardy-type inequalities with 
suitable weights. A typical instance of these inequalities occurs when we limit ourselves 
to consider functions supported in a proper open subset Ω ⊂ R

N and we use the distance 
dΩ(x) := dist(x, ∂Ω) as a weight. In other words, one has

1
C

ˆ

Ω

ϕ2

d2
Ω
dx ≤

ˆ

Ω

|∇ϕ|2 dx, ϕ ∈ C∞
0 (Ω).

However, the existence of such a constant C > 0 typically requires some conditions on 
the geometry of the set Ω or on the regularity of its boundary, see [13]. In this paper on 
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the contrary, we will prove alternative Hardy-type inequalities, with weights depending 
on solutions of peculiar elliptic partial differential equations.

Roughly speaking, we will consider the solution wq,Ω to the Lane–Emden equation1

with 1 ≤ q < 2

⎧⎪⎨
⎪⎩

−Δu = uq−1 in Ω,

u = 0, in R
N \ Ω,

u > 0, in Ω,

(1.5)

prove a Hardy inequality with weight depending on wq,Ω and show that the condition

0 ≥ V � −
∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

, a.e. in Ω,

leads to positivity of the spectrum of the Schrödinger operator HΩ,V .
The function wq,Ω will be called the Lane–Emden q-density of Ω, we refer to Defini-

tions 2.5 and 2.8 below.

1.3. Main results

Let us now try to be more precise about our results. We first need to fix some defini-
tions. For γ ≥ 1, we denote

λ2,γ(Ω) = inf
ϕ∈C∞

0 (Ω)

⎧⎨
⎩
ˆ

Ω

|∇ϕ|2 dx : ‖ϕ‖Lγ(Ω) = 1

⎫⎬
⎭ . (1.6)

Henceforth we shall often work with the following class of sets.

Definition 1.1. We say that Ω ⊂ R
N is an open set with positive spectrum if it is open 

and

1 The terminology comes from astrophysics, where the Lane–Emden equation is

1
�2

d

d�

(
�
2 du

d�

)
+ u

γ = 0,

for a radially symmetric function u : R
3 → R. The positive number γ is usually called polytropic index. 

Observe that for a radial function u defined in R3, this is equivalent to

−Δu = u
γ
.

Though our paper is not concerned with astrophysics, we found useful to give a name to the equation and 
its solution.
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λ1(Ω) := λ2,2(Ω) = inf
ϕ∈C∞

0 (Ω)

⎧⎨
⎩
ˆ

Ω

|∇ϕ|2 dx : ‖ϕ‖L2(Ω) = 1

⎫⎬
⎭ > 0. (1.7)

The main result of the paper is the following lower bound on the ground state energy 
of HΩ,V . We refer to Theorem 6.2 and Corollary 6.3 for its proof.

Theorem 1.2. Let Ω ⊂ R
N be an open set with positive spectrum, and let V ∈ L2

loc(Ω). 
For an exponent 1 ≤ q < 2, we assume that

0 ≥ V ≥ −1
4

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

, a.e. in Ω.

Then the spectrum σ(HΩ,V ) of HΩ,V is positive and we have that

inf σ(HΩ,V ) = inf
ϕ∈C∞

0 (Ω)

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭ ≥ 1

C
λ1(Ω),

where C = C(N, q) > 0 is an explicit constant.

We point out that due to the quantitative estimate of the previous result, the condition 
on V can be slightly relaxed and still we can have positivity of the spectrum. We refer 
to Remark 6.4 below for more details on this point.

As stated above, the main tool we use to prove Theorem 1.2 is an Hardy-type in-
equality, in which a weight involving the solution wq,Ω of the Lane–Emden equation 
(1.5) enters. This is the content of the next result. For questions related to optimal 
choices of weights in Hardy-type inequalities, see [8] and the references therein.

Theorem 1.3 (Hardy–Lane–Emden inequality). Let 1 ≤ q < 2 and let Ω ⊂ R
N be an open 

set with positive spectrum. Then for every ϕ ∈ C∞
0 (Ω) and δ > 0 we have that

1
δ

(
1 − 1

δ

) ˆ

Ω

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

ϕ2 dx + 1
δ

ˆ

Ω

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω

|∇ϕ|2 dx.

We refer to Remark 3.2 for some comments about the proof of this result.

1.4. Plan of the paper

The paper is organized as follows: in Section 2, we define the Lane–Emden q-density 
of a set Ω ⊂ R

N , first under the assumption that Ω is bounded and then for a general 
open set. Then in Section 3 we prove the Hardy–Lane–Emden inequality of Theorem 1.3
for bounded open sets.
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In Section 4 we show how the summability properties of the Lane–Emden densities 
are equivalent to the embedding of D1,2

0 (Ω) into suitable Lebesgue spaces. This part gen-
eralizes some results contained in the recent paper [3], by replacing the torsion function 
with any Lane–Emden q-density. Though this section may appear unrelated to ground 
state energy estimates for HΩ,V , some of its outcomes are used to extend (in Section 5) 
the Hardy–Lane–Emden inequality to open sets with positive spectrum.

The proof of Theorem 1.2 is then contained in Section 6, while Section 7 contains 
some applications of our main result to some particular geometries (a ball, an infinite 
slab and a rectilinear wave-guide with circular cross-section).

We conclude the paper with an Appendix, containing a local L∞ estimate for subso-
lutions of the Lane–Emden equation, which is necessary in order to get the explicit lower 
bound on the ground state energy of HΩ,V .

2. Preliminaries

2.1. Notation

Let Ω ⊂ R
N be an open set and define the norm on C∞

0 (Ω)

‖ϕ‖D1,2
0 (Ω) =

⎛
⎝ˆ

Ω

|∇ϕ|2 dx

⎞
⎠

1
2

, ϕ ∈ C∞
0 (Ω).

We consider the homogeneous Sobolev space D1,2
0 (Ω), obtained as the completion of 

C∞
0 (Ω) with respect to the norm ‖ · ‖D1,2

0 (Ω). For N ≥ 3 this is always a functional space, 
thanks to Sobolev inequality but in dimension N = 1 or N = 2, this may fail to be even 
a space of distributions if Ω is “too big”, see for example [7, Remark 4.1].

Remark 2.1. For an open set with positive spectrum Ω, we have automatically continuity 
of the embedding D1,2

0 (Ω) ↪→ L2(Ω). Thus in this case D1,2
0 (Ω) is a functional space. 

Moreover, we have that

D1,2
0 (Ω) = H1

0 (Ω),

thanks to the fact that in this case

⎛
⎝ˆ

Ω

|∇ϕ|2 dx

⎞
⎠

1
2

and

⎛
⎝ˆ

Ω

|∇ϕ|2 dx

⎞
⎠

1
2

+

⎛
⎝ˆ

Ω

ϕ2 dx

⎞
⎠

1
2

,

are equivalent norms on C∞
0 (Ω).
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2.2. Lane–Emden densities: bounded sets

We start with the following auxiliary result.

Lemma 2.2. Let Ω ⊂ R
N be an open bounded set. For 1 ≤ q < 2, the variational problem

min
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩1

2

ˆ

Ω

|∇ϕ|2 dx− 1
q

ˆ

Ω

ϕq dx : ϕ ≥ 0 a.e. in Ω

⎫⎬
⎭ , (2.1)

admits a unique solution.

Proof. Since the absolute value of every minimizer of the functional

ϕ �→ 1
2

ˆ

Ω

|∇ϕ|2 dx− 1
q

ˆ

Ω

|ϕ|q dx,

is also a minimizer of (2.1), problem (2.1) is equivalent to

min
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩1

2

ˆ

Ω

|∇ϕ|2 dx− 1
q

ˆ

Ω

|ϕ|q dx

⎫⎬
⎭ .

The existence of a solution follows then by the Direct Methods in the Calculus of Vari-
ations, since the embedding D1,2

0 (Ω) ↪→ Lq(Ω) is compact and D1,2
0 (Ω) is weakly closed.

As for uniqueness, we first suppose that Ω is connected. We observe that for q = 1
problem (2.1) is strictly convex, thus the solution is unique. For 1 < q < 2, we can use a 
trick by Brezis and Oswald based on the so-called Picone’s inequality, see [4, Theorem 1]. 
We reproduce their argument here for completeness. We first observe that a minimizer 
is a positive solution of the Lane–Emden equation

−Δu = uq−1, in Ω, (2.2)

with homogeneous Dirichlet boundary conditions. More precisely, for every ϕ ∈ D1,2
0 (Ω)

it holds
ˆ

Ω

〈∇u,∇ϕ〉 dx =
ˆ

Ω

uq−1 ϕdx. (2.3)

We now suppose that (2.1) admits two minimizers u1, u2 ∈ D1,2
0 (Ω). By the minimum 

principle for superharmonic functions, u1 > 0 and u2 > 0 on Ω. Moreover, by standard 
Elliptic Regularity, u1, u2 ∈ L∞(Ω). We fix ε > 0, then we test equation (2.3) for u1
with
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ϕ = u2
2

u1 + ε
− u1,

and equation (2.3) for u2 with

ϕ = u2
1

u2 + ε
− u2.

Summing up, we get that

ˆ

Ω

〈
∇u1,∇

(
u2

2
u1 + ε

)〉
dx−

ˆ

Ω

|∇u1|2 dx +
ˆ

Ω

〈
∇u2,∇

(
u2

1
u2 + ε

)〉
dx−

ˆ

Ω

|∇u2|2 dx

=
ˆ

Ω

uq−1
1

u1 + ε
u2

2 dx−
ˆ

Ω

uq
1 dx +

ˆ

Ω

uq−1
2

u2 + ε
u2

1 dx−
ˆ

Ω

uq
2 dx.

We now recall that 〈
∇u,∇

(
v2

u

)〉
≤ |∇v|2, (2.4)

for v and u > 0 differentiable. This is precisely Picone’s inequality, see for example [2]. 
By observing that ∇ui = ∇(ui + ε) and using (2.4) in the identity above, we conclude 
that

ˆ

Ω

uq−1
1

u1 + ε
u2

2 dx−
ˆ

Ω

uq
1 dx +

ˆ

Ω

uq−1
2

u2 + ε
u2

1 dx−
ˆ

Ω

uq
2 dx ≤ 0.

We now take the limit as ε goes to 0. By Fatou’s Lemma, we obtain that
ˆ

Ω

uq−2
1 u2

2 dx−
ˆ

Ω

uq
1 dx +

ˆ

Ω

uq−2
2 u2

1 dx−
ˆ

Ω

uq
2 dx ≤ 0.

The previous terms can be recast into inequality
ˆ

Ω

(u2
2 − u2

1) (uq−2
2 − uq−2

1 ) dx ≥ 0.

By using the fact the function t �→ tq−2 is monotone decreasing, we get that u1 = u2 as 
desired.

Finally, if Ω is not connected, it is sufficient to observe that a solution of (2.1) must 
minimize the same functional on every connected component, due to the locality of 
the functional; since the solution is unique on every connected component, we get the 
conclusion in this case as well. �
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Remark 2.3 (About uniqueness). Uniqueness of the solution to (2.1) can also be inferred 
directly at the level of the minimization problem. It is sufficient to observe that the 
functional to be minimized is convex along curves of the form

γt =
(
(1 − t)ϕq

0 + t ϕq
1

) 1
q

, t ∈ [0, 1], ϕ0, ϕ1 ∈ D1,2
0 (Ω) positive,

see [2, Proposition 2.6]. Then one can reproduce the uniqueness proof of [1]. For a 
different proof of the uniqueness for (2.2), we also refer to [9, Corollary 4.2].

Remark 2.4. It is useful to keep in mind that if u ∈ D1,2
0 (Ω) solves equation

−Δu = t uq−1, in Ω,

for some t > 0, then the new function

vt = t
1

q−2 u,

solves (2.2).

Definition 2.5. Let Ω ⊂ R
N be an open bounded set. For 1 ≤ q < 2, we define the 

Lane–Emden q-density of Ω as the unique solution of (2.1). We denote such a solution 
by wq,Ω. In the case q = 1, we simply write wΩ and call it torsion function of Ω.

The variational problem defining wq,Ω is related to the optimal Poincaré constant 
λ2,q(Ω) defined in (1.6). This is the content of the next result, that we record for com-
pleteness. We omit the proof since it is based on a straightforward scaling argument.

Lemma 2.6. Let 1 ≤ q < 2 and let Ω ⊂ R be an open bounded set. Then we have

min
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩1

2

ˆ

Ω

|∇ϕ|2 dx− 1
q

ˆ

Ω

ϕq dx : ϕ ≥ 0 in Ω

⎫⎬
⎭ = q − 2

2 q

(
1

λ2,q(Ω)

) q
2−q

(2.5)

and

⎛
⎝ˆ

Ω

|wq,Ω|q dx

⎞
⎠

2−q
q

= 1
λ2,q(Ω) . (2.6)

2.3. Lane–Emden densities: general sets

We now want to define the Lane–Emden densities for a general open set, where the 
variational problem
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inf
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩1

2

ˆ

Ω

|∇ϕ|2 dx− 1
q

ˆ

Ω

ϕq dx : ϕ ≥ 0 in Ω

⎫⎬
⎭ ,

may fail to admit a solution.

We start with a sort of comparison principle for Lane–Emden densities.

Lemma 2.7. Let 1 ≤ q < 2 and let Ω1 ⊂ Ω2 ⊂ R
N be two open bounded sets. Then we 

have

wq,Ω1 ≤ wq,Ω2 .

Proof. We test the minimality of wq,Ω1 against ϕ = min{wq,Ω1 , wq,Ω2}. After some simple 
manipulations, this gives

1
2

ˆ

{wq,Ω2<wq,Ω1}

|∇wq,Ω2 |2 dx− 1
q

ˆ

{wq,Ω2<wq,Ω1}

wq
q,Ω2

dx

≥ 1
2

ˆ

{wq,Ω2<wq,Ω1}

|∇wq,Ω1 |2 dx− 1
q

ˆ

{wq,Ω2<wq,Ω1}

wq
q,Ω1

dx.

We now add on both sides the term

1
2

ˆ

{wq,Ω2>wq,Ω1}

|∇wq,Ω2 |2 dx− 1
q

ˆ

{wq,Ω2>wq,Ω1}

wq
q,Ω2

dx,

thus if set U = max{wq,Ω1 , wq,Ω2}, we get that

1
2

ˆ

Ω2

|∇wq,Ω2 |2 dx− 1
q

ˆ

Ω2

wq
q,Ω2

dx ≥ 1
2

ˆ

Ω2

|∇U |2 dx− 1
q

ˆ

Ω2

Uq dx.

By uniqueness of the minimizer wq,Ω2 , this gives U = wq,Ω2 . By recalling the definition 
of U , this in turn yields the desired conclusion. �

Thanks to the previous property, we can define the Lane–Emden density for every 
open set. In what follows, we set

ΩR = Ω ∩BR(0), R > 0,

where BR(0) is the N -dimensional open ball, with radius R and centered at the origin.

Definition 2.8. Let Ω ⊂ R
N be an open set. For 1 ≤ q < 2 we define

wq,Ω = lim
R→+∞

wq,ΩR
.
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We observe that this definition is well-posed, since each wq,ΩR
∈ D1,2

0 (ΩR) exists 
thanks to the boundedness of ΩR and the function

R �→ wq,ΩR
(x),

is monotone, thanks to Lemma 2.7.

Remark 2.9 (Consistency). When Ω ⊂ R
N is an open bounded set or, more generally, is 

such that the embedding D1,2
0 (Ω) ↪→ Lq(Ω) is compact, then the definition of wq,Ω above 

coincides with the variational one. For q = 1 this is proved in [3, Lemma 2.4], the other 
cases can be treated in exactly the same way. We skip the details.

3. Hardy–Lane–Emden inequalities

The following theorem, which is a generalization of [3, Theorem 4.3], is the main result 
of the present section. For simplicity, we state and prove the result just for open bounded
sets, but it is easily seen that the same proof works for every open set Ω ⊂ R

N such that 
the embedding D1,2

0 (Ω) ↪→ Lq(Ω) is compact.

Theorem 3.1. Let 1 ≤ q < 2 and let Ω ⊂ R
N be an open bounded set. Then for every 

ϕ ∈ C∞
0 (Ω) and δ > 0 we have

1
δ

ˆ

Ω

[(
1 − 1

δ

) ∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

+ 1
w2−q

q,Ω

]
ϕ2 dx ≤

ˆ

Ω

|∇ϕ|2 dx. (3.1)

Proof. We recall that
ˆ

Ω

〈∇wq,Ω,∇ψ〉 dx =
ˆ

Ω

wq−1
q,Ω ψ dx, (3.2)

for any ψ ∈ D1,2
0 (Ω). Let ϕ ∈ C∞

0 (Ω) and let ε > 0, by taking in (3.2) the test function

ψ = ϕ2

wq,Ω + ε
,

we get

ˆ

Ω

[
|∇wq,Ω|2 + wq−1

q,Ω (wq,Ω + ε)
(wq,Ω + ε)2

]
ϕ2 dx = 2

ˆ

Ω

ϕ

〈
∇wq,Ω

(wq,Ω + ε) ,∇ϕ

〉
dx. (3.3)

By Young’s inequality, it holds

ϕ

〈
∇wq,Ω

,∇ϕ

〉
≤ δ |∇ϕ|2 + 1 |∇wq,Ω|2

2 ϕ2

(wq,Ω + ε) 2 2 δ (wq,Ω + ε)
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for δ > 0. Thus we get

ˆ

Ω

[
|∇wq,Ω|2 + wq−1

q,Ω (wq,Ω + ε)
(wq,Ω + ε)2

]
ϕ2 dx ≤ δ

ˆ

Ω

|∇ϕ|2 dx + 1
δ

ˆ

Ω

|∇wq,Ω|2
(wq,Ω + ε)2 ϕ2 dx.

The previous inequality gives

1
δ

ˆ

Ω

[(
1 − 1

δ

)
|∇wq,Ω|2

(wq,Ω + ε)2 +
wq−1

q,Ω

(wq,Ω + ε)

]
ϕ2 dx ≤

ˆ

Ω

|∇ϕ|2 dx.

By recalling that ϕ is compactly supported in Ω and observing that2

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

∈ L1
loc(Ω),

we conclude the proof by taking the limit as ε goes to 0 and appealing to the Monotone 
Convergence Theorem. �
Remark 3.2 (A comment on the proof). The idea of the previous proof comes from that 
of Moser’s logarithmic estimate for elliptic partial differential equations, see [12, page 
586]. In regularity theory, this is an essential tool in order to establish the validity of 
Harnack’s inequality for solutions.

An alternative proof is based on Picone’s inequality (2.4). This goes as follows: one 
observes that the function W = w

1/δ
q,Ω locally solves

−ΔW = −1
δ
w

1
δ−1
q,Ω Δwq,Ω − 1

δ

(
1
δ
− 1

)
w

1
δ−2
q,Ω |∇wq,Ω|2

= W

[
1
δ
wq−2

q,Ω + 1
δ

(
1 − 1

δ

) ∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2
]
.

Thus we have

ˆ

Ω

[
1
δ
wq−2

q,Ω + 1
δ

(
1 − 1

δ

) ∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2
]
W ψ dx =

ˆ

Ω

〈∇W,∇ψ〉 dx,

for every ψ ∈ C∞
0 (Ω). If we now take the test function ψ = ϕ2/W and use inequality 

(2.4), we get the desired inequality.

2 It is sufficient to remark that ∇wq,Ω ∈ L2(Ω) and that by the strong minimum principle, we have

wq,Ω ≥ cK > 0 for every K � Ω.
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This technique to obtain Hardy-type inequalities is sometimes referred to as Ground 
State Representation, see for example [10, Proposition 1].

As a consequence of the Hardy–Lane–Emden inequality, we record the following inte-
grability properties of functions in D1,2

0 (Ω).

Corollary 3.3. Let 1 ≤ q < 2 and let Ω ⊂ R
N be an open bounded set. Then for every 

ϕ ∈ D1,2
0 (Ω)

ˆ

Ω

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

ϕ2 dx < +∞ and
ˆ

Ω

ϕ2

w2−q
q,Ω

dx < +∞. (3.4)

Moreover, if {ϕn}n∈N ⊂ D1,2
0 (Ω) converges strongly to ϕ ∈ D1,2

0 (Ω), then

lim
n→∞

ˆ

Ω

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

|ϕn − ϕ|2 dx = 0 and lim
n→∞

ˆ

Ω

|ϕn − ϕ|2

w2−q
q,Ω

dx = 0.

Proof. Let ϕ ∈ D1,2
0 (Ω), then there exists {ϕn}n∈N ⊂ C∞

0 (Ω) converging to ϕ in D1,2
0 (Ω). 

By choosing δ = 2 in (3.1), we have that

1
4

ˆ

Ω

[∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

+ 2
w2−q

q,Ω

]
ϕ2
n dx ≤

ˆ

Ω

|∇ϕn|2 dx.

By using the norm convergence in the right-hand side and Fatou’s Lemma in the left-hand 
side, we deduce the validity of (3.4) for ϕ.

In order to prove the second part of the statement, we observe that the first part of 
the proof also implies the validity of inequality (3.1) in D1,2

0 (Ω), for δ = 2. Plugging in 
ϕn − ϕ gives that

lim sup
n→∞

1
4

ˆ

Ω

[∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

+ 2
w2−q

q,Ω

]
|ϕn − ϕ|2 dx ≤ lim

n→∞

ˆ

Ω

|∇ϕn −∇ϕ|2 dx = 0,

as desired. �
As a consequence of Corollary 3.3 and thanks to the definition of D1,2

0 (Ω), we get the 
following

Corollary 3.4. The Hardy–Lane–Emden inequality (3.1) is valid for every δ > 0 and 
u ∈ D1,2

0 (Ω).
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4. Sobolev embeddings and densities

In this section, we consider general open sets and study the connections between the 
integrability of wq,Ω and the embeddings of D1,2

0 (Ω) into Lebesgue spaces. For the case 
of the torsion function, i.e. when q = 1, related studies can be found in [3,5,17] and [6].

We start with a simple consequence of Theorem 3.1. This is valid for a general open 
set.

Lemma 4.1. Let Ω ⊂ R
N be an open set and 1 ≤ q < 2. Then for any ϕ ∈ C∞

0 (Ω) it 
holds that

ˆ

{x∈Ω : wq,Ω(x)<+∞}

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω

|∇ϕ|2 dx.

Proof. Let BR(0) be the ball of radius R centered in 0, we set ΩR = Ω ∩ BR(0) and 
wR = wq,ΩR

. Let ϕ ∈ C∞
0 (Ω), then for every R large enough the support of ϕ is contained 

in ΩR. By using (3.1) on ΩR with δ = 1, we get

ˆ

Ω

ϕ2

w2−q
R

dx ≤
ˆ

Ω

|∇ϕ|2 dx.

We conclude by letting R → +∞ and by Fatou’s Lemma. �
The following result is a generalization of [3, Theorem 1.2]. We point out that the 

equivalence between 1. and 2. below is a known fact in Sobolev spaces theory, see [11, 
Theorems 15.6.2].

Theorem 4.2. Let 1 ≤ q < 2 and let Ω ⊂ R
N be an open set. Then for every q ≤ γ < 2

the following three facts are equivalent

1. the embedding D1,2
0 (Ω) ↪→ Lγ(Ω) is continuous;

2. the embedding D1,2
0 (Ω) ↪→ Lγ(Ω) is compact;

3. wq,Ω ∈ L
2−q
2−γ γ(Ω).

Moreover, we have the double-sided estimates

1 ≤ λ2,γ(Ω)

⎛
⎝ˆ

Ω

w
2−q
2−γ γ

q,Ω dx

⎞
⎠

2−γ
γ

≤ 2 − γ

γ − 2 (q − 1)

(
2 − q

2 − γ

)2

, (4.1)

where λ2,γ(Ω) is the optimal Poincaré constant defined in (1.6).



1840 L. Brasco et al. / Journal of Functional Analysis 274 (2018) 1825–1863
Proof. As announced above, the equivalence 1. ⇐⇒ 2. is already known, see also [3, 
Theorem 1.2] for a different proof. It is sufficient to prove the equivalence 1. ⇐⇒ 3.

Let us suppose that the embedding D1,2
0 (Ω) ↪→ Lγ(Ω) is continuous. As always, we 

set ΩR = Ω ∩ BR(0) and wR = wq,ΩR
. Then by testing (2.3) with wβ

R for some β ≥ 1, 
we get

ˆ

ΩR

wβ+q−1
R dx = β

(
2

β + 1

)2 ˆ

ΩR

∣∣∣∇w
β+1
2

R

∣∣∣2 dx

≥ β

(
2

β + 1

)2

λ2,γ(ΩR)

⎛
⎝ ˆ

ΩR

w
β+1
2 γ

R dx

⎞
⎠

2
γ

≥ β

(
2

β + 1

)2

λ2,γ(Ω)

⎛
⎝ ˆ

ΩR

w
β+1
2 γ

R dx

⎞
⎠

2
γ

.

By choosing3

β = γ − 2 (q − 1)
2 − γ

,

from the previous estimate we get

⎛
⎝ ˆ

ΩR

w
2−q
2−γ γ

R dx

⎞
⎠

2−γ
γ

≤ 2 − γ

γ − 2 (q − 1)

(
2 − q

2 − γ

)2 1
λ2,γ(Ω)

By Fatou’s Lemma, we can take the limit as R goes to +∞ and get the desired integra-
bility of wq,Ω, together with the upper estimate in (4.1).

Suppose now that wq,Ω ∈ L
2−q
2−γ γ(Ω), this implies that wq,Ω < +∞ almost everywhere in 

Ω. We take u ∈ C∞
0 (Ω), then by Hölder’s inequality and Lemma 4.1 we have

ˆ

Ω

|ϕ|γ dx =
ˆ

Ω

|ϕ|γ

w
(2−q) γ

2
q,Ω

w
(2−q) γ

2
q,Ω dx ≤

⎛
⎝ˆ

Ω

ϕ2

w2−q
q,Ω

dx

⎞
⎠

γ
2
⎛
⎝ˆ

Ω

w
2−q
2−γ γ

q,Ω dx

⎞
⎠

2−γ
2

≤

⎛
⎝ˆ

Ω

|∇ϕ|2 dx

⎞
⎠

γ
2
⎛
⎝ˆ

Ω

w
2−q
2−γ γ

q,Ω dx

⎞
⎠

2−γ
2

.

3 Observe that β ≥ 1 thanks to the fact that q ≤ γ < 2.
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We conclude by density of C∞
0 (Ω) in D1,2

0 (Ω) that the embedding D1,2
0 (Ω) ↪→ Lγ(Ω) is 

continuous. Moreover, we also obtain the lower bound in (4.1). �
The following result generalizes [3, Theorem 1.3] and [16, Theorem 9], by allowing 

any Lane–Emden densities in place of the torsion function.

Proposition 4.3. Let 1 ≤ q < 2 and let Ω ⊂ R
N be an open set. Then we have that

λ1(Ω) > 0 ⇐⇒ wq,Ω ∈ L∞(Ω).

Moreover, we have that

λ1(Ω)
1

q−2 ≤ ‖wq,Ω‖L∞(Ω) ≤
(

2N C2
((

2 C
)2−q

+ 4
)) 1

2−q

λ1(Ω)
1

q−2 , (4.2)

where C is the same constant appearing in (A.1).

Proof. We suppose that wq,Ω ∈ L∞(Ω). This in particular implies that wq,Ω < +∞
almost everywhere in Ω. Then for any ϕ ∈ C∞

0 (Ω) we have that

ˆ

Ω

ϕ2 dx =
ˆ

Ω

ϕ2

w2−q
q,Ω

w2−q
q,Ω dx

≤

⎛
⎝ˆ

Ω

ϕ2

w2−q
q,Ω

dx

⎞
⎠ ‖wq,Ω‖2−q

L∞(Ω) ≤ ‖wq,Ω‖2−q
L∞(Ω)

ˆ

Ω

|∇ϕ|2 dx,

the last inequality being due to Lemma 4.1. This shows that

wq,Ω ∈ L∞(Ω) for 1 ≤ q < 2 =⇒ λ1(Ω) > 0,

together with the lower bound in (4.2).

The converse implication is more involved and we adapt the proof of [16, Theorem 9], 
which deals with the case q = 1. Without loss of generality we can suppose Ω to be 
bounded and smooth; indeed, the general case can be then covered by considering a 
family of smooth bounded sets approaching Ω from inside.

For ease of notation we set w := wq,Ω and we suppose that w(0) = ‖w‖L∞(Ω). This 
can be done up to translating Ω. Moreover we can extend w to 0 outside Ω. Since ∂Ω
is regular, we get by means of Hopf’s Lemma that the extended function, which we still 
denote by w, satisfies

−Δw ≤ wq−1, (4.3)
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in the weak sense. Let R > 0 to be fixed, and let ζ be a cut-off Lipschitz function such 
that

0 ≤ ζ ≤ 1, ζ = 1 in BR(0), ζ = 0 in R
N \B2 R(0), |∇ζ| ≤ 1

R
.

From the variational characterization of λ1(Ω), we have

λ1(Ω) ≤

ˆ

Ω

|∇(w ζ)|2 dx

ˆ

Ω

(w ζ)2 dx
=

ˆ

Ω

(
|∇w|2 ζ2 + 2w ζ 〈∇w,∇ζ〉 + |∇ζ|2 w2

)
dx

ˆ

Ω

w2 ζ2 dx

. (4.4)

By using the positive test function w ζ2 into the weak formulation of (4.3), we get that
ˆ

Ω

|∇w|2 ζ2 dx + 2
ˆ

Ω

w ζ 〈∇w,∇ζ〉 dx =
ˆ

Ω

〈∇w,∇(w ζ2)〉 dx ≤
ˆ

Ω

wq ζ2 dx.

Thus, by recalling that w attains its maximum in 0 and using the properties of ζ, from 
(4.4) we obtain that

λ1(Ω) ≤

ˆ

Ω

(
|∇ζ|2 w2 + wq ζ2

)
dx

ˆ

Ω

w2 ζ2 dx

≤ 2N ωN
w(0)2 RN−2 + w(0)q RNˆ

BR(0)

w2 dx

. (4.5)

We use now the local L∞ − L2 estimate of Lemma A.1 to handle the denominator. 
Indeed, by (A.1) with α = 2 we have that

ˆ

BR(0)

w2 dx ≥ ωN RN

(
1
C w(0) −

(
R

2

) 2
2−q

)2

.

By spending this information in (4.5), we end up with

λ1(Ω) ≤ 2N R−2 w(0)2 + w(0)q(
1
C w(0) −

(
R

2

) 2
2−q

)2 .

By choosing

R = 2
(
w(0)

)(2−q)/2

,
2 C
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we obtain the inequality

λ1(Ω) ≤ 2N 4 C2

w(0)2−q

(
1
4

(
2 C
)2−q

+ 1
)
,

and thus

w(0) ≤
(

2N C2
((

2 C
)2−q

+ 4
)) 1

2−q

λ1(Ω)
1

q−2 .

This concludes the proof. �
Remark 4.4 (Super-homogeneous embeddings). A closer inspection of the proof reveals 
that with exactly the same argument we can prove the following stronger statement: for 
every 1 ≤ q < 2 and 2 ≤ γ < 2∗, we have that

λ2,γ(Ω) > 0 ⇐⇒ wq,Ω ∈ L∞(Ω), (4.6)

where

2∗ = 2N
N − 2 , for N ≥ 3 and 2∗ = +∞, for N ∈ {1, 2}.

Observe that (4.6) implies in particular that

D1,2
0 (Ω) ↪→ L2(Ω) ⇐⇒ D1,2

0 (Ω) ↪→ Lγ(Ω), for 2 < γ < 2∗. (4.7)

For the implication =⇒, it is sufficient to reproduce the proof above, using the variational 
characterization of λ2,γ(Ω) and the L∞ estimate (A.1), this time with α = γ.

For the converse implication, it is sufficient to use the Gagliardo–Nirenberg interpola-
tion inequality (see for example [3, Proposition 2.6])

⎛
⎝ ˆ

RN

|u|γ dx

⎞
⎠

1
γ

≤ C

⎛
⎝ ˆ

RN

|u|2 dx

⎞
⎠

1−ϑ
2
⎛
⎝ ˆ

RN

|∇u|2 dx

⎞
⎠

ϑ
2

,

where C = C(N, γ) > 0 and

ϑ =
(

1 − 2
γ

)
N

2 , 2 < γ < 2∗.

This shows that if D1,2
0 (Ω) ↪→ L2(Ω) is continuous, then D1,2

0 (Ω) ↪→ Lγ(Ω) is continuous 
as well. We leave the details to the interested reader.

We point out that the equivalence (4.7) can also be found in [11, Theorem 15.4.1]. 
The proof there is different.
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We conclude this section with the following simple result which we record for com-
pleteness.

Proposition 4.5. Let 1 ≤ q < 2 and let Ω ⊂ R
N be an open set such that the embedding 

D1,2
0 (Ω) ↪→ Lq(Ω) is continuous. Then the embedding D1,2

0 (Ω) ↪→ L2(Ω) is compact.

Proof. We already know by Theorem 4.2 that the continuity of the embedding 
D1,2

0 (Ω) ↪→ Lq(Ω) is equivalent to its compactness. Then it is sufficient to use the 
Gagliardo–Nirenberg inequality

⎛
⎝ ˆ

RN

|u|2 dx

⎞
⎠

1
2

≤ C

⎛
⎝ ˆ

RN

|u|q dx

⎞
⎠

1−ϑ
q
⎛
⎝ ˆ

RN

|∇u|2 dx

⎞
⎠

ϑ
2

,

where C = C(N, q) > 0 and

ϑ =
(
1 − q

2

) 2N
(2 − q)N + 2 q .

This guarantees that every bounded sequence {un}n∈N ⊂ D1,2
0 (Ω) strongly converging 

in Lq(Ω), strongly converges in L2(Ω) as well. This gives the desired conclusion. �
Remark 4.6. The converse implication of the previous proposition does not hold. Indeed, 
let {ri}i∈N ⊂ R be a sequence of strictly positive numbers, such that

lim
i→∞

ri = 0 and
∞∑
i=0

r
2

2−γ +N

i = +∞, for every 1 ≤ γ < 2.

For example, one could take ri = 1/ log(2 + i). We then define the sequence of points 
{xi}i∈N ⊂ R

N by
{

x0 = (0, . . . , 0),
xi+1 = (ri + ri+1, 0, . . . , 0) + xi,

and the disjoint union of balls

Ω =
∞⋃
i=0

Bri(xi).

Thanks to the choice of the radii ri we have

wΩ ∈ L∞(Ω) and for every ε > 0, there exists R > 0
such that ‖wΩ‖L∞(Ω\BR) < ε,

thus the embedding D1,2
0 (Ω) ↪→ L2(Ω) is compact, see [3, Theorem 1.3].
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On the other hand, wΩ /∈ Lγ(Ω) for every γ ∈ [1, +∞) (see [3, Example 5.2]). Thus, 
by Theorem 4.2, D1,2

0 (Ω) is not continuously embedded in any Lγ(Ω), with 1 ≤ γ < 2.

5. Hardy–Lane–Emden inequalities for sets with positive spectrum

We want to generalize Theorem 3.1 and prove that the Hardy–Lane–Emden inequality 
(3.1) holds true on any open set Ω ⊂ R

N with positive spectrum, i.e. such that the 
constant λ1(Ω) defined in (1.7) is positive.

We need an expedient result which has some interest by itself.

Proposition 5.1. Let 1 ≤ q < 2 and let Ω ⊂ R
N be an open set with positive spectrum. 

Then ∇wq,Ω ∈ L2
loc(Ω) and wq,Ω is a local weak solution of the Lane–Emden equation

−Δwq,Ω = wq−1
q,Ω , (5.1)

i.e. we have
ˆ

Ω

〈∇wq,Ω,∇ϕ〉 dx =
ˆ

Ω

wq−1
q,Ω ϕdx, for every ϕ ∈ D1,2

0 (Ω′) and Ω′ � Ω.

Proof. Let wR be the Lane–Emden function of Ω ∩ BR(0) and let Ω′ � Ω. We aim to 
show that there exists a constant C > 0 such that

ˆ

Ω′

|∇wR|2 dx ≤ C, for every R > 0. (5.2)

Indeed, this entails that ∇wR weakly converge (up to extracting a sequence) in L2(Ω′)
to a vector field Z ∈ L2(Ω′). The assumption λ1(Ω) > 0 implies that wq,Ω ∈ L∞(Ω), by 
Proposition 4.3. Then by recalling that 0 ≤ wR ≤ wq,Ω, it is not difficulty to see that 
Z must coincide with the distributional gradient ∇wq,Ω (see for example [3, Proposition 
3.6]).

In particular, for every ϕ ∈ C∞
0 (Ω′) the identity

ˆ

Ω

〈∇wR,∇ϕ〉 dx =
ˆ

Ω

wq−1
R ϕdx

passes to the limit and we are done. The fact that we can allow test functions ϕ ∈ D1,2
0 (Ω′)

follows by density.
Thus we are left to show that (5.2) holds true. Let Ω′ � Ω′′ � Ω and take η ∈ C∞

0 (Ω′′)
a standard cut-off function, with η = 1 on Ω′ and |∇η| ≤ C/ dist(Ω′, Ω′′). Then, for R > 0
large enough, we test the Lane–Emden equation satisfied by wR with ϕ = wR η2. This 
yields
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ˆ

Ω

|∇wR|2 η2 dx =
ˆ

Ω

η2 wq
R dx− 2

ˆ

Ω

wR η 〈∇wR,∇η〉 dx

≤
ˆ

Ω

η2 wq
R dx + 1

2

ˆ

Ω

|∇wR|2 η2 dx + 2
ˆ

Ω

|∇η|2w2
R dx.

Since by construction we have wR ≤ wq,Ω, we deduce that
ˆ

Ω′

|∇wR|2 dx ≤ 2
ˆ

Ω′′

wq
q,Ω dx + 4C

dist(∂Ω′, ∂Ω′′)

ˆ

Ω′′

w2
q,Ω dx.

By recalling that wq,Ω ∈ L∞(Ω), we get (5.2) from the previous estimate. �
Theorem 5.2. Let 1 ≤ q < 2 and let Ω ⊂ R

N be an open set with positive spectrum. Then 
for every u ∈ C∞

0 (Ω) and δ > 0 we still have (3.1).

Proof. Let Ω′ � Ω and ϕ ∈ C∞
0 (Ω′). Since wq,Ω ∈ H1(Ω′) by the previous result, we 

can use ϕ2/(wq,Ω + ε) as a test function in (5.1). Then we can repeat word by word the 
proof of Theorem 3.1 to show that (3.1) holds for any ϕ ∈ C∞

0 (Ω′). The conclusion then 
follows by arbitrariness of Ω′ � Ω. �
6. Lower bounds for the ground state energy

For a negative potential V ∈ L2
loc(Ω), we go back to our initial task and consider the 

operator HΩ,V = −Δ +V . We already observed that HΩ,V is symmetric and self-adjoint, 
with domain D(HΩ,V ) defined in (1.3). We recall the notation from the Introduction

QΩ,V (ϕ) =
ˆ

Ω

|∇ϕ|2 dx +
ˆ

Ω

V ϕ2 dx, ϕ ∈ D(HΩ,V ),

and we set

λ1(Ω;V ) = inf
u∈C∞

0 (Ω)

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭ .

We need the following expedient result which asserts that under suitable assumptions 
on the potential V , the infimum in the definition of λ1(Ω; V ) can be equivalently taken 
upon D1,2

0 (Ω).

Lemma 6.1. Let Ω ⊂ R
N be an open set with positive spectrum, and let V ∈ L2

loc(Ω) be 
a negative potential. We further suppose that there exists a constant C > 0 such that

ˆ
|V |ϕ2 dx ≤ C

ˆ
|∇ϕ|2 dx, for every ϕ ∈ C∞

0 (Ω). (6.1)

Ω Ω
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Then

λ1(Ω;V ) = inf
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭ .

Proof. Since C∞
0 (Ω) ⊂ D1,2

0 (Ω), it is straightforward to see that

λ1(Ω;V ) ≥ inf
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭ .

In order to prove the reverse inequality, we take ϕ ∈ D1,2
0 (Ω) with unit L2 norm and a 

sequence {ϕn}n∈N ⊂ C∞
0 (Ω) converging to ϕ in D1,2

0 (Ω). Observe that since λ1(Ω) > 0, 
this in particular implies that {ϕn}n∈N converges strongly in L2(Ω) as well, by Poincaré 
inequality. From the definition of λ1(Ω; V ), we obtain that

λ1(Ω;V ) ≤

ˆ

Ω

|∇ϕn|2 dx +
ˆ

Ω

V ϕ2
n dx

ˆ

Ω

ϕ2
n dx

, for every n ∈ N.

We observe that

lim
n→∞

ˆ

Ω

|∇ϕn|2 dx =
ˆ

Ω

|∇ϕ|2 dx and lim
n→∞

ˆ

Ω

ϕ2
n dx = 1.

In order to handle the term containing V , we first observe that by Fatou’s Lemma and 
density of C∞

0 (Ω) in D1,2
0 (Ω), inequality (6.1) extends to the whole D1,2

0 (Ω). Then we 
use that

∣∣∣∣∣∣
ˆ

Ω

V ϕ2
n dx−

ˆ

Ω

V ϕ2 dx

∣∣∣∣∣∣ ≤
⎛
⎝ˆ

Ω

|V | (ϕn − ϕ)2 dx

⎞
⎠

1
2
⎛
⎝ˆ

Ω

|V | (ϕn + ϕ)2 dx

⎞
⎠

1
2

≤ C

⎛
⎝ˆ

Ω

|∇ϕn −∇ϕ|2 dx

⎞
⎠

1
2

×

⎡
⎢⎣
⎛
⎝ˆ

Ω

|∇ϕn|2 dx

⎞
⎠

1
2

+

⎛
⎝ˆ

Ω

|∇ϕ|2 dx

⎞
⎠

1
2
⎤
⎥⎦ ,

thanks to Hölder and Minkowski inequalities, together with the hypothesis on V . If we 
use the convergence in D1,2

0 (Ω), we obtain that
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lim
n→∞

ˆ

Ω

V ϕ2
n dx =

ˆ

Ω

V ϕ2 dx,

which gives the desired conclusion. �
The following is the main result of the paper.

Theorem 6.2. Let Ω ⊂ R
N be an open set with positive spectrum and let V ∈ L2

loc(Ω). 
For an exponent 1 ≤ q < 2, we suppose that

0 ≥ V ≥ −1
4

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

, a.e. in Ω. (6.2)

Then the spectrum σ(HΩ,V ) of HΩ,V is positive and we have

inf σ(HΩ,V ) = λ1(Ω;V ) ≥ 1
2 ‖wq,Ω‖q−2

L∞(Ω).

Proof. We prove separately that

λ1(Ω;V ) ≥ 1
2 ‖wq,Ω‖q−2

L∞(Ω) and inf σ(HΩ,V ) = λ1(Ω;V ).

We first observe that assuming λ1(Ω) > 0, implies the validity of the Hardy–Lane–Emden 
inequality

1
4

ˆ

Ω

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

ϕ2 dx + 1
2

ˆ

Ω

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω

|∇ϕ|2 dx, for ϕ ∈ C∞
0 (Ω). (6.3)

Indeed, this follows from Theorem 5.2 with δ = 2. Thanks to hypothesis (6.2), we thus 
obtain

1
2

ˆ

Ω

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω

|∇ϕ|2 dx +
ˆ

Ω

V ϕ2 dx, for ϕ ∈ C∞
0 (Ω).

Also observe that wq,Ω ∈ L∞(Ω), thanks to Proposition 4.3. In particular, we get the 
following lower bound for the quadratic form

QΩ,V (ϕ) ≥ 1
2 ‖wq,Ω‖2−q

L∞(Ω)
, for every ϕ ∈ C∞

0 (Ω) with
ˆ

Ω

ϕ2 dx = 1.

By arbitrariness of ϕ, this gives the lower bound on λ1(Ω; V ).
We now prove that

inf σ(HΩ,V ) = λ1(Ω;V ).



L. Brasco et al. / Journal of Functional Analysis 274 (2018) 1825–1863 1849
To see this, we first observe that by self-adjointness (see [15, Theorem 2.20]) we have 
that

inf σ(HΩ,V ) = inf
ϕ∈D(HΩ,V )

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭ .

By recalling that C∞
0 (Ω) ⊂ D(HΩ,V ), this immediately gives

inf σ(HΩ,V ) ≤ inf
ϕ∈C∞

0 (Ω)

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭ = λ1(Ω;V ).

In order to prove the reverse inequality, we make use of Lemma 6.1. For this, we need 
to prove that our potentials V satisfy (6.1). But this easily follows from (6.3) and (6.2), 
which gives that

ˆ

Ω

|V |ϕ2 dx ≤
ˆ

Ω

|∇ϕ|2 dx, for every ϕ ∈ C∞
0 (Ω). (6.4)

We can thus apply Lemma 6.1 and obtain that

λ1(Ω;V ) = inf
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭

≤ inf
ϕ∈D(HΩ,V )

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭ = inf σ(HΩ,V ),

where we also used that D(HΩ,V ) ⊂ H1
0 (Ω) = D1,2

0 (Ω), see Remark 2.1. This concludes 
the proof. �

By using the L∞ estimate of Proposition 4.3, we also get the following explicit lower 
bound on λ1(Ω; V ), in terms of a dimensional constant and λ1(Ω).

Corollary 6.3. Under the assumptions of Theorem 6.2, we also have

inf σ(HΩ,V ) = λ1(Ω;V ) ≥ 1
2

1

2NC2
((

2 C
)2−q

+ 4
) λ1(Ω), (6.5)

where C > 0 is the same constant appearing in (A.1).

Remark 6.4 (On the sharpness of the bound). Let Ω ⊂ R
N be open with positive spec-

trum and let h ∈ L∞(Ω) be a nonnegative function. It is easy to see that if V is as 
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in Theorem 6.2, then the perturbed potential V − h still verifies hypothesis (6.1) of 
Lemma 6.1. Indeed, for every ϕ ∈ C∞

0 (Ω) we have

ˆ

Ω

|V − h|ϕ2 dx =
ˆ

Ω

(−V )ϕ2 dx +
ˆ

Ω

hϕ2 dx

≤
ˆ

Ω

|∇ϕ|2 dx + ‖h‖L∞(Ω)

ˆ

Ω

ϕ2 dx ≤
(

1 +
‖h‖L∞(Ω)

λ1(Ω)

)ˆ

Ω

|∇ϕ|2 dx,

where we used (6.4) and the fact that Ω has positive spectrum. Thus we get

λ1(Ω;V − h) = inf
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩QΩ,V−h(ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭

≥ inf
ϕ∈D1,2

0 (Ω)

⎧⎨
⎩QΩ,V (ϕ) :

ˆ

Ω

ϕ2 dx = 1

⎫⎬
⎭− ‖h‖L∞(Ω)

≥ λ1(Ω;V ) − ‖h‖L∞(Ω).

In view of the quantitative bound (6.5), the spectrum σ(HΩ,V−h) remains positive for 
example if the bounded perturbation −h is such that

‖h‖L∞(Ω) <
1
2

1

2NC2
((

2 C
)2−q

+ 4
) λ1(Ω).

In other words, we have room to translate downward the potential V and still guarantee 
that the spectrum stays positive.

Remark 6.5 (The choice of δ). The result of Theorem 6.2 follows by choosing δ = 2 in 
(3.1). One may wonder why we limited ourselves to this choice only. In order to clarify 
this point, we start by rewriting (3.1) as

1
δ

ˆ

Ω

|u|2

w2−q
q,Ω

dx ≤
ˆ

Ω

|∇u|2 dx + 1
δ

(
1
δ
− 1

) ˆ

Ω

∣∣∣∣∇wq,Ω

wq,Ω

∣∣∣∣
2

|u|2 dx.

This implies that for every potential V such that

V ≥ 1
(

1 − 1
) ∣∣∣∣∇wq,Ω

∣∣∣∣
2

, a.e. in Ω, (6.6)

δ δ wq,Ω
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Fig. 1. The limit potential in a ball of radius 1.

we have that

1
δ

ˆ

Ω

|u|2

w2−q
q,Ω

dx ≤
ˆ

Ω

|∇u|2 dx +
ˆ

Ω

V |u|2 dx.

In particular, we get the following lower bound

QΩ,V (ϕ) ≥ 1
δ ‖wq,Ω‖2−q

L∞(Ω)
, for every ϕ ∈ C∞

0 (Ω) with
ˆ

Ω

ϕ2 dx = 1.

Observe that the right-hand side in (6.6) is pointwise minimal when δ = 2. This explains 
our choice.

7. Applications

In this section, we compute the limit potential appearing in (6.6) in some particular 
cases and give the relevant lower bound on the ground state energy λ1(Ω; V ). In the 
following examples we take q = 1, i.e. we use the torsion function.

7.1. N -dimensional ball

Let us take Ω = B1(0) ⊂ R
N , then

wΩ(x) = 1 − |x|2
2N , x ∈ B1(0),

and thus (see Fig. 1)

−1
∣∣∣∣∇wΩ

∣∣∣∣
2

= − |x|2
2 2 .
4 wΩ (1 − |x| )
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Thus for every V ∈ L2
loc(Ω) such that

0 ≥ V ≥ − |x|2
(1 − |x|2)2 ,

from Theorem 6.2 we get

λ1(Ω;V ) ≥ 1
2 ‖wΩ‖L∞(Ω)

= N.

7.2. An infinite slab

We now consider the set Ω = (−1, 1) × R
N−1. We first need to compute its torsion 

function. This is the content of the next

Lemma 7.1. Let Ω = (−1, 1) × R
N−1 ⊂ R

N . Then its torsion function is given by

wΩ(x1, x
′) = 1 − x2

1
2 , (x1, x

′) ∈ (−1, 1) × R
N−1.

Proof. We set

QR = (−1, 1) × (−R,R)N−1,

then we notice that

wΩ = lim
R→+∞

wQR
.

That is, we can approximate Ω by the sets QR and not only by Ω ∩ BR(0), in order to 
construct wΩ. This follows since

wΩ = lim
R→+∞

wΩ∩BR(0) = lim
R→+∞

wΩ∩B√
NR(0),

and the fact that by the comparison principle

wΩ∩BR(0) ≤ wQR
≤ wΩ∩B√

NR(0),

for R � 1. Let

w(x, x′) = 1 − x2
1

2 , (x1, x
′) ∈ (−1, 1) × R

N−1,

and notice that w is a classical solution in Ω of −Δw = 1, vanishing on ∂Ω.
Observe that w ≥ wQR

for any R > 0, thanks to the comparison principle. Thus

w ≥ wΩ = lim wQR
.

R→+∞
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To get the reverse inequality, we observe that, again by the comparison principle, wQR
≥

wER
. Here ER is the ellipsoid inscribed in QR, given by

ER =
{

(x1, x
′) ∈ R

N : x2
1 + |x′|2

R2 = 1
}

(see Fig. 2) and it is immediate to check that

wER
= R2

R2 + (N − 1)

1 − x2
1 −

|x′|2
R2

2 .

This gives

wΩ ≥ lim
R→+∞

wER
= w,

and thus the desired conclusion. �
Let us take Ω = (−1, 1) × R

N−1, then

1
4

∣∣∣∣∇wΩ

wΩ

∣∣∣∣
2

= x2
1

(1 − x2
1)2

.

Thus for every potential V ∈ L2
loc(Ω) such that

0 ≥ V (x1, x
′) ≥ − x2

1
(1 − x2

1)2
,

still by Theorem 6.2 we get

λ1(Ω;V ) ≥ 1
2 ‖wΩ‖L∞(Ω)

= 1.

7.3. A rectilinear wave-guide

Finally, we want to consider a set of the form Ω = ω×R, where ω ⊂ R
N−1 is an open 

bounded set with Lipschitz boundary. Again, we first identify its torsion function.

Lemma 7.2. Let Ω = ω × R ⊂ R
N . Then its torsion function is given by

wΩ(x′, xN ) = wω(x′), (x′, xN ) ∈ ω × R (7.1)

where wω stands for the torsion function of the set ω in RN−1.
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Fig. 2. Approximating an infinite slab.

Proof. We divide the proof in four steps.

Step 1. In this step, we prove that for every � > 0

wΩ(x′, xN + �) = wΩ(x′, xN ), (x′, xN ) ∈ ω × R,

i.e. the torsion function does not depend on the xN variable.
To see this, let us suppose for simplicity that ω ⊂ (−R0, R0)N−1, and take R ≥ R0. 

We set QR = Ω ∩ (−R, R)N (see Fig. 3) and wR = wQR
. Then

wΩ(x′, xN + �) = lim
R→+∞

wR(x′, xN + �). (7.2)

We now observe that if we further set QR,� = Ω ∩
(
(−R, R)N−1 × (−R− �, R− �)

)
and 

wR,� = wQR,�
then by construction we have that

wR,�(x′, xN ) = wR(x′, xN + �). (7.3)

On the other hand, for every R ≥ max{�, R0} we have that QR−� ⊂ QR,� ⊂ Q2 R. Thus 
by the comparison principle

lim
R→+∞

wR,�(x′, xN ) = wΩ(x′, xN ). (7.4)

Eventually, (7.2), (7.3) and (7.4) imply the claim.
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Step 2. Here we prove that

wΩ ∈ H1(ω × (−R0, R0)), for every R0 > 0,

which enforces the general result of Proposition 5.1.
We set as before QR = Ω ∩ (−R, R)N and call wR = wQR

. We fix R0 > 0 and 
consider R > R0 + 1. We then take a one-dimensional cut-off function η supported on 
[−R0 − 1, R0 + 1] such that

0 ≤ η ≤ 1, η = 1 on [−R0, R0], η′ ≤ 1.

In the equation verified by wR, we insert the test function

ϕ(x′, xN ) = wR(x′, xN ) η2(xN ).

After some standard manipulations, we get

ˆ

ω×(−R0−1,R0+1)

|∇wR|2 η2 dx ≤ C

ˆ

ω×(−R0−1,R0+1)

wR η2 dx

+ C

ˆ

ω×(−R0−1,R0+1)

w2
R |η′|2 dx.

By recalling that 0 ≤ wR ≤ wΩ and that4 wΩ ∈ L∞(Ω), from the previous argument we 
get

ˆ

ω×(−R0,R0)

|∇wR|2 dx ≤ C |ω|R0 ‖wΩ‖L∞(Ω)

(
‖wΩ‖L∞(Ω) + 1

)
,

for every R � 1. This gives a uniform H1 estimate on ω × (−R0, R0) that we can take 
to the limit and obtain the desired Sobolev regularity of wΩ.

Step 3. We now prove that for every R0 > 0, the torsion function wΩ solves the mixed 
boundary value problem

⎧⎪⎨
⎪⎩

−Δu = 1, in ω × (−R0, R0),
u = 0, on ∂ω × (−R0, R0),

uxN
= 0, on ω × {−R0, R0}.

(7.5)

4 The set Ω is bounded in every direction orthogonal to the xN axis, thus it is classical to see that 
λ1(Ω) > 0. Then wΩ ∈ L∞(Ω) by Proposition 4.3.
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Fig. 3. A rectilinear wave-guide.

We first observe that wΩ is a solution of the equation in ω × (−R0, R0). Indeed, it is 
sufficient to pass to the limit in the equation satisfied by wR and use the uniform H1

estimate above.
As for the boundary conditions, we observe that the Neumann one follows since wΩ

does not depend on the xN variable, by Step 1. The compactness of the trace operator

H1(ω × (−R0, R0)) ↪→ L2(∂(ω × (−R0, R0)),

and the uniform H1 estimate of Step 2 for wR imply the Dirichlet condition on the lateral 
boundary.

Step 4. In order to conclude, it is sufficient to observe that by Step 3 wΩ and wω both 
solve (7.5). Since the solution to the latter is unique, this gives the desired conclusion 
(7.1). �

When the cross-section ω ⊂ R
N−1 of the wave-guide has a particular geometry, we 

can explicitly compute wΩ and thus the limit potential (6.2). For example, in the case 
that the cross-section is a (N − 1)-dimensional ball, i.e. when

Ω = {x′ ∈ R
N−1 : |x′| < 1} × R,

then by Lemma 7.2 we have that

wΩ(x′, xN ) = 1 − |x′|2
, |x′| < 1,
2 (N − 1)
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and thus
∣∣∣∣∇wΩ

wΩ

∣∣∣∣
2

= − |x′|2
(1 − |x′|2)2 .

As before, we get that for every V ∈ L2
loc(Ω) such that

0 ≥ V (x′, xN ) ≥ − |x′|2
(1 − |x′|2)2 ,

it holds that

λ1(Ω;V ) ≥ 1
2 ‖wΩ‖L∞(Ω)

= N − 1.
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Appendix A. A local L∞ estimate for Lane–Emden densities

We recall that the volume of the unit ball in RN is given by

ωN = πN/2

Γ(N/2 + 1) ,

where Γ is the usual Gamma function. For N ≥ 3, we denote by

TN = sup
u∈C∞

0 (RN )

⎧⎪⎨
⎪⎩
⎛
⎝ ˆ

RN

|u|2∗
dx

⎞
⎠

2
2∗

: ‖∇u‖L2(RN ) = 1

⎫⎪⎬
⎪⎭

the optimal constant in the Sobolev inequality for D1,2
0 (RN ), i.e. the lowest number 

C > 0 such that

⎛
⎝ ˆ

|u|2∗
dx

⎞
⎠

2
2∗

≤ C

ˆ
|∇u|2 dx
RN RN
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holds for any u ∈ C∞
0 (RN ). We recall that this is given by (see [14])

TN = πN (N − 2)
(

Γ(N/2)
Γ(N)

) 2
N

.

In Section 4, we needed a local L∞ estimate for weak subsolutions of the Lane–Emden 
equation. The proof is standard routine in Elliptic Regularity Theory, our main concern 
is in the explicit expression of the constant C appearing in the estimate. For this reason, 
we provide a detailed proof.

Lemma A.1. Let λ > 0 and 1 ≤ q < 2. Let u ∈ H1
loc(Ω) ∩ L∞

loc(Ω) be a positive function 
such that

ˆ
〈∇u,∇ϕ〉 dx ≤ λ

ˆ
uq−1 ϕdx,

for every positive ϕ ∈ H1
0 (B) and every ball B � Ω. Then for every ball BR0 � Ω and 

every α ≥ 2 we have

‖u‖L∞(BR0/2) ≤ C

⎡
⎢⎢⎣
⎛
⎜⎝  

BR0

uα dx

⎞
⎟⎠

1
α

+
(
λ

4

) 1
2−q

R
2

2−q

0

⎤
⎥⎥⎦ , (A.1)

where the constant C > 0 is given by

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
ωN

(
4N

N − 2

)N (N−2)
8 (

640TN

)N
4
, for N ≥ 3,

√
π (2 γ)

γ

(γ−2)2

(
640

λ2,γ(B1)

) γ
2 (γ−2)

, for N = 2,

8
√

5, for N = 1.

Here γ is any number larger that 2 and λ2,γ(B1) is the Sobolev–Poincaré constant defined 
in (1.6).

Proof. We divide the proof in three cases, depending on the dimension N .

Case N ≥ 3. We take R0/2 ≤ r < R ≤ R0 and a pair of concentric balls Br ⊂ BR � Ω. 
We use as a test function

ϕ = η2 (u + δ)β ,
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where δ > 0, β ≥ 1 and η is a standard cut-off function, supported on BR and constantly 1 
on Br, such that

|∇η| ≤ 1
R− r

.

With standard manipulations, we obtain that

ˆ ∣∣∣∇(u + δ)
β+1
2

∣∣∣2 η2 dx ≤
(
β + 1
β

)2 ˆ
|∇η|2 (u + δ)β+1 dx

+ λ
2
β

(
β + 1

2

)2 ˆ
η2 (u + δ)β+q−1 dx.

We now observe that

(u + δ)β+q−1 ≤ (u + δ)β+1 δq−2 and
(
β + 1
β

)2

≤ 4
β

(
β + 1

2

)2

,

thus we get that

ˆ ∣∣∣∇(u + δ)
β+1
2

∣∣∣2 η2 dx ≤ 4β
[

1
(R− r)2 + λ δq−2

] ˆ

BR

(u + δ)β+1 dx.

We add on both sides the term
ˆ

|∇η|2 (u + δ)β+1 dx,

and we obtain that

ˆ ∣∣∣∇(
(u + δ)

β+1
2 η

)∣∣∣2 dx ≤ 10β
[

1
(R− r)2 + λ δq−2

] ˆ

BR

(u + δ)β+1 dx.

We then use Sobolev inequality on the left-hand side, so to obtain

⎛
⎝ˆ

Br

(
(u + δ)

β+1
2

)2∗

dx

⎞
⎠

2
2∗

≤ 10TN β

[
1

(R− r)2 + λ δq−2
] ˆ

BR

(u + δ)β+1 dx. (A.2)

We now introduce the sequence of diverging exponents

ϑi = βi + 1
2 =

(
2∗

2

)i

, i ∈ N,

and the sequence of shrinking radii
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Ri = r0 + R0 − r0
2i , i ∈ N.

From (A.2), we get the iterative scheme

⎛
⎜⎝ ˆ

BRi+1

(u + δ)2 ϑi+1 dx

⎞
⎟⎠

1
2 ϑi+1

≤
(

80TN

[
4i

(R0 − r0)2
+ λ δq−2

]) 1
2 ϑi

(ϑi)
1

2 ϑi

×

⎛
⎜⎝ ˆ

BRi

(u + δ)2 ϑi dx

⎞
⎟⎠

1
2 ϑi

.

Before launching the Moser’s iteration, it is time to declare our choice of δ > 0: we take 
it to be

δ = (λ (R0 − r0)2)
1

2−q . (A.3)

Thus we get that

⎛
⎜⎝ ˆ

BRi+1

(u + δ)2 ϑi+1 dx

⎞
⎟⎠

1
2 ϑi+1

≤
(

160TN

(R0 − r0)2

) 1
2 ϑi

(4i ϑi)
1

2 ϑi

×

⎛
⎜⎝ ˆ

BRi

(u + δ)2 ϑi dx

⎞
⎟⎠

1
2 ϑi

.

We start from i = 0 and iterate infinitely many times. We end up with the estimate

‖u + δ‖L∞(Br0 ) ≤ CN

(
160TN

)N
4

(R0 − r0)
N
2

⎛
⎜⎝ ˆ

BR0

(u + δ)2 dx

⎞
⎟⎠

1
2

,

with

CN =
(

4N
N − 2

)N (N−2)
8

.

In particular, by taking r0 = R0/2, we obtain with simple manipulations that

‖u‖L∞(BR0/2) ≤
√
ωN CN

(
640TN

)N
4

⎡
⎢⎢⎣
⎛
⎜⎝  

BR0

u2 dx

⎞
⎟⎠

1
2

+ δ

⎤
⎥⎥⎦ .
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We now recall the definition (A.3) of δ, thus the previous estimate rewrites as

‖u‖L∞(BR0/2) ≤
√
ωN CN

(
640TN

)N
4

×

⎡
⎢⎢⎣
⎛
⎜⎝  

BR0

u2 dx

⎞
⎟⎠

1
2

+
(
λ

(
R0

2

)2
) 1

2−q

⎤
⎥⎥⎦ .

By Jensen’s inequality, we can eventually replace the L2 norm on the right-hand side by 
any Lα norm with α ≥ 2.

Case N = 2. The proof runs as before, the only difference is that we now use Sobolev–
Poincaré inequality for the embedding D1,2

0 (BR) ↪→ Lγ(BR), in place of Sobolev inequal-
ity. Here γ is any exponent larger than 2. Thus, in place of (A.2) we now get

⎛
⎝ˆ

Br

(
(u + δ)

β+1
2

)γ
dx

⎞
⎠

2
γ

≤ 10β
λ2,γ(BR)

[
1

(R− r)2 + λ δq−2
] ˆ

BR

(u + δ)β+1 dx.

We used the notation

λ2,γ(BR) = min
u∈D1,2

0 (BR)

⎧⎨
⎩
ˆ

BR

|∇ϕ|2 dx : ‖ϕ‖Lγ(BR) = 1

⎫⎬
⎭ .

Accordingly, we modify the definition of the exponents ϑi as follows

ϑi = βi + 1
2 =

(γ
2

)i
, i ∈ N,

then we still take the sequence of shrinking radii

Ri = r0 + R0 − r0
2i , i ∈ N.

We get the iterative scheme

⎛
⎜⎝ ˆ

BRi+1

(u + δ)2 ϑi+1 dx

⎞
⎟⎠

1
2 ϑi+1

≤
(

80
λ2,γ(BR0)

[
4i

(R0 − r0)2
+ λ δq−2

]) 1
2 ϑi

(ϑi)
1

2 ϑi

×

⎛
⎜⎝ ˆ

B

(u + δ)2 ϑi dx

⎞
⎟⎠

1
2 ϑi

,

Ri
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where we also used that

λ2,γ(BRi
) ≥ λ2,γ(BR0), for every i ∈ N.

We still take δ as in (A.3). After infinitely many iterations, we now get

‖u + δ‖L∞(Br0 ) ≤ Cγ

(
160λ2,γ(BR0)−1

) γ
2 (γ−2)

(R0 − r0)
γ

γ−2

⎛
⎜⎝ ˆ

BR0

(u + δ)2 dx

⎞
⎟⎠

1
2

,

with

Cγ = (2 γ)
γ

(γ−2)2 .

Finally, we observe that by scaling (recall that we are in dimension N = 2)

λ2,γ(BR0) = R
− 4

γ

0 λ2,γ(B1),

thus by taking r0 = R0/2 we obtain

‖u‖L∞(BR0/2) ≤
√
π Cγ

(
640λ2,γ(B1)−1

) γ
2 (γ−2)

⎛
⎜⎝  

BR0

(u + δ)2 dx

⎞
⎟⎠

1
2

.

By recalling the definition of δ, we get the conclusion.

Case N = 1. This is the simplest case. We take the test function

ϕ = η2 (u + δ),

where η is a standard cut-off function as above, associated with a pair of concentric 
intervals of width 2 r0 < 2 R0. For simplicity, we suppose them to be centered at the 
origin. By proceeding as before with β = 1, we arrive at

R0ˆ

−R0

∣∣∣∣((u + δ) η
)′∣∣∣∣

2

dx ≤ 10
[

1
(R0 − r0)2

+ λ δq−2
] R0ˆ

−R0

(u + δ)2 dx.

We observe that by Sobolev embedding in dimension 1 we have that

R0ˆ

−R0

∣∣((u + δ) η)′
∣∣2 dx ≥ 1

2R0
‖(u + δ) η‖2

L∞(−R0,R0)

≥ 1 ‖u‖2
L∞(−r0,r0).
2R0
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We still make the choice (A.3) for δ, then we get that

‖u‖L∞(−r0,r0) ≤
4
√

5 R0

R0 − r0

⎛
⎝ R0 

−R0

(u + δ)2 dx

⎞
⎠

1
2

.

By using Minkowski inequality and recalling the definition of δ, we conclude by taking 
r0 = R0/2. �
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