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Abstract—During requirements elicitation, different stakehold-
ers with diverse backgrounds and skills need to effectively
communicate to reach a shared understanding of the problem
at hand. Linguistic ambiguity due to terminological discrepan-
cies may occur between stakeholders that belong to different
technical domains. If not properly addressed, ambiguity can
create frustration and distrust during requirements elicitation
meetings, and lead to problems at later stages of development.
This paper presents a natural language processing approach
to identify ambiguous terms between different domains. The
approach is based on building domain-specific language models,
one for each stakeholders’ domain. Word embeddings from each
language model are compared in order to measure the differences
of use of a word, thus estimating its potential ambiguity across
the domains of interest. The proposed strategy can be useful
to prepare lists of dangerous terms to take into account during
requirements elicitation meetings, such as workshops, or focus
groups, when these involve stakeholders from distant domains.

I. INTRODUCTION

Software systems are developed for a large variety of
domains, which range from non-technical areas, such as fitness
or entertainment, to more technical ones, such as aerospace
or electronic engineering. When developing a novel system
for a specific domain – or even involving different domains
at the same time (e.g., medicine and fitness) – requirements
analysts need to interact with domain experts to elicit the
domain knowledge needed to develop the system [1]–[3]. To
this end, requirements elicitation meetings in the form of
focus groups, workshops or interviews are organised with
the stakeholders [4], [5]. During these meetings, domain
experts may use specialised jargons, and ambiguity may occur
between requirements analysts and domain experts, as well
as between stakeholders belonging to different domains. As
well known, unresolved ambiguities in the early phases of the
software process may cause costly problems in later stages of
the development [6].

Several works have been proposed in the literature to tackle
the problem of ambiguity, with a main focus on written
requirements. Part of the works focuses on the identification
of terms and expressions that may cause ambiguity, such as
the term “all” and plural words [7], [8], adjectives and ad-
verbs [8]–[11], and passive voice [11]–[13]. Other works focus
on syntactic ambiguities, which are caused by ambiguous
sentence structures [14]. In particular, tools have been provided
for the detection of coordination ambiguities, i.e., ambiguities
triggered by “and” or “or” conjunctions [15] and anaphoric
ones, i.e., ambiguities triggered by pronouns [16]. All these
works deal with domain-independent ambiguous terms and

constructions. Domain-dependent ambiguity received less at-
tention in previous work, although domain knowledge has
been identified among the most frequent sources of ambiguity,
especially in requirements elicitation interviews [17].

In a recent contribution to the AIRE’17 workshop, we
proposed one of the first approaches to address domain-
dependent ambiguities, and we defined a technique to estimate
the ambiguity potential of typical computer science words
(e.g., system, database, interface) when they are used in
different domains [18]. The proposed approach was focused on
the single domain of computer science, and did not consider
the ambiguities that could be triggered by words used by
experts from other domains. This paper extends our initial
idea with a more general approach to compare terminology
from an arbitrary number of domains, identify potential cross-
domain ambiguities, and overcome some technical limitations
of our previous work.

The proposed approach is based on word embeddings [19],
which are semantic-laden word representations that are auto-
matically learned based on a natural language (NL) corpus
given as input. Based on different corpora automatically
crawled from Wikipedia portals, we build different domain-
specific language models, i.e., vector spaces of word embed-
dings. We first select terms that frequently occur in groups
of domains – e.g., terms that are frequently used in both
computer science and medicine such as cell or function. We
call these terms dominant shared terms. Then, we estimate the
variation of meaning of these terms in the different domains
by comparing the lists of the most similar words in each
domain-specific language model. An ambiguity ranking is
finally produced based on the ambiguity potential of the terms.

To showcase the proposed method, we apply it to a set
of hypothetical, yet realistic, pilot scenarios concerning the
development of different products, and involving stakeholders
from multiple domains. We provide a critical analysis of the
results, and we outline future work based on our observations.

The remainder of the paper is structured as follows. In Sect. II
we provide some background on ambiguity and word embed-
dings, and we summarise our previous work1. In Sect. III
we outline the proposed approach. In Sect. IV we present
some results on our pilot scenarios, and Sect. V provides final
remarks.

1Sect. II-A and part of II-B report content from our previous paper [18],
since the background was applicable also to the current one. We considered
it useful to include the content for the sake of clarity.



II. BACKGROUND

A. Ambiguity in Requirements Engineering
Ambiguity is largely studied in written NL requirements,

and, although our main focus is on requirements elicitation
meetings performed in spoken NL, it is useful to refer to es-
tablished classifications of ambiguity in written requirements.
Ambiguities in NL requirements are normally classified into
four main categories [20]: lexical, i.e., the terms used have
unrelated vocabulary meanings; syntactic, i.e., the sentence has
more than one syntax tree, each one with a different meaning;
semantic, i.e., a sentence can be translated into more than
one logic expression; and pragmatic, i.e., the meaning of the
sentence depends on the context in which it is used. The term
context is used as a general concept, which includes different
levels [21]: (1) those sentences immediately preceding and fol-
lowing the current one, (2) the other sentences placed in other
sections of the document, (3) the domain knowledge of the
subject reading the requirement (the reader), (4) the reader’s
common sense knowledge, and (5) the reader’s viewpoint.

Berry et al. [20] considers also language errors as a separate
class of ambiguity. In addition, two other phenomena closely
related to ambiguity are discussed in the literature [22],
namely: vagueness, i.e., an expression is vague if it admits
borderline cases, which are cases in which the truth value of
the expression cannot be decided – normally due to adjectives
or adverbs; generality, i.e., an expression is general if it needs
to be specified with more details to make sense of it. Examples
for each category are reported in Berry et al. [20] and Ferrari
et al. [17].

As highlighted, among others, by Massey et al. [23], real-
world ambiguity cases may fall in more than one category. The
cases of domain-dependent ambiguity that we wish to study
in this paper fall in the categories of: (1) lexical ambiguity,
since some words may be used with different vocabulary
meanings in different domains – e.g., the term windows:
operating system or glass openings of a vehicle?; (2) pragmatic
ambiguity, since the interpretation of a word may depend on
the domain-specific background of the reader – e.g., machine:
a software system or a specific medical system for diagnostic
support?; and (3) generality, since, in some cases, the actual
domain-specific meaning of a word may become clear when
the word is specified better – e.g., interface: software or
hardware interface?.

B. Word Embeddings
The term word embeddings encompasses a series of tech-

niques for representing the meaning of a word in a dense nu-
merical vector in a vector space. Given these representations,
the semantic similarity among words can be computed by
measuring the similarity between vectors. Word embeddings
are based on the distributional hypothesis of Harris [24], which
states that words that appear in similar linguistic contexts have
similar meanings. Or, using the terms of the linguist J. R. Firth,
the meaning of a word is given by the company it keeps [25].

Among the various word embeddings techniques, one of
the most widely known was proposed by Mikolov et al. [19].

This technique is known as skip-gram with negative sam-
pling (SGNS), and is implemented in the software package
word2vec. The name word2vec is also commonly used
to refer to the technique. The actual approach adopted by
word2vec has been subject of several studies in the NLP
field, and one theoretical explanation is provided by Levy and
Yoav [26]. We refer to this work for more details. Here, we
outline the fundamental concepts of the technique, to give the
spirit of the approach.

The SGNS variant of word2vec learns word embeddings
as a by-product of training a two-layers neural network on
the task of predicting from a single input word w a set of
context words cw. Given a corpus of documents, large amounts
of training examples can be easily generated. All the words
appearing in the corpus of documents define a vocabulary V .
Any occurrence of any word in the corpus can be used as an
input word w, while the context of that occurrence is defined
by the words surrounding it in the corpus, considering a win-
dow of size L, i.e., cw = {wi−L, . . . , wi−1, wi+1, . . . , wi+L}.
For example, if the corpus contains the fragment interviews
are used to elicit requirements, the context of size 2 for the
word w = used is cw = {interviews, are, to, elicit}.

Each w ∈ V is associated with a vector ~w, where ~w ∈
Rd, and d defines the embedding space dimensionality. These
vectors are the ones that the word2vec algorithm aims to
produce from the corpus.

In detail, the skip-gram network is fed in input with a word
w encoded as a one-hot vector ~hw on the vocabulary V . The
set of words that appear in text next to w, i.e., the context
cw, is similarly encoded as a vector ~cw on the vocabulary V ,
with ones only in the positions associated to words in cw.
The vector ~hw acts as a row selector on a word embeddings
matrix W of size |V | · d where d defines the length of the
embeddings. The selected embedding ~w = WT vw is then
multiplied to a second matrix W ′ of size d · |V |, producing
~u = W ′T ~w. The softmax function is applied to ~u producing
the final prediction of the probabilities of words to appear
in the context of the input word c̃y = softmax(~u), which is
then compared to ~cw so that the matrices W ′ and W can be
updated through backpropagation. This process is repeated by
extracting all the possible word-context pairs from the corpus.

The generated word embeddings define the language model
of the processed corpus, and have the relevant property that
words that have similar meanings, or are related, in the input
corpus are represented through vectors that are similar, i.e.,
closely placed in the vector space. Depending on the input
corpus, different language models are generated that charac-
terise the similarity between words in the specific corpus.
Hence, by building corpora from different domain-specific
documents, we can compare the meaning of a word in the
different domains.

C. Detecting Ambiguity of Computer Science Words

In a previous work, we proposed the first approach to
address domain-dependent ambiguities, and we defined a tech-
nique based on word embeddings to estimate the ambiguity



potential of typical computer science (CS) words when they
are used in different domains [18]. Specifically, we proposed
to compare the similarity between a frequent CS word, such as
system, data, user, etc., in a language model constructed with
CS-specific documents, and the same word when the language
model was enriched with domain-specific documents. In this
way, we studied how the meaning of common CS words varies
when these words are used in different domains. However,
the approach did not consider the ambiguity that could be
triggered by domain-specific words outside the CS domains. In
other terms, the approach did not account for those situations
in which ambiguities were raised by terms used by domain
experts. Furthermore, the approach had some technical limi-
tations, due to (a) the need to construct a language model for
each combination of domains, and (b) the need to modify the
domain-specific documents.

The current paper extends our initial idea with a general
approach that, given a set of domains, produces a ranked list
of potentially ambiguous terms, based on a list of dominant
shared terms. These are the words that are common between
the different domains of the set, and that are frequent in all
the domains. Intuitively, these words are those that, if they
have diverse domain-dependent meanings, are more likely to
be the source of ambiguity during a conversation between
stakeholders with distant domain backgrounds. The approach
proposed in the current paper also overcomes the technical
limitations of our previous work.

III. APPROACH

In Fig. 1 the proposed approach to produce a ranked list
of potentially ambiguous terms is depicted. In our approach
we focus on nouns, instead of terms in general, to restrict our
scope. However, the approach can be similarly applied to other
parts of speech.

The approach is as follows. We first crawl Wikipedia
to extract domain specific documents for a given domain
(Wikipedia Crawling). Then, we apply the word2vec al-
gorithm on the corpus composed by the domain-specific
documents to learn the word embeddings (Language Models
Generation). Then, we search for the most frequent nouns
that occur between sets of corpora (Cross-domain Intersec-
tion). These nouns, which we name dominant shared terms,
are those whose meanings we wish to compare across the
different domains. As mentioned, these are the words that
are commonly used in more than one domain, and thus
they may cause frequent misunderstandings when they are
used with different meanings by the stakeholders. Finally we
measure the degree of ambiguity of the dominant shared terms,
and we provide a ranking based on this measure (Cross-
domain Ambiguity Ranking). This is achieved by exploiting
the vector space of word2vec’s embeddings as a similarity
space, in which the closer two embeddings are (as measured
by cosine similarity) the more similar/related the two relative
words can be considered. For each word, word2vec can
return a ranked list of its most similar words in the language
model, together with their similarity value. Hence, given a

dominant shared term, we compare the lists of its most similar
words in different domain-specific language models, and, in
this way, we aim to estimate its degree of ambiguity. The more
words the two lists have in common, and the closer are the
similarity values for the same words in the two lists, the less
ambiguous the dominant shared term that produced the lists
can be considered.

The different steps are described in the following subsec-
tions. The first step is analogous to our previous work, and
we provide only a brief summary of it.

A. Wikipedia Crawling
Given a set D = {Di : i = 1 . . . n} of n domains,

the Wikipedia Crawling step produces one corpus Ci for
each domain Di in the set. Each Ci includes pages from a
domain-specific portal of Wikipedia. Each Wikipedia portal
is structured as a tree in which nodes are categories, and
leaves are pages. To have a visual example, we suggest the
reader to access the portal for CS2. We automatically crawl
the different pages of the domains, and we download them to
create the corpora. Then, these are pre-processed, by means
of stop-word removal and lemmatization. For more details, the
reader should refer to Ferrari et al. [18].

B. Language Models Generation
In this step, domain-specific language models Mi are

learned by means of the word2vec algorithm [19], based
on each input corpus Ci. The algorithm requires to define the
value of d, i.e., the embedding’s dimensionality; the value of
L, i.e., the length of the context to observe; the value m of
the minimum number of occurrences that a word should have
to be considered by the algorithm. In our case, we set d = 50,
L = 10, m = 5. These values have been selected based on
preliminary experiments on the data.

C. Cross-domain Intersection
This step produces a set TD of dominant shared terms

between the domains in D. The pseudo-code3 of the algorithm
used to produce the set is reported below.

INTERSECT(C, k)
TD ← ∅
RD[1 . . . |C|]← [∅ . . . ∅]
j ← k

for Ci ∈ C
do RD[i]← FREQ-RANK(Ci)

repeat
do TD ← RD[1][1 . . . j] ∩ . . . ∩RD[|C|][1 . . . j]

j ← j + 1

until |TD| < k

return TD

2https://en.wikipedia.org/wiki/Category:Computer science
3In the pseudo-code, array indexes start from 1.

https://en.wikipedia.org/wiki/Category:Computer_science
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Fig. 1: Approach to Measure Domain-specific Ambiguity

The algorithm takes as input a parameter k, which is the
preferred size of TD, and the set of domain specific corpora
C = {Ci : i = 1 . . . n}. It first ranks the terms of the
vocabulary of Ci based on their frequency in Ci (procedure
FREQ-RANK(Ci)). This produces a ranked lists of terms for
each Ci. The ranked lists are stored in the array RD. Finally,
the intersection between the top terms of the ranked lists
is incrementally computed, until the size of the intersection
reaches the value k.

D. Cross-domain Ambiguity Ranking

The step produces a ranked list AD of the terms in TD,
in which the ranking depends on the degree of cross-domain
ambiguity of the terms, estimated according to the language
models M = {Mi : i = 1 . . . n}.

The idea of the algorithm to produce this ranking is as
follows. For each dominant shared term, we compare the lists
of its most similar words in the different domains, generated
according to the word2vec language models of each domain.
By comparing domain-specific lists of most similar words
(in the following, similarity lists), we are able to estimate
the variation of meaning of the dominant shared term. The
comparison among the lists is performed by computing a
dissimilarity score that we deem to be strictly correlated to
the ambiguity of the word across the domains, i.e., the higher
the score the more ambiguous the word can be considered.
We refer to this score as ambiguity score.

Specifically, the ambiguity score is a rank-weighted sum of
the variance of the similarity values associated to any word
appearing in the similarity lists4. If a word does not appear in
a certain similarity list (e.g., blood appears in the similarity
list for cell in the medical domain, but it does not appear in
the CS one) the word is assigned a similarity value of zero for
such list. Intuitively, if the lists share a large amount of words,
and each of these words has close similarity values across the
lists, then the dominant shared term can be assumed to have a
consistent meaning in the different domains, and we consider
it as not likely to be ambiguous. Instead, if the lists share

4When n = 2, the variance is equivalent to the mean squared error.

few words, the dominant shared term is more likely to be
ambiguous. The contribution of each word to the ambiguity
score is weighted by the highest rank the word has across the
similarity lists. The intuition is that, given a dominant shared
term, its most similar words in the language models should
weight more in determining its ambiguity score.

The algorithm to measure the ambiguity score for each
dominant shared term, and to produce the final ranking, is
reported below.

AMBIGUITY-RANK(TD,M, h)

AD, Li, Si, U,R, V, σ ← ∅
for t ∈ TD

do
for Mi ∈M

do Li[t], Si[t]← MOST-SIMILAR(t,Mi, h)

U [t]← L1[t] ∪ . . . ∪ Ln[t]

for w ∈ U [t]
do

R[t][w]← BEST-RANK(L1[t], . . . , Ln[t])

σ[t][w] ← VAR(S1[t][w], . . . , Sn[t][w])

V [t]←
∑
w∈U [t]

σ[t][w]
R[t][w]

AD ← SORT(TD, V )
return AD

The algorithm takes as input the set of dominant shared
terms TD, the language models M, and a parameter h, which
is the preferred length of each similarity list. For each term
t ∈ TD, it computes an ambiguity score. This is done by first
identifying the similarity lists (Li[t]), together with the simi-
larity values (Si[t]), for each language model. Then, the union
U [t] between the lists is computed. The best rank (R[t][w]) of
each word w in U [t] across the lists is found, considering the
first position (highest similarity) as the best one. If a word does
not appear in a similarity list, BEST-RANK assumes that its



rank in that list is h+1. Finally, for each word in the union, the
variance of its similarity values Si[t][w] across the different
lists is computed by means of the VAR procedure and it is
then weighted by dividing it by the best rank value. The sum
V [t] of the rank-weighted variances determines the ambiguity
score. The ranked list AD of potentially ambiguous terms is
produced, by sorting the terms in TD by their ambiguity score.

IV. PILOT SCENARIOS

To provide an early, exploratory evaluation of the proposed
approach, we defined a set of potential product development
scenarios involving multiple domain experts, and we computed
the ranked lists of ambiguous terms for the scenarios. Based on
the ranked lists of ambiguous terms obtained, we inspect the
Wikipedia pages of the different domains, and show variations
of meaning of the terms.

A. Scenarios

The scenarios involve five domains, namely Computer Sci-
ence (CS) Electronic Engineering (EEN), Mechanical Engi-
neering (MEN), Medicine (MED) and Sport (SPO). Each
scenario considers a subset of the domains. The scenarios are
briefly described below, together with the acronyms of the
domains considered. The descriptions have solely a narrative
function, to suggest realistic contexts in which our approach
can be used.

1) Medical Software [CS, MED]: a software that supports
the prediction of certain diseases, based on symptoms.

2) Medical Device [CS, EEN, MED]: a medical device for
monitoring the hearth-rate of the patient, and linked to
a mobile app.

3) Medical Robot [CS, EEN, MEN, MED]: a computer-
controlled robot to perform surgery.

4) Sport Rehab Machine [CS, EEN, MEN, MED, SPO]:
a high-tech machine for rehab, specifically oriented to
athletes.

B. Implementation and Application of the Approach

We implemented the approach in Python, using a set of
support libraries, namely the Python API for Wikipedia5,
gensim6 for the word2vec implementation, and spaCy7

for NLP support tasks. The source code of the algorithms,
which can be used to reproduce our experiments, can be
downloaded from our GIT repository8. The repository includes
also the generated language models.

In the application of the approach, we downloaded 10,000
Wikipedia pages from each domain-specific Wikipedia portal
involved in the scenarios (CS, EEN, MEN, MED, SPO).
From our previous experiments [18], this was regarded as a
sufficient number of documents to learn the language models
to be used in our context, considering the parameters’ settings
listed in Sect. III-B. Given the domain-specific corpora, five

5https://pypi.org/project/wikipedia/
6https://radimrehurek.com/gensim/
7https://spacy.io
8https://github.com/isti-fmt-nemis/Domain-specific-ambiguity

different language models are generated. Then, the procedures
INTERSECT and AMBIGUITY-RANK are applied for each
scenario. For our pilots, we set k = 100, i.e., the number
of dominant shared terms that we wish to rank, and h = 100,
i.e., the length of the similarity lists that we compare with the
AMBIGUITY-RANK procedure. Future work will be performed
to fine-tune the values of the parameters h and k. With these
settings, we produce the lists of dominant shared terms, ranked
by their ambiguity score in the context of each scenario.
To check that terms that are ranked higher have a diverse
meanings in the domains involved, we check the lists of most
similar words for each domain-specific language model, and
show the usage of the terms in the Wikipedia pages from the
domain-specific portals.

C. Results and Discussion

Table I reports the lists of dominant shared terms for each
scenario, ranked by ambiguity score. For the sake of space,
we report the top-20 and the bottom-20 in the ranked lists.
Higher ranks indicate higher chance of ambiguity. Here, we
discuss notable cases, based on the different scenarios, and we
suggest future directions of research based on our qualitative
findings.

a) High-score Terms: We see that the term surface ap-
pears among the most ambiguous terms in all the scenarios. If
we check the most similar (i.e., related) words from the differ-
ent language models we have the following results. CS: shape,
spherical, deformation; EEN: photoreceptor, anisotropic, gra-
dient; MEN: adhesion, contact, smooth; MED: pore, layer,
corneum; SPO: grass, asphalt, concrete.

These words suggest that the term surface may be the source
of a pragmatic ambiguity [17]. Indeed, its meaning appears to
depend on domain specific viewpoints. In CS, a surface is an
abstract concept, defined in terms of geometrical properties,
while in EEN, optical physics concepts appear to dominate in
the list of most similar words. In MEN, the term is mostly
associated to physical properties, in MED to body parts, and
in SPO a surface is the floor over which a certain sport is
practiced. If, for example, we inspect one of the CS documents
in which the term is used, we find the sentence: Onscreen
objects must be ‘clipped’ to the screen, regardless of whether
their surfaces are actually visible; instead, in MEN, we find:
Some transmission units also have Winter mode, where higher
gear ratios are chosen to keep revs as low as possible while
on slippery surfaces, and in SPO we have sentences such as:
Surface variations can have a significant effect on how ground
balls behave and are fielded as well as on baserunning. These
examples show how the term is used with different domain-
specific flavours of meaning, and give an idea of the concepts
triggered in the mind of stakeholders when hearing the term
surface.

Also the term cell has a high ambiguity score in most of
the different scenarios. Similar words in different example
domains are as follows. MED: lymphocyte, mitosis, leukocyte;
EEN: photovoltaic, battery, solar. This is a typical case of
lexical ambiguity, since the term cell in MED is the structural

https://pypi.org/project/wikipedia/
https://radimrehurek.com/gensim/
https://spacy.io
https://github.com/isti-fmt-nemis/Domain-specific-ambiguity


TABLE I: Lists of dominant shared terms ranked by ambiguity score for each pilot scenario.

Medical Software Medical Device Medical Robot Sport Rehab Machine
Term Score Term Score Term Score Term Score
cell 1.29710216 surface 1.811224102 surface 1.960089321 surface 2.229032903
surface 1.296393706 cell 1.566944024 cell 1.638133097 material 1.947538217
result 1.127396846 theory 1.42422561 law 1.634110549 result 1.908959291
theory 1.089350154 institute 1.415128062 tool 1.594085253 law 1.775950008
function 1.062322513 result 1.343340092 theory 1.578640437 network 1.762205559
device 1.04819773 study 1.301081354 program 1.57862187 combination 1.756012675
agent 1.047093732 signal 1.277533119 material 1.574310743 city 1.737238638
image 1.005565895 function 1.276650055 result 1.554693367 device 1.717853927
solution 0.967675839 pattern 1.269213667 frequency 1.542611933 element 1.711385627
condition 0.963166843 law 1.267676033 pattern 1.487170693 program 1.709378323
study 0.925899947 board 1.265214143 basis 1.486336771 ability 1.700525242
program 0.913275003 image 1.261162643 environment 1.480037054 film 1.68654784
service 0.909640412 network 1.231872849 signal 1.455549241 study 1.682593029
environment 0.903271417 series 1.226724685 study 1.443556296 practice 1.681793735
activity 0.884836858 rate 1.223808737 image 1.439766954 feature 1.664517617
point 0.884598807 sample 1.21887005 function 1.425638406 rate 1.649034779
level 0.87425271 feature 1.206133412 region 1.408171485 service 1.628529767
structure 0.868619609 environment 1.202292721 network 1.393386251 region 1.624247019
university 0.868045926 region 1.177954088 device 1.389364284 design 1.617064055
application 0.865258721 power 1.167153435 service 1.359043977 version 1.614382429
... ... ... ... ... ... ... ...
science 0.470753349 number 0.669080294 type 0.881663378 cost 1.049379155
field 0.46829851 day 0.660457815 work 0.869970083 type 1.046449951
education 0.459179568 work 0.656936226 addition 0.864941633 change 1.040798403
group 0.451327105 size 0.651291086 case 0.860270554 number 1.03533031
control 0.45083519 system 0.643853168 group 0.82603429 group 1.012731714
book 0.448669788 concept 0.633515627 method 0.821052665 support 1.008322771
degree 0.434284797 area 0.631627826 system 0.817994908 test 0.988661463
school 0.419147662 control 0.614920953 change 0.806658237 size 0.984698436
area 0.418915449 state 0.606973644 number 0.796776048 control 0.951273998
product 0.385983269 product 0.602132576 concept 0.777989559 article 0.945138259
report 0.383933961 degree 0.601655458 control 0.766416496 market 0.940699417
article 0.336694386 science 0.596553422 day 0.747203241 day 0.881921481
issue 0.333983174 issue 0.592089083 test 0.740795123 period 0.81013248
history 0.330724481 example 0.58672054 cost 0.719874457 state 0.802503629
student 0.321891079 group 0.507565373 state 0.654249723 variety 0.711783266
award 0.319464908 year 0.427463097 example 0.581528382 example 0.695762664
time 0.308453771 award 0.403603996 year 0.550753799 term 0.664942784
term 0.214670093 term 0.383709019 time 0.478257067 year 0.651922096
range 0.18709287 time 0.381181582 term 0.443819094 time 0.568577055
year 0.187065985 range 0.288589908 range 0.39932581 range 0.530688792

unit of a living thing, while in EEN can be the cell of a solar
panel, or a battery cell. This latter is an interesting case of
intra-domain ambiguity, in which a term is used with different
meanings in the same domain. Other techniques are needed
to study these cases. The various uses of the term cell can
be again identified by looking at the sentences in different
Wikipedia pages. In CS, we find: In computing, an address
space defines a range of discrete addresses, each of which
may correspond to [...] a memory cell or other logical or
physical entity. In MEN, we have: [...] the resultant shear force
[is] measured using a load cell. In EEN: [...] techniques that
maximize the capacity of a battery pack with multiple cells
in series. In MED: [...] it often requires ongoing metabolic
activity and division of bacterial cells.

It is worth noting that the term cell does not appear in
the list for the Sport Rehab Machine case. Indeed, in this
case, the SPO domain is involved, in which the term cell is
not sufficiently frequent to be considered among the set of
dominant shared terms. In the (fictional) scenario, this means

that the SPO expert will be less likely to use the term cell than
the other stakeholders. However, the term may be used by the
others, and may be the source of ambiguity. This indicates
that, given a scenario, to have a complete list of potentially
ambiguous terms, one should consider also pairwise cases. An
analysis in this sense is left for future work.

Other interesting terms, which appear highly ranked in
most of the scenarios are function and device. Examples of
their usage in the different domains are as follows. MED: An
electronic device called a rheoencephalograph [...] is utilized
in brain blood flow biofeedback; SPO: Game Bike is the name
of an interactive fitness device. CS: [...] is a mathematical
function that is zero-valued outside of some chosen interval.
EEN: A transfer function that is closer to Weber’s law allows
for a larger dynamic range.

The examples show that the abstract terms function and
device may be regarded as potential sources of generality,
since their meaning becomes clear when they are associated to



more concrete specifiers (i.e., electronic or fitness for device;
mathematical or transfer for function).

b) Low-score Terms: The terms at the bottom of the lists
in Table I are those that obtain the lowest ambiguity score.
For example, the term range appears to be one of the least
ambiguous, and its most related words in the different domains
are wide, variety, spectrum, broad, etc. The set of words is
consistent across the domains. Similarly, the term term has
a low ambiguity score across domains, and the same most
similar words occur between domains. However, by looking
at similar words, we have meaning, terminology, word but
also denominator, factorial, etc. This indicates that the term
is used with different meanings (linguistic vs mathematical
term) within the each single domain, similarly to what was
observed for cell in ELE. Again, further solutions are required
to account for these cases.

V. CONCLUSION AND FUTURE WORK

Ambiguity in natural language is a complex phenomenon
that has been largely studied in requirements engineering.
However, most previous applied work on the topic has focused
on ambiguities that are triggered by domain-independent terms
and constructions. In the current work, we propose one of
the first approaches to identify domain-dependent ambiguities
that may occur in requirements elicitation meetings involving
stakeholders from different domains. In particular, we provide
a way to identify dominant shared terms, i.e., terms that are
frequently used in different domains, and to measure the varia-
tion of meaning of these terms when they are used by different
domain experts. Furthermore, we showcase the method on four
example scenarios. Given the promising results, our planned
future work include: (1) validation of the approach: given a
term, a random set of domain-specific documents including
the term will be selected to systematically assess whether the
term is used with different meanings; (2) systematic evaluation
of pairwise similarity among domains. In the current work,
we treated the problem of groups of domains, and in future
work we wish to measure the impact of domain subgroups; (3)
systematic experiments oriented to parameter tuning, notably h
and k in our algorithms; (4) definition of strategies to identify
intra-domain ambiguities: to address this goal, we plan to em-
ploy more specialised domain-specific corpora extracted from
scientific articles available from arXiv9. These corpora will
be used to train domain-specific word embeddings, possibly
focused on more restricted knowledge areas.
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