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Summary

REATH analysis allows for monitoring the metabolic processes that occur in hu-
man body in a non-invasive way. Comparing with other traditional methods
such as blood test, breath analysis is harmless to not only the subjects but also

the personnel who collect the samples.

However, despite its great potential, only few breath tests are commonly used in clinical
practice nowadays. Breath analysis has not gained a wider use yet. One of the main
reasons is related to standard instrumentation for gas analysis. Standard instrumenta-
tion, such as gas chromatography, is expensive and time consuming. Its use, as well as
the interpretation of the results, often requires specialized personnel. E-nose systems,
based on gas sensor array, are easier to use and able to analyze gases in real time, but,
although cheaper than a gas chromatograph, their cost remains high.

During my research activity, carried on at the Signals and Images Laboratory (SiLab)
of the Institute of Information Science and Technology (ISTI) of the National Research
Council (CNR), I design and developed the so called Wize Sniffer (WS), a device able
to accurately analyze human breath composition and, at the same time, to overcome the
limitations of existing instrumentation for gas analysis.

The idea of the Wize Sniffer was born in the framework of SEMEiotic Oriented Technol-
ogy for Individual’s CardiOmetabolic risk self-assessmeNt and Self-monitoring (SE-
MEOTICONS, www.semeoticons.eu) European Project, and it was designed for detect-
ing, in human breath, those molecules related to the noxious habits for cardio-metabolic
risk. The clinical assumption behind the Wize Sniffer lied in the fact that harmful habits
such as alcohol consumption, smoking, unhealthy diet cause a variation in the con-
centration of a set of molecules (among which carbon monoxide, ethanol, hydrogen,
hydrogen sulfide) in the exhaled breath. Therefore, the goal was to realize a portable
and easy-to-use device, based on cheap electronics, to be used by anybody at their
home.

The main contributions of my work were the following:

e design and development of a portable, low cost, customizable, easy to use device,
able to be used in whichever context of use: I succeeded in this with using cheap
commercial discrete gas sensors and an Arduino board, wrote the software and
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calibrated the system;

e development of a method to analyze breath composition and understand individ-
ual’s cardio-metabolic risk; I also validated it with success on real people.

Given such good outcomes, I wanted the Wize Sniffer took a further step forward,
towards the diagnosis in particular. The application field regarded the chronic liver
impairment, as the studies which involve e-nose systems in the identification of liver
disease are still few. In addition, the diagnosis of liver impairment often requires very
invasive clinical test (biopsy, for instance).

In this proof-of-concept study, the Wize Sniffer showed good diagnosis-oriented prop-
erties in discriminating the severity of liver disease (absence of disease, chronic liver
disease, cirrhosis, hepatic encephalopathy) on the base of the detected ammonia.
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Sommario

"ANALISI dell’ espirato permette di identificare I’impronta metabolica di un in-
dividuo, la quale pud contenere preziose informazioni sul suo stato di salute. 11
punto forte dell’analisi dell’espirato ¢ la sua non invasivita: rispetto alle tecni-

che diagnostiche standard, spesso invasive (basti pensare all’analisi del sangue), questa
metodica ¢ priva di rischi sia per il soggetto che viene sottoposto al test, sia per chi
preleva il campione di esalato. Tuttavia, nonostante il suo grandissimo potenziale, so-
no pochi i breath test comunemente utilizzati nella pratica clinica. Purtroppo, 1’analisi
dell’espirato non vede ancora un’ampia diffusione in ambito clinico-diagnostico. Tra le
ragioni principali, c’¢ quella legata alla strumentazione standard. Lo strumento consi-
derato gold standard per I’analisi dei gas, e quindi anche dell’espirato umano, ¢ la gas
cromatografia. Essa ¢ una tecnica molto costosa sia in termini di denaro che di tempo
richiesto per 1’analisi di ciascun campione. Inoltre, I'utilizzo di tale strumentazione,
come anche I’interpretazione dei risutati, ¢ appannaggio di personale esperto. I nasi
elettronici, basati su array di sensori di gas, sono pit semplici da utilizzare e permetto-
no di analizzare i gas in tempo reale. Il loro costo, seppur inferiore a quello di un gas
cromatografo, rimane tuttavia, in molti casi, elevato.

L’ obiettivo della mia attivita di ricerca (condotta presso il Laboratorio Segnali e Imma-
gini, SiLab, dell’ Istituto di Scienza e Tecnologie dell’ Informazione, ISTI, del Consi-
glio Nazionale delle Ricerche, CNR) ¢ stato quello di progettare e sviluppare il Wize
Sniffer, un dispositivo in grado di analizzare la composizione dell’esalato umano supe-
rando 1 limiti dello stato dell’arte.

L’idea del Wize Sniffer & nata nell’ambito del progetto europeo SEMEOTICONS (SE-
MEiotic Oriented Technology for Individual’s CardiOmetabolic risk self-assessmeNt
and Self-monitoring, www.semeoticons.eu), per monitorare le abitudini nocive per il
rischio cadio-metabolico mediante 1’analisi della composizione dell’espirato. L’ipotesi
clinica alla base del Wize Sniffer ¢ che abitudini dannose quali assunzione di alcol, fu-
mo, dieta squilibrata, provocano una variazione nelle concentrazioni di molecole quali
etanolo, monossido di carbonio, idrogeno, acido solfidrico, presenti nel nostro esalato.
I principali contributi del mio lavoro di Tesi sono stati i seguenti:

e progetto e sviluppo di un dispositivo portatile, a basso costo, dal design modulare,
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facile da utilizzare e adattabile a diversi contesti di utilizzo;

e sviluppo di un metodo per la valutazione del rischio cardio-metabolico del sog-
getto a partire dall’analisi della composizione del suo esalato.

Visti i risultati raggiunti, ho infine cercato di capire se, da strumento di auto-monitoraggio
dello stile di vita, il Wize Sniffer possa essere spinto verso la diagnosi. Il campo di ap-
plicazione ¢ quello della malattia di fegato, dal momento che sono ancora pochi gli
studi che sfruttano 1’analisi dell’esalato, e i nasi elettronici in particolare, per la diagno-
si delle epatopatie croniche. Inoltre, per la diagnosi dell’epatopatia sono molto spesso
richiesti test diagnostici invasivi (biopsie, ad esempio).

Da questo studio di fattibilita sono emerse buone proprieta diagnostiche del Wize Sniffer
nel discriminare i diversi stadi della malattia di fegato (assenza di malattia, epatopatia
cronica, cirrosi, encefalopatia epatica) sulla base dell’ammoniaca rilevata.
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CHAPTER

Introduction

Since the time of Hippocrates, medical practitioners have recognized that the presence
of human diseases changes the odours released from the body and breath [1]: the fruity-
smelling breath underlines the presence of diabetes; the stale beer-like odour of the skin
is typical of the persons with tuberculosis; the butcher’s — like smell of the skin suggests
yellow fever, etc.

The modern breath analysis started in 1971, when Linus Pauling demonstrated that
breath is a mixture of more than 200 volatile molecules at the levels of part per million
(ppm), part per billion (ppb), or lower.

Human breath is composed of nitrogen (75%), oxygen (13%), water vapor (6%) and
carbon dioxide (5%). The remaining 1% is composed of a series of volatile organic
compounds (VOCs) that are are produced endogenously as part of our normal (or
disease-related) metabolism, travel via the blood, participate to alveolar exchanges,
and are peculiar for each individual.

Therefore, it is correct to think that every one of us has his/her own breath-print, which
can tell a lot about the state of health.

Breath analysis allows for monitoring the metabolic processes that occur in human
body in a non-invasive way. Comparing with other traditional methods such as blood
test, breath analysis is harmless to not only the subjects but also the personnel who
collect the samples. A brief overview of breath analysis and its current status in clinical
practice is reported in chapter 2.

However, despite its great potential, only few breath tests are commonly used in clinical
practice nowadays. Breath analysis has not gained a wider use yet.

Some of the main reasons are:

e lack of standard procedures to collect breath sampling [2—5]. This inevitably leads
to an incompatibility among breath data, which hardly can be shared among physi-
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Chapter 1. Introduction

cians and scientists all over the world;

e presence of multiple influencing factors [6—10], such as surrounding air, respira-
tion rate, heart rate, posture, etc., that lead to strong inter-variability and intra-
variability of breath composition;

e lack of a one-to-one correlation between breath biomarkers and diseases. Many
studies aimed at assessing the physiological basis of breath molecules [1, 3, 10—
16], thus understanding their possible correlation with certain diseases. Never-
theless, the same VOC can be considered as biomarkers for two or more differ-
ent diseases, as well as the same pathological condition may have many breath
biomarkers.

e reasons related to standard instrumentation for gas analysis. Standard instrumen-
tation, such as gas chromatography, is expensive and time consuming. Its use, as
well as the interpretation of the results, often requires specialized personnel [6,17].
E-nose systems, based on gas sensor array, are easier to use and able to analyse
gases in real time, but, although cheaper than a gas chromatograph, their cost re-
mains high. An overview of the existing gas sensing technologies and the current
status of e-nose systems in clinical practice is reported in chapter 3.

Another important issue should be considered: the greater demands on improve-
ments in effectiveness, speed, smartness and and lower costs of biomedical instruments
for daily healthcare applications [18], resulting from increasing limitations of health-
care financial resources as a consequence of budgetary cuts.

During my PhD program, my aim was to design and develop a device able to accurately
analyse human breath composition and, at the same time, to overcome the limitations
of existing instrumentation for gas analysis.

In this regard, my work was focused on the design and development of the so called
Wize Sniffer (WS), whose strengths were the following [19,20]:

e ability to analyse a set of breath molecules in real time;

e modular and customizable design, in order to easily change the gas sensors ac-
cording to the molecules to be detected;

e portability, in order to promote its use not only in laboratory settings, but also in
home environment, for instance;

e use of low-cost technology, in order to encourage its purchase;
e case of use, also for non-specialized personnel;

The idea of the Wize Sniffer was born in the framework of SEMEiotic Oriented Technol-
ogy for Individual’s CardiOmetabolic risk self-assessmeNt and Self-monitoring (SE-
MEOTICONS) European Project, and it was designed for detecting, in human breath,
those molecules related to the noxious habits for cardio-metabolic risk.

The clinical assumption behind the Wize Sniffer lied in the fact that harmful habits such
as alcohol consumption, smoking, unhealthy diet cause a variation in the concentration
of a set of molecules (among which carbon monoxide, ethanol, hydrogen, hydrogen
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sulfide) in the exhaled breath. The more dangerous the habits are, the larger the varia-
tions in breath composition and the higher the cardio-metabolic risk.

A description of my research activity, the developed technological approaches and the
used data analysis methods are reported in chapter 4.

The Wize Sniffer is based on an array of six semiconductor-based gas sensors placed
in a gas sampling box (subsection 4.3.1). Breath gases reach the gas sampling box by
flowing through a plastic, corrugated tube. A heat and moisture (HME) filter, made of
hygroscopic material, absorb the water vapor present in exhaled breath. A flow-meter
allow for monitoring user’s flow rate and for calculating user’s exhaled volume (sub-
section 4.3.2). A sampling pump injects, at a fixed rate, the sampled exhaled gases to
other two sensors which have faster response time and work in flowing-regime (subsec-
tion 4.3.3). In order to facilitate sensors recovery time, a flushing pump is placed on
one side of sampling chamber. After each breath test, the pump can be switched on in
order to "purge” the chamber with ambient air and recovery sensors baseline. A signal
pre-conditioning module (subsection 4.3.4) stabilizes sensor raw signals and transfer
them to the controller board, which executes a pre-processing of the data (subsection
4.4.1). A further processing step allows for understanding user’s cardio-metabolic risk
from the analysis of his/her breath composition (subsection 4.4.2).

1.1 Contributions

Despite its great potential, breath analysis is not widely used in clinical practice: the
high costs for standard analytical instrumentation (i.e., gas chromatograph-mass spec-
trometer), the need for specialized personnel able to read the results and the lack of
standardized protocols to collect breath samples, set limits to its exploitation. My goal
was to realize the Wize Sniffer (WS), a portable light and simple device for breath
analysis based on cheap electronics to be used by anybody at their home. I succeeded
in this by using cheap commercial gas sensors an Arduino board, wrote the software,
calibrated the system and tested it with success on real people.

The challenges I faced with were the followings:

o the design of the core of the Wize Sniffer. In particular,

— The requirement of modularity led me to design a core composed of three dis-
tinct modules: an array of Taguchi semiconductor-based gas sensor housed in
a gas sampling box, a pre-conditioning module and a widely employed open
source controller, an Arduino Mega2560. The gas sampling box can be easily
customized, by changing the gas sensors according to the volatile molecules
to be detected. I programmed the board Arduino Mega2560 to execute a
real-time pre-processing of sensors raw data: 1) sensors output sampling, ii)
humidity drift compensation, iii) feature extraction. Also, a monitoring of ex-
haled volume was implemented in order to evaluate the quality of each breath
test.

— The fundamental requirement of low-cost led me to use Taguchi gas sen-
sors (http://www.figaro.co.jp/en/), which show long term stability and repro-
ducibility, great chemical stability of the sensing material, short reaction and
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Chapter 1. Introduction

recovery time. In addition, they are small, compact and inexpensive. On the
other hand, they are affected by multiple factors, such as temperature, hu-
midity, cross-sensitivity. The effect of each of them was taken into account,
managed and countered: a heating voltage in the sensors measurement circuit
was integrated, in order to keep them at a constant temperature; a filter, made
of hygroscopic material, was integrated on Wize Sniffer mouthpiece, in order
to absorb the majority of the water vapour present in exhaled breath, and a
Sensirion SHT11 into the gas sampling box in order to monitor the variations
in humidity into the box itself and compensate, during the data processing,
the resulting sensors drift; finally, feature extraction and pattern recognition
techniques allowed for counteracting sensors cross-sensitivity, whose mech-
anism remains difficult to be understood [21].

e the aim of making the Wize Sniffer able to be used in whichever context of use: in
home environment, for instance, as a localized self-monitoring tool (from user’s
point of view), and, at the same time, as a remote monitoring tool (from medi-
cal doctor’s point of view). The combination of a localized monitoring tool and
data transmission methods may provide a means of extending the effective range
within which medical doctors can provide services and offer clinical support. For
this purpose, an Arduino Ethernet module was integrated in order to implement a
Telnet Server and send breath data to a remote personal computer by means of an
internet connection.

e with the view to developing an easy-to-use device, my idea was to provide the
user with a clear, easily interpretable result not only by expert personnel.
The clinical assumption behind the Wize Sniffer lied in the fact that the noxious
habits for cardio-metabolic risk affect the breath composition causing a change in
the concentration of a set of molecules.
My idea was to exploit higher-order data reduction techniques and regressive
methods! to make the Wize Sniffer able to understand user’s cardio-metabolic risk
on the base of his/her noxious habits identified by the analysis of his/her breath
composition in a swift and computationally inexpensive way. Therefore, by means
of such data analysis approach, the clinical assumption was confirmed. Not only,
a relationship between breath composition and cardio-metabolic risk was found,

beyond the state of art, and a clear, easily interpretable outcome was provided to
the user [22,23].

The technological and data analysis methods were validated by carrying on a data
acquisition campaign which involved 169 subjects and which is described in (chapter
5).

To sum up, the main contributions were the following:

¢ development of a portable, low cost, customizable, easy to use device, able to
be used in whichever context of use;

¢ evaluation of individual’s cardio-metabolic risk from the analysis of his/her
breath composition.

Iboth implemented in MATLAB R2014a environment
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Given the good outcomes from the validation campaign, I wanted the Wize Sniffer
took a step forward, towards the diagnosis in particular. The application field regarded
the chronic liver impairment, as the studies which involve e-nose systems in the iden-
tification of liver disease are still few. In addition, the diagnosis of liver impairment
often requires very invasive clinical test (biopsy, for instance).

I carried on a proof-of-concept study, with 64 subject involved, in order to evaluate the
discriminative, diagnosis-oriented properties of the Wize Sniffer. The aim was to detect
ammonia in the breath of the subjects and evaluate the ability of the Wize Sniffer in
discriminating the severity of liver disease (absence of disease, chronic liver disease,
cirrhosis, hepatic encephalopathy) on the base of the detected ammonia. The study, the
statistical data analysis and the future perspectives of the Wize Sniffer are described in
chapter 6.

Chapter 7 concludes the Thesis: the contributions beyond the state of art are summa-
rized, and the results are discussed.



CHAPTER

Why analyse the breath?

2.1 Introduction

The field of breath analysis is as old as the one of medicine. Since the time of Hip-
pocrates, classical medicine has used the sense of smell as an indicator of human dis-
eases [1]: the fruity-smelling breath underlined the presence of diabetes; the stale beer-
like odour of the skin was typical of the persons with tuberculosis; the butcher’s — like
smell of the skin suggested yellow fever, etc. Therefore, early medical practitioners
recognized that the presence of human diseases changed the odours released from the
body and breath.

In 1784, for the first time, Lavoisier and Laplace identified the presence of carbon diox-
ide in human exhaled breath [24]. The foundations for the modern alcohol testing were
laid by Anstie, which isolated, in 1874, ethanol from the breath. However, it is com-
monly recognized that the modern breath analysis started in 1971, when Linus Pauling
demonstrated that breath is a mixture of more than 200 volatile molecules at the levels
of part per million (ppm), part per billion (ppb), or lower [25].

For its unobtrusiveness and its inherent safety, breath analysis may play a key role in
health care diagnostics. Breath analysis may be used to detect disease, monitor disease
progression, or monitor a therapy. Comparing with other traditional methods such as
blood test, breath analysis is non-invasive, real-time, and harmless to not only the sub-
jects but also the personnel who collect the samples.

Human breath is composed of nitrogen (75%), oxygen (13%), water vapour (6%) and
carbon dioxide (5%). The remaining 1% is composed of a series of volatile organic
compounds (VOCs) that are peculiar for each individual. Therefore, it is correct to
think that every one of us has his/her own breath-print, which can tell a lot about the
state of health.

Breath is the product of the composition of inspiratory air, molecules deriving from
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ingested food and beverages or from dermal adsorption (exogenous molecules), and
all the volatile substances in the blood which are produced endogenously as part of our
normal (or disease-related) metabolism and participate to alveolar exchanges according
to their types, concentrations, volatilities and rates of diffusion. In addition, also cells
in the mouth, upper airways, and gastro-intestinal tract contribute volatile molecules to
the breath.

The major VOCs in healthy subjects’ breath are isoprene (12-580 ppb), acetone (1.2-
1,880 ppb), ethanol (13-1,000 ppb), and other alcohols. Minor components include
pentane, aldehydes and ketones [26].

Here, an overview of the studies that aimed to assess the biochemical pathways of
breath molecules and their possible correlation with certain diseases is provided. In
addition, a summary of the standard gas analysis techniques is reported.

2.2 Physiological basis of breath molecules

Many studies aimed at assessing the physiological basis of breath molecules, thus un-
derstanding their possible correlation with certain diseases. Table 2.1 summarizes some
of the molecules present in human breath and also reports their typical concentrations.

Table 2.1: Some of the molecules found in human breath and their typical concentrations.

Molecule Physiological basis Concentration

Oxygen Cellular metabolism 13.6%-16%.
Carbon dioxide Cellular metabolism 4%
Acetone Decarboxylation of acetoacetate ppm

Carbon monoxide Production catalyzed by heme oxygenase 2-4 ppm

Methane Gut bacteria ppm

Hydrogen Gut bacteria 9.1-30ppm
Acetaldehyde Ethanol metabolism ppb
Pentane Lipid peroxidation ppb
Isoprene Cholesterol biosynthesis ppb
Ethane Lipid peroxidation ppb
Ethylene Lipid peroxidation ppb
Other hydrocarbons Lipid peroxidation/metabolism ppb
Nitric oxide Production catalyzed by nitric oxide synthase ppb
Carbon disulfide Gut bacteria ppb
Methanol Metabolism of fruit ppb
Carbonyl sufide Gut bacteria ppb
Ammonia Protein metabolism ppb
Ethanol Gut bacteria ppb
Methanethiol Methionine metabolism ppb
Methylamine Protein metabolism ppb

Exhaled air has a decreased amount of oxygen (O-) and an increased amount of car-
bon dioxide (C'O,). These amounts can be considered as a measure of the metabolism.
They show how much oxygen is retained within the body for use by the cells and how
much carbon dioxide is produced as a by-product of cellular metabolism [27]. In par-
ticular, carbon dioxide is produced as a waste product when energy is released during
certain metabolic reactions of cellular respiration. As it moves from cells into surround-
ing body fluids and blood, most of the carbon dioxide reacts with water to form a weak
acid (carbonic acid). This acid ionizes, releasing hydrogen ions (H+) and bicarbonate
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Chapter 2. Why analyse the breath?

ions (HC'O37) which blood carries to the respiratory organs. There, the chemical re-
actions reverse, and carbon dioxide gas is produced, eventually to be exhaled.

An increase of C'O, can be due to different factors, such as physical activity. There is a
decrease in case of hypothermia, for instance. Also in presence of most forms of lung
diseases and some forms of congenital heart disease (for example, cyanotic lesions that
result in a bluish-grey discolouration of the skin and in a lack of O, in the body), there
is a decrease of C'O, exhaled. Also individual’s breathing rate influences the level of
C'Os in blood and, as a consequence, in exhaled gas. Breathing that is too slow causes
respiratory acidosis (that results in an increase of C'O, partial pressure in blood, which
may cause hypertension, build up of heart rate), while breathing that is too rapid leads
to hyperventilation, which may cause respiratory alkalosis (that results in decrease of
C'Os in blood; so, it can no longer fullfill its role of vasodilator, resulting in arrhyth-
mias, extra systoles). A way to monitor the carbon dioxide concentration (or partial
pressure) is capnography. The max value of capnogram corresponds to the end of the
tidal volume of exhaled breath and the steady-state concentration of each breath (see
section 2.3).

Acetone is produced by hepatocytes via decarboxylation of excess Acetil-CoA. Its high
volatility makes it easily detectable in breath, urine and skin. Breath acetone increases
in patients with uncontrolled diabetes mellitus. Other studies found higher level of
breath acetone also in over-weighted and obese children with non-Alcoholic Fatty Liver
Disease [1, 3]. Acetone concentration in human breath can also be an indicator of con-
gestive heart failure and cardiac index [11]. Given the several sources that can lead to a
variation in breath acetone levels, it can hardly be considered as a biomarker for a single
precise disease. Nonetheless, taking together with other standard clinical parameters, it
can provide useful information about the individual’s state of health.

Carbon monoxide (CO) is usually detected to assess smoking status [12]. C'O in non-
smokers is between 0.6 and 4.9 ppm (mean 2.1ppm); C'O in smokKers increases up to
30-40ppm. An increase of C'O leads haemoglobin to carry less oxygen through the ves-
sels, because C'O usurps the space in haemoglobin that normally carries oxygen, form-
ing carboxyhaemoglobin [28]. However, increased levels may be due also to airway
inflammation in asthma and in chronic obstructive pulmonary disease (COPD) [13].
Hydrogen (/1) is related to the carbohydrates breakdown in the oral cavity and in
the intestine tract. Indeed, bacteria in the gut metabolize the carbohydrates to low-
molecular species, such as carbon dioxide, alcohols and hydrogen, which are exhaled
in the breath [12]. Hydrogen breath tests are used in order to evaluate lactose and
fructose malabsorption syndromes and small intestinal bacterial overgrowth (SIBO).
Higher levels of hydrogen was found also in coeliac patients [10]. Breath hydrogen
levels vary within a day and from day to day; fasting levels range between 0.3 and
34.1ppm (mean 9.1ppm). Breath hydrogen concentration may decrease in case of hy-
perventilation. Cigarette smoke, in contrast, may increase its values [12].

Ethane and penthane are biomarker for oxidative stress. They are generated from w3
and w6 fatty acids respectively, which are the basic components of membrane cells.
In vitro studies have demonstrated that ethane and pentane are generated when cell
cultures are exposed to reactive oxygen species (ROS) [14]. Hydrocarbons show low
solubility in blood, then they are exhaled within few minutes of their formation in
tissues and may be useful to evaluate the oxidative damage in the body [3]. As per-
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oxidation and other reaction of ROS are basic mechanisms of inflammatory processes,
their values increase in patients with asthma, COPD, obstructive sleep apnoea and acute
respiratory distress syndrome (ARDS). Also smoking causes a rise in value of breath
ethane and pentane.

Isoprene is formed along the pathway of cholesterol synthesis [3]. Isoprene can be con-
sidered as a marker of cellular damage and cellular repair. Decreasing concentrations
of isoprene can be found in patients with ARDS, due to some impairment of mem-
brane repair mechanisms in alveolar cells. Analogue mechanism may occur in case of
patients with chronic heart failure. Nevertheless, reduced breath isoprene may be due
also to a reduced cardiac output in this patients. In [11] exhaled isoprene concentra-
tions show a correlation with cardiac output. Isoprene has been studied also in other
diseases, among which lung cancer [1]. In patients suffering from this disease breath
isoprene levels show a decreased concentration. Breath isoprene is age dependent; in
men is higher than in women.

Nitric Oxide (NVO) is produced by different type of cells in the respiratory tract, such as
inflammatory, epithelial, vascular endothelial cells and airways nerves [1]. NO modu-
lates the endothelium vasodilatation. NO is an example of an exhaled biomarker which
has reached clinical practice: by monitoring NO levels in breath, asthma can be diag-
nosed and managed. Higher level of NO were also found in patients with unstable
COPD [13], which is characterized by a generalized inflammation that causes airways
obstruction and breath shortness. Variation in breath NO were observed also in patients
with cystic fibrosis, systemic sclerosis, hepatopulmonary syndrome and primary ciliary
dyskinesia.

Concentrations of volatile sulfur-containing compounds in healthy subjects’ blood
are very low. The body uses sulfur compounds in order to neutralize the action of free
radicals. Their levels increase in case of impairment of liver function. Among the
sulfur-containing volatile molecules, hydrogen sulfide is considered as a vascular re-
laxant agent, as it has a therapeutic effect in various cardiovascular diseases [3].
Ammonia N Hj is a metabolic product of amino-acids de-amination [3]. Its levels in
healthy subjects’ breath are 425-1800ppb (mean 960ppb). It is toxic in high concentra-
tions, indeed it is converted in urea by the liver. In chronic liver impairment, significant
levels of ammonia appear in the blood as the removal of ammonia through conversion
to urea is compromised due to an impairment of liver function [15]. Elevated breath
ammonia may be due also to uremia, which is an inability of the kidneys to effectively
filter the blood, resulting in a build- up of nitrogen based compounds. It may be also
correlated also to helicobacter Pylori.

Breath ethanol is commonly associated with alcoholic beverages intake. Nevertheless,
ethanol may have other endogenous sources (even though ethanol concentrations in
breath normally are lower than ethanol levels found in subjects’ breath after alcoholic
drinks ingestion). For instance, ethanol may derive from intestinal gut flora such as
bacteria or fungi. In some studies ethanol was correlated also with obesity. Its levels in
healthy subjects’ breath are 0-3.9ppm (mean 0.62ppm) [16].
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2.3 Current status of breath analysis in clinical practice

The previously cited study are just a small part of the widely documented works re-
garding breath analysis.

However, despite its great potential, only few breath tests (listed in Table 2.2 and refer-
ring to [6]) are commonly used in clinical practice nowadays. Breath analysis has not
gained a wider use yet [6]. Some of the main reasons are as follows:

Table 2.2: Breath tests commonly used in clinical practice.

Detected breath molecule Clinical application
carbon dioxide capnography
carbon monoxide neonatal jaundice
ethanol blood ethanol levels (law enforcement)
hydrogen detection of disaccharidase deficiency,

evaluation of gastrointestinal transit time,
monitoring of bacterial overgrowth,
evaluation of intestinal statis
nitric oxide asthma therapy
hydrogen detection of h. pylori infection

e Lack of standard procedures to collect breath sampling.
There are not standard guidelines to sample the breath. Standard protocols should
be generated to make breath samples collected and analysed in different sites com-
parable. In practice, three methods of sampling are used [2, 3]:

— alveolar (end-tidal) sampling: the expired gas is collected when the plateau
of C'O, capnogram is reached (see Figure 2.1). Such method is used if only
systemic volatile biomarkers are to be assessed;

— mixed expiratory air sampling: it corresponds to a whole breath sample, and
it is used if substance concentrations in the airways are of interest;

— time-controlled sampling, which corresponds to a part of exhaled air sampled
after the start of expiration. Such method shows large variations of samples
composition because of wide variations of individual breathing manoeuvres

However, a controlled identification of respiratory phases should be performed,
especially to avoid dilution by dead space air in the case of mixed expiratory air
or to prevent large variations in the case of time-controlled sampling.

Ideally, standard guidelines should be defined for the collection of single mixed-
breath samples, for the collection and analysis of end-tidal breath samples, for
methods of breath collection that involve breath holding, etc.

In [4] Salvo and co-workers present a prototype of breath sampler that is able to
automatically collect end-tidal or dead space air fraction, even if the subject hy-
perventilates. The result is achieved by real time measurement of exhaled C'O-
and expiratory flow both during the inspiratory and expiratory phase. A suitable
software allow for controlling a valve and for selecting the desired breath fraction.
In [5], Di Francesco and co-workers present a C'Os-triggered breath sampler based
on Fowler’s method to distinguish pure dead space air and pure alveolar air. In
1948 Fowler defined dead space as the volume of conducting airway as far as
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Figure 2.1: Capnography is the monitoring of the concentration or partial pressure of carbon dioxide in
the respiratory gases. It is usually presented as a graph of expiratory COs (measured in millimetres
of mercury, "mmHg") plotted against time.

the location where a large change in gas composition occurs. He also proposed a
method to identify it. Referring to the capnogram shown in Figure 2.1, in the expi-
ratory phase, the volume of dead space air and alveolar air may be distinguished.
According to Fowler’s method, the volume for which the shades areas a and b in
the capnogram are equivalent (see Figure 2.2) represents the ideal transition point
between dead space and alveolar air.

Once standard procedures will be defined, also standard units of measure and nor-
mal concentration ranges (as a function of gender for instance, or as a function of
age) can be generated.

%

& Y

= Pure alveolar air
[+ ]
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Volume of expired air

Figure 2.2: Fowler’s method, as explained in [5].

e Presence of multiple influencing factors.
The definition of precise guidelines to collect breath sample would be useful also
to avoid a series of factors that influence the breath composition such as:

— Surrounding air [6,7]: many molecules that have clinical relevance often are
present also in ambient air. Currently there is not a standard method which
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provides for a subtraction of background air levels. This is due to the fact
that there are no data regarding how long it takes for a subject to reach the
steady state with environmental air. The lung take approximately 4 minutes,
but the entire body may take hours or days according to the type of molecule.
Influencing compounds may derive also from fragrances, cosmetic, cleaning
agents, toothpaste.

— Volume of air inhaled before exhaling [7]: inhaling a high quantity of air be-
fore exhaling may dilute the alveolar air leading to a decrease in endogenous
VOCs concentration.

— Respiration rate and heart rate [7, 8]: lower breathing flow rate allow the
endogenous VOCs for better diffusing from the alveoli to the periphery of
lungs and then from diffusing in exhaled air. Controlled breathing would
prevent hyperventilation, which often occurs when the subjects are asked to
breathe spontaneously.

— Posture [8,9]: differences in pre-expiratory gas concentrations occur in the
lungs and areas with different gas concentrations vary their contribution to the
total expired gas. Gravitational gradient of pleural pressures may cause verti-
cal differences in regional pre-expiratory gas concentrations, and, if vertically
distributed lung regions empty sequentially and at a variable rate, gravity-
determined differences in the distributions of inspired gases may cause changes
in breath composition.

e Inter-variability and intra-variability [7,8,10]: VOCs concentrations vary depend-
ing on food intake, general health of subject, physical conditions. This suggests
that intra- and inter- subject variability in exhaled VOCs is significant. Intra-
individual variability may be also a consequence of several uncontrolled sampling-
related parameters, such as exhalation flow rate, volume of exhalation, breath
holding, etc. [7].

As an example of inter-variability, Table 2.3 (from [8]) shows variations in some
biomarkers according to the gender. Men, for instance, exhales higher levels of
carbon monoxide and sulfur-containing molecules compared with women. Also
pregnancy may also be responsible for a breath profile alterations [29].

What is shown in Figure 2.3 (from [8]) can be considered as both an example of
inter-variability and an example of intra-variability. Breath ethanol shows varia-
tion not only among the study subjects, but also for each individual, before and
after lunch.

Table 2.3: Gender differences in biomarkers. Values are means + SD. A value of p<0.05 was considered
to be statistically significant

Molecule Women Men p-value
Oxygen, % 97.7£0.5 96.5+0.8 0.004
Carbon monoxide, ppm 3.0+£0.5 4.0£0.7 0.01
Sulfur-containing molecules, ppb | 94.8+£29.2 | 135.0£24.6 0.016
Nitric oxide, ppb 28.4+29.9 | 26.8+£22.3 | not significant

e Lack of a one-to-one correlation between breath biomarkers and diseases.
In order to assess the physiological meaning of each breath molecule and exploit
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Figure 2.3: Breath ethanol concentrations collected from subjects directly after lunch and 2 h after
lunch. In 13 of 16 subjects, breath ethanol concentrations increased during the post-lunch period
and decreased 2 h after lunch.

its potential as a disease biomarker, the biochemical pathways of generation must
be known. Unfortunately, biochemical pathways have been investigated only for
a small number of VOCs [3]. Moreover, the same VOC can be considered as
biomarkers for two or more different diseases, as well as the same pathological
condition may have many breath biomarkers.

e Reasons related to standard instrumentation.
Standard instrumentation, such as gas chromatography (GC, which is described
in more detail in the section 2.4), is expensive, time consuming, bulky. Its use, as
well as the interpretation of the results, often requires specialized personnel [6,17].
These issues discourage the enthusiasm for clinical applications of breath analysis.

As W. Miekisch and his colleagues wrote in [3], “introducing breath analysis into clin-
ical practice will be the challenge of today and tomorrow”.

Success will occur only with a strong cooperation among experts from different fields:
engineers, instrument makers, clinicians, breath analysis experts, chemists.

2.4 Techniques for breath analysis

Several techniques are employed to detect gaseous molecules. They can be categorized
into three main group:

e Methods based on gas chromatography coupled with mass-spectrometry (GC-
MS), or other MS-based approaches;

e Laser adsorption spectroscopic- based approaches;
e Chemical sensors.

Here, the first two techniques are briefly described. A separate chapter (chapter 3), will
be dedicated to the gas sensors and their use in clinical field.
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2.4.1 Gas chromatography (GC)

Gas chromatography is the most common method employed to analyse human breath
composition, usually in combination with flame ionization detection (FID) or MS, or
ion-mobility spectrometry, (IMS). A gas chromatographic system includes:

e A regulated carrier gas source, which moves the sample through the GC. The
carrier gas must be pure: contaminants may react with the sample or the column,
create spurious peaks, etc.

e An inlet, which works at 200 °C, acts as a vaporizer for liquid samples. The inlet
introduces the vaporized sample into the carrier gas stream. The most common
inlets are injection ports and sampling valves.

e A column, in which the time separation occurs. Since the column type is selected
by the user, many different analyses can be performed using the same equipment.
Most separations are highly temperature-dependent, so the column is placed in a
well-controlled oven.

e A detector, which responds to the components as they occur by changing its elec-
trical output. The output from the detector becomes the chromatogram.

e Data interpretation. The list of times and sizes must be converted to component
names and amounts. This is done by comparison to times and responses of known
samples (calibration samples).

The sample is injected onto the head of the column. Separation in the column can be
performed by exploiting different detection systems:

e Thermal conductivity (TCD): it operates on thermal conductivity differences.
All gases conduct heat, but hydrogen and helium are the best thermal conductors.
When one of these is used as the carrier gas, anything else that may be present
causes a decrease in the thermal conductivity of the gas stream. This change can
be measured and used to create a chromatogram.

e Flame ionization (FID): it responds to everything that creates ions in a flame,
that means, all organic compounds. In fact, GC-FID is one of the most widely
used system for human breath analysis [30]. The carrier gas from the column
mixes with hydrogen and is burned in air. The FID uses two electrodes, one of
which is often the jet where the flame burns, and a polarizing voltage to collect
the ions from the flame. When a component appears, the collected current rises.
After amplification, the current creates the chromatogram. In [31] Phillips and
Greenberg assessed exhaled endogenous isoprene by using a GC-FID.

e Electron capture (ECD): A radioactive isotope, usually 63Ni, in the detector cell
emits beta particles. These collide with carrier gas to create showers of low en-
ergy free electrons. Two electrodes and a polarizing voltage collect the electrons
as a current. Some molecules can capture low-energy electrons to form negative
ions. When such a molecule enters the cell, some of the electrons are captured
and the collected current decreases. After processing, this signal creates the chro-
matogram.
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2.4. Techniques for breath analysis

e Mass selective (MSD): it identifies components from mass spectra; its principles
relies on the difference in mass-to-charge ratio (m/z). When combined with GC,
it is the most powerful identification tool able to identify the separated species, as
for instance in [32].

2.4.2 Proton-transfer reaction-mass spectrometry (PTR-MS)

PTR-MS is a promising technique for breath analysis as it allows for on-line and mul-
tiple measurements [30]. In addition, it does not requires pre-concentration and/or
separation of breath samples.

PTR-MS principle relies on protonation of the chemical species, coming from a transfer
from protonated water. A PTR-MS instrument consists of an ion source that is directly
connected to a drift tube and an analysing system (quadrupole mass analyser or time-of-
flight mass spectrometer). Almost all VOC’s have proton affinities greater than water,
hence there is complete transfer. In fact, the technique is particularly advantageous for
breath analysis as large volumetric contributions from Ny, Oy, C'O5 and water do not
interfere with measurement. Like MS, species identification is done purely on an m/z
ratio.

Commercially available PTR-MS instruments have a response time of about 100ms
and reach a detection limit in the single digit part-per- trillion (ppt) region, as described
in [10]. Nevertheless, PTR-MS characterized molecules on the base of their m/z ra-
tio, without any chemical identification. This problem can be overcome by coupling a
PTR-MS system with a GC.

2.4.3 Laser adsorption spectroscopic- based approaches

It is a high resolution technique which allow for detecting specific molecular species at
very low concentrations. In addition, gases can be measured in real time and without the
need for pre-concentration or any sort of sample pre-treatment [30]. The gas sample
is interrogated by a laser beam, which can be absorbed by the molecular species of
interest. The detector measures the absorbed amount of laser radiation, thus quantifying
the gas concentration.
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CHAPTER

Why electronify the...nose? Gas sensors and
Electronic-nose systems for breath analysis

3.1 Introduction

Faster and cheaper than a gas chromatograph — mass spectrometer, e-nose systems may
overcome the shortcomings of the standard technologies for gas sensing.

The term "electronic nose" was introduced in the scholarly literature in the early 1980s
[33], when Persaud and Dodd developed the first e-nose in 1982. In August 1991, an
advanced research workshop was organized in Reykjavik, Iceland, which accelerated
interest in the field.

Since then, this kind of devices attempts to emulate the human olfactory system by
using an array of gas sensors and a specific signal processing [34, 35]. In Figure 3.1,
adapted from [34], the working principle of an electronic nose is represented.

In a typical electronic nose, the chemical input typically is sampled through a tube
into a small chamber housing the electronic sensor array. The tube may be made of
plastic or stainless steel. Then, the gas sensors behave as olfactory receptors. The sen-
sor array consists of two or more sensors with partially overlapping sensitivities. Their
number depend on the volatile molecules to be detected. The odour sample causes a
reversible physical and/or chemical change in sensors’ sensing material, which result
in electrical signals. Interface electronics performs an analogue to digital conversion of
such signals and a first pre-conditioning and pre-processing. Due to the nature of the
partially overlapping sensitivity of the gas sensors, pattern recognition techniques are
usually used for gas molecules discrimination. The most common pattern recognition
techniques aim to emulate olfactory cortex. They include principal component analysis
(PCA), feature weighting, artificial neural network (ANN), cluster analysis, classifica-
tion algorithms, and discriminant function analysis.

16



3.2. Gas sensors
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Figure 3.1: How e-nose device attempt to mimicry human olfactory system.
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The output of an electronic nose may be the identity of the odorant, an estimate of the
concentration of the odorant, or the characteristic properties of the odour as might be
perceived by a human [33]. What is important is that the pattern of response across the
sensors is distinct for different odorants. The pattern of response across all sensors in
the array is used to identify and/or characterize the odour

Finally, a washing gas (such as /Vs) is applied to the array for a few seconds to a minute,
so as to remove the odorant mixture from the surface and bulk of the sensor’s sensing
material.

The period during which the odorant is applied is called the response time of the sensor
array. The period during which the washing and reference gases are applied is termed
the recovery time.

In this Section, the main gas sensing techniques are described. In addition, the state of
art of e-noses in clinical field is reported.

3.2 Gas sensors

Gas molecules interact with gas sensors’ sensing element causing a physical and/or
chemical change, which is measured as an electrical signal. In Figure 3.2 the main
physical changes are listed, as well as the related type of gas sensors, according to the
classification reported in [36].

In general, gas sensors’ response to odorants is considered as a first order time re-
sponse. When a gas sensor is exposed to a gas, a rise in its output signal occurs, until
the sensor reaches a chemical balance with the gas molecules, which corresponds to the
plateau in sensor output. When the odorant is flushed out, the output signal returns to

17



Chapter 3. Why electronify the...nose? Gas sensors and Electronic-nose systems for

breath analysis
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sensors, quartz cristal microbalance (QCM) sensors
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Figure 3.2: The main gas sensors’ transduction principles.

its baseline value (see Figure 3.3, adapted from [36]).
Here, we describe some peculiar aspects of the classes of sensors listed in Figure 3.2.
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Figure 3.3: Typical gas sensors’ output.
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They are based on the principle that a change in the properties of the sensing material
causes a variation in resistance of the sensor. Figure 3.4 (adapted from [36]) shows a
schematic configuration of such type of sensors. The sensing material is placed over the
electrodes, through which the variation in resistance is measured. When metal oxides
are used as sensing material, very high temperatures are required for making metal
oxides-based sensors work correctly. As a consequence, a heater is integrated.

Conducting polymer composites, intrinsically conducting polymers and metal oxides
are three of the most used classes of sensing materials in conductivity sensors.
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Figure 3.4: Schematic configuration of conductivity gas sensors.

e Conducting polymer composites sensors: they are based on conductive parti-
cles (such as polypyrrole) sprinkled in an insulating polymer matrix [37]. When
the sensor is exposed to an odorant, some of the gas, by penetrating the polymer
matrix, causes an expansion of the matrix itself. Such expansion of the polymer
film reduces the conductive pathways for the charge carriers, thus causing a rise
in polymer’s electrical resistance.

Response times may vary from few seconds to minutes. The response time de-
pends on several factors, among which: i) rate of diffusion of the vapour into the
polymer, ii) nature of polymer, iii) thickness of the polymer film, iv) concentration
of gas, v) the partial pressure of the gas at the gas-polymer interface, vi) effects of
fillers and temperature [38]. An important factor for the optimization of polymer
composites sensor response is the relationship between gas solubility coefficient
in the polymer and sensor geometry [39]. For instance, gases with high solubility
coefficient have higher affinity to sensors with smaller area. As a consequence, by
decreasing the sensor area, the sensitivity towards particular compounds can be
improved.

This type of sensors exhibit linear response for several analytes, and also high dis-
crimination can be achieved due to a variety of polymeric materials. In addition,
conducting polymer composites sensors show a good repeatability. They are also
inexpensive and easy to be manufactured. They can work in conditions of high
relative humidity. The signal conditioning circuitry is relative simple (only a re-
sistance is needed).

On the other hand, they are affected by ageing (due to oxidation of the polymer),
which causes drift;

e Intrinsically conducting polymers: they have linear backbones composed of un-
saturated monomers, which can be doped as semiconductors or conductors [36].
Polypyrrole, polyaniline, polythiophene are example of conducting polymers. The
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breath analysis

doping of these materials generates charge carriers and alters their band structures,
thus increasing the mobility of holes or electrons according to the type of dop-
ing (p-doping or n-doping). When the sensor is exposed to odorant, the volatile
molecules are absorbed into the polymer matrix, thus causing swelling and al-
tering the electron density on the polymeric chains [37]. As explained for the
conducting polymer composites sensors, also in this case sensor’s response de-
pends on the diffusion rate of the odorant into the polymer matrix. In general,
response times may vary from seconds to minutes [36]. This type of sensors
work at room temperature; they have good response to a variety of analytes. Fast
responses and rapid recovery times occur in case of polar compounds. On the
other hand, poorly understood signal transduction mechanisms, high sensitivity
to humidity [37], drift, aging (due to oxidation of the polymer) and difficulties in
manufacturing discourage from using such type of sensors;

e Metal oxides (MOS) sensors: They have been used more extensively in elec-
tronic nose device and are widely available commercially [33,39]. Popular sens-
ing materials include SnO2,, Ti0,, ZnO, In;O3, and WO3. In Figure 3.5 the
traditional method in the preparation of a SnO; sensor is shown.

The gas/semiconductor surface interactions occur at the grain boundaries of the
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Figure 3.5: Preparation of SnQOs sensor.

polycrystalline oxide film [40]. They generally include reduction/oxidation pro-
cesses, adsorption of the chemical species directly on the semiconductor and/or
adsorption by reaction with surface states associated with pre-adsorbed ambient
oxygen, electronic transfer of delocalized conduction-band electrons to localized
surface states and vice-versa, catalytic effects and in general complex surface
chemical reactions between the different adsorbed chemical species.

The change in conductance of the oxide is generally proportional to gas concen-
tration. It is a reversible process. The change in the electrical resistance of the
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3.2. Gas sensors

sensor can be explained by the formation of depletion space-charge layers at the
surface and around the grains, with upwards bending of the energy bands.

Metal oxides-based gas sensors can be distinguished into n-type and p-type. The
n-type sensors respond to reducing gases (such as hydrogen, carbon monoxide,
hydrogen sulfide), which react with oxygen and release electrons. In particular,
upon exposure to oxygen, the oxygen is chemisorbed onto lattice vacancies in the
semiconductor as described in eq. 3.1 (where n is an electron from the conduction
band) and in Figure 3.6a). The loss of electrons results in a decrease in conduc-
tance and a depletion layer is formed. When the sensor is exposed to an odorant,
R, the adsorbed oxygen reacts and is removed from the surface allowing the elec-
trons to flow back into the conduction band. This lowering of the potential barrier
and the consequent flow of electrons, leads to a decrease in resistance and a rise
in conductivity (eq. 3.2 and Figure 3.6b)).

n+(1/2)0y < — > O(s)~ 3.1
R(g) +O(s)"— > RO(g) +n (3.2)

On the contrary, p-type sensors respond to oxidizing gases (such as oxygen, ni-
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Figure 3.6: Chemical reaction to the boundaries of semiconductor material.

tric oxides), which remove electrons and produce holes, thus producing charge
carriers and increasing resistance [36]. The sensitivity of such type of gas sen-
sors depends on the film thickness and on the operating temperature (typically
200-500°C). Thinner films are more sensitive, but they lead to a quicker sensor
saturation, thus reducing sensitivity range. Sometimes catalytic metals are ap-
plied on top of oxides (for instance, Sn(Os sensors doped with C'u) in order to
improve sensitivity to particular compounds. Typical sensitivities are between 5-
500ppm [33]. Metal oxides sensors’ response times tend to be very fast: they can
reach steady-state in less than 7sec [36]. Indeed, the main advantages of this type
of sensors are their fast response and recovery times. In addition they are small,
easy to be integrated into the circuitry (that allows to combine in the same device
the functions of a sensitive element and control electronics.), relatively inexpen-
sive and easy to be manufactured.

Disadvantages in the use of these sensors are: the need for a heating circuit, poor
reproducibility, long-time instability due to ageing which results in a drift of sen-
sor’s response (long-time instabilities are of considerable importance for the prac-
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tical use of the sensor; pre-ageing thermal treatments and cycle calibration checks
have to be carried out in order to avoid the wrong use of the device); non-linear
behaviour, it means, the change in sensor response due to a defined change in gas
concentration depends generally on the concentration of the gas to be monitored
and also on the concentration of other gases (cross-sensitivity effect).

The sensors also respond to water vapour, and, more specifically, to humidity vari-
ations [33]. Unfortunately, sensor/water vapour interaction leads to an increase in
the sensor’s electrical conductance and to a lack of selectivity. Materials with en-
hanced performance with respect to relative humidity variations have been found:
chromium oxide is an example [39].

3.2.2 Piezoelectric sensors

When such type of gas sensors are exposed to a vapour, a change in mass of the piezo-
electric coating occurs, due to gas adsorption, resulting in a change in the resonant
frequency.

There are two type of piezoelectric sensors that are used in gas sensing: the surface
acoustic wave (SAW) sensors, and the quartz crystal microbalance (QCM) sensors.

e Surface acoustic wave sensors: They are composed of a sensing membrane
placed between an input (emitting) and output (receiving) inter-digital transduc-
ers [36]. An alternating current is applied across the input transducer and create
a wave which travel along the sensor’s surface at an operating frequency between
100 and 400MHz. The interaction between the sensor’s sensing membrane and a
compatible volatile compound causes an increase in the membrane’s mass, which
results in a shift of the wave frequency, according to eq. 3.3:

Af =Af,*xc,*x K,/pp (3.3)

Where Af, is the change in frequency, c, is the vapor concentration, K, is the
partition coefficient and p, is the density of the used polymer membrane [36,37].
Sensor sensitivity is defined as p,/ppm of volatile molecule. Polymer-coated SAW
sensors have very low detection limits (0.7-4ppm) [36, 37].

Indeed, in general SAW sensors are very sensitive and can detect a broad set of
VOCs due to the many types of available sensing coatings. In addition, they have
fast response times.

On the other hand, they suffer from poor signal to noise ratio and the circuitry
required for their functioning is very complex and expensive [36].

¢ Quartz crystal microbalance sensors: Their working principle is similar to the
one of SAW sensors: when the sensing membrane (deposited onto the surface
of the piezoelectric quartz crystal) interacts with a compatible analyte, its mass
increases, resulting in a shift in three-dimensional wave’s resonance frequency
(which is normally between 10-30MHz [36]). In this case, the generated wave
travels along the entire bulk of the crystal.
Higher frequencies and smaller surface area of sensing elements results in a rise
in sensitivity.
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3.2. Gas sensors

Such type of gas sensors have high sensitivity for organic vapours and are very
selective. In addition, they have fast response times (10sec). Their disadvan-
tages include complex fabrication processes, complex interface circuitry and poor
signal-to-noise ratio.

3.2.3 Optical sensors

Many volatile molecules exhibit strong absorption in UV/visible, near infrared (IR) or
mid-infrared regions of the electromagnetic spectrum. The absorption lines or bands
are specific to each chemical species: this form the basis for their detection and mea-
surement in the case of optical gas sensing.

Optical gas detection using absorption spectroscopy is based on the application of
Lambert-Beer law (eq. 3.4) [41]:

I =1Iy*xexp(—axl) (3.4)

Where [ is the light transmitted through the gas cell; I is the light incident on the gas
cell; « is the absorption coefficient of the sample, which results from the product of
the gas concentration and the specific absorptivity of the gas ¢; [ is the cell’s optical
path-length (typically in units of cm).

This principle is exploited by using different technological solutions, such as:

e optical gas cells, which may be altered to fit a broader variety of applications by
using long path cells (to increase the magnitude of the signal according to eq. 3.4),
or optical fibres (to deliver light to a sample cell to a remote location), or hollow
core optical fibres (to form a long, thin gas cell) [41]. Coupling light in many of
these cells is made possible by the use of laser sources, as a significantly great
proportion of the light may be collimated in a narrow beam and launched into
optical fibre. Two examples of hollow core optical fibre are shown in Figures 3.7
and 3.8. In the first example, the glass fibre is coated with a fluorescent dye encap-
sulated in a polymer matrix. The odorant interacts with the fluorescent dye and
causes changes in dye’s optical characteristics, such as intensity, spectrum, life-
time changes and wavelength shift in fluorescence [36]. The sensitivity depends
on the type of fluorescent dye or on the mixture of dyes and on the polymer used
to support the dye. In particular, the polymer’s polarity, hydrophobicity, porosity
and swelling tendency are important for sensor’s response. Adsorbants, such as
alumina, can be added to the polymer in order to lower the limit of detection.

e non-dispersive sensors; measurements can be made in the mid infrared (non-
dispersive infrared or NDIR), near infrared and UV/visible regions of the spec-
trum. Sensors that can be built are very compact [41] (NDIR sensors in recent
times have reached a standard form factor consisting of a 16mm long, 20mm di-
ameter cylinder). These sensors are cheaper, having few components (a simple
microbulb light source, gold coated reflective light path and integrated detector
containing two or more filtered detection channel). For some gases, such as C'Os,
NDIR gas sensors are the most suitable technology. In the case of breath analysis,
they are the most adopted solution to perform capnography.
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Figure 3.7: Optical gas sensor built by using a hollow core optical fibre.
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Figure 3.8: Optical gas sensor built by using a hollow core wave-guide and a IR source.

e compact spectrophotometers and tunable diode laser spectroscopy (TDLS);
in contrast to the non-dispersive techniques, spectrophotometry is dispersive in
the sense that the spectrum from a source is dispersed by a wavelength-selective
element (such as a grating). The gases whose absorption lines fall within the wave-
length of the spectrometer can be detected. UV absorption is the basis of a large
number of commercial techniques (see, for instance, http://aai.solutions/oma-process-
analyzer), which may be also fibre optically coupled so that the electronics can be
housed separately from the gas cell. In contrast, the use of the near IR spectrum
is limited by the relatively low signal to noise ratios of spectrophotometers com-
pared with alternative methods (NDIR and TDLS). New designs for compact spec-
trophotometers have resulted from advances in manufacturing methods; the aim
is to create systems that are simply, compact and with low power consumption.
There has been great progress in the development of small diode array spectrome-
ters able to measure spectra in the UV-visible and near-IR with good spectral reso-
lution sufficient to identify gas species (see, for instance, https://oceanoptics.com/product-
category/maya-series/). This has been combined with the advances in Si or In-
GaAs diode arrays using CCD or CMOS technology. Nonetheless, InGaAs arrays
are relatively expensive [41] (about 15-16K Euro), indeed alternative solutions
that use discrete detectors are adopted, such as in the case of TDLS.
TDLS technique provides for an emission wavelength of a narrow linewidth laser
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diode which is scanned across an individual gas absorption line at very high reso-
lution [41,42]. Working at such high resolution allows for obtaining a high degree
of specificity to the target gas, which can often be achieved for small molecules.
Two are the commonly used techniques for TDLS: termed direct spectroscopy
(the output of a laser diode is scanned across one or more gas lines in a narrow
range, by ramping the laser diode injection current) and wavelength modulation
spectroscopy (an ac modulation signal is applied to the laser diode, giving a sinu-
soidal modulation of the emission wavelength; such methods improves signal to
noise ratio).

photoacustic (PAS) sensors differ in the way that the adsorbed light is detected.
In traditional transmission sensors, the level of absorbed light is calculated by
comparing the light intensity in the presence/absence of gas absorption, according
to eq. 3.4. In photoacustic sensors, the absorbed light is directly measured: light
energy absorbed by the gas is converted to heat; the temperature increase causes
the analyte and the surrounding gaseous/liquid/solid matrix to expand. If the light
is modulated, the expansion produces pressure that can be detected by a micro-
phone. In addition, to improve sensitivity, microcantilevers have been developed
as an alternative to microphones [41,43]. The microcantilevers have very low
mechanical compliance and show large deflections in response to pressure waves.

Advantages in the use of optical gas sensors are their fast response (time constant

below 1 sec are possible), minimal drift, high specificity and their compactness. If their
design is carefully conceived, such sensors may show also zero cross-response to other
gases. Because the transduction principle derives from a direct measure of a molecule’s
physical properties, optical gas sensors’ drift is reduced. Although their sophisticated
and dedicated circuitry and software increase their costs, optical gas sensors fill a gap
between lower cost sensors with limited performance and high-end laboratory equip-
ment.

3.2.4 Metal-oxide-semiconductor field-effect transistor (MOSFET) sensors

They are metal-insulator-semiconductor (MIS) devices and their structure is shown in
Figure 3.9, adapted from [36]. When the gate material (usually a catalytic material)
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Figure 3.9: Typical MOSFET gas sensor functioning.

interacts with the odorant, the threshold voltage of the MOSFET sensor changes, due to
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the corresponding change in the work functions of the metal and the oxide layers. Such
changes in work functions are caused by the polarization of the surface and interface
of the catalytic metal and oxide layer when the volatile molecules interact with the
catalytically active surface [36]. Also the changes in drain-source current and in the
gate voltage can be used as a measure of the interaction with the analyte.

A porous gas sensitive gate is used to facilitate the diffusion of the gas into the sensing
material.

The factors that affect the sensitivity of such type of sensors are operating temperature
(which is usually between 50 °C and 170 °C), composition and structure of the catalytic
material. Temperature is increased to decrease the response (from milliseconds up to
300sec) and recovery times. Typical sensitivities are approximately 0.1ppm [36].
MOSFET gas sensors fabrication reproducibility is quite good and this type of sensors
can be integrated into complementary metal-oxide semiconductor (CMOS) technology,
resulting in small, low cost sensors.

On the other hand, they can suffer from baseline drift and instability according to the
used sensing material.

3.2.5 Electrochemical gas sensors

They exploit the electric charge exchange (resulting in an electric signal) when chem-
ical species react at an electronic conductor/ionic conductor interface. They employ
an electrochemical cell consisting of a casing that contains a collection of chemical
reactants (electrolytes or gels) in contact with the surroundings through two terminals
(an anode and a cathode) of identical composition [44]. For gas sensors, the top of the
casing has a membrane which can be permeated by the gas sample (capillary diffusion
barrier in Figure 3.10). Oxidization takes place at the anode and reduction occurs at the
cathode. A current is created as the positive ions flow to the cathode and the negative
1ons flow to the anode. Gases such as oxygen, nitrogen oxides, and chlorine, which are
electrochemically reducible, are sensed at the cathode while electrochemically oxidiz-
able gases such as carbon monoxide, nitrogen dioxide, and hydrogen sulfide are sensed
at the anode.

The output of the electrochemical cell is directly related to the concentration or partial
pressure of the gaseous species. Depending on whether the output is an electromotive
force (namely an open circuit voltage) or an electrical current, the electrochemical gas
sensors can be classified in potentiometric or amperometric.

Solid state electrochemical devices are the most used sensor type for the measurement
of oxygen for automotive market where legislation has restricted the permitted emis-
sions levels of carbon monoxide, hydrocarbons and nitrogen oxides. At present, these
sensors are commonly produced as macroscopic ceramic devices or, more recently, as
miniature thick film devices. The advantages of fuel cell sensors are that they use very
little power, are relatively low cost, are ready almost immediately, are more stable over
time, rarely give false positive readings.

3.3 Gas sensors and e-noses for breath analysis

Formerly designed for environmental, cosmetic, food industry applications (as shown
in Table 3.1), in recent years e-nose technology applications in medical field are grow-
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Figure 3.10: Typical electrochemical gas sensor (taken from https://www.sgxsensortech.com/)

ing in number.

The earliest studies involving aroma measurements for clinical applications aimed to
test the efficacy of using e-nose to diagnose human disease caused by microbial in-
fections [18]. In particular, the capability of e-noses to identify microbes through the
detection of VOCs they released in vitro from bacterial plate cultures (or directly from
infected tissues) were tested. For instance, Dutta and co-workers used an e-nose based
on a sensor array of conducting polymers, the Cyranose 320, to identify three different
species of Staphylococcus aureus bacteria, responsible for nose, ear and throat infec-
tions, in patients [45]. The data were analysed by using PCA, self-organizing map
(SOM) and Fuzzy-C Means algorithms. The Cyranose 320 was able to identify the
three Staphylococcus aureus species with 99.69% accuracy.

Such early investigations of potential e-nose application in medical field led to the real-
ization that their different operating principles associated with their various instrument
types and design could be exploited to sample and instantly analyse volatiles molecules
directly from patients, thus obtaining many other types of diagnostic information and
medical conditions. As a consequence, the range of applications of electronic noses
increased and included, for instance, the monitoring of microbial metabolites released
from superficial wounds [46], the detection of volatiles associated with upper respira-
tory tract infections [47], the breath analysis for the detection of lung and other organ-
related diseases [48], the analysis of urine and faecal head space for the diagnosis of
metabolic disorders and gastrointestinal diseases, respectively [49,50].

Here the attention is focused on the application of electronic noses in the field of human
breath analysis.

An increasing number of studies have shown that breath profiling by e-nose could play
a role in the diagnosis and/or screening of various respiratory diseases [51]. In the
study conducted by Dragonieri et al. [52] the Cyranose 320 was able to discriminate
(with accuracy 100% and 90% respectively) mild and severe asthmatic patients from
healthy, non-smoking controls. Also the e-nose developed by De Vries et al. [53] and
based on metal oxide semiconductor gas sensors was able to distinguish between asth-
matics and controls with an accuracy of 87% and an area under the receiver operating
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Table 3.1: Some existing commercial e-noses used for environmental, cosmetic, food industry applica-

tions.
Manufacturer Sensor Applications Dimensions | Costs (Euros) Website/University
type
Airsense MOS Food evaluation Laptop 17000-36000 www.airsense.com
analysis
GmbH
Alpha MOS- | CP, MOS, Quality control of Desktop 17000- 84000 www.alpha-mos.com
Multi Organo- QCM, food storage;
leptic System SAW analysis of perfumes
Applied MOS, IR Environmental Laptop www.ifm.liu.se
Sensor MOSFET analysis
Osmetech CP Environmental an.; Desktop 17000-63000 www.osmetech.com
PLC pharmaceutical
product evaluation
Array Tech QCM food analysis University of Rome, Italy
Bloodhound CP Environmental an.; Laptop University of Leeds, UK
Sensors food an.;
flavor and
fragrance testing
Cyrano CP Food quality; Palmtop 4500 www.cyranosciences.com
Science Inc. chemical analysis;
contamination detection
Electronic GC, Food and beverage Desktop 16500- 23000 www.estcal.com
Sensor SAW quality; explosives
Technology and drugs detection;
Inc. environmental an.
Forschungs- MOS, Fire alarms; www.fzk.de/FZK2/english
zentrum SAW automotive appl.;
Karlsruhe Food quality
HKR- QCM Food and beverage Desktop www.hkr-sensor.de
Sensorsystem quality; cosmetics and
GmbH perfumes quality
Illumina FO Life sciences; www.illumina.com
chemical detection;
food quality
Lennartz MOS, Food and Desktop 46000 www.lennartz-electronic.de
Electronic QCM beverage quality
GmbH
Microsensor SAW Chemical agent Palmtop WWWw.microsensorsystems.com
system detection; Toxic
industrial chemical
analysis
OligoSense CO Automotive appl.; www.oligosense.be
food analysis
Nordic Sensor MOS, Industrial monitoring Laptop 33800- 50800 www.nordicsensor.com
Technologies SAW,
AB QCM
Sawtek Inc. SAW Toxic gases in Palmtop 4500 WWWw.microsensorsystem.com

chemical atmospheres
monitoring

characteristic curve (AUC-ROC) of 0.94 + 0.15.
Chronic Obstructive Pulmonary Disease (COPD) is likely to exhibit a specific ex-
haled VOC profile. Under such hypothesis, Sibila et al. used the Cyranose 320 to
differentiate COPD breathprints from healthy controls (with an accuracy of 83% and
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AUC-ROC of 0.93) [54]. Such study was extended by Shafiek and co-workers which
used the same e-nose to identify the presence of airway bacterial colonization in clini-
cally stable patients with COPD [55]. Also the Aeonose (a metal-oxide sensors-based
e-nose) had good performances in detecting the presence/absence of a viral or bacterial
respiratory infection in patients with severe COPD [56].

Exhaled breath of patients with pulmonary mycobacterium tuberculosis were differ-
entiated from that of healthy subjects by using a Cyranose 320 [57] (with 72% speci-
ficity, 84% sensitivity) and a nano-array system [58].

Many studies aimed to test the ability of e-noses to detect lung cancer-related breath-
print. Di Natale et al. used a QCM sensor system, coated with different metallopor-
phyrins, to discriminate the breath of 35 subjects suffering from lung cancer from that
of 9 which just had surgical therapy and 18 healthy controls [59]. The e-nose suc-
cessfully detected 100% of lung cancer patients, 94% of healthy controls and 44% of
post-surgery patients. Such approach was confirmed in the studies of Yu et al. [60] and
Chen et al. [61]. Other three studies assessed the performances of Cyranose 320: an
accuracy of 72% was obtained by Machado et al. [62] in comparing the breath-print
of 14 Non-Small Cell Lung Cancer (NSCLC) with that of 37 healthy subjects. Like-
wise, Bikov et al. [63] involved 27 individuals with NSCLC and 10 controls, showing
an accuracy of 70%. The study of Dragonieri et al. [64] showed an accuracy of 80%,
with 10 NSCLC subjects and 10 healthy controls. Also a SAW-based e-nose system
showed good performance (80% accuracy) in in comparing breath profiles of 5 lung
cancer patients and 5 controls [65].

The performances of Cyranose 320 were assessed also in the case of Obstructive
Sleep Apnoea Syndrome (OSAS) [66] and Pulmonary Sarcoidosis [67]. In particular
in [66], Cyranose 320 was used to discriminate (with a sensitivity of 0.93 and a speci-
ficity of 0.7) between OSAS patients and control subjects. In additions, that breath-print
patterns differed after 3 months of continuous positive airway pressure (CPAP) therapy
from untreated OSAS, with an AUC-ROC of 0.82.

Great progresses have been achieved also in the use of e-noses to diagnose and monitor
diabetes in clinical patients. Ping et al. [68] developed an electronic nose system based
on thin-film sensors coated with SnO,, having high selectivity for acetone, the most
important volatile biomarker detected in the exhaled breath of diabetic patients. In fact,
as demonstrated by the studies conducted by Thati et al. [69] and Righettoni et al. [70],
breath acetone was found to be correlated with blood glucose levels (Pearson’ s 0.98
and Spearman’s 0.93 [70]). In particular, in [69], a TGS822 tin oxide (Sn(O-) sensor
was used to detect acetone in exhaled air, while Righettoni and co-workers [70] de-
veloped a portable acetone sensor consisting of flame-made, nanostructured, Si-doped
W O3 sensing films.

As described in chapter 2, acetone contained in our exhaled breath principally derived
from the breakdown of body fat. As a consequence, it is expected to be a good indicator
of fat burning. In [71], Toyooka and co-workers prototyped a portable breath acetone
analyser, based on two semiconductor gas sensors with different sensitivity character-
istics, for monitoring fat loss. It was found that body fat in subjects with a controlled
caloric intake and taking exercise decreased significantly, whereas breath acetone in-
creased significantly.

Also neuro-degenerative disorders such as Alzheimer’s disease, Parkinson’s disease
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and Multiple Sclerosis have each been shown to exhibit a unique VOC profile. Ex-
ample of VOCs include alkanes, methylated alkanes, and carbon disulfide. In [72]
and [73], e-noses with functionalized carbon nanotubes as sensing material and multi-
variate data analysis are used to characterize such breath profiles.

Guo et al. [17] developed a 12 MOS-based gas sensor array placed in a stainless steel
chamber and evaluated the prototyped e-nose system performances in two cases: i)
in the first test they used their system to distinguish between pre- and post- treatment
breath samples from 52 subjects with end-stage renal failure (accuracy of 80.15% and
82% respectively); ii) in the second experiment, they tested the ability of the system
to discriminate between healthy controls and subjects suffering from either diabetes
(sensitivity 86.97%, specificity 87.57%), renal disease (sensitivity 83.96%, specificity
84.16%), or airway inflammation (sensitivity 73.79%, specificity 71.58%).

Another study [74] aimed to distinguish, by using the Ciranose 320, the breath of smok-
ers from that of non-smokers. Principal component analysis identified the maximal
point of differences between classes. The e-nose correctly identified the smoking status
in 37 of 39 overall individuals.

Recently, Nakhleh and co-workers [75] developed an artificially intelligent nano-array
based on molecularly modified gold nanoparticles and a random network of single-
walled carbon nanotubes for a non-invasive diagnosis and classification of 17 disease
(lung cancer, colorectal cancer, head and neck cancer, ovarian cancer, bladder
cancer, prostate cancer, Kidney cancer, gastric cancer, Chron’s disease, ulcerative
colitis, irritable bowel syndrome, idiopathic Parkinson’s, atypical Parkinsonism,
multiple sclerosis, pulmonary arterial hypertension, pre-eclampsia, and chronic
kidney disease) from exhaled breath. The population included 591 healthy controls
and 813 patients suffering from one of the 17 diseases. Cluster analysis was used to
classify each breath profile. Blind tests showed that 86% accuracy could be achieved,
allowing both detection and discrimination between the different disease conditions.
GC-MS analysis was the ground truth.

Together with such widely documented advances in gas sensing and e-noses applica-
tions in biomedical field, the high cost of detection-instruments needed for disease di-
agnosis, the increasing demand for specialized detection instruments, and the increased
visibility of biomedical needs [76] led many private biotechnological industry have
shifted their research and development departments toward the development of e-nose
technology. In addition, with their numerous, diverse and specialized possible applica-
tions, e-nose instruments developed for diagnostic medical field are often higher priced
and more lucrative for commercial development [18].

In Table 3.2 some of the existing e-noses designed for clinical purpose are listed. For in-
stance, Applied Nanodetectors (www.applied-nanodetectors.com), a company formed
in 2004, developed a nano-technology based gas sensor array platform for the monitor-
ing of a set of VOCs in the breath of asthmatic patients. Di Natale and co-workers [59]
developed an electronic nose, composed by eight quartz microbalance (QMB) gas sen-
sors, to diagnose lung cancer. COSMED s.r.l. (www.cosmed.com), founded in 1980,
is a privately owned company manufacturing cardio-pulmonary, metabolic and body
composition diagnostic equipment. Recently, COSMED s.r.l. have introduced K35, the
4th generation of a wearable metabolic system. Such device, by monitoring the in-
haled oxygen and the exhaled carbon monoxide, is able to provide informations about
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the metabolic expenditure of an athlete during a competition. Bedfont Technical In-
struments Ltd. (www.bedfont.com) a company established in 1976 and become, to-
day, the pioneer in breath analysis for medical applications, developed a series of
portable device for the monitoring of specific diseases (the NObreath provides accu-
rate analysis of airway inflammation for the control of asthma; the Gastrolyzer aids
in the detection of gastrointestinal disorders and food intolerances) or noxious habits
(the Smokerlyzer, used for smoking cessation, detects carbon monoxide in smokers’
breath). Dréager (www.draeger.com) Alcohol test is based on an electrochemical cell
gas sensor and provides a real-time and accurate measure of breath ethanol. BreathDX
(www.breathdx.com), a UK-based company founded by Professor Tony Killard, devel-
oped AmBeR®), a breath ammonia measurement device, based on conductive poly-
mers gas sensors, which can diagnose and manage several disease conditions (among
which stomach ulcer, chronic liver disease, metabolic disorders). The eNose company
(www.enose.nl) developed Aeonose™, an e-nose based on MOS gas sensors, which
can be used for screening on tuberculosis and throat cancer.

In addition, many types of biosensors also are being developed for medical applica-

Table 3.2: Existing commercial e-noses used for breath analysis (Costs: updated to October 2017;
websites last visit: March 2018).

Manufacturer Sensor Applications Dimensions | Costs (Euros) Website/University
type
Applied Nano- Asthma monitoring Palmtop www.applied-nanodetectors.com
Nanodetectors technology
based sensors
Array Tech QMB Lung cancer University of Rome,
diagnosis Italy
Shimadzu Co. MOS Tuberculosis diagn.; Desktop www.nose-network.org
Diag-nose bowel cancer diagn.;
infections in wounds
and urinary tract
COSMED s.r.l. GFC, IR Cardiopulmonary Palmtop 34000 www.cosmed.com
diagn.
Bedfont MOS Monitoring of CO Desktop/ 1000- 4800 www.bedfont.com
Scientific Ltd in smokers; Palmtop and more
monitoring of Hy
in people with
lactose intolerance;
monitoring of
NO in asthmatics
Breathometer | Electrochem. Oral health Palmtop 93 www.breathometer.com
Inc. cells monitoring
Draeger Electrochem. Breath Alcohol Palmtop 1590 www.draeger.com
cells test
BreathDX Conducting Monitoring of Desktop/ www.breathdx.com
polymers breath ammonia Palmtop
(polyaniline)
The eNose MOS Screening on Desktop/ www.enose.nl
company tuberculosis and Palmtop
throat cancer

tions, in attempt to reproduce the functioning of the bio-olfactory receptors, and will
likely provide another very fruitful area for diagnostic methods development [77].
The mentioned research studies and commercial e-noses cover just a small amount
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of the state of art, that demonstrate the theoretical and practical feasibility of using
electronic noses in many medical applications. Nonetheless, some challenges remain,
including improving device accuracy, without sacrificing ease of use and costs, which
often are still very high, as shown in Table 3.2.
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CHAPTER

The Wize Sniffer

4.1 The aim of the research

In chapter 4, the potential of breath analysis has been explained. For its unobtrusive-
ness, breath analysis may play a key role in healthcare diagnostics. Comparing with
the traditional clinical techniques, breath analysis is harmless to not only the subjects
but also the personnel who collect the sample.

Nevertheless, standard instrumentation for gas analysis (GC-MS, for instance), as well
as commercial e-noses, do not facilitate the spread and the use of this technique in
clinical field, because of their high costs, their difficulties in using and interpreting the
results, and long-time analysis.

My aim was to design and develop a device able to accurately analyse human breath
composition and, at the same time, to overcome these limitations of existing instrumen-
tations.

In this regard, another important issue was considered, that is the greater demands on
improvements in effectiveness, speed, smartness and and lower costs of biomedical in-
struments for daily healthcare applications [18], resulting from increasing limitations
of healthcare financial resources as a consequence of budgetary cuts or constraints and
changes in socio-economic factors.

Therefore, me work was focused on the design and development of the so called Wize
Sniffer (WS), considering the following requirements [19]:

e ability to analyse a set of breath molecules in real time;
e portability, in order to promote its use not only in laboratory settings;
e use of low-cost technology, in order to encourage its purchase;
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e case of use, also for non-specialized personnel, in order to foster its use also in
home environment, for instance;

e modular and customizable design, in order to easily change the gas sensors ac-
cording to the molecules to be detected.

In order to fully exploit the potential of breath analysis, the WS was developed with a
view to taking the positive aspects of existing instrumentations, and, at the same time,
to overcoming their limitations (see Table 4.1).

Table 4.1: Characteristics of standard instrumentation (GC-MS) and electronic nose systems for breath
analysis, and WS requirements

Instrumentation | Portability Costs Ease of use Time of analysis Sensitivity
GC Not portable High Only specialists About 1 hour High
(15000 Euro on average) for each sample | (up to ppt/ppb)
PTR-MS Not portable High Only specialists | On-line analysis High
(13000 Euro on average) (up to ppt/ppb)
Laser Not portable High Only specialists Real time High
spectroscopy (15000 Euro on average) analysis (up to ppt/ppb)
Commercial portable 10000 Euro on average Also by non- Real time up to ppb
e-noses specialists analysis
WS portable low-cost Also by non- Real time ppny/ up to ppb
requirements WS core <500 Euro specialists analysis

4.2 Detected molecules

The idea of the Wize Sniffer was born in the framework of SEMEiotic Oriented Tech-
nology for Individual’s CardiOmetabolic risk self-assessmeNt and Self-monitoring (SE-
MEOTICONS, www.semeoticons.eu) European Project.
The idea behind SEMEOTICONS was to exploit human face as an indicator of indi-
vidual’s health status and translate the semeiotic code of the face into measurements
and descriptors automatically evaluated by a computerized application. In particular,
the eligible application field was the one of cardio-metabolic diseases prevention, for
which healthcare systems are registering an exponential growth of social costs, espe-
cially due to expensive diagnostic resources, often improperly prescribed. One of the
principal aims of SEMEOTICONS Project was to move the semeiotic analysis from
the office of medical doctors closer to individual’s normal-life settings and enable nor-
mal people to self-assess their personal well-being status, particularly concerning their
cardio-metabolic risk.
To this end, SEMEOTICONS designed and constructed an innovative, multi-sensory
system, based on multi-spectral cameras and other advanced detection tools, integrated
into a hardware platform having the exterior aspect of a mirror: the so-called Wize Mir-
ror (WM, see Figure 4.1). The aim of the WM was to detect in human face, all the
signs considered as indicators of cardio-metabolic risk [78, 79].
The Wize Sniffer was designed to be a Wize Mirror’s tool, in order to analyse user’s
breath composition and monitor his/her noxious habits for cardio-metabolic risk: smoke,
alcohol intake, wrong diet.

Therefore, the WS can help the user to prevent cardio-metabolic risk by detecting in
his/her breath the following molecules [20]:
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Figure 4.1: Wize Mirror’s hardware platform developed in SEMEOTICONS European Project.

e carbon monoxide (C'O): in human body, it is naturally produced by the action
of heme oxygenase on heme when the macrophages of the spleen remove old and
damaged erythrocytes from the circulation. C'O normal levels in exhaled breath
are 2-3.5ppm. It acts as a cellular messenger, as a promoter of neurovascular
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growth and functions in vasodilation. Abnormalities in its metabolism have been
linked to a variety of diseases, including hypertension.

CO is also the major component present in tobacco fumes (75,95%). Indeed,
increasing levels of exhaled C'O can be detected in smokers (13.8 - 29ppm).

An increase of C'O in blood is very dangerous, as it leads haemoglobin to carry
less oxygen through the vessels, because C'O usurps the space in haemoglobin
that normally carries oxygen, forming carboxyhaemoglobin.

It also increases the amount of cholesterol that is deposited into the arteries;

e ethanol (CyHgO): Moderate ethanol consumption, in healthy subjects, reduces
stress and increases feelings of happiness and well-being, and may reduce the risk
of coronary heart disease. Heavy consumption of alcohol, on the contrary, causes
addiction and leads to an accumulation of free radicals into the cells, causing
oxidative stress.

e oxygen (O,) and carbon dioxide (C'O;): Exhaled air has a decreased amount of
oxygen and an increased amount of carbon dioxide. These amounts show how
much Os is retained within the body for use by the cells and how much C'Os is
produced as a by-product of cellular metabolism.

Exhaled O, amount is about 13.6%-16%. Mean C'O, concentration in exhaled
breath is about 4% (= 40000ppm).

Lower values of breath O, may be due to respiration disorders.

Increased levels of C'O, can be due also to physical activity, for example. There
is a decrease in case of congenital heart disease (for example, cyanotic lesions
that result in a bluish-grey discolouration of the skin and in a lack of O, in the
body). Also individual’s breathing rate influences the level of C'O, in blood and,
as a consequence, in exhaled gas. Breathing that is too slow causes respiratory
acidosis (that results in an increase of C'O, partial pressure in blood, which may
cause hypertension, build up of heart rate), while breathing that is too rapid leads
to hyperventilation, which may cause respiratory alkalosis (that results in decrease
of C'O5 in blood; so, it can no longer fulfil its role of vasodilator, resulting in
arrhythmias, extra systoles). A way to monitor the carbon dioxide concentration
(or partial pressure) is capnography, as previously described in chapter 2. The
max value of capnogram correspond to the end of tidal volume of exhaled breath
and the steady-state concentrations of each breath;

e hydrogen (H5): it is related to the carbohydrate breakdown in the intestine and
the oral cavity by anaerobic bacteria. Its baseline value is about 9.1ppm, but it
may vary from an individual to another, especially in case of lactose intolerance;

¢ hydrogen sulfide (H,S5): it is a vascular relax agent; for instance, it has a thera-
peutic effect in hypertension Its baseline level in human exhaled breath is about
0.33ppm.

4.3 Hardware

As previously reported, the WS was thought to be integrated into the WM. Neverthe-
less, my idea was to design and develop an instrument which could be used both as a
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WM'’s tool and as a stand-alone device. In collaboration with COSMED s.r.l., I started
defining the block diagram and the aspect of the WS, respectively shown in Figure 4.2

and Figure 4.3.

I considered a sampling chamber in which the breath gases would have been col-
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Figure 4.2: WS block diagram.
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Figure 4.3: Sketch of WS’ appearance.

lected. A heat and moisture (HME) filter, made of hygroscopic material, would have
been needed to absorb the water vapour present in exhaled breath. A flow-meter would
have enabled the exhaled gas volume to be calculated. The gas sensors would have been
placed into the gas sampling chamber. In case of faster response time, a sampling pump
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would have been needed to inject the sampled exhaled gases to the sensors working in
flowing-regime. In addition, I included a pre-conditioning module (an ad-hoc circuit),
to stabilize sensors raw signals. Finally, I considered a controller board to read and
pre-processes sensors raw data and a data processing phase to analyse them.

In the following sub-sections each part of WS is described in detail.

4.3.1 The core of the WS: the gas sampling chamber and the gas sensor array

The gas sampling chamber was realized in collaboration with COSMED s.r.l., one of
the industrial partner of SEMEOTICONS Project.
Its dimensions were fixed at about 600ml, according to the human resting tidal volume
!'[27]. The chamber was made up of acrylonitrile butadiene styrene (ABS), a common
thermoplastic polymer, and delrin, which is a type of polyoxymethylene (POM). Such
materials were chosen because they do not interfere neither with the target molecules,
nor with gas sensors’ behaviour
In Figure 4.4a) and b), the rendering of the chamber realized by means of a Computer-
Aided Drafting (CAD) software and the 3-D printed chamber are respectively shown.
My idea was to realize a modular device: the gas sensors, housed in the chamber’s
white slots, can be easily changed according to the molecules to be detected.
Regarding the gas sensor array, one fundamental requirement was the use of robust

Figure 4.4: The gas sampling chamber. a) its rendering with a Computer-Aided Drafting (CAD) soft-
ware; b) the 3-D printed chamber.

and low-cost technology. As mentioned in chapter 3, although very sensitive and able to
detect very low concentrations, optical gas sensors are expensive and often they cannot
be miniaturized. Also CNF-based gas sensors are expensive, especially for their fabri-
cation and manufacturing. SAW and QCM-based gas sensors have very high sensitivity
but they need complex circuitry and, in the case of QCM-based gas sensors, they have
a poor signal-to-noise ratio. Therefore, my choice was to employ MOS-based gas sen-
sors. They have long life, strong sensitivity, rapid recovery time [19]. In comparison
to other types of gas sensors, MOS-based gas sensors’ availability and low cost make
them the most widely used gas sensors [33].

Within the gas sampling chamber, six Taguchi semiconductor-based gas sensors, man-
ufactured by Figaro Engineering (www.figarosensor.com) were integrated. Beginning

IThe volume of air that enters or leaves during a respiratory cycle is termed tidal volume. About 500ml-600ml of air enter
during a normal, resting inspiration. On the average, the same volume leaves during a normal, resting expiration. Thus, the resting
tidal volume is about 500ml [27].
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his research in 1962, Mr. Naoyoshi Taguchi became the first person in the world to suc-
ceed in the development of a semiconductor device which could detect low concentra-
tions of combustible and reducing gases when used with a simple electrical circuit [80].
Figaro Inc., a gas sensor company based on metal oxides started by Taguchi in 1968,
still stands as one of the world’s leading gas sensor manufacturer.

In Table 4.2 the employed Taguchi MOS-based sensors are listed. They all are n-type:

Table 4.2: Taguchi MOS-based gas sensors integrated in the WS

Sensor Detected molecules Best detection range
TGS2602 | hydrogen, ammonia, ethanol, hydrogen sulfide, toluene 1-10ppm
TGS2620 | hydrogen, carbon monoxide, ethanol, methane, isobutane 50-5000ppm
TGS821 hydrogen 1-1000ppm
TGS2444 ammonia 10-100ppm
TGS4161 carbon dioxide 350-10000ppm
MQ7 carbon monoxide, hydrogen 1-50ppm

their sensing element is tin-dioxide (SnOs)-based. Figure 4.5 shows their general struc-
ture; in Figure 4.6 their general functioning is reported.
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Figure 4.5: Employed Taguchi MOS-based gas sensors’ general structure.

A voltage V. (5V DC) is applied across the sensor sensing element which has a re-

sistance (R,) between the two electrodes and a load resistor (RL) connected in series.
When the sensor senses gas particles, a change in R, occurs, that is indirectly measured
by taking the voltage value across the load resistance V', according to eq.4.1.
The environmental conditions such as operating temperature determine the sensing per-
formance and characteristics of such type of gas sensors. The operating temperature in-
fluences the receptor function through its effect on the chemical dynamics at gas-solid
interface, thus determining important sensing properties such as selectivity, stability,
response and recovery times [21]. As a consequence, sensors operating temperature is
kept constant by means of a heating circuit (V, Figure 4.6).
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An example of Taguchi gas sensors (TGSs) sensitivity characteristics is shown in Fig-

ure 4.7. As previously described in chapter 3, in presence of a detectable gas, sensor
conductivity increases depending on the gas concentration.

In general, the response of a Taguchi sensor to each gaseous compound have a power
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Figure 4.7: An example of sensitivity characteristic of the employed gas sensors. In this case, this is
TGS2620 sensitivity characteristic in bi-logarithmic scale.The Y-axis is indicated as sensor resistance

ratio between R (= sensor resistance in displayed gases at various concentrations) and Ry (= sensor
resistance in 300ppm of ethanol).

law nature. Indeed, in presence of a target volatile molecule, sensor resistance follows
the equation 4.2 [81]:

R = Ro* P} * (14 Kglgas]) ™ (4.2)
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Where R is sensor resistance in air and Fp, is the oxygen partial pressure. Ky, can
be considered as the sensor sensitivity coefficient. In ambient air the equation 4.2 can
be simplified as follows:

R = Ry (1+ K,qs]gas]) ™ (4.3)

Beyond the non-linear nature of sensors response, represented by the power law expo-
nent (3, the equation 4.2 suggests that oxygen plays an important role in the detection
of gases by the TGSs [81].

The ambient of a metal oxide surface is normally classified as dry or wet, according to
the humidity level. As will be discussed, in wet atmosphere, water molecules have a
major role and influence on the receptor function, while oxygen plays an important role
in dry atmosphere (eq. 4.2). Due to its high electronegativity and lone pairs of elec-
trons, oxygen can be easily adsorbed on the surface of metal oxides. In dry atmosphere,
it acts as an electron acceptor, gets ionized and forms an ionic layer on the surface. This
helps in sorption of other gas molecules on to the metal oxide surface [21].

Also humidity level has a larger influence on Taguchi (and MOS-based in general)
gas sensors response [21,82], as the water vapour undergoes dissociative adsorption on
metal oxide surfaces and the resultant ions, which are adsorbed on the metal oxide sur-
face, affect the electronic and ionic conducting properties of the semiconducting metal
oxides. In many cases, increase of humidity greatly impedes the response of sensor,
lowering the sensitivity of the sensing element [83, 84]. It may be due to the change
in conductivity from the free electrons produced, or simply by the occupation of the
active sites by the adsorbed water molecules. Moreover, a distinction should be done
between n-type and p-type-based sensing materials. As shown in Figure 4.8, when
humidity increases, resistance of the n-type-based film decreases. Further increase in
humidity leads to a drastic decrease in resistance while it slows down at higher humid-
ity level [21].

A relative humidity (RH) around 50-60% is optimum for sensing gases by both n-type
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Figure 4.8: Resistance vs. Relative Humidity (RH) for n-type and p-type metal oxide sensing films [21].

and p-type semiconductor films.
In the case of the Wize Sniffer the humidity plays a crucial role, as it deals with human
breath that have a 90%RH. Therefore, I deemed it necessary to take steps to manage
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this factor and optimize its effects. Firstly, a HME filter, made of hygroscopic mate-
rial, was put at WS mouthpiece to absorb the majority of the water vapour present in
exhaled breath. Secondly, a temperature and humidity sensor (Sensirion SHT11) was
integrated within the gas sampling chamber to monitor the variation in humidity (see
Figure 4.9). Indeed, by the Sensirion SHT11, I observed that: i) after the integration
of the HME filter, the relative humidity in the gas sampling chamber decreased from
90% to 60-70%RH when a breath test was performed; ii) a variation of about +35%
occurred while performing a breath test (Figure 4.10).

In order to take into account such variations in relative humidity which may influence

a.

Figure 4.9: Sensirion SHTI 1 integrated within the sampling chamber.

Taguchi gas sensors behaviour, I 1) calculated sensors drift due to variations in humid-
ity; ii) investigated sensors sensitivity in those precise measurement conditions [22]
(30°C+7%, T0%RH=+5%, the ones that occur in the sampling box during a breath test,
as shown in Figure 4.10).

For this purpose, TGS sensors were inserted into a vial (whose volume was 500ml,

similarly to the WS gas sampling box), as shown in Figure 4.11. Then, relative humid-
ity into the vial was increased from about 40% up to 65%. Raw sensors output were
read by an Arduino Mega2560 connected via serial port to a personal computer. The
experimental data were displayed in real time on the computer screen and stored as text
files for later processing (which was done by using MATLAB R2014a).
In Figure 4.12, how the humidity strongly affects sensors output (in this case the one of
MQ7 gas sensor) is shown. The relationship between humidity and sensors output gen-
erally can be modelled by means of a power law (eq. 4.4), as reported also by Barsan
and co-workers [85]:

Vour = f(hum) = a * (hum)® + ¢ 4.4)

where a, b and ¢ are constant.
Calculating sensors humidity drift was useful to potentially compensate it during the
data processing. I considered the entire range of humidity variation (40%-65%RH)
and then I calculated the slope of the curves. From the slope, drift coefficients were
assessed (see Table 4.3) as the decrease in sensors’ output (Volt) per unit decrease in
humidity, as given in eq. 4.5:
AV

-~ Ahum

42

Sd

4.5)



4.3. Hardware
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Figure 4.10: By means of Sensirion SHT11, temperature and relative humidity values can be monitored
within the gas sampling chamber during a breath test. Without hygroscopic filter on WS mouthpiece,
humidity in gas sampling chamber increases up to 90%RH (plot on the left); by putting the HUE
filter (plot on the right), the humidity increases up to 60%.

Figure 4.11: Experimental set-up; the data stream from sensors was read by an Arduino Mega2560
board via serial port and displayed in real time on pc screen.

By keeping the humidity constant, sensors output depends on the gas concentration
only. For this purpose, as previously mentioned, sensor outputs in response to well-
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Humidity dependence of MQ7 semicondutor gas sensor
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Figure 4.12: MQ7 output when a rise in humidity occurs.

Table 4.3: Sensors drift due to humidity

Sensor AV / Ahum (mV)
MQ7 296
TGS2620 60
TGS2602 82
TGSS821 120
TGS2444 84

known gas concentrations, at a fixed humidity and temperature conditions, were inves-
tigated. Also in this case, the used experimental set-up was the one reported in Figure
4.11. The humidity into the vial was kept at 70%RH+/-5% by means of a saturated
solution of NaC'l placed on the bottom. Measurements were performed only after the
sensors were operated at a fixed temperature for several hours (at least 2 hours for
warm-up). Then, well-known gas concentrations, were injected and sensors raw output
were read by an Arduino Mega2560 connected via serial port to a personal computer.
The experimental data were displayed in real time on the computer screen and stored
as text files for later processing. Just as example, in Figure 4.13, we can see TGS2620
output when well-known concentrations of carbon monoxide (C'O), ethanol (Cy HzO)
and hydrogen (/) were separately injected into the vial. The relationship between
sensors output and each gas contribution can be modelled by means of the previously
reported equation 4.3.

Nevertheless, when a breath analysis is performed, a mixture of gases spreads into
the gas sampling box and chemically interacts with the sensors. In this case, the
phenomenon known as cross sensitivity makes the semiconductor gas sensors non-
selective. In addition, the detection threshold (that is, the minimum concentration of
gas necessary to a meaningful change in sensors conductivity) depends not only on ab-
solute sensitivity to that particular gas but also on concentrations of other gases, which
partially mask the response to the gas of interest [81], as shown in eq. 4.6.

R (140 K+ [G]" * Ki % [Gi]™)
(Eo) - [02]

(4.6)

Where |G| represents the gas concentration and n is an integer or fractional integer
power. In some cases, for some terms of the summation, there is only one term per gas,
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Figure 4.13: TGS2620 output when well-known concentrations of CO, Hy and Co HgO were separately
injected into the vial.

for others there is a product of several.

However, because of the multitude of factors involved, understanding the interaction
mechanism behind the MOS-based gas sensors’ sensing property in general remains an
open issue [21].

Also, I tried to investigate the cross sensitivity of Taguchi gas sensors. In Figure 4.14,
we can see TGS2620 response when well-known mixed concentrations of the three
gases (carbon monoxide, ethanol and hydrogen) were simultaneously injected into the
vial. In this way, how the different VOCs add together and influence gas sensors’ output
(in Volt) can be understood. The single gas contribution can be modelled by a power
law similar to the eq. 4.3 but each of them has its “weight” on the overall output, as
shown in eq. 4.6.

To sum up, both from the literature and the experimental tests, we can affirm that:

e on one hand, semiconductor gas sensors are affected by different factors, such as:

— temperature: operating temperature affects the receptor function, as it influ-
ences, according to a well-defined functional dependence [81], the power law
exponent 3. The problem was solved by integrating a heating voltage in the
sensors’ measurement circuit, in order to keep them at a constant temperature
(about 200-500 °C), as suggested by sensors datasheet and shown in Figure
4.6;

— oxygen partial pressure: oxygen plays an important role in dry atmosphere (as
shown in eq. 4.2). In dry atmosphere, it acts as an electron acceptor, forms
an ionic layer on the surface and helps in sorption of other gas molecules
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TGS2620 Cross Sensitivity curves (for a mix of carbon monoxide, hydrogen and ethanol)
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Figure 4.14: TGS2620 output (in Volt) in response to well-known mixed concentrations (ppm) of CO,
H2 and CQHGO.

on to the metal oxide surface. In this case, breath tests will be performed in
ambient air conditions. As a consequence, oxygen partial pressure will not
influence gas sensors’ behaviour (eq. 4.3);

— humidity: as shown in Figure 4.12, when humidity increases, resistance of the
n-type-based film decreases. To manage humidity influence, I: i) integrated
a filter, made of hygroscopic material, at the WS mouthpiece, in order to ab-
sorb at least 30-40% of the water vapour present in human exhaled breath;
i1) integrated, within the gas sampling chamber, a Sensirion SHT11 in or-
der to monitor the humidity when a breath test is performed and eventually
compensate (during the data processing) the resulting sensors drift; iii) inves-
tigated sensors sensitivity characteristic in the same measurement conditions
(30°C+£7%, 710%RH=+5%) that occur in the sampling box during a breath
test;

— cross-sensitivity: as shown in eq. 4.6, the conductivity response depends on
a linear combination of individual gas terms, where the effects of one gas can
be masked by the combined effects of others. In addition to this "competi-
tion" among gases, there is an associative interaction by which the effects of
one gas are enhanced by the presence of another. I tried to investigate and
understand such type of phenomenon, as shown in Figure 4.14; nevertheless,
because of the multitude of factors involved, understanding the interaction
mechanism behind this phenomenon remains a challenge. However, as de-
scribed in chapter 5, pattern recognition techniques allow for overcoming this
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problem.

e on the other hand, concerning both the literature and experimental tests, such type
of gas sensors show long term stability and reproducibility of gas response [81],
great metallurgical and chemical stability of the sensing material [81], high sensi-
tivity towards target gases, short reaction and recovery time, easy calibration. In
addition, they are small, compact, durable and inexpensive (about 25-40 Euro).

In Figure 4.15 the gas sampling chamber and the gas sensors are shown.
In addition, in order to facilitate sensors recovery time, a flushing pump was integrated

Figure 4.15: First prototype of the sampling chamber with gas sensor array.

on one side of sampling chamber, as shown in Figure 4.16. After each breath test, it can
be switched on in order to "purge" the chamber with ambient air and recovery sensors
baseline.

Figure 4.16: Flushing pump on the one side of the sampling chamber.

4.3.2 The corrugated tube, the heat and moisture filter and the flow-meter

The exhaled gases reach the gas sampling chamber by means of a corrugated tube
made of polyvinyl chloride (PVC), as shown in Figure 4.17. A HME filter, made of
hygroscopic material, absorbs the water vapour present in human breath and stifles the
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bacteria.
A PNT Flow-Ree flow-meter (Figure 4.18) allows to monitor the user’s breath flow rate

Figure 4.17: The corrugate tube (made of PVC) with the heat and moisture (HME) filter.

by calculating the pressure difference on its ends by means of a pressure sensor (PCLA
Series). The flow-meter and the pressure sensor (measurement range: 04-10ml/sec;
accuracy after calibration: +2%j; accuracy without calibration: 410%; resolution:
Iml/sec) were provided by COSMED s.r.I.

In Figure 4.19 the PNT Flow-Ree raw curves are shown, both in case of slow blow-

HME filter
\ ‘ disposable
=\ WA\ o mouthpiece

corrugated
tube

Figure 4.18: a) and d) The disposable mouthpiece, the HME filter, the flow-meter tube and the corru-
gated tube; b) the connection of the flow-meter to the WS; e) the used pressure sensor (PCLA Series);
c) the pressure sensor board integrated into the WS.

ing and in case of fast blowing. Sensors raw output is represented by a voltage; by
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means of the sensor in/out characteristic, the user’s flow rate and exhaled volume can
be calculated.
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Figure 4.19: PNT Flow-Ree raw data (Volts).

4.3.3 The sampling pump and the C'O, and O, gas sensors

Other two gas sensors were integrated into the WS. Because of their faster response,
they work in a flowing regime. Indeed, a sampling pump injects, at a fixed rate (120ml/sec),
the breath gases stored into the gas sampling box to these sensors. In Figure 4.20 the
sampling circuit and the gas sensors are shown.
They allow to monitor exhaled C'O, and O,, as reported in Table 4.4. They were pro-
vided and integrated into WS case by COSMED s.r.1..

By the IR1507 sensor, having a faster response than TGS4161 sensor, I intended to

Table 4.4: CO- and O4 sensors characteristics.

Sensor MOX 20, City Technology
Functioning principle Electrochemical cell
Target gas Oxygen

Measurement range 0-1500mBar
Output 0.8-1.25V in air
Response time <750ms
Sensor IR1507, Servomex
Functioning principle NDIR sensor
Target gas Carbon dioxide
Measurement range 0-40% (40000ppm)
Output 0-4.5V
Response time 100ms

monitor user’s capnogram, in order to sample only systemic volatile biomarkers, if
needed?, and monitor the quality of the breath test.

2as reported in chapter 2, the end-tidal expired gas is collected when the plateau of CO2 curve is reached. Such method is

used if only systemic volatile biomarkers are to be detected, that are those VOCs that have endogenous origins and participate to
alveolar exchanges
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Figure 4.20: a) a tube of small diameter coming out of gas sampling chamber; b) the sampling pump;
c) CO4 and O4 gas sensors.

4.3.4 The signal conditioning module and Arduino board

I developed a signal conditioning module in order to stabilize and transfer sensors raw
signals to the micro-controller board. Its scheme, designed by Eagle CAD, is shown in
Figure 4.21.

A series of voltage buffer amplifiers (LM124-N, Texas Instrument) were used to sta-
bilize and transfer sensors raw signal to the micro-controller board. The power circuit
and the heating circuit were separated, because the second one requires more current
than the first and overloads the 5V power supply. Two resistances of 10K{2each were
used as pull-up resistances in order to stabilize the clock and the output of the Sensirion
SHT11. 15Kload resistances R, were used for TGS sensors measurement circuit.

To read sensors output and to pre-process them, a widely employed open-source con-
troller was used: an Arduino Mega2560 with Ethernet module (cost: about 45Euro).

4.3.5 The final hardware configuration

In Figure 4.22 and 4.23 the WS final configuration is shown. Its dimensions are:
30x30x14cm. The case of the device was realized in collaboration with COSMED
s.r.l..  The user blows into the corrugated tube made of PVC; a hygroscopic filter
absorbs the majority of the water vapour present in the exhaled breath, allowing for
reducing the humidity of -30%. A PNT Flow-Ree flow-meter allows for monitoring the
user’s flow rate and for calculating the exhaled gas volume. Indeed, a measure is con-
sidered "valid" if the subject’s exhaled volume is at least 600ml. The gases reach the gas
sampling chamber, where an array of six semiconductor-based gas sensors are placed.
Within the gas sampling box, also a sensor for temperature and humidity (Sensirion
SHT11) is placed. In addition, a sampling pump injects, at a fixed rate (120ml/sec), the
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Figure 4.21: WS pre-processing circuit (schematic) designed by Eagle CAD.

sampled exhaled gas to other two sensors which have faster response time and work in
flowing-regime. They detect oxygen and carbon dioxide and are respectively based on
an electrochemical cell and an infrared source. Sensors raw output are pre-processed
and stabilised by a signal conditioning module: a series of voltage buffer amplifiers
(LM124-N, Texas Instrument) transfers sensors signals from the measurement module
to a widely employed open source controller: an Arduino Mega2560. Finally, in or-
der to facilitate sensors recovery time, a flushing pump was integrated on one side of
sampling chamber. After each breath test, it can be switched on in order to purge” the
chamber with ambient air and recovery sensors baseline.

As previously reported in subsection 4.3.1 and 4.3.4, WS core (TGS sensors + Arduino
board) is entirely based on low-cost technology. Indeed, its total cost is lower than 500
Euro,thus meeting the requirements of Table 4.1. However, in order to have a complete
picture of WS cost, all components and labour must be included. This would put the
total unit cost at least at 1000-1500 Euro, since most of the components of the device
have to be manually assembled. The multiplier for a commercial version is typically
5-10, to cover marketing, support, etc. This would put the WS commercial cost at least
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02 and CO2
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Figure 4.23: Details of Wize Sniffer hardware final set-up: a) internal configuration, the gas sensors in
the gas sampling chamber are shown, as well as the sampling pump circuit, the Arduino board and
the CO4 and O4 gas sensors. b) external configuration; c) WS back side.

5K-15K Euro with considerable opportunities to reduce such prototype cost through
economies of scale.

In addition, an Arduino Ethernet module was integrated in order to send breath test re-
sults also to a remote healthcare centre, or a personal computer in general, by means of
an internet connection. The combination of a localized monitoring using an e-nose and
data transmission methods provides a means of extending the effective range within
which medical doctors can provide services and offer clinical support.
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4.4 Data processing

Signal and data processing constitute a critical step in the development of an elec-
tronic nose device capable of detecting, identifying and measuring volatile compounds.
Proper processing can improve the robustness of the instrument against the diverse in-
fluencing factors, namely, environmental variables, background changes, sensors drift,
Sensors cross-sensitivity, etc.

The processing of WS raw data is composed of two steps: firstly, sensors output are read
and pre-processed by Arduino; a second step of analysis was implemented in MATLAB
environment. With the concept of implementing, in future, the whole data processing
on Arduino, my aim was to develop a simple and computationally inexpensive method,
which was also suitable, smart and robust, to make the Wize Sniffer able to understand
individual’s cardio-metabolic risk from his/her breath composition.

4.4.1 Data pre-processing

Pre-processing stage is somewhat tied to the underlying sensor technology: therefore it
aims, on one hand, at compensating the factors which can influence and affect the mea-
sure; on the other hand, it aims at carefully selecting significant descriptive parameters
from the sensor array response and preparing the feature vector for further analysis.

I programmed Arduino Mega2560 (with Ethernet module) in order to read and pre-
process sensors output in real time. In addition, in order to send breath analysis results
also to a remote personal computer, a client-server architecture was implemented. It
means that, after performing a test and processing the results, the device, by means of
an internet connection and a TCP/IP communication protocol, can send the results to
the physician, for instance. Arduino is programmed to execute a daemon on port 23.
By implementing a Telnet server, it waits for a command line from the remote personal
computer and then can provide the data.

The workflow of the software implemented on Arduino board is shown in Figure 4.25.
First, the needed libraries are uploaded (the ones designed to work with the Arduino
Ethernet Shield, the ones for reading data from Sensirion SHT11, and finally the ones
to compute common mathematical operations and transformations) and the network
parameters (for instance, the IP address of Arduino Ethernet shield) are configured, as
shown in the first block in the flow-chart in Figure 4.25.

Second, the several variables and vectors are initialized, as well as the Ethernet shield:
the server starts listening for clients (block 2 and 3 of the flow-chart).

Then, for each sensor, the output is read every 0.250 sec and saved in a vector. In addi-
tion, also temperature and humidity values before and after the breath test are read and
saved in a vector (block 4a and 4b of the flow-chart).

By means of flow-meter outputs, the exhaled volume is calculated (block 5). If it is
lower than 600ml (that is, gas sampling chamber’s volume), the breath test must be re-
peated because the measure is considered not valid. In this case, the exhaled volume is
not sufficient to perform the analysis. Otherwise, if the exhaled volume is greater than
600ml, block 6 and 7 are executed: in these steps, sensor outputs are pre-processed and
the drift due to humidity is compensated.
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First, the baseline is manipulated. Three baseline manipulation methods are commonly
used [86,87]: 1) the difference method subtracts the baseline and it is used to eliminate
additive drift from sensor response; ii) relative manipulation divides by the baseline,
remove multiplicative drift and generates dimensionless response; iii) fractional ma-
nipulation subtracts and divides by the baseline, generating a dimensionless and nor-
malized response. Here, the fractional method for baseline manipulation was used, as
it removes both additive and multiplicative errors.

In addition, three features are extracted from each sensor output signal. Several pa-
rameters and features can be extracted from sensors output curves to fully characterize
them [88, 89]. Feature extraction method is one of the key-points of performance im-
provement of an e-nose systems, as it is the first step of the sensors signal analysis. The
aim of feature extraction is to extract robust information from sensors’ response which
may represent the different finger-print, or, in this case, breath-print patterns as well as
possible. I chose to extract, for each sensor output signal (see Figure 4.24):

e the value at curve plateau (A X,(c0)), as it better describes the chemical balance
between sensors sensing element and target gases, and represents the final steady
state feature of the entire dynamic response process [88,90-92];

e the response time 7,., as it is characteristic of each vapour/sensor pair, concentra-
tion independent and shows high repeatability [93]. It is measured from 20 to 75%
of AX(t);

e the maximum slope of the curve.

chemical balance between sensor's
sensing element and odorant AX(co)

A e

L
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Sensor response Xs(t)
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+— Gas— On Off
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Figure 4.24: The three extracted features from a typical gas sensors output (adapted from [36]).

Finally (block 8), if a client is asking for the results, they are transmitted by means of a
TCP/1P protocol and an internet connection.

4.4.2 Data analysis

As previously described, the Wize Sniffer was designed to detect a set of volatile
molecules present in human breath and related to the noxious habits for cardio-metabolic
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Figure 4.25: Workflow of the software implemented on Arduino Mega2560 board
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risk. Indeed, the clinical assumption behind the Wize Sniffer lied in the fact that harm-
ful habits such as alcohol consumption, smoking, unhealthy diets cause a variation in
the concentration of a set of molecules (listed in section 4.2) in the exhaled breath.
The scores from clinical questionnaires relative to alcohol consumption (AUDIT test),
smoking (Fagerstrom test) and lifestyle in general, were the ground-truth. Therefore,
the more dangerous the habits will be, the higher the scores and the higher the cardio-
metabolic risk.

For this purpose, my aim was to develop a suitable, smart and robust method for data
analysis, to make the Wize Sniffer able to understand individual’s cardio-metabolic risk
from his/her breath composition. In addition, the developed method was supposed to be
also simple and computationally inexpensive, in order to subsequently implement it on
WS hardware/software platform. Finally, the result was supposed to be clear, intuitive,
easily interpretable not only by expert personnel.

Data pre-processing step returns 3 features for each gas sensor. Once normalized and
zero-centred the data, in order to highlight their qualitative aspects, counteract possi-
ble fluctuations, and equalize the dynamics of sensors’ responses [94], my idea was to
firstly reduce the dimensions of the input space, in order to smartly cram the informa-
tion contained in the data.

Several approaches for dimensionality reduction can be found in literature [86, 88,94]:
1) direct use of subspace projection methods such as PCA (Principal Component Anal-
ysis), LDA (Linear Discriminant Analysis), FFT (Fast Fourier Transform), DWT (Dis-
crete Wavelet Transform); ii) curve fitting methods; iii) wave-form descriptors; iv) non-
linear subspace projections such as SOM (Self-organizing maps), Sammons mapping;
v) clustering in feature space, etc.

Here, two methods for data reduction were taken into account: Principal Component
Analysis (PCA) and Independent Component Analysis (ICA).

PCA is the most common and computationally inexpensive approach for data reduc-
tion. The objective of PCA is to express the information in the variables in the input
data matrix by a lower number of variables called principal components. It has been
successfully applied to analyse response of tin oxide-bases gas sensors [17, 93, 95].
The possibility of a reliable representation of e-nose data in a space of reduced dimen-
sionality lies in the fact that chemical gas sensors always exhibit a certain degree of
correlation among them. PCA, by exploiting such correlation, consists in finding an
orthogonal basis where the correlation among sensors disappears and the data show the
maximum of variance. It is a second-order linear data transformation method, and it
assumes that the data follow a Gaussian distribution [94]. Indeed, PCA is performed
considering only the second momentum of the probability distribution of the data, as
for normally distributed data the covariance matrix (X7 X)) completely describes zero-
centred data. The k-th principal component (PC) is a linear combination of the m
features X;; extracted from the n gas sensors. The k-th principal component for the
j-th sample can be expressed as follows (eq. 4.7):

m*n

PCy =) ay* Xy 4.7)

i=1
where «;; are the eigenvectors of covariance matrix (or loadings) and measure the con-
tribution of each sensor feature to the PCA basis. The new coordinates of each gas
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sensor feature vector (a column of X) in the PC base are called scores. The percentage
of data variance contained in each PC is given by the eigenvalues of covariance matrix.
The highest eigenvalues correspond to components defining the directions of highest
correlation among sensors. By using only the most meaningful components (that is,
explaining the maximum of variance), the noise of the sensors is also removed.

PCA, by exploiting gas sensors cross-correlation, performs well in many cases. This
fitted well also in this case, as my dataset resulted from cross-sensitive gas sensors
measurements. Nevertheless, PCA assumes that the data follow a Gaussian distribu-
tion. This might be a strong limitation: in fact, the joint distribution of gas sensor array
measurement data often appears to be non-Gaussian. The measurement related to the
same cluster may exhibit a Gaussian distribution, but, in this case, the samples would
have been extracted from more than one cardio-metabolic risk class, thus not resulting
in a normally distributed data set.

ICA can be viewed as an extension or generalization of PCA, since it is a higher or-
der statistical tool, and it assumes that the data are non-Gaussian in nature [94, 96].
ICA aims to find a coordinate system that makes the original signal from the unknown
source as independent as possible, by using higher-order statistics from the probabil-
ity densities of the data. ICA is a novel method in the analysis of gas sensor array
measurement data and seemingly indicates potential to improve the performance of the
instrument [92,97,98]. ICA fitted well in this case, as breath signals and the envi-
ronmental ones (noise) get mixed with each other before the chemical interaction with
the sensor array. In addition, due to sensors cross-sensitivity effect, the conductivity
response depends on a linear combination of individual gas terms, where the effects of
one gas can be masked by the combined effects of others. In addition to this "compe-
tition" among gases, there is an associative interaction by which the effects of one gas
are enhanced by the presence of another. As a consequence, each sensor output is the
result of a combination of different gaseous contributions, as shown in eq. 4.8

Ty = Q41 S1 + Q2So + QSa + ... + G Sy, 4.8)

where s1, S5...5, are the independent sources which have been mixed together through
a linear system and contribute to the sensor response. Their number is not necessarily
well defined [92]. For simplicity, the eq. 4.8 can be written also as the mixing model in
eq. 4.9:

X=AxS 4.9)

where A is the mixing matrix containing the elements a;;. This model is called noise-
free ICA model [92,99], and the estimation of W = A~ is the aim, in order to extract
S. Several different algorithms have been proposed in literature to perform ICA [100-
103]. I used FastICA algorithm, implemented in MATLAB R2014a environment, as it
was very flexible and very accurate. Before ICA is applied, it is usually recommended
to remove redundant information in the original data matrix (X in our case) with the
help of PCA [92]. In addition, although the traditional procedure is projecting original
data to PCA eigen space firstly and processing the mapped new data with ICA secondly
[104], I chose to apply ICA directly to the PCA eigen matrix ), to obtain ICA eigen
space U and project the original data matrix X to the final ICA eigen space U. This
choice was made to reduce the computational cost [105].

In more detail, I chose to firstly extract, zero-centre and whiten PCA eigen matrix
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M.. Whitening of the matrix M, with zero-mean components usually greatly simplify
the application of ICA [92,97,100]. Whitening is a process of transforming a matrix
linearly so that a new matrix is obtained whose components are uncorrelated and their
variances equal unity (see eq. 4.10 and 4.11).

E{M.M*'} = EDE* (4.10)
M., = ED"2ET M, (4.11)

where M., is the covariance matrix, E its eigenvectors orthogonal matrix and D its
eigenvalues diagonal matrix. The centred and whitened PCA eigen matrix M., is given
by the eq. 4.11. ICA, directly applied to M., provides for the new ICA eigen space
(eq. 4.12):

U=Wx M, (4.12)

Where W = A~!. Finally, the original data matrix can be directly mapped to the ICA
eigen space U, according to the eq. 4.13:

Y =XxU" 4.13)

I chose to run the FastICA package using the symmetric approach, wherein all the
independent components are simultaneously separated, and the non-linearity function
g(u) = tanh(u).

A first set of normalized and zero-centred breath data were used to compared the per-
formance of PCA and ICA. PC scores were plotted against the subjects’ risk score (RS,
that means, the sum of the scores of the questionnaires on the noxious habits), as shown
in Figure 4.26A. From an exploratory analysis, I saw that except for PC3, the PC scores
did not have a sharp increasing or decreasing linear trend with respect to RS, thus not
having enough information to contribute to any prediction or classification model [23].
Also individual ICs were plotted against subjects’ RS. As shown in Figure 4.26B., in
this case sharper linear trends emerged, thus showing enough information to build a pre-
diction model. Thus, from a visual inspection of Figure 4.26A. and B., ICs seemed bet-
ter candidates for building a model which was able to predict subjects’ cardio-metabolic
RS form breath data. This result, supported also by the study of Balasubramanian and
co-workers [97], lead me to use independent components rather than principal compo-
nents (although PCA undoubtedly is computationally less expensive than higher order
methods [92]) to build a prediction model.

In particular, my idea was to implement regression techniques in order to create a
smart, computationally inexpensive, optimized model able to evaluate subjects’ cardio-
metabolic risk score on the base of their breath composition.

4.4.3 Data handling: development of a Graphical User Interface (GUI)

With a view to a validation campaign, I developed a graphical user interface (GUI) in
MatlabR2014 environment in order to acquire data from Arduino and save both raw
data and the extracted features in .txt files. Also, the GUI permitted to visualize sensors
raw signals in real time to evaluate the quality of each breath test. In Figure 4.27
an example of the GUI is shown. The workflow of the code implemented in Matlab
environment for the development of the GUI is shown in Figure 4.28.
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Figure 4.26: A. PC scores against subjects’ RS arranged in ascending order; B. IC scores against
subjects’ RS arranged in ascending order. Green points correspond to no-risk subjects, the blue ones
represent low-risk subjects, the yellow ones correspond to medium-risk subjects, the red ones to the
high-risk subjects, the magenta ones represent very high-risk subjects.
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Figure 4.27: The GUI implemented on Matlab to acquire data from Arduino and an example of sensors’

signals visualization.

1. GUI Initialization —| function varargout= Interfaccia (varagout)
¥
2. GUI Opening L function Interfa.cc1aOpen1nchn(hObJect, eventdata,
handles, varargin)
function PB1Callback (hObject, eventdata, handles):
3a. Insert file name (ID - network parameters initialization;
Subject, for instance); —>| - buffer dimensions;
3b. Start import data from Arduino board - opening connection with Arduino;
- close connection
function varargout = InterfacciaOutputFcn (hObject,
4. Output handling; Data visualization —| eventdata, handles);
function PB2Callback (hObject, eventdata, handles)

Figure 4.28: Workflow of the GUI
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CHAPTER

WS validation: self-monitoring the breath for the
prevention of cardio-metabolic risk

5.1 Introduction

The developed technological and data analysis methods were validated. The capabili-
ties of the WS in understanding individual’s cardio-metabolic risk on the base of his/her
noxious habits identified by analysing the breath.

A population of healthy volunteers was involved. All the individuals with chronic ill-
ness, neurodegenerative disorders or consuming medication on a regular basis were
excluded. As the general goal of SEMEOTICONS Project was focused on preven-
tive medicine, the aim of our validation was not to provide a diagnosis, rather than to
identify users’ harmful habits, by analysing their breath composition, and help them
prevent/reduce the cardio-metabolic risk.

Here, the study, the used test protocol and finally the results are described.

5.2 The data acquisition campaign

The study included 169 volunteers overall, among which 77 subjects involved in SE-
MEOTICONS validation campaign (held in three clinical research centres: National
Research Council, CNR, in Pisa and Milan and Centre de Recherche en Nutrition Hu-
maine, CRNH, in Lyon) and the remaining others involved in the previous acquisition
campaigns. The women were 80, the men 89; the mean age range was 30-60 years old.
Subjects suffering from comorbid diseases (chronic illness, lung and heart diseases,
diabetes, cardiac or renal insufficiency, COPD, celiac disease, neurodegenerative disor-
ders) and/or consuming medication on a regular basis were excluded, also in order not
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to affect the tests.
The study was approved by the Ethical Committee of the Azienda Ospedaliera Uni-
versitaria Pisana, protocol n.213/2014 approved on September 25th, 2014; all patients
provided a signed informed consent before enrolment
The volunteers had different habits and lifestyle as shown in Figure 5.1 and 5.2.

They were asked to answer the Alcohol Use Disorders Identification Test (AUDIT)

Low- risk population
Population- Cardiometabolicrisk
Woverw., AS<5; F5<4

High risk population

movenw., AS>5; F5<4

movenw., AS>5; BT FSC T

W overw., AS=>5; F5>8

movenw., AS<5; F5> 8

m normal w., AS>5;5< F5 <7

m normal w., AS>5; F5>8
normal w., AS< 5; F5>8
underw_, AS>5; 5<F5<7
underw., AS>5; F5>8 m High
underw., AS<5; F5>8

B normal w., AS< 5; F5< 4

underw_, AS<5; F5< 4

Medium-risk population

movenw., AS<S; 5<F5<7
m normal w., AS>5; F5< 4
A48% W normal w., AS<5; 5< F5 <7
6%
15%

underw., AS=5; F5< 4

underw., AS< 5; 5<F5< 7

Figure 5.1: The population of volunteers described according to their cardio-metabolic risk level.
AS= AUDIT score; FS= Fagerstrom score; overw.= overweight;, underw.= underweight; normal
w.=normal weight.

and Fagerstrom questionnaire, and another questionnaire about lifestyle in general. The
AUDIT test was developed in 1987 by the World Health Organization (WHO) to iden-
tify risk drinkers. Proposed as an oral interview or written test, also self-administered,
consists of 10 items divided into 3 groups with closed answers. Each answer is scored
from O to 4. With a score ranging from 8 to 14 , the subjects has an unsafe consump-
tion, or has or has had alcohol-related problems (although probably he is not physically
alcohol-dependent); with a score equal to or greater than 16, the patient has alcohol-
related problems and/or is an alcohol-dependent person [106]. In collaboration with
the clinicians, I lowered the threshold for the unsafe consumption from 8 to 5, as we
did not deal with severe cases. The Fagerstrom Test for nicotine dependence is a stan-
dard instrument for assessing the intensity of physical addiction to nicotine related to
cigarette smoking. It contains six items that evaluate the quantity of cigarette consump-
tion, the compulsion to use, and dependence. Yes/no items are scored from O to 1 and
multiple-choice items are scored from 0 to 3. The items are summed to yield a total
score of 0-10. The higher the total Fagerstrom score, the more intense is the patient’s
physical dependence on nicotine [107]. On the base of clinicians’ suggestions, I di-
vided the total Fagerstrom score in three ranges: 0-4, corresponding to a low nicotine
dependence, 5-7, corresponding to a moderate dependence, and > 8 indicating a high-
/increasing nicotine dependence.
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Figure 5.2: The population of volunteers described according to their habits.

Therefore, the volunteers were classified in "low-risk population”, "medium-risk pop-
ulation" and "high-risk population" on the base of the sum of the scores of the ques-
tionnaires, as shown in Figure 5.1. The questionnaires and the relative scores were our
ground truth.

Regarding the breath test, a protocol was drawn up. As previously described (chapter
2), standard protocols for breath sampling do not exist. Exhaled breath composition is
strongly influenced by breath sampling method [2], as well as by breath flow rate [108],
posture [9], ambient air [5], lung volume [109]. In this case, also factors such as BMI,
sex, age, subjects’ lifestyle might influence the breath composition: for example, alco-
hol disposal in men is different than the one in women, and, in addition, it may depend
on body mass index (BMI) [110], as well.

This led me to the question about which of the different sampling methods (end-tidal
sampling, mixed expiratory sampling, time-controlled sampling, described in chap-
ter 2) would have been the most reliable method, able to give the lowest intra- and
inter- variability in the measured VOCs concentrations. One of the most frequently
used breath sampling method is the mixed expiratory breath sampling technique
[2,7,111], where a volunteer has to breath the whole exhaled volume into a sampling
bag. Therefore, I also chose such method of sampling, given, in addition, its easily
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manageable and cost-efficient applicability. Nevertheless, mixed expired air consists
of dead space, transition phase and alveolar phase. The dead space and the transition
phase contain breath compounds from the upper airways, whereas the alveolar phase
contains the VOCs resulting from alveolar exchanges, which better represent the indi-
vidual’s metabolic conditions. Several studies have demonstrated possible advantages
when applying specific manoeuvres, such as breath holding [112], high exhaled vol-
ume, lower exhalation flow rate [113-115] and single exhalation [116], which may
lead to an increase in alveolar VOCs concentrations in breath samples.

Therefore, considered all these methodological issues about breath sampling, the vol-
unteers were instructed to:

o first, take a deep breath in;
e then, hold the breath for 10 sec;

e finally, breath out once through the mouthpiece trying to keep the expiratory flow
low (about 160L/min +10%) and constant, and to completely empty their lungs.

All the participating subjects were under the same conditions of environmental tem-
perature and humidity when breath test was performed, in a seated position (as shown
in Figure 5.3), at morning, fasting and several hour after brushing their teeth. A chart
containing personal data, clinical and/or surgical records, occasional consumption of
medications, height-weight data, body mass index, was drown up for all subjects. Each
volunteer underwent the breath test once. Breath flow rate and breath carbon dioxide
were monitored in real time as their profile defines the quality of the breath sample. [6].

Figure 5.3: Some of the involved volunteers while performing a breath test.

5.3 Results and discussion

By means of the Matlab GUI, the breath test data were recorded as text files on a per-
sonal computer. Then, the data analysis approach (described in chapter 4) was applied

64



5.3. Results and discussion

on such dataset of 169 subjects x 21 gas sensors features.

The prediction model was built by using a sub-group of the calculated independent
components. As the data were pre-processed by PCA to reduce information redun-
dancy, I set the number of useful independent components equal to the number (3) of
principal components contributing significantly to the explained variance (91.4%), as
shown in the screeplot of Figure 5.4.

Then, the data set was split into two data-sets (training data set and validation data set)

Scree plot of the percent variability explained by each principal component
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Figure 5.4: The screeplot shows the variance explained by each principal component.

to respectively build and validate the prediction model (eq. 5.1), which was developed
in MATLAB R2014 environment.

RStrain =k+ aq * ICltrain + a9 * ICQtrain + ag * IC?)train (51)

where k=64.054 is the intercept (p-value=1.01e=33), a;=-1.82 (p-value=3.06¢ %), ao=-
2.47 (p-value=3.41e~%), ay=1.23 (p-value=1.33e~'"), RS is the subjects’ cardio-metabolic
risk score, and /(' 5 5 the independent components.

The model was able to evaluate individuals’ cardio-metabolic risk, on the base of their
breath composition, with a prediction accuracy of 79.77% (see Table 5.1).

Table 5.1: Goodness of the model

Parameter Value
Correlation coefficient between individuals’ 0.8976
actual and estimated cardio-metabolic risk score (RS)
Prediction accuracy 79.77%
Standard error of prediction (SEP) 1.27
Coefficient of determination (R?) of the model 0.74

In Figure 5.5 the correlation coefficient (r) between actual and estimated risk scores
is reported.
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Figure 5.5: Actual risk scores versus predicted ones.

In conclusion, thanks to a simple, computationally inexpensive data analysis method,
the Wize Sniffer was able to predict individual’s cardio-metabolic risk score from the
analysis of his/her breath composition. The easy of use of the Wize Sniffer lies also on
the fact that it provides the user with a very easily interpretable outcome and potentially
can help him/her to prevent his/her cardio-metabolic risk.
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CHAPTER

Towards the diagnosis: detection of ammonia in
the breath of patients suffering from liver
impairment

6.1 Introduction

The liver is the second largest organ in the body and it is responsible for many critical
functions. The loss of liver functions can cause significant damage to the body. Chronic
liver disease can occur through several mechanisms. A common form of chronic liver
disease derives from viral infection (such as Hepatitis B and C) [117, 118]; also high
consumption of alcohol can lead to several forms of liver disease including alcoholic
hepatitis and alcoholic fatty liver disease [119]. Progression of the disease can lead to
the development of cirrhosis, that means, the normal liver cells are replaced by scar
tissue that cannot perform any liver function. Chirrosis may also lead to several com-
plications, among which hepatic encephalopathy.

Hepatic encephalopathy is a neuropsychiatric consequence of advanced chronic liver
disease. Although the exact pathogenesis is unknown, accumulation of ammonia from
poor hepatic function and portosystemic shunting has been implicated as a primary
factor [120]. Clinical testing for hepatic encephalopathy involves evaluation for psy-
chiatric and neuro-muscular impairments, personality changes, disorientation, and as-
terixis. Biochemical testing may consist of determination of blood ammonia level,
though it is not usually used as its accuracy may vary depending on whether venous
or arterial blood is tested and on specimen handling, transport, and measurement tech-
niques [121].

In addition, blood ammonia tests for hepatic encephalopathy are invasive, as well as
liver biopsy and the majority of clinical testing in case of cirrhosis, and all of them are
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subject to technical difficulties in measurement.

A simple, non-invasive test, as breath analysis is, to identify chronic liver disease
and discriminate among its degree of severity, with particular attention to hepatic en-
cephalopathy, would be a very positive step forward. However, there are few studies on
patients with chronic liver disease with e-nose [122].

Given the potential of the WS, and its good performances in monitoring users’ breath
composition, my idea was to evaluate its discriminative properties in the field of chronic
liver impairment In particular, my aim was to assess the diagnostic capabilities of the
WS in:

e detecting ammonia in the breath of patients suffering from chronic liver disease;

e discriminating the several severity degrees of liver impairment on the base of
breath ammonia.

A population of 20 patients with chronic hepatitis, 22 with liver cirrhosis, 6 with recent
episodes of hepatic encephalopathy and 16 healthy controls were involved. Here, the
study, the statistical data analysis and the results are described.

6.2 The liver disease and its progression: from chronic hepatitis to hep-
atic encephalopathy

The liver plays an important role in many bodily functions from protein production and
blood clotting, to cholesterol, glucose (sugar), and iron metabolism. The liver helps
fight infections and cleans the blood. It also helps digest food and stores energy for
when we need it.

Chronic liver disease can occur through several mechanisms. A common form of
chronic liver disease derives from viral infection (such as Hepatitis B and C) [117,
118]; also high consumption of alcohol can lead to several forms of liver disease in-
cluding alcoholic hepatitis and alcoholic fatty liver disease [119]. In the early stage of
any liver disease, the liver may become inflamed. It may become tender and enlarged.
If the inflammation continues over time, it can start to hurt the liver permanently.
Indeed, if left untreated, the inflamed liver will start to scar. As excess scar tissue grows,
it replaces healthy liver tissue. This process is called fibrosis. Scar tissue cannot do the
work that healthy liver tissue can. As more scar tissue builds up, the liver may not work
well. Otherwise, the healthy part of the liver has to work harder to make up for the
scarred part.

If left untreated, the liver may become so seriously scarred that it can no longer heal it-
self. This stage — when the damage cannot be reversed — is called cirrhosis. Treatments
will focus on keeping the condition from getting worse. It may be possible to stop or
slow the liver damage. In this stage, the subject may bleed or bruise easily; his/her skin
and eyes may take on a yellow colour (a condition called jaundice) and itch intensely;
water may build up in the legs and/or abdomen. Also, cirrhosis can lead to liver cancer.
A frequent complication of liver cirrhosis is portal hypertension, resulting in the di-
version of portal blood into the systemic circulation through portosystemic collateral
vessels (portosystemic shunting).

In the setting of liver cirrhosis and portal hypertension [123], the presence of neuro-
toxic substances, including ammonia, in the systemic circulation may occur.
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In particular, ammonia is produced in the gastrointestinal tract and normally is detox-
ified in the liver [124]. In case of cirrhosis and portal hypertension, the decrease in
mass of functioning hepatocytes and the portosystemic shunting result in 1) fewer op-
portunities for ammonia to be detoxified; ii) diversion of ammonia-containing blood
away from the liver to the systemic circulation; iii) accumulation of ammonia in the
brain, with multiple neurotoxic effects [120,125,126], which may result in hepatic en-
cephalopathy (HE).

Hepatic encephalopathy is defined as a spectrum of neuropsychiatric abnormalities in
patients with acute liver dysfunction (after exclusions of brain disease), with a negative
impact on survival [127-130]. HE is characterized by personality changes, confusion,
disorientation, intellectual impairment and depressed level of consciousness.

It is graded according to the West-Haven classification system [131], from Grade 0
(or minimal HE or subclinical HE), which show an absence of detectable changes in
personality or behaviour, but the complex and sustained attention is impaired, to Grade
4 which corresponds to coma.

Minimal HE has attracted increasing attention. Typically, both the patient and those

around the patient, including physicians, are not aware that such condition is present.
Patients with minimal HE have normal function on standard mental status testing but
abnormal psychometric testing. Minimal HE is detected through neurophysiologic tests
such as "numbers connecting test" A and B (measuring the speed at which one could
connect randomly dispersed numbers 1-20), the "block design test" and the "digit-
symbol test" [132]. Nevertheless, such tests can be very time- consuming and cum-
bersome to perform in the busy physician’s office. Other clinical tests include blood
ammonia level measurement, but in this case only arterial or free venous blood speci-
mens must be assayed. Blood drown from an extremity to which a tourniquet has been
applied may provide a falsely elevated ammonia level when analysed [121].
Other types of blood tests and imaging studies (computerized axial tomography scan
CT, magnetic resonance imaging and ultrasound, US) are helpful in assessing liver
function. Liver biopsy may be considered to confirm a specific diagnosis of liver dis-
ease. It is the most invasive clinical test in case of liver disease, as under local anes-
thetic, a long thin needle is inserted through the chest wall into the liver, where a small
sample of liver tissue is obtained for examination under a microscope.

6.3 The data acquisition campaign

Given the obstrusivity of the majority of liver function clinical tests, and, in case of
minimal HE, the lack of reproducible, reliable, non-invasive tests [120], the use of a
simple, non-invasive test, as breath analysis is, to identify chronic liver disease and
discriminate among its degree of severity, would be a very positive step forward. Par-
ticular attention should be given to the diagnosis of hepatic encephalopathy, which may
seriously affect the quantity and the quality of the patients’ life, even in patients with
minimal HE [133]. In addition, it represents a burden for patients’ families [134]. For
these reasons, measures for the prevention of HE are needed and it would be important
to identify cirrhotics who are at risk of HE by detecting a potential hyperammonemia.
In this regard, my aim was to evaluate WS performances in:
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e detecting ammonia in the breath of patients suffering from chronic liver impair-
ment;

e discriminating the several severity degrees of liver impairment on the base of the
detected breath ammonia.

The study included 64 subjects: 20 women (mean age: 52, with a range of 31 to 78)
and 44 men (mean age: 55, with a range of 32 to 84) !, 20 non-cirrhotics with chronic
liver disease, 22 cirrhotics, 6 cirrhotics with recent episode of HE and 16 healthy con-
trols. Individuals were defined as healthy subjects if they did not present symptoms
and/or signs of either acute or chronic illness, did not have chronic illness, and were
not consuming medications on a regular basis.

The diagnosis of cirrhosis was based on liver biopsy or on clinical, biochemical and ul-
trasonographic findings. Portal-systemic shunts were searched for by US and CT scan.
The Child-Pugh and the Model for End-Stage Liver Disease (MELD) scores were cal-
culated.

Blood sample was drown for each subject for a complete blood count, prothrombin
time (PT), bilirubin, international normalized ratio (INR), and liver panel, albumin and
creatinine determinations. A chart containing personal data, clinical and/or surgical
records, consumption of medications and BMI was drown up for all subjects.

The presence and the degree of HE were evaluated by focused neurologic exams and
psychometric tests, including trail-making test A (TMT-A) and B (TMT-B) and the
digit-symbol-test (DST), aiming at evaluating their sustained attention, concentration
and intellectual function [136, 137]. Nevertheless, such tests are very time consuming
and they may be affected by numerous biases among which subject’s vision problems,
subject’s awe, etc. Exclusion criteria were: alcohol/psychoactive drugs at baseline,
neurological disease, lack of compliance with psychometric evaluation. Patients with a
history of persistent and recurrent HE defined by two or more than two episodes within
the last six months were excluded as these patients are usually treated continuously
with lactulose and antibiotics in order to reduce blood ammonia levels.

Also subjects suffering from other chronic illness (cardiac or renal insufficiency, dia-
betes, COPD, celiac disease) were excluded in order to avoid interference with the test
results.

regarding the breath tests, there is no consensus in literature about how measurement of
ammonia in exhaled breath should be measured [138]. As a consequence, the protocol
for the breath tests was the one described in chapter 5. Indeed, the mixed expiratory
breath sampling technique [2,7, 111] was used, given also its easily manageable and
cost-efficient applicability. The volunteers were required to:

o first, take a deep breath in;
e then, hold the breath for 10 sec;

e finally, breath out once through the WS mouthpiece trying to keep the expiratory
flow low (about 160L/min +10%) and constant, and to completely empty their
lungs.

All the participating subjects were under the same conditions of environmental temper-
ature and humidity when breath test was performed, in a seated position, at morning,

! Age do not affect the breath ammonia levels, as well as the gender [135].
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fasting and several hour after brushing their teeth.

Breath carbon dioxide was monitored in real time (by means of the IR1507 Servomex
sensor, see chapter 4), as its profile defines the quality of the breath sample [6], as well
as the breath flow rate. The breath ammonia was detected with TGS2444 and TGS2602
semiconductor gas sensors present in WS gas sensor array.

The tests were conducted at the Hepatology Unit of the University Hospital of Pisa,
under the supervision of the Director Dr. Maurizia Brunetto. The methods and the
protocol were submitted to the Ethical Committee of the Azienda Ospedaliero Uni-
versitaria Pisana for approval. All subject provided a signed informed consent before
enrolment

6.4 Statistical data analysis and results

By means of the GUI implemented in MATLAB environment, the breath test data were
recorded as text files for statistical analysis, for which MATLAB and R (version 3.2.4)
environments were used. First, descriptive statistics were used to quantitatively de-
scribe and summarizes both breath and clinical data.

In Tables 6.1 and 6.2 the subjects’ most important clinical data and the features ex-
tracted from TGS2444 and TGS2602 output curves are summarized. For each class
of subjects (healthy controls HC, non-cirrhotics with chronic liver disease NC-CLD,
cirrhotics CIRRH, and cirrhotics with recent episode of hepatic encephalopathy CHE)
the mean value (and the relative confidence interval C.1.) of each parameter is reported.

Table 6.1: The most relevant clinical data from liver function blood tests. For each subjects’ class, the
mean value of the blood parameter at issue is reported. A value of p<0.05 was considered to be
statistically significant.

n. subj. Albumin (%) Bilirubin (" Spleen (cm) PT%

+C.1.95% +C.1.95% +C.1.95% +C.1.95%

HC 16 4.31+0.24 0.49+0.05 9.71 £0.58 99.63+£2.98
p-value: 3.19e-16 | p-value: 2.38e-12 | p-value: 6.86e-16 | p-value: <2.2e-16

NC-CLD 22 4.44+0.14 0.55+0.10 11.97 +£1.00 95.17+6.16
p-value: <2.2e-16 | p-value: 4.27e-10 | p-value: <2.2e-16 | p-value: <2.2e-16

CIRRH 24 4.00+0.23 0.97+0.23 13.58 +1.02 82.64+6.17
p-value: <2.2e-16 | p-value: 4.89¢-09 | p-value: <2.2e-16 | p-value: <2.2e-16

CHE 6 3.37+0.38 1.59+0.73 15.42 +2.86 73.14£19.01
p-value: 6.64e-07 p-value: 0.001 p-value: 1.187e-05 | p-value: 8.17e-05

Albumin is a type of protein made by the liver. It carries vital nutrients and hor-

mones. The typical value for serum albumin in blood is 3.4 to 5.4 gr/dl, as can be
observed in Table 6.1 for healthy controls. Low albumin levels can indicate a severe
liver impairment, indeed its values decrease especially in cirrhotics and cirrhotics with
HE.
Bilirubin is produced in the body when the haemoglobin in old red blood cells is bro-
ken down. After circulating in your blood, bilirubin then travels to the liver where it
is conjugated and mixed into bile. Normal values of total bilirubin range from 0.3-1.0
mg/dL (see healthy controls in Table 6.1). When the liver can’t process the bilirubin in
the body, because of an impairment, its values increase.
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Table 6.2: Mean values of TGS2444 and TGS2602 max value, rising time and maximum slope for each
class: healthy controls HC, non-cirrhotics with chronic liver disease NC-CLD, cirrhotics CIRRH and
cirrhotics with recent episode of hepatic encephalopathy CHE. A value of p<0.05 was considered to
be statistically significant.

TGS2444 TGS2444 TGS2444 TGS2602 TGS2602 TGS2602
max value (V) T, (msec) max dV/dt max value (V) T, (msec) max dV/dt
+C.1.95% +C.1.95% +C.1.95% +C.1.95% +C.1.95% +C.1.95%
HC 0.39+0.06 843.75+82.47 0.06+0.01 0.33+0.08 1718.754+569.09 0.03+0.01
p-val.: 1.61e-09 | p-val.: 8.99¢e-13 | p-val.: 6.91e-10 | p-val.: 6.21e-07 | p-val.: 1.12e-5 p-val.: 7.36e-4
NC- 0.69+0.13 1476.194+502.39 0.08+0.02 0.57+0.11 3511.90£460.11 0.02+0.007
CLD | p-val.: 9.05e-10 | p-val.: 5.46e-06 | p-val.: 1.45e-06 | p-val.: 2.96e-09 | p-val.: 7.97e-13 | p-val.: 1.16e-06
CIRRH 0.87+0.16 973.21+£189.04 0.14+0.05 0.74+0.16 2794.64+432.76 0.05+0.03
p-val.: 1.45e-11 | p-val.: 4.21e-11 | p-val.: 3.69e-06 | p-val.: 7.23e-10 | p-val.: 2.48e-13 p-val.: 1.4e-3
CHE 1.124+0.47 714.28+£280-91 0.20£0.16 1.02+0.52 2214.28+909.58 0.104+0.13
p-val.: 1.09e-3 p-val.: 7.95e-4 p-val.: 2.02e-2 p-val.: 3.1e-3 p-val.: 1.00e-3 p-val.: 1.06e-1

The possible relationships between splenomegaly (enlarged spleen) and portal hyper-
tension have been analysed in patients with cirrhosis [139]. The increase in spleen size
in cirrhotics, as can be observed also in Table 6.1, is followed by an increase in splenic
blood flow, which participates in portal hypertension actively congesting the portal sys-
tem.
Prothrombin is one of the clotting factors made by the liver. Prothrombin time mea-
sures how long it takes blood to clot. In case of liver disease, this time increases.
The used Tagughi gas sensors (TGS2444 and TGS2602), as can be observed in Table
6.2, gave good results in detecting breath ammonia. In particular, the sensors maxi-
mum output increased with increasing liver impairment, as I expected. Such result can
be graphically observed also in Figure 6.1.

Also, in Figure 6.2 the outputs relative to all the WS sensors are shown for three sub-

MEAN VALUE OF TGS2444 AND TGS2602 MAXIMUM QUTPUT
FOR EACH CLASS
1.3
1,2 T
11 |
1 )
i I
07 I :
1
0,6 +
0,5 e
0,4 T
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0,1
) HC NCCLD CIRRH CHE
max tgs2444 max tgs2602

Figure 6.1: Mean values of TGS2444 and TGS2602 maximum outputs relative to healthy control subjects
(HC), non cirrhotics- with chronic liver disease (NC-CLD) patients, cirrhotics subjects (CIRRH) and
cirrhotic patients with recent episode of hepatic encephalopathy (CHE). Standard deviation (of about
10%) is also shown.

jects taken, just as example, from each class. Visual analysis of these radar-plot profiles
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showed a progressive concordant rise in value for TGS2444 and TGS2602 maximum
output, from healthy to cirrhotics with HE subjects. However, except for TGS4161
(carbon dioxide sensor) and O, sensors which showed a similar profile for all subjects,
a change in the whole sensors output pattern was observed. Indeed, cirrhotics with HE
showed, in general, a wider radar plot profile.
Regarding the sensors response times, they did not significantly vary due with increased
liver impairment On the contrary, sensors maximum slope (especially for TGS2444)
showed a slight increase from healthy controls to cirrhotic with HE.

Then, a bivariate analysis allowed for quantitatively describing the relationship be-

Healthy subjects Non cirrhotics, with chronic liver disease
T(;552444 MAX TG52448
w2 MAX
3 35
TG52620 MAX - 22 | TG52602 MAX TGS2620 3t TGS2602
[ | MAX [~ z | MAX
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35 35
=y . 3
7652620 MAX, 23 . TGS2602 MAK TGS2620 MAX 22|~ TGS2602 MAX
i ——CIRRH_2701_04 . AL = (CHE_2701_02
——CIRRH_0303_05 / RSN Y ——CHE_0303_01
CIRRH_1003_04 TG5821 MAX ' "z—L_ | TGS4161 MAX CHE_3103 07
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Figure 6.2: Comparison of radar plot profiles relative to healthy control subjects (HC), non cirrhotics-
with chronic liver disease (NC-CLD) patients, cirrhotics subjects (CIRRH) and cirrhotic patients
with recent episode of hepatic encephalopathy (CHE). The radar plots showed a concordant rise in
value for TGS2444 and TGS2602 (sensitive to ammonia) maximum output, from HC to CHE subjects.
Nevertheless, a change in the whole sensors’ outputs pattern was observed. This does not apply to
TGS4161-C Oy and Oy sensors, which dominate the output pattern in all cases. This led me to think
that liver disease does not cause a significant variation in exhaled carbon dioxide and oxygen.

tween breath data and liver function tests. In particular, Pearson’s correlation was cal-
culated between the variables.

Spleen dimensions showed significant positive correlation with both TGS2444 and
TGS2602 maximum output (Pearson’s correlation p= 0.53 p-value?= 0.0001939 and
p=0.42 p-value= 0.001814, respectively), as shown in Figure 6.3a). Negative correla-
tions were found between prothrombin time and TGS2444 maximum output (p=-0.29

2 A value of p<0.05 was considered to be statistically significant.
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p-value= 0.02785), TGS2444 maximum slope (p= -0.27 p-value= 0.0336), TGS2602
maximum output (p=-0.30 p-value= 0.01767), TGS2602 maximum slope (p=-0.29 p-
value= 0.02057), as shown in Figure 6.3b). Also, TGS2444 maximum output (p= 0.40
p-value=0.01294) and TGS2602 maximum output (p= 0.36 p-value= 0,02569) showed
positive correlation with serum bilirubin, as shown in Figure 6.3c).

Given firstly sensor outputs coherently increasing with the severity of liver function
impairment (Table 6.2) and, secondly, significant correlations between sensor outputs
and a set of liver function-related parameters, a further step consisted of evaluating WS
diagnostic capability by means of ROC curves analysis. A ROC curve is created by
plotting the true positive rate against the false positive rate at various threshold settings.
The true-positive rate is also known as sensitivity, recall or probability of detection.
The false-positive rate is also known as the fall-out or probability of false alarm and
can be calculated as (1 - specificity).

I'looked for cut-off values in sensor output features that allowed to differentiate healthy
subjects from patients with liver disease, and, among the latter, those with and without
cirrhosis. In addition, among the cirrhotics, sensors cut-off values were looked for to
differentiate those with and without recent episode of HE (even though the number of
CHE was low).

A TGS2444 maximum value of 0.572V permitted to differentiate healthy subjects from
patients with liver impairment in general (HC versus LD); indeed, the wider AUC-ROC,
as shown in Figure 6.4, was the one relative to TGS2444 maximum output (AUC=
0.867, 95%CI:0.783-0.952, p-value: <0.0001).

Among the patients with liver impairment, the boundary between subjects suffering
from chronic liver disease with (CIRHH) and without (NC-CLD) cirrhosis was more
difficult to establish. Low values of AUC can be observed for TGS2444 and TGS2602
maximum value. The wider AUC can be observed for TGS2444 maximum slope
(AUC= 0.642, 95%CI:0.486-0.798, p-value: <0.037): a value of 0.093 discriminated
between cirrhotic and non-cirrhotic with chronic liver impairment patients.

In cirrhotic patients, the boundary between cirrhotic with (CHE) and without (CIRRH)
HE was more clear. Indeed, as widely reported before, the hyperammonemia in patients
with HE is more pronounced A value of 0.065 for TGS2602 maximum slope (AUC=
0.864, 95%CI.0.662-1, p-value= 0), as well as a value of 0.8 for TGS2602 maximum
output (AUC= 0.848, 95%CI:0.649-1, p-value= 0) permitted to differentiate between
cirrhotics with and without hepatic encephalopathy.

A summary of these results is reported in Table 6.3.

Table 6.3: The cut-off sensor features which permitted to discriminate between healthy controls (HC)
versus subjects with liver disease (LD); in the population of patients with liver impairment, patients
with chronic liver disease with (CIRRH) versus without cirrhosis(NC-CLD), in the population of
cirrhotic patients, cirrhotics with (CHE) versus without CIRRH.

CUT-OFF AUC-ROC p-value | VP | VN | FP | FN | SENS. | SPEC.
HC TGS2444,,ax= 0.867 <0.0001 | 37 | 15 1 11 | 0.771 | 0.938
vs LD 0.572 95%C1:0.783-0.952
NC-CLD | TGS2444,,axslope= 0.642 <0.037 | 17 | 13 7 11 | 0.607 | 0.650
vs CIRRH 0.093 95%C1:0.486-0.798
CIRRH TGS2602,,ax= 0.848 0 5 16 6 1 0.883 | 0.727
vs CHE 0.8 95%CI:0.848-1
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Although this study did not involve measurements of blood-ammonia levels, or even
the exact assessment of breath ammonia concentration levels, the WS was able to dis-
criminate well not only between healthy subjects and patients with liver impairment,
but also between cirrhotics with and without HE, by using both the dynamic and the
steady-state features of a subgroup of sensors selective to ammonia. A larger series
of patients may also permit to better define the reference sensors’ features and better
discriminate between patients with chronic liver impairment with and without cirrho-
sis. Not only, a larger number of recruited patients, including patients with suspected
liver impairment, may allow for confirming such results and for implementing a learn-
ing algorithm able to identify the patients, recognize the severity of liver impairment
and eventually detect hepatic encephalopathy at its early stage (minimal hepatic en-
cephalopathy, MHE).

This proof of concept study also pointed out the unobtrusiveness, the safety and the
discriminative properties of WS as a stand-alone device. In addition, its ease of use
may permit not only a rapid diagnosis, but also the possibility of self-testing.
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suffering from liver impairment

Most significant correlations calculated between breath data and liver function clinical tests
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Figure 6.3: Most significant correlations calculated between breath data (that means, TGS2444 and
TGS2602 outputs) and liver function clinical tests. In a), the two scatter plots visually show the
relationship between subjects spleen dimensions and ammonia sensors maximum values; In b), the
scatter plots visually show the relationship between PT and ammonia sensors outputs (maximum
value and maximum slope); In c), the two scatter plots visually show the relationship between subjects

bilirubin and ammonia sensors maximum values.



HCwvs LD

[NC.CLD vs CIRRH|

CIRRH vs CHE

6.4. Statistical data analysis and results

[TG52444 max value TGS52444 W' (t) TG52602 max value TGS2602V'(t)
= 0 T = ;:.z oo
E o % E B E oe g o
.E .5 ; E:_a ; EE.-! ; -E =
H Z - F = .
E o2 % £’l:,z E E:,z % i 5.2
D ; o E o E o
[ o3 o (=L o o3 o o3
[1 - Specificity) [1 - Specificity) [1 - Specificity) (1 - Specificity)
AUC: 0.B67 AUC: 0.663 AUC:0.B21 AUC: 0.534
IC 95%: 0.783-0.952 IC 95%:0.536-0.79 IC 95%:0.72-0.922 IC 95%:0.342-0.726
p-value:<0.0001 p-value:0.006 p-value:<0,0001 p-value:0.365
= ¥} = ;:_z =
= = = =
; - ; o8 .;I:.E ; L
E 22 E o4 .E:_a E -
@ a @ ]
— 2 + —2 —rz & — 2
= E o = E o
[= -} . [ L] e
(1 - Specificity) [1 - Specificity) [1- Specificity) [1 - Specificity)
AUC: 0.603 AUC: 0.642 AUC: 0.584 AUC: 0.631
IC 95%: 0.441-0.765 IC 95%: 0.486-0.798 IC 95%:0.421-0.747 IC 95%:0.473-0.79
p-value:0.107 p-value:0.037 p-value:0.156 p-value:0.052
= e e oo
£, Ee P PP
E -3 E:,a E:,a E -
— 02 el —~oa — 2
[ - o o
1 1 [= =L} [= L} o =L}
[1- Specificity) (1- Specificity) [1- Specificity} [1- Specificity)
AUC: 0.B26 AUC: 0.B48 AUC: 0.B41 AUC: 0.B64
IC 95%: 0.61-1 IC 95%:0.649-1 IC 95%:0.635-1 IC 95%: 0.662-1
p-value:0.002 p-value: 0 p-value:0.001 p-value:0

Figure 6.4: Comparison of receiver operating characteristic (ROC) curves for TGS2444 and TGS2602
output features (maximum output and first derivative) in the total evaluated population (first row,
healthy subjects versus subjects with liver disease), in the population of patients with liver impair-
ment (second row, patients with chronic liver disease with versus without cirrhosis), in the population
of cirrhotic patients (third row, cirrhotics with versus without HE).

77




CHAPTER

Conclusions

The aim of my research activity was to develop a device, for human breath analy-
sis, which could mimicry the standard instrumentations (Gas Chromatography, for in-
stance) in their accuracy and sensitivity, and, at the same time, overcome their limita-
tions (high costs, long time analysis, difficulties in using and interpreting the results)
The so called Wize Sniffer is portable (its dimensions are: 30x30x14cm) and able to
analyse breath molecules in real time.

Its core is entirely based on low-cost technology: its core is composed of a commer-
cial, semiconductor-based gas sensor array (25-30Euro each) and a widely employed
open source controller, an Arduino Mega2560 (about 45Euro). The majority of semi-
conductor gas sensors influencing factors were studied, managed and counteracted.
Only the phenomenon behind cross-sensitivity remains unclear [21]. Nevertheless, al-
though these sensors may exhibit a sensitivity to a specific analyte lower than that of
a selective sensor, due to cross-sensitivity, they are more versatile in detecting multi-
component and complex VOC mixtures, as breath is.

Indeed, as described in chapter 5, the Wize Sniffer was able to detect, in human breath, a
set of molecules, that means, a wider number of VOCs, related to the noxious habits for
cardio-metabolic risk, and, thanks to a swift, computationally inexpensive data analy-
sis method, it was able to understand users’ well-being state and predict their cardio-
metabolic risk score. Also, its easy of use lies on the fact that it provides the user with
a very easily interpretable outcome.

Finally, its modularity makes it customizable and adaptable to the use case: in chap-
ter 6, the Wize Sniffer gave very good performances also in detecting ammonia in the
breath of patients suffering from liver disease and precise cut-off values were found in
gas sensor outputs that discriminated the severity of liver impairment on the base of
detected ammonia levels.
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As described in the first chapter, a number of methodological limitations relative to
breath analysis are still matter of debate. First, methodological issues such as sampling
set-ups and exhaled breath collection need to be optimized and standardized. Also the
architectural principles which e-noses have to be based on should be standardized, in
order to obtain compatible signals that may be used and processed by different e-nose
systems and shared among physicians all over the world. In addition, subjects- related
influencing factors are another source of variation between breathomics studies which
still needs to be clarified.

It is evident that a strong cooperation among experts from different fields (engineers,
instrument makers, clinicians, breath analysis experts, chemists) is mandatory to look
for missing elements in this complex puzzle, from both a physiological and engineering
stand point.

My contributions to the research in the field of breath analysis were:

e the development of a portable, low cost, customizable, easy to use device, able to
be used in whichever context of use;

e the development of a method to evaluate individual’s cardio-metabolic risk from
the analysis of his/her breath composition;

o the investigation of the possibility to diagnose liver disease, and evaluate its sever-
ity, by detecting breath ammonia and using commercial, semiconductor gas sen-
SOrS.
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