
Nonlocal thermoelectricity in quantum wires as a signature of Bogoliubov-Fermi
points

Juan Herrera Mateos,1 Leandro Tosi,2 Alessandro Braggio,3 Fabio Taddei,3 and Liliana Arrachea1, 4

1ECyT-ICIFI Universidad Nacional de San Mart́ın, Campus Miguelete,
25 de Mayo y Francia, 1650 Buenos Aires, Argentina
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We study nonlocal thermoelectricity in a superconducting wire subject to spin-orbit coupling and
a magnetic field with a relative orientation θ between them. We calculate the current flowing in a
normal probe attached to the bulk of a superconducting wire, as a result of a temperature difference
applied at the ends of the wire. We focus on the linear response regime, corresponding to a small
temperature bias. We find that the nonlocal thermoelectric response is strongly dependent on the
angle θ and occurs in ranges which correspond to the emergence of Bogoliubov Fermi points in the
energy spectrum of the superconducting wire.

I. INTRODUCTION

Superconducting quantum wires have garnered signifi-
cant attention in various research fields, such as materials
science, quantum physics, and condensed matter physics.
The appealing features of these systems rely on three
crucial ingredients: resilient induced superconductivity,
strong spin-orbit coupling (SOC) and large gyromagnetic
factor. The goal of achieving a topological phase featur-
ing Majorana zero modes [1, 2] was the driving force for
numerous theoretical and experimental studies into su-
perconducting InAs wires [3–11]. An equally fascinating
phenomenon is the emergence of Bogoliubov-Fermi sur-
faces, whose signatures have been recently observed in
InAs two-dimensional systems with an applied in-plane
magnetic field proximitized by superconductors [12]. The
energetic stability and the topological properties of this
peculiar phase have been the motivation of several theo-
retical studies [13–20].

In this paper, we show that the emergence of Bo-
goliubov Fermi points in a superconducting wire with
SOC and magnetic field can lead to a strong nonlocal
thermoelectric signature. These wires exhibit a topo-
logical phase across a range of chemical potentials (µ),
pairing amplitudes (∆) and Zeeman energies (∆B) sub-
ject to the condition that the angle (θ) between the
directions of the SOC and the magnetic field satisfies
| cos(θ)| < ∆/∆B < 1 [21–25]. Bogoliubov Fermi points
emerge as the gap in the spectrum of the topological
phase is partially closed by a twist beyond the critical
angles defined by this condition. This non-local ther-
moelectric response bears similarities to that recently
proposed to take place in Josephson junctions of two-
dimensional topological insulators [26–28]. In that case,
such an intriguing effect is rooted in the helical nature
of the Kramers pairs of edge states present in the sys-
tem and it is induced by a Doppler shift generated by a
magnetic flux threading the junction [29]. Instead, in the
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FIG. 1. Top: Sketch of the setup. Bottom: Spectrum of the
Bogoliubov-de-Gennes Hamiltonian describing the wires with
t = 5meV, ∆B = 0.5meV, λ = 0.25meV, ∆ = 0.2meV and
µ = −9.9meV, for different values of the angle θ between the
direction of the spin-orbit coupling (SOC) and the magnetic
field. For θ = π/2 the spectrum is fully gapped with two cones
symmetrically aligned to k = 0. For 0 < θ < π/2 (−π/2 <
θ < 0) the cone with k > 0 (k < 0) crosses zero energy,
defining Bogoliubov Fermi points with right-moving electrons
and left-moving holes (right-moving electrons and left-moving
holes). These states account for the nonlocal thermoelectric
response.

case of the quantum wire, the pivotal role is played by the
twist of the magnetic field giving rise to the Bogoliubov
Fermi points.

We consider the setup sketched in the top panel of
Fig. 1, where a quantum wire is proximitized with lo-
cal s-wave superconductivity and has SOC and magnetic
field acting in the directions n⃗λ and n⃗B , respectively, with
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n⃗λ · n⃗B = cos(θ). A temperature difference (TL ̸= TR) is
imposed between the left (L) and the right (R) portions
of the wire. A third terminal consisting of a normal-
metal probe (N) is contacted at some point along the
length of the wire with a tunnel-coupling td. The nonlo-
cal thermoelectric effect corresponds to an electrical cur-
rent Je generated at the normal probe as a response to
the transversal thermal bias. We study this effect in the
linear response regime, corresponding to a small temper-
ature bias TL − TR.

The paper is organized as follows. The analysis of the
spectral properties of the wire is presented in Sec. II.
Sec. III is devoted to the evaluation of the current in the
normal terminal and the definition of the local and non-
local thermoelectric coefficients. Results are presented
in the linear regime in Section IV. Sec. V is devoted
to conclusions. Some technical details are explained in
appendixes.

II. SPECTRAL PROPERTIES OF THE WIRE

The wire is described by the Hamiltonian Hw =

( 12 )
∑

k c
†
kHk, ck, which is expressed in the Nambu ba-

sis ck = (ck↑, ck↓, c
†
−k↓,−c

†
−k↑)

T and the Bogoliubov-de-

Gennes (BdG) Hamiltonian matrix is given by [1, 2]

Hk = τz⊗
[
ξkσ

0 − λkn⃗λ · σ⃗
]
−∆Bτ

0⊗ n⃗B · σ⃗+∆τx⊗σ0.

(1)
The Pauli matrices σ⃗ = (σx, σy, σz) and τ⃗ = (τx, τy, τz)
act in the spin and particle-hole degrees of freedom, re-
spectively, while σ0, τ0 are the identity matrices. ξk =
−2t cos(ka) − µ is the kinetic dispersion relation rela-
tive to the chemical potential µ, where t is the nearest-
neighbor hopping and a is the lattice constant. The SOC
is described by λk = 2λ sin(ka), while ∆B = gµBB is the
Zeeman splitting due to the magnetic field B and ∆ is
the local s-wave pairing potential.
In the results shown hereafter, we consider parameters

of this Hamiltonian that are representative of reported
experimental research in InAs wires [4, 5]. We assign
t = 5meV, which fits the continuum model for the wires
for a =

√
ℏ2/2mt ≈ 15 nm. We consider λ = 0.25meV

for the SOC, ∆ = 0.2meV for the pairing potential and a
g-factor g = 18, which corresponds to a Zeeman splitting
energy ∆B = 0.5meV for a magnetic field B ≈ 0.48T.
The eigenspectrum corresponding to the Hamiltonian

of Eq. (1) is shown in the bottom panel of Fig. 1 for
different values of θ. We can identify two bands gener-
ated by the Zeeman splitting, which are doubled in the
BdG representation. When the magnetic field is perpen-
dicular to the SOC (θ = ±π/2) the spectrum is fully
gaped for all values of k. Due to the combination of the
SOC and B, the effective pairing has s-wave as well as
p-wave components [1, 2, 30, 31]. The latter is the dom-
inant one when the system is in the topological phase
for 0 ≤ µ+ 2t ≤

√
∆2

B −∆2. This is precisely the situa-
tion illustrated in the figure. When the orientation of the

magnetic field is twisted, such that θ overcomes the criti-
cal values defined by the condition | cos(θ)| < ∆/∆B < 1,
the superconducting gap is partially closed. In fact, the
“cones” of the spectrum cross zero energy from positive
(negative) energies defining Bogoliubov-Fermi points for
k > 0 (k < 0). The right (left) bottom panels of Fig. 1
correspond to θ = ±π/4.
The aim of this paper is to show that the scenario of

Bogoliubov-Fermi points illustrated in Fig. 1 hosts the
fundamental ingredients to have a nonlocal thermoelec-
tric response. It is well known that a necessary condition
for the phenomenon of thermoelectricity to take place for
the transmission probabilities not to be even in energy
[32]. This condition usually relies on the implementa-
tion of energy filters in two-terminal configurations and
is difficult to realize in superconductors since these sys-
tems are intrinsically particle-hole symmetric [33–42]. In
fact, we see that the three spectra shown in Fig. 1 have
this symmetry. The key ingredient for nonlocal thermo-
electricity in the setup we are studying is to generate
an imbalance between left-moving electrons (thermalized
with the right reservoir) and right-moving holes (thermal-
ized with the left reservoir). Hence, as a consequence of
an applied temperature difference at the superconduct-
ing reservoirs, the fluxes associated with the two types
of quasiparticles into the normal probe are not compen-
sated and a net current is generated. In the spectrum of
Fig. 1 with θ = ±π/2 the low-energy cone with k > 0
(k < 0) corresponds to a right-moving electron (hole)
and a left-moving hole (electron). Importantly, the spec-
trum is symmetrical to k = 0, implying identical veloci-
ties and densities of states of the left and right movers.
In the twisted case, we can identify a low-energy branch
of bgoliubons forming Fermi points with electrons mov-
ing to the right and holes moving to the left (see plots
with θ = ±π/4). The opposite situation takes place for
θ = ±3π/4. This mechanism may display a thermoelec-
tric response since it produces the necessary particle-hole
imbalance.

In Sec. IV, we show explicit calculations of the thermo-
electric current that confirm this picture. It is interesting
to compare with the situation discussed in Ref. [26] for
a device where the Kramers pair of helical edge states of
a topological insulator in a Josephson junction. In that
case, the imbalance between electrons and holes was in-
duced by a Doppler shift generated by the magnetic flux
threading the junction. Although different, both systems
share common features. In fact, in both cases, the low-
energy spectrum hosts a pair of left-right movers with
different spin orientations in contact with a s-wave su-
perconductor. Because of the broken SU(2) symmetry, in
both systems superconducting pairing is induced in both
s-wave and p-wave channels. The effect of the twisted
magnetic field in our case and the Doppler shift in the
case of Ref. [26] is to introduce asymmetry in the spec-
trum so that a single pair of particle-hole quasiparticles
moving into opposite directions dominate the quantum
energy transport.
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III. THERMOELECTRIC TRANSPORT

We now present the theoretical approach to calculate
the expression for the current in terms of non-equilibrium
Green’s function formalism (see Refs.[31, 43, 44]).

A. Model of the device

The full Hamiltonian reads

H =
1

2
[Hw +Hd +HN +Hcont] , (2)

where the Hamiltonian for the superconducting wire Hw

is the same defined in Eq. (1). It is convenient here to
express it in real space as follows

Hw = −
∞∑

j=−∞

[
c†jτ

z ⊗
(
tσ0 + iλ n⃗λ · σ⃗

)
cj+1 +H.c.

]
+

∞∑
j=−∞

c†j

[
∆τx ⊗ σ0 −∆Bτ

0 ⊗ n⃗B · σ⃗ − µτz ⊗ σ0
]
cj , (3)

with cj =
(
cj,↑, cj,↓, c

†
j,↓,−c

†
j,↑

)
.

The Hamiltonian for the normal probe is a one-
dimensional tight binding Hamiltonian with hopping tN,

HN = −tN
∞∑
j=1

(
b†
jτ

z ⊗ σ0bj+1 +H.c.
)

(4)

where we are using the notation b†
j =(

b†j,↑, b
†
j,↓, bj,↓,−bj,↑

)
for the Nambu spinor within

the normal lead. This system is assumed to be at tem-
perature TN and voltage V . The interface is modeled
by an intermediate site d, which plays the role of a
quantum dot.

Hd = −d†εdτ
z ⊗ σ0d, (5)

where d =
(
d↑, d↓, d

†
↓,−d

†
↑

)T
is the Nambu spinor that

describes the degrees of freedom in the quantum dot and
εd is a local energy representing a barrier.

The last term of Eq. (2) is the tunneling-contact be-
tween the quantum dot and the wire and the normal
probe. It reads

Hcont = −
[(
tdc

†
0 + tNb

†
1

)
τz ⊗ σ0d+H. c.

]
, (6)

where the label ℓ = 0, 1 denotes the sites of the wire and
normal chains that are tunnel-coupled to the interface,
respectively. Notice that for εd = 0 the quantum dot is
assimilated to the normal lead.

In the calculation, we split the wire into a central seg-
ment containing Nw lattice sites, which is contacted to
left (L) and right (R) to semi-infinite wires described
by the same lattice Hamiltonian. These play the role of
reservoirs with temperatures TL and TR, respectively.

B. Current in the normal lead

The current flowing between the connecting site d and
the normal lead reads

Je =
e

h
Re{

∫
dεTr

[
τz ⊗ σ0 tNG

<
Nd(ε)

]
}, (7)

where tN = tNτ
z ⊗ σ0 and we have introduced the lesser

Green’s function

G<
Nd(t, t

′) = −i⟨d†(t′)b1(t)⟩, (8)

as well as the Fourier transform t− t′ → ε.
Using properties of the Green’s functions presented in

Appendix A and following the details developed in Ap-
pendix B, the current can be expressed as follows,

Je =
e

2h

∫
dε

 ∑
j=L,R

[(
fj − f+N

)
T (p)
j (ε) (9)

−
(
fj − f−N

)
T (h)
j (ε)

]
+ 2

[
f−N − f+N

]
RA(ε)

}
.

The first terms describe the normal transmission for the
particle (p) and holes (h), and read

T (p)
j (ε) =

∑
ℓ=1,2

{
ΓN (ε)Gr

dj(ε)Γj(ε)Ga
jd(ε)

}
ℓ,ℓ
,

T (h)
j (ε) =

∑
ℓ=3,4

{
ΓN (ε)Gr

dj(ε)Γj(ε)Ga
jd(ε)

}
ℓ,ℓ
, (10)

while the last term of Eq. (10) describes the Andreev
reflection and reads,

RA(ε) =
∑

ℓ=1,2,ℓ=3,4

ΓN (ε)Gr
dd(ε)ℓ,ℓΓj(ε)G

a
dd(ε)ℓ,ℓ. (11)

The functions T (p)
j (ε) and T (h)

j (ε) are, respectively, the
transmission probabilities for an electron-like and hole-
like quasiparticle starting from the superconducting lead
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j = L,R to go in lead N , while RA(ε) is the Andreev
reflection probability for an electron starting from lead
N to be reflected as a hole.

We have introduced the hybridization matrices Γj(ε),
the non-local retarded/advanced Green’s functions

Gr/a
jd (ε), with j = L,R,N , as well as the local ones

Ga
dd(ε). The calculation of all these quantities is ex-

plained in Appendix A. We have also introduced the
Fermi functions fj(ε) = 1/(eβjε + 1) and f±N (ε) =
fN (ε ∓ eV ), where βj is the inverse temperature of the
reservoir j. Notice that only the normal lead is biased
with a voltage V .
Some properties of these transmission functions are

discussed in Appendix C.

C. Linear response

We particularly focus on the linear-response regime
and on a range of temperatures below the critical tem-
perature of the superconductor. We consider the general
case where the temperatures for a normal probe, and the
left and right terminals of the wire are, respectively,

TN = T, (12)

TL = T +
∆T

2
, TR = T + r

∆T

2
, −1 ≤ r ≤ 1.

with ∆T ≪ T being infinitesimal. Notice that when
r = −1 the temperature bias at the superconducting wire
is perfectly symmetric with respect to the reference tem-
perature of the normal probe. In the opposite case, where
r = 1, only one of the terminals of the wire is thermally
biased with respect to the normal probe.

We consider that the ends of the wire are grounded
(µL = µR = 0), while the normal terminal may have
an electrical bias µN = eV . We define the affinities
XV = V/T and XT = ∆T/(2T 2) and assume they are
small enough to justify treating them in the linear re-
sponse. Expanding the differences of Fermi functions en-
tering Eq. (10) up to first order in these affinities, we
get

Je = LeeXV +

[
1 + r

2
Lloc
eq +

1− r

2
Lnl
eq

]
XT . (13)

The Onsager coefficients read

Lee = −e
2 T

2h

∫
dε
[
T +
L (ε) + T (+)

R (ε) + 4RA(ε)
] df(ε)

dε
,

Lloc
eq = −eT

2h

∫
dε
[
T −
L (ε) + T −

R (ε)
]
ε
df(ε)

dε
,

Lnl
eq = −eT

2h

∫
dε
[
T −
L (ε)− T −

R (ε)
]
ε
df(ε)

dε
, (14)

where T ±
j (ε) = T (p)

j (ε)±T (h)
j (ε). The Fermi function is

evaluated at the base temperature T . The derivative of
this function entering the coefficients of Eq. (14) defines
the relevant transport window |ε| ≃ kBT .

Notice that Lee and Lloc
eq are local quantities, which

corresponds to the convergence of the transport channels
of the two superconducting terminals into the N one.
Instead Lnl

eq is a nonlocal quantity, corresponding to the
difference in the thermoelectrical transport between the
L and R terminals and the N one and we have stressed
this property with the label “nl”. In Appendix C we show

that these functions satisfy T (p/h)
L (ε, θ) = T (p/h)

R (ε, θ+π)
which implies a change of sign of Lnl

eq(θ) at θ = ±π/2.
The relevant transport coefficients we discuss next are

the conductance G and the nonlocal (local) Seebeck co-
efficient Snl(Sloc). These are defined from the Onsager
parameters as

G =
Lee

T
, Snl/loc =

Lnl/loc
eq

TLee
. (15)

IV. NUMERICAL RESULTS

In the calculations we evaluate the Green’s functions
of the semi-infinite wires representing the reservoirs at
the temperatures TL and TR with a recursive method
[45]. In linear response, the results do not depend on
either the length of the central wire or on the position
of the contact with the normal probe, but depend on the
tunneling coupling td between the normal probe and the
wire. For simplicity, we consider td = tN and εd = 0.

A. Non-local thermoelectric response

In Fig. 2 we present the resulting conductance and
Seebeck coefficient as functions of the chemical poten-
tial µ and relative SOC-magnetic field angle θ. We can
identify in the top panel of the figure, regions where the
Seebeck coefficient takes large positive and negative val-
ues. These are the nonlocal thermoelectric features antic-
ipated from the analysis of the spectrum with Bologiubov
Fermi points. In fact, notice that the value of µ corre-
sponding to the spectrum of Fig. 1 is precisely the one
for which the largest values of Snl are achieved. We can
verify the vanishing nonlocal thermoelectric response for
θ = 0,±π/2,±π for which the spectrum is symmetric
with respect to k = 0. In addition, the opposite signs of
Snl for given angles θ and θ + π are consistent with the
interchange of right-moving particle-like and left-moving
hole-like quasiparticles observed in the spectra of Fig.
1 and also with the symmetry properties of the func-

tions T (p/h)
L (ε, θ). In the bottom panel of Fig. 2 we

show, for comparison the spectrum for the parameters
(θP , µP ) indicated in the top panel where the thermo-
electric response is weaker, albeit non-vanishing. For
µ+2t ≃

√
∆2

B −∆2 the dominant superconducting pair-
ing is an s-wave type and four quasiparticle cones emerge
at low energy in the spectrum (two for k > 0 and two
for k < 0). For θ ̸= π/2, four Bogoliubov-Fermi points
emerge at each side of k = 0. Focusing at k > 0, we
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FIG. 2. Snl and G as functions of θ and µ for the same
parameters of the wire as in Fig. 1. Other parameters are
td = 2.5meV and kBT/∆ = 0.25. The topological phase is
within the rectangles indicated in dashed lines. Bottom panel:
spectrum corresponding to the point (θP , µP ) for which the
nonlocal thermoelectric response is weak.

can identify an electron-hole cone crossing zero energy
from above along with a hole-electron cone crossing zero
energy from below. The nature of these low-energy quasi-
particles is consistent with a pair of left-moving electrons
and right-moving holes partially compensated by a pair
of right-moving electrons and left-moving holes. Con-
sequently, there is a partial cancellation of the nonlo-
cal thermoelectric transport. In conclusion, the nonlo-
cal thermoelectrical effect is much stronger when a sin-
gle Bogoliubov-Fermi cone is present. This is precisely
the case for emerging Fermi points within the topologi-
cal phase.

The behavior of the conductance is affected by the den-
sity of states of the wire and the coupling td between wire
and the normal probe. It achieves a maximum close to
µ + 2t ∼

√
∆2

B −∆2, just above the boundary for the
topological phase. This is because the density of states
of the wire is large for this value of µ and the two spin
channels contribute to the transport.

A complementary and helpful perspective can be ob-
tained by fixing the angle and changing the magnetic
field. In Fig. 3 we focus on θ = π/4 and show again
Snl and G as functions of ∆B and µ. In the behav-
ior of these quantities we can identify the gap ∼ ∆B

(see the blue region in the upper panel), within which
G is minimal while the nonlocal thermoelectric response

0 1 2

0.2

0.6

1.4

-1.2

-0.6

0-8

-10

-11
-8

-10

-11

FIG. 3. Snl and G as functions of ∆B and µ for θ = π/4.
Other parameters are the same as the previous figures. The
topological phase is inside the small triangle highlighted in a
dashed line in the upper panel. It is defined by 0 ≤ µ+ 2t ≤√

∆2
B −∆2 and

∣∣cos(θ)∣∣ ≤ ∆/∆B (vertical gray line).

FIG. 4. Snl and G as functions of temperature for the same
parameters as the previous figures. and different values of
coupling with the normal reservoir, td. Solid (dashed) lines
correspond to µ = −9.38meV (µ = −9.9meV).

is strongest. The small triangle with the dashed line in
the upper panel of this figure defines the boundary for
the topological phase. As in the previous figure we see
that the maximal response in Snl is associated with the
emergence of the Bogoliubov-Fermi points. Such an ef-
fect occurs as the magnetic field is twisted beyond the
critical value defined by

∣∣cos(θ)∣∣ < ∆/∆B . From the ex-
perimental point of view, it is important to notice that
Snl remains close to the maximal values across a wide
range of µ and ∆B , which facilitates the exploration of
this effect by varying the magnetic field.

Finally, in Fig. 4 we show Snl and G obtained for dif-
ferent couplings td between the normal probe and the
wire, as a function of the temperature T . We focus on
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low enough T , so that we can neglect dependence of ∆
on T . It is however easy to numerical introduce the self-
consistent temperature correction of the gap in the case
if needed. The amplitude of the non-local Seebeck co-
efficient Snl decreases as a function of the temperature.
This is consistent with the fact that, for increasing tem-
perature, high-energy regions of the spectrum play a role.
Such excitations contain electrons and holes traveling in
opposite directions, with the concomitant suppression of
the non-local thermoelectric response. This thermoelec-
tric behavior is anomalous. It strongly differs from the
standard behavior of the Seebeck coefficient which typi-
cally scales with the temperature. The effect of temper-
ature is clearly weaker in the conductance. In addition,
the thermoelectric response is not strongly affected by
the coupling td, while the opposite is true regarding the
conductance.

B. Non-local vs local thermoelectric response.

Depending on how symmetrical the temperature differ-
ence between the superconducting reservoirs is, we have a
non-local, local thermoelectric response or a combination
of both.

Given the temperatures as defined in Eq. (12), we see
that the thermoelectric response is purely nonlocal when
the temperature bias at the superconducting wire is per-
fectly symmetric with respect to the reference tempera-
ture of the normal probe, which corresponds to r = −1.
In the opposite limit, where r = 1, the temperature bias
is completely asymmetric, since only one of the termi-
nals of the wire is thermally bias with respect to the
normal probe, and in this limit, only the local compo-
nent contributes. Intermediate situations correspond to
−1 < r < 1 and the two components contribute.

The behavior of the local and non-local components of
the Seebeck coefficient are shown in Fig. 5 as functions of
θ for different values of the factor r. We see the high sen-
sitivity of the non-local thermoelectric effect to the angle
θ, in contrast with the local one, which depends mildly
on this angle. This figure highlights the importance of
implementing a symmetric temperature bias (r = −1) to
cleanly observe the non-local thermoelectric effect.

V. SUMMARY AND CONCLUSIONS

We have shown the existence of a nonlocal thermo-
electric response in a superconducting wire hosting SOC
with twisted orientations of a magnetic field with respect
to the wire SOC main axis. We focused on the linear
response regime, corresponding to a small temperature
bias. We predict this effect to take place in systems akin
to those typically used in the search for Majorana zero
modes [3–7].

The possible impact of Majorana zero modes in ther-
moelectric effects has been explored in structures with

FIG. 5. Non-local and local Seebeck coefficient as function
of θ, for a system with t = 5meV, ∆B = 0.5meV, λ =
0.25meV, ∆ = 0.2meV, td = 2.5meV, µ = −9.9meV, for
different values of r, the factor that quantifies the asymmetry
of temperatures between the superconducting reservoirs L and
R. r = −1 corresponds to the purely non-local case and r = 1
to the purely local case.

quantum dots [46–56]. In contrast, the non-local effect
addressed here is related to the emergence of Bogoliubov
Fermi points. This takes place when the gap of the topo-
logical phase is partially closed by a twist of the magnetic
field with respect to the SOC, beyond a critical alignment
and has been recently observed in two-dimensional sam-
ples of these materials [12].
The estimate of the Seebeck coefficient, albeit small,

is compatible with measured thermovoltages in other
systems [57–59], assuming temperature differences of
10 − 100 mK. Its behavior is strongly sensitive to the
relative orientation of the magnetic field and the SOC,
providing a valuable hallmark of this fundamental prop-
erty.
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Institut Henri Poincaré (UAR 839 CNRS-Sorbonne Uni-
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Appendix A: Calculation of Green’s functions

We present here the Dyson’s equations leading to the
calculation of the retarded Green’s functions.

1. Retarded/advanced

The Dyson equation for the Fourier-transformed
retarded Green’s functions, Gr

α,γ(t, t
′) = −iθ(t −

t′)⟨
{
ψα(t), ψ

†
γ(t

′)
}
⟩ corresponding to the different

Nambu spinors ψα,γ(t) ≡ cj(t),b(t),d(t) reads

Gr
d0(ε) = Gr

dd(ε)tdg
r
00(ε), (A1)

Gr
dd(ε) = g̃r

dd(ε) +Gr
d0(ε)tdg̃

r
dd(ε) +Gr

dN (ε)tNg̃
r
dd(ε),

Gr
dN (ε) = Gr

dd(ε)tNg
r
NN (ε),

Gr
Nd(ε) = gr

NN (ε)tNG
r
dd(ε),

where we have introduced the definition of the retarded
Green’s function of the quantum dot isolated from the
rest of the subsystems,

g̃r
dd(ε) =

[
ετ0 ⊗ σ0 + εdτ

z ⊗ σ0 +Bdτ
0 ⊗ n⃗B · σ⃗

]−1

,

(A2)
as well as the Green’s function of the wire connected
to the two superconducting reservoirs but disconnected
from the quantum dot and the normal lead, evaluated at
the connecting site 0. It reads

gr
00(ε) =

[
g̃r(ε)−1 −Σr

1(ε)−Σr
2(ε)

]−1

|00, (A3)

where g̃r(ε) the Green’s function of the free wire. Sub-
stituting in Eqs. (A1) the first equation in the second
one we get

Gr
dd(ε) =

[
g̃r
dd(ε)

−1 −Σr
S(ε)−Σr

N(ε)
]−1

. (A4)

We have also introduced the self-energies

Σr
S(ε) = tdg

r
00(ε)td,

Σr
N(ε) = tNg̃

r
NN (ε)tN, (A5)

(notice that this is a 4(Nw + 1) × 4(Nw + 1) matrix),
while Σr

j(ε), j = L,R are the self-energies describing the
coupling of the wire to the superconducting leads L,R.
These can be also represented as 4(Nw + 1)× 4(Nw + 1)
matrices with non-vanishing 4×4 submatrices associated
with the spacial coordinates −Nw/2 (for j = L) and
Nw/2 (for j = R), respectively. The non-vanishing self-
energy matrices read

Σr
j(ε) = tj g̃

r
S(ε)t

†
j , (A6)

where tj is the matrix element representing the con-
tact between the wire and the reservoirs. This contains
the hopping as well as the spin-orbit terms and g̃r

S(ε) is
the Green’s function for the semi-infinite superconduct-
ing wire representing the reservoir. This is calculated by
means of a recursive algorithm [45].
The self-energy describing the contact to the normal

lead reads Σr
N(ε) = t2Ng̃

r
N (ε), where g̃r

N the Green’s func-
tion of the normal lead, which is also calculated by a
recursive algorithm.
The advanced functions can be calculated from

Ga
ij(ε) =

[
Gr

ji(ε)
]†
. (A7)

2. Lesser

The lesser Green’s functions can be calculated from the
retarded/advanced ones by recourse to Langreth’s rule:

G<
d0(ε) = G<

dd(ε)tdg
a
00(ε) +Gr

dd(ε)tdg
<
00(ε),

G<
dN (ε) = G<

dd(ε)tNg
a
NN (ε) +Ga

dd(ε)tNg
<
NN (ε),

G<
dd(ε) = Gr

dd(ε)
[
Σ<

S (ε) +Σ<
N

]
Ga

dd(ε),

g<
00(ε) = gr

0,−Nw/2(ε)Σ
<
L (ε)g

a
−Nw/2,0(ε)

+ gr
0,Nw/2(ε)Σ

<
R(ε)g

a
Nw/2,0(ε). (A8)

The different self-energies are

Σ<
α (ε) = fα(ε)

[
Σa

α(ε)−Σr
α(ε)

]
, α = L,R,N,

Σ<
S (ε) =

∑
j=L,R

Λr
j(ε)Σ

<
j (ε)Λ

a
j (ε), (A9)

where

Λr
1(ε) = tdg

r
0,−Nw/2(ε),

Λr
2(ε) = tdg

r
0,Nw/2(ε), (A10)

with Λa
j (ε) =

[
Λr

j(ε)
]†
.

Substituting we get

G<
dd(ε) =

∑
j=L,R

Gr
dj(ε)Σ

<
j (ε)Ga

jd(ε)

+ Gr
dd(ε)Σ

<
NG

a
dd(ε), (A11)

where

Gr
dj(ε) = Gr

dd(ε)Λ
r
j(ε) =

[
Ga
jd(ε)

]†
. (A12)

3. Identities

The following identity can be shown

Ga
dd(ε)−Gr

dd(ε) = Gr
dd(ε)

[
Σa

T (ε)−Σr
T (ε)

]
Ga

dd(ε),

Σ
r/a
T (ε) = Σ

r/a
S (ε) +Σ

r/a
N (ε). (A13)
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FIG. 6. Transmissions and Andreev reflection functions for
a system with t = 5meV, ∆B = 0.5meV, λ = 0.25meV,
∆ = 0.2meV, td = 2.5meV and: (a) µ = −9.9meV, θ = π/2;
(b) µ = −9.9meV, θ = π/4 or (c) µ = −8.5meV, θ = π/4.

Another important identity can be derived by noticing
that the current defined in Eq. (7) should be zero in
equilibrium. This implies

2Re
[
Σr

NG<
d,d(ε) +Σ<

NGa
d,d(ε)

]
= 0. (A14)

Substituting the definitions of all these quantities we get

fNΓN (ε)
[
Ga

d,d(ε)−Gr
d,d(ε)

]
− fNΓN (ε)×∑

j=1,2

Gr
dj(ε)Γj(ε)Ga

jd(ε) +Gr
dd(ε)ΓN (ε)Ga

dd(ε)

 = 0,

(A15)

where fN is the Fermi-Dirac distribution function corre-
sponding to the equilibrium system. Since this function
is a common factor in all the terms, this identity is zero
for any argument of fN . We have introduced the defini-
tion Γj(ε) = Σa

j (ε)−Σr
j(ε), with j = L,R,N .

-0.5 0.50 -0.5 0.50
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Δ

Δ
Δ
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0
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0.2
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FIG. 7. Difference in transmission functions, ∆T (p) =

T (p)
L − T (p)

R and ∆T (h) = T (h)
L − T (h)

R involved in the cal-

culation of Lnl
eq for a system with t = 5meV, ∆B = 0.5meV,

λ = 0.25meV, ∆ = 0.2meV, td = 2.5meV and top: µ =
−9.9meV; bottom: µ = −8.5meV.

Appendix B: Details on the calculation of J

Using Eqs. (A8) we can rewrite the argument of Eq. (7)
as follows

tNG
<
Nd(ε) = tNg

<
NN (ε)tNG

a
dd(ε)

+ tNg
r
NN (ε)tNG

<
dd(ε)

= Σ<
NGa

dd(ε) +Σr
NG<

dd(ε). (B1)

Similarly, using Eqs. (A9) and (A11) we can write

2Re
[
Σ<

NGa
dd(ε)

]
= fNΓN (ε)

[
Ga

dd(ε)−Gr
dd(ε)

]
(B2)

=
[
fN − f+N1

]
ΓN (ε)

[
Ga

dd(ε)−Gr
dd(ε)

]
+ f+NΓN (ε)

[
Ga

dd(ε)−Gr
dd(ε)

]
,
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2Re
[
Σr

NG<
dd(ε)

]
= ΓN (ε)

 ∑
j=L,R

(
fj − f+N

)
Gr
dj(ε)Γj(ε)Ga

jd(ε) + f+N
∑

j=L,R

Gr
dj(ε)Γj(ε)Ga

jd(ε)+ (B3)

+Gr
dd(ε)

[
fN − f+N1

]
ΓN (ε)Ga

dd(ε) +Gr
dd(ε)f

+
NΓN (ε)Ga

dd(ε)

}
.

where

fα(ε) = fα(ε)τ
0 ⊗ σ0, α = L,R,

fN (ε) =

(
f+N (ε)σ0 0

0 f−N (ε)σ0

)
. (B4)

Calculating the sum over the elements of these ma-

trices, we notice that
∑

ℓ=1,2

[
fN − f+N1

]
= 0 and∑

ℓ=3,4

[
fN − f−N1

]
= 0.

On the other hand, using the identity of Eq. (A15) we
get

2Re
[
Σr

NG<
dd(ε) +Σ<

NGa
dd(ε)

]
=
[
fN − f+N1

]
ΓN (ε)×

[
Ga

dd(ε)−Gr
dd(ε)

]
−ΓN (ε)×

 ∑
j=L,R

(
fj − f+N

)
Gr
dj(ε)Γj(ε)Ga

jd(ε) +Gr
dd(ε)

[
fN − f+N1

]
ΓN (ε)Ga

dd(ε)

 . (B5)

Appendix C: Properties of the transmission
functions

The behavior of the particle and hole transmission
functions defined in Eqs. (10) are illustrated in Fig. 6
for the left reservoir, along with the Andreev reflection
for the same parameters. The functions corresponding to
the other reservoir exhibit similar features.

We can verify that these functions satisfy:

T (p)
j (ε, θ) = T (h)

j (−ε, θ),

T (p)
L (ε,±|θ|) = T (p)

R (ε,±(|θ|+ π/2)),

T (h)
L (ε,±|θ|) = T (h)

R (ε,±(|θ|+ π/2)),

T (p)
L (ε, θ) = T (p)

R (ε, θ ± π),

T (h)
L (ε, θ) = T (h)

R (ε, θ ± π). (C1)

In Fig. 7 we show the difference between the transmis-
sion functions associated with the L and R superconduc-
tors. This combination of transmission functions deter-
mine the non-local thermoelectric response and illustrate
the symmetry properties mentioned above.
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