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ABSTRACT
An important class of problems in the complexity field is
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ncerning the computation of bilinear forms. In this work
a ¢riterion is given vwhich allows obtaining lower bounds to ATR

for the pilinear forms computational problan. <

.. Key Words - VLSI HModel, Area-Tinme Complexity, Bilinear Forms,

Iower Bound.




lLower

3. IRTRODUCTION

computationa
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was nade by

2. BILINERR FORHS C

et us consider t

yhere the nxn

Let B and C be

2-sections of A. Th

can be defined

. P
A{z) = 2_ 2 b ,

he arca-time tradeotf

the computation of bilipear

iangular Toeplitz

matrices A

kas bheen separately provided for

1 problems [3]. The first attempt to obtain

or different problems by using the sage

e sl

vuillmein [ 5] who considered .the class of

the cosputation of sone transitive

cl&és‘@f problens in the complexity field
forms. In this
allows obtaining lower bounds
computational pxoblem;

Circulant matrix

product of & by a.

matrix by a vector are not.

the usual patrix-vector product.

OMPUTATIOHS
he set of bilinear forms
k=1,2 4000 9Ps

are the 3-sections of tensor A.
k .

respectively the i-sections and the
e three ‘matrices a{z), H{z}y and C{y}
m T

H(x} =

i X B

i=1 1 i =1 4 3




et H and € be the Itensors wuhose 3-sections are
T
respectively B and C .
3
The computaiion of L , k=1,2;0c-9Pp Can be considered
2,..
P

as the computation of the matrix-vector product

T
£ =B {x}y = H{x) v, {2.1) or
£ = C{y)> {2.2),
whare the entries of the nmatvix are variables and the

structure of the patriy is fixed.
"Let us consider mow the cowmputation of {2.1}); a bisection

.of the outputs induces a partition of the inputs, nanely

- 1 2 1 2z 1 2
PE 1 = f 1 = p/f2y Yy ¥y 1 = n, jx ¥ X | = Ry
whers
1 11 2 1 1 2 2 2
=0 (xyy + H ¥ Yy + H {xyy +*H {x}y
11 : 11 2 12 '
2 101 o2 1 1 2 2 2
f=H {(x3Jy +H {x}y +H {x))y + H {(x}y -
21 21 22 22
Then tensor H 1is splittedA into. the eight tensors = H s
- ' Tst
: t
r,s,t=1,2 each corresponding to the matrix H {X ).

rs
The information thét must be transnitted over the paxtiéioaing
wires is captured in the terms

2 2 101

B {(x}y.,H® (x)y.
12 21 !
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: 1T 2 2 1
H {xly » B (x)¥ »
12 21
2 1 1 2
H {3y . H {2}y -
1 22
2 2 _
By analyzing the term H {X-) ¥ it follows that
12
2 -
max rk H (x 3} = t then at least t words of information
2 12 . :

X
be transferred from part 2 to part 1 of the circuit [4].

: 2 1
Horeover dim B words are needed to perform U  {x )y
’ 3 112 , . 11

_ T2
dim H words are required to perform H (X }y -
2 121 : 12

Then we get

2 -1
I 2max vk H (x ) + max rk #d (x ) +
2 12 1 21

X : x

+ dip H £ dim B+ dim H + aim B .
2 121 2 212 3 112 3 221

if

nust

and

Similar considerations for the computation of {2m23 give

: 2 ' - 1
I 2max rk € {y ) + max rtk C (y )} *
2 12 1 21
Y Y '
+ dim ¢+ dim C ¢ dim C + dim C .

2 121 2 212 3 112 3 221

It is eaSy to prove the following
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dim A& 2 max vk A(Z) .
2 Z ’
Proot.

The proof is trivial in the case dim A=n.
2

CIf dim A=h<n then however we consider s>h+1 2-sections of

a

pewwy C s they are linearly dependent.

This

neans that
s-vector t such that

s p e

el oz oa yt =0, for any z€ R {2.3)
17 k=1 k i k1

Now if w=max rvk A{z}) 2z h+1 then it

Z wonld bhe possible
Z

choose w columns of A{z), say A% {z) such that

max ik A'{z)=w.
Z

This would contraddict {(2:3) . ‘ @

Let us dencte with r and s the guantities

+ dim H = dim C

r = dim H + dim C ;

2 121 2 212 3 712 3 221

s=dim B ¢+ dip B =4dinC  + din C .

3 112 3 .221 2 121 2 212

From Lemma 2.1 we get
1 2 | 1 2
r zxrkd {u} + rk H {u), for any u , u ,
12 21

it is always vpossible to f£ind a nonzero
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1 2 H 2
s 2rk C {v )} +rXxC {v}), forany v , v .
12 21

Therefore we have

{2.5) I 2 max £k H (x) + max rk H (x) + dim H + dim H
- X 12 X 21 3 112 3 221
{268} I = max rk C {x) + mnax rk C ({x) + dim C + dim € .
X 12 X 21 3112 3 221 ;

From relations (2.5}, (2.6} it is possible to derive siumpler

bounds to the pinipal information flow, nanmely

{2. 7} I 2 max th B {x} +# max *k H X},
X 12 X 21
‘{zoag I 2 max rk € {x) + max rk C {x) «

X 12 X 21

which are straightforwvard extension of Thompson criterion [4].
. ﬁﬁyway@ in some cases formulas {2.7), {2.8) do nct‘ pxoducé
significant lower bouads; For example, in the case of the cuter
’praﬁuct of two ﬁ*vectbxsp it is easy to see that the well known
lower bound AT2z §) (n2) [3] caﬂ‘be obtained from {2.5) or {2.6)

and not from {2.7) or {2.8}.

3. TRANSPORHATIONS COHCEB&ING‘CiECﬂLANT 3ND TOEP:ITZ HATRICES
For some special c¢ases of Bilinear TForms, a ﬁbre immediate
ap@roachl allows obtaining 'significant lower bounds, without
ﬂeeding the knowledge of the ranks of certain minors involved
in the vproblemn, ﬁhich can be hard to determine. In the
following, we consider the product betweenv two Circulant

matrices and the product of a Circulant matrix by a vector.




S cases

An 52{32} lower bound to AT2 for the product of two nxan

Circulant matrices can be proved, by using some results of the

previcus section. In fact, the Dbilipear forms associated to

this problem are eguivalent to the bilinear forms associated to

the product of a Cixculant matrix by a vector, and din both
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the lower bound to AT?2 is
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wreover from {57 it follows that the lower bound AT2=§)(n?)
holds for the problem of multiplying a Circulant matrix by a

vis problem has +to perform any

Fo

vector, since anpy circuit for t
permutation of the input véctorw

‘Note that Circulant matrices are special cases of Toeplitz
matrices; th@réfé£e the product of a Toeplitz matriz by a
vector and the pxodﬁct between two Teoeplitz matrices regquire
AT2= (] (n2).

‘?or the latter problem an almost optimal circuit can be
obtain by using the well kxnown circuits for convolution §33 to
perforn %he. product betwveen a lower and an upper triaungular
Toeplitz matrixqb Indeed, ‘a Tcepiitz matrix T can be splitted
as the sum of a lower triangular Toe?litz matr%z I and an upper
triangular Toeplitz wmatrix U, S0 that 2 coﬁvolutibns and 2
products Dbetween lower (upper) triangular Toeplitz matrices

suffice to solve the prcblen.

4. TRIANGULAR MATRIX BY VECTOR PRODUCT
An Q(nﬁ) lower bound to AT2 for the product of a 2ax2n
lower triangular matrix A by a 2n~vecter b cam be easily proved

by the fellowing argument.

T T




A 0
et B = | 7 ‘}, wheres A and A are nxn lower triangular
A A 1 2
2]
T

s
L

T T
matrices and let Db =1 b b ]}, vhere b and b are n-vectors.
1 2 1 2

Since any VLISI network performing the product Ab has also to

perform the product A b , where 4  is a full nxn matrix, the
: 3 1 3 : :

result follows from the well known lover bound for matrix

vector product [3].

An dimportant special case of triangular matrices is given by

triangular Toeplitz matrices, which are of great interest in

many applicative fields.
: For the product of a triangular Toeplitz matrix by a vector,

-

in the sequential rodel, there exist several Yad hoc®

valgaxitbms of complexity lower thamn the complexity required by
the generic matrix—-vector product.

In the visz model, the followiny arguments show how the lower

~bound to AT2 for this special linear transformation is the sanme

of the one for generic matrix vector product. Indeed, let I be

a 2nx2n triangular Toeplitz matrix, partitioned as
L 0
L = 1
T L
2
T T T -
x and let b a 2n-vector partitioned as b =1 b b ], where
| - 1 2
-8 -




‘approach 1s related to the ninimal Pinformation flow™ [4],
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b and b are n-vectors.
1 2

It is trivial +to see . that any VISI circuit performing the

a4

matrix vector prod

-

uct 1b, has also to perfornm the computation

Lb , when b = 0. This means that the circuit has to compute:

2
i ,
| *sigbm
{3.1) j —
T

. 2
This result leads to the lower bound ‘fl{a ) » since the

outputs of the circuit performing (3.1} contain the n-vector

2 2
Th , whose conputation reguires AT = 5z{n }e
? ~

Y. CORCLUSIONS AND OPEW PROBLENMS

~In this paper, we have presented a criterion to give lowver

bounds to the Bilinear Forams computational problem; this

which seems to be not suitable +to obtain not trivial lower

_ bounds, in some particular cases.

For example, it is easy to see that the Fréduct of a geﬁeric
nxn matrix by an nxn Circﬁlant 'matiix'can be performed in VLSI
with ATZ = 0O{n<¥log2n} by using O{n} FFT modules to perform the
products of the Circulant by all the columans of the generic
matrix. Indeed any Circulant matrix can be factorized as

H .
FDVF¥ , wvhere F is the Fourier npatrix and D is a diagonal

matrix whose entries are the elements of the vector obtained by
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applying the DFT to the first row of the Circulant matrix [2].
Tt dis possible to show a lower bound fl{n2}, for this

problem, either by using the criterion of sectionm 1 or by using

]

avage's technigue {37, while an §T3=§1{a3} lover bound 1is
supposed to hold.

An analogous "yap'™ between lowéx and upper bound exists for
the product of a Toeplitz matrix by & generic matrix. |
It is an open guestion whether or moct the lower bwumdé foxr

the above mentioned problens can be inproved.
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