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Abstract

The computation of stereo disparity is a mathematically
ill~posed problem. However, using regularization theory it
may be transformed into a well-posed problem. Standard
regularization can be emploved to solve ill-posed problems
by using stabilizing functionals that impose global
smoothness constraints on acceptable solutions. However,
the presence of depth discontinuities causes serious
difficulties in standard regularization, since smoothness
assumptions do not hold across discontinuities. This paper
presents a regularization approach to stereopsis based on
controlled-continuity stabilizing functionals. These
functionals provide a spatial control over smoothness,
allowing the introduction of discontinuities into the
solution. An iterative method for the computation of stereo
disparity is derived, and the result of a computer

simulation with &8 synthetic stereo pair of images is shown.

Key words: Sterecpsis,; depth computation, ill-posed

problems, regularization.
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1. Introduction

Many problems in early computational vision are
ill-posed in the sense that the existence, unigueness, and
stability of solutions cannot be guaranteed in +the absence
of additional constraints (4). The computation of binoculasr
disparity from stereo images is a typical example. This
paper addresses the problem of sterec matching as an
ill-posed inverse problem.

The recognition that early vision problems are ill-posed
suggests the use of regularization methods developed gin
mathematics for this tvype of problem. In standard
regularization, due mainly to Tikhonov (9), and suggested by
Poggio (4,5) as a natural mechanism in early vision, the
class of admissible solutions of an ill-posed problem is
restricted by imposing additional constraints. Using
Tikhonov regularization a problem is made well-posed by
restricting the acceptable solutions to spaces of smooth
functions. The validity of smoothness constraints for early
vision reconstruction problems is based on the physical
assumption that the coherence of matter tends +to give rise
to smoothly varying characteristics in a three-dimensional
scene {(2).

Poggio and others (4} showed how the stereo matching
problem can be regularized by imposing a constraint of

smooth variation on the disparity field. However, the
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presence of occlusions between different surfaces in the
scene leads to discontinuities in disparity, and smoothness
constraints clearly do not hold across  visual
discontinuities. Consequently, the application of standard
Tikhonov regularization theory to stereopsis when
discontinuities are involved destroys surface occlusions and
this leads +to sorious’difficulties. It is clear that this
drawback must be overcome in order to preserve surface depth
discontinuities.

Terzopoulos (7) proposed a general method for the
regularization of ill-posed problems involving
discontinuities, which introduced controlled~continuity
constraints. These special constraints provide a spatial
control over the smoothness properties of the regularized
solution, allowing the selective reconstruction of
discentinuities. This method extends standard
regularization theory to ill-pésed visual problems involving
both continuous regions and discontinuities for which global
smoothness constraints fail.

This paper examines the possibility of extending the
regularization approach to the stereo matching problem
following the lines proposed by Terzopoules. From this
approach, an iterative algorithm for the computation of
stereo disparity is derived, and the result of a computer
simulation on a synthetic stereo pair of images is

presentad.
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2. A regularization approach to stereopsis

Most early vision problems are ill-posed in the sense of
Hadamard. By definition, a problem is well-posed when its
solution (i) exists, (ii) is unique and (iii) depends
continuously on the input data. From this definition, we
can see that the stereo matching problem is ill-posed since
the solution is not unique. In addition, it is an inverse
problem, and most inverse problems are ill—poséd.

Regularization transforms ill-posed problems into
well-posed problems. Tikhonov regularization (9) requires
the choice of a penélty functiocnal é@”(u) and of a
stabilizing functional é;%u) defined on the space of the
admissible solutions u(x,y) of the problem. The penalty
functional gp(u) measures the discrepancy between the
solution and the input data. The stabilizing functional

é;%u) measures the degres ~of regularization (smoothness) of
the solution and embodies the additional constraints imposed
on the problem.

The common method of regularization looks for the
solution to the following minimization problem, which will

be referred to as a variational principle:

find a function ulx,y) from the space of the admissible

functions which minimizes du) + 4 Fw.

Parameter A controls the compromise between the closeness
of the solution to the data and the degree of

regularization.
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In our problem we choose the penalty functional as the

error measured in the least square sense given by

2
q@(u) =ff [L(x.y)—R(x+u(x,y),y)] dxdy » (1)

where R(x,y) and L{x,v) are the left and right image
intensities, or a simple function of +them (such as a
Laplacian), and ulx,y) is the disparity map. For simplicity
wa assume that vertical disparity is negligible. HWithin
Tikhonov regularization we can take a stabilizing functional

of the form

Fw =ffw(x,y)(u§+ u2)dxdy , (2)

where the subscripts on u dencte partial derivatives and
wix,v) is a non—-negative continuous weighting function (9).
It can be shown that with this choice of functiocnals the
variational principle is well-posed (3). The stabilizing
functional imposes a smoothness constraint on the disparity
field by penalizing large disparity gradients.

In this form, the regularization method can deal
meaningfully with a scene where the depth changes smoothly
relative to the viewer. This is usually the case of scenes
containing only a single surface. In presence of more than
one surface the method attempls to reconstruct a single
smooth  surface interpolating across the occluding
boundaries, which correspond to places where surfaces in the
scene occlude one another from the viewer. The result is

the destruction of depth discontinuities and this is a
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§evore defect of oglobal smoothness constraints (6.
Therefore, this smoothing effect must be prevented across
occluding boundaries.

Following the approach proposed by Terzopoulos (7)), we
modify the Tikhonov stabilizing functional in order to
preserve depth discontinuities. The modified functional,
called a controlled-continuity stabilizer by Terzopoulos, is
obtained by replacing the continuous weighting function
wl{x,v} in the Tikhonov functional with & discontinuous
function, which is allowed to make jump transitiocns to zero
values/(7). This makes it possible to introduce specific
discontinuities into the solution, a central property for
the reconstruction of the depth map when occlusions between
different objects are inveolved.

This spatial control over the smoothness properties of
the controlled-continuity stabilizer is exercised in the
following way. In regions where depth is continuous
(usually corresponding to a single surface), wi(x,y)=1l, thus
the stabilizer reduces to an ordinary Tikhonév stabilizer
and ganerates a continuous surface. Along depth
discontinuities (usually corresponding to occluding
boundaries between different surfaces), w(x,y)=0, +thus
deactivating the interpolation effect across different
surfaces, and thereby allowing the surfaces to fracture
freely. In this way, the modified variational principle
vields a piecewise continuous reconstructed surface. &
suitable choice of the continuity control function wix,v)
will allow +the introduction of specific discontinuities in

the reconstructed solution ulx,vJ.
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3. ITterative computation of sterec disparity

In regions where depth is continucus, the disparity
functien ulx,¥) must minimize the full Ffunctional with
wilx,v)=l, and will thus be soclutien of the following

Fuler-Lagrange equation
Adu + [L(x,y)—R(x+u.y)]Rx(x+u.y) =0, (3>

where Au is the Laplacian of ulx,y) defined as Au=uxx+

Yoy and RX denotes the partial derivative of R with respect
to x. In equation (3), we have assumed implicitly that
image brightness is differentiable.

He now discretize +the above partial differential
equation on  a uniform grid by using finite difference
approximations.

Assuming the unit of length equal to the grid spacing
interval, we use for the Laplacian of u(x,y) approximation
Au=6lu®(i,5)-uli,5)), where u¥(i,3) is the local average of u
defined as u (i, 3)=CuCi+l,i)+uli,+1)+uli-1,5)+uli,j~1))/4.
The discrete version of the Euler-Lagrange equation is then

given by
u(ipj)=u*(i,i)+(1/l )[L(iyj)"R(i"‘U;j)] Rx(i+Urj) » (G

where a factor % has been absorbed into A

Rearranging the equation, a solution can be computed
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using the Gauss~Seidel iterative method
W, 5 =e® G, 50401 )[lt(i,j)—-R(ii-u",j)j Rx(im“,j) ,» (5)

where n is the iteration step.
In order to improve the numerical stability of the
algorithm (ses for instance (1)) we resort to the szlightly

different relaxation formula
n+t . . n,. . o« - *n . - n -
u (i,3)=u¥® (i,35)+(1/ 4 )[L(l»))-R(1+u ,J)}Rx(1+u* »3) 5 €63

where u¥(i,j) is used in evaluating both R and Rx,

Since u¥(i,j) is generally not an integer, we compute
the quantity R(i+u*(i,j),j) using @ Lagrange interpolation
polvnomial in the pe cbordinata. An estimate of the
derivative Rx (i+u®(i,3),5) is then obtained using the
derivative of the interpolation polynomial. In the computer
simulation presented in this paper, a third-degree Lagrange
polynomial was used, Tfitted through four adjacent nodes on
the same horizontal row of the discrete image.

In regions where w(x,vy)=1 the iterative schema (§)
vields a continuous reconstructed surface. Without the
spatial control over the smoothness properties of the
stabilizing functional this type of algorithm will attempt
to interpolate a single surface across depth discontinuities
because of the presence of the term u*(i,j). This term,
being a local average of u(i,j), is responsible for the
undesired smoothing effect across the occluding boundaries

between different surfaces.
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The controlled-continuity stabilizer deactivates the
continuity constraint along the curves with wi(x,y)=0. Assume
for simplicity that all points with w(x,v)=0 coincide with
nodes in the grid. A convenient numerical implementation of
the controlled-continuity stabilizer is then obtained by
replacing u® (i,5) in (6) with the following weighted

average:

(w(i+l,Fuli+l, i) +wli, j+Duli, j+1)+wli~-1,3)u(i-1,3)

+wli,j-1duli,-1)3/w*Ci,5) , (7)

where w¥(i,j) is defined by w® (i,3)=wCi+l,j)+w(i,j+l)+
wli-1,3)+w(i;3-1). The value of disparity is now undefined
in the nodes where wi{x,v¥}=0,

It is easy to see that with this modification the
propagation of +the local average of uli,j), and hence the
interpolation effect, is prevented across the curves
wix,v)=0. In this way, surfaces on opposite sides of an
occluding contour have no influence on one another and are
allowed +to fracture freely making the reconstruction of

depth discontinuities possible.

G. A computer simulation

The iterative algorithm using the continuity control
function has been implemented and applied to a synthetic
sterec pair of images corresponding to & simple pattern. The

results shown here are for stereo images of 128X128 pixels.



PAGE 10
Figure 1 shows the +two images of the stereo pair
representing an object shaped as a revolution surface and
portrayed against a plane background. The brightness
pattern, both of the surface and of +the background, is a
linear combination of spatially orthogonal sinusoids. The
spatial frequency of the sinuscids is chosen +to give a
reasonably strong brightness gradient such as that usually
required for binocular stereo matching. Depth in the image
is discontinuous along the occluding boundary between the
object surface and the background. The stereoc pair is
obtained by simulating a simple perspective projection of
the object vielding a horizental disparity inversely
proportional to depth, and no vertical disparity. |
The algorithm exhibits the typical behavior of local
iterative methods: convergence is rapid during the first few
iterations, but quickly degenerates to a slow asymptotic
rate of progress. The number of iterations performed in the
present simulation is 192. This number of iterations was
necessary in order to compute +the solution over the large
depth range of the stereo pair. However, convergence can be
accelerated by emploving multigrid relaxation algorithms
that propagate constraints across the nodes in the grid more
quickly (8). The iteration is started with an initial
estimate of disparity equal +to a constant value. The
algorithm shows convergence for a broad range of the initial
"guess™ of disparity. Howevur; @ reasonable initial value is
needed to obtain a reliable iterative solution.
Parameter 4 controls the compromise between the degree

of regularization of the solution and its closeness to the
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input data. This factor plays a significant role in areas
where the brightness gradient is small, preventing random
adjustments to the estimated disparity map occasioned by the
presence of noise. The value of parameter A should be
roughly equal to the root-mean-square of the noise in the
input data measurements.

In the present case, the input data are not noisy and
the only noise present in the reconstructed solution is due
to errors in the estimates of the derivatives and in the
Lagrange interpoclation. The problem of the optimal cheoice
of parameter A will not be examined here. In the computer
simulation, the value A =1 was chosen on the basis of the
results of a number of experiments.

The continuity control function wi(x,y) is constructed by
setting wix,v)=0 along disparity discontinuities (the
occluding contour between the object and the background),
and wix,v)=1l in continuous regions.

Figure 2 shows a perspective view of the surface
reconstructed in the simulation. The controlled-continuity
stabilizer plavs an essential role in the reconstruction ef
the surface along the occluding boundary.

Figure 3 shows the result of a simulation executed
without controlled~continuity constraints by setting
wix,v)=1l evervwhere, as in standard Tikhonov regulariiation.
As can ba seen the standard regularization method vields an
incorrectly reconstructed depth map in proximity of the
occluding contour., In fact, +the smoothing effect destroys
the occlusion by interpolating indiscriminately across the

contour and giving the undesirable impression of a
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tablecloth thrown between the object and the background. On
the contrary, the controlled~continuity constraints,
deactivating all continuity along the contour, prevent the
interpolation effect and vield the correctly reconstructed

depth discontinuity.

5. Detection of depth discontinuities
The use of controlled-continuity stabilizers makes it
possible to introduce specific discontinuities into the
reconstructed solution. However, depth discontinuities are
not known in advance, and in the previous discussion we have
i;nored the important problem of their detection.
Terzopoulos (7) suggested @ possible approach teo the
localization of discontinuities as an integral part of
controlled~continuity reconstruction. It is possible +to
augment the functional in the variational principle in order
to detect depth discontinuities as the regularized solution

is being computed. The new functional is given by

P + AP uw + P (8)

where the additional term Q@(w) imposes constraints on the
structure of the discontinuities.

The functional QZ(W) should penalize each detected
discontinuity in order o prevent the formation of an
incoherent solution, and should incorporate additional
knowledge regarding depth discontinuities. Generally, as a

consequence of the coherence of matter, occlusions in depth
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between different surfaces tend to be spatially continuous
giving rise +to curves and contours. Hence the additional
functional Qa(w) should encourage the formation of depth
discontinuities aleong continucus contours.

Computation of depth requires the minimization of the
new functional (8) with respect to both disparity u and the
continuity contrel function w. However, the augmented
functional is now NON=CONvVexX, since it contains
non~quadratic terms, and may thus have multiple local
minima.Iterative methods can be adapted to perform the
minimization of non-convex functionals (6). The expression
of the functional g@(w) énd the choice of a suitable
optimization method to find near global minima will be the

argument of a forthcoming paper.

6. Conclusion
The computation of sterec disparity as an ill-posed
problem can be approached using standard Tikhonov
regularization theory. However, global smoothness
constraints are inadequate near depth discontinuities. This
paper has presented a more general regularization approach
to stereopsis using controlled~continuity constraints
originally proposed by Terzopoulos in the context of
regularization theory. By using these generalized
constraints, the smoothness properties of the solution may
be regulated spatially in order to preserve depth
discontinuities along occluding contours. |
The constraints waere formulated as a

N
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controlled-continuity stabilizer comprising a standard
Tikhonov regularization functional combined with a
noncontinuous continuity control function. This latter
function makes it possible to introduce spacific
discontinuities into the solution.

This regularization method vields a simple way of dealing
with depth discontinuities once +they have been marked
explicitly. When the continuity control function is not
prespecified, the locations of discontinuities may be

reconstructed as the regularized solution is being computed.
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FIGURE CAPTIONS

Fig. 1: A synthetic sterec pair of images.
Fig. 2: Reconsitructed depth map using
controlled-continuity constraints.

Fig. 3: Reconstructed depth map using standard

regularization.
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