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Abstract It is generally believed that data mining re-
sults do not violate the anonymity of the individuals
recorded in the source database. In fact, data mining
models and patterns, in order to ensure a required sta-
tistical significance, represent a large number of individ-
uals and thus conceal individual identities: this is the
case of the minimum support threshold in frequent pat-
tern mining. In this paper we show that this belief is ill-
founded. By shifting the concept of k-anonymity [42,44]
from the source data to the extracted patterns, we for-
mally characterize the notion of a threat to anonymity in
the context of pattern discovery, and provide a method-
ology to efficiently and effectively identify all possible
such threats that arise from the disclosure of the set
of extracted patterns. On this basis, we obtain a for-
mal notion of privacy protection that allows the disclo-
sure of the extracted knowledge while protecting the
anonymity of the individuals in the source database.
Moreover, in order to handle the cases where the threats
to anonymity cannot be avoided, we study how to elim-
inate such threats by means of pattern (not data!) dis-
tortion performed in a controlled way.

Keywords: Knowledge Discovery, Privacy Preserving
Data Mining, Frequent Pattern Mining, Individual Pri-
vacy, Anonymity.

1 Introduction

Improving trust in the knowledge society is a key re-
quirement for its development. Privacy-awareness, if ad-
dressed at a technical level and acknowledged by reg-
ulations and social norms, may foster social acceptance
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and dissemination of new emerging knowledge-based ap-
plications. This is true of data mining, which is aimed
at learning patterns, models and trends that hold across
a collection of data. While the potential benefits of data
mining are clear, it is also clear that the analysis of per-
sonal sensitive data arouses concerns about citizen’s pri-
vacy, confidentiality and freedom. Obtaining the poten-
tial benefits of data mining with a privacy-aware tech-
nology would enable a wider social acceptance of a mul-
titude of new services and applications based on the
knowledge discovery process.

The awareness that privacy protection in data min-
ing is a crucial issue has driven the attention of many
researchers in the last few years, and consequently Pri-
vacy Preserving Data Mining, i.e., the study of data min-
ing side-effects on privacy, has rapidly become a hot and
lively research area, which receives an increasing atten-
tion from the research community [47]. However, despite
such efforts, we agree with [13] that a common under-
standing of what is meant by “privacy” is still missing.
As a consequence, there is a proliferation of many com-
pletely different approaches of privacy preserving data
mining, but all sharing the same generic goal: producing
valid mining models without disclosing “private” infor-
mation.

As highlighted in [30], the approaches pursued so far
leave a privacy question open: do the data mining results
themselves violate privacy? Put in other words, do the
disclosure of extracted patterns open up the risk of pri-
vacy breaches that may reveal sensitive information? In
this paper we study when data mining results represent
a threat to privacy. In particular, we concentrate on in-
dividual privacy, in the strict sense of non-identifiability,
as prescribed by the European Union regulations on pri-
vacy, as well as US rules on protected health information
(HIPAA rules). The medical domain is indeed a proto-
typical application instance for the framework we de-
velop in this paper.
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Example 1 (Medical Knowledge Discovery) Medical in-
formatics has become an integral part of successful med-
ical institution. Many modern hospitals and health care
institutions are now well equipped with monitoring and
other data-collection devices, and data is gathered and
shared in inter – and intra – hospital information sys-
tems. This increase in the volume of medical data avail-
able, has created the right premises for the birth of Med-
ical Data Mining, i.e., the application of data analysis
techniques to extract useful knowledge for supporting
decision making in medicine [28]. Because medical data
are collected on human subjects, there is an enormous
ethical and legal tradition designed to prevent the abuse
and misuse of medical data. The strength of the pri-
vacy requirements together with the incredible benefits
that the whole society can achieve from it, make Medi-
cal Data Mining a challenging and unique research field;
while the kind of privacy required (i.e., the anonymity of
the patients in a survey), make it a perfect prototypical
application instance for our framework.

In concrete, consider a medical institution where the
usual hospital activity is coupled with medical research
activity. Since physicians are the data collectors and
holders, and they already know everything about their
patients, they have unrestricted access to the collected
information. Therefore, they can perform real mining on
all available information using traditional mining tools
– not necessarily the privacy preserving ones. This way
they maximize the outcome of the knowledge discovery
process, without any concern about privacy of the pa-
tients which are recorded in the data. But the anonymity
of individuals patients becomes a key issue when the
physicians want to share their discoveries (e.g., associa-
tion rules holding in the data) with their scientific com-
munity.

In this article we concentrate on frequent pattern
mining, and study anonymity in this setting. Note that
frequent patterns are very basilar structures, that can be
used as basic bricks to build more complex mining mod-
els such as association rules, classification or clustering
models. The key question is: can anonymity be guar-
anteed when a collection of frequent patterns resulting
from a data mining computation is disclosed?

1.1 Data Mining Results Can Violate Anonymity

At a first sight, it may seem that data mining results
do not violate the anonymity of the individuals recorded
in the source database. In fact, data mining models and
patterns, in order to ensure a required statistical signif-
icance, represent a large number of individuals and thus
conceal individual identities. In the following we show
that this belief is ill-founded, using association rules [3]
as prototypical example. The idea of mining association
rules originates from the analysis of market-basket data

where we are interested in finding rules describing cus-
tomers behavior in buying products. In particular, asso-
ciation rules seek for sets of products which are associ-
ated, in the sense that they are bought together quite
frequently.

An association rule is an expression X ⇒ Y where
X and Y are two disjoint sets of items. The association
rule is said to be valid if:

1. the support of the itemset X ∪Y , i.e., the number of
transactions in the database in which the set X ∪ Y
appears, is greater than a given threshold;

2. the confidence (or accuracy) of the rule, defined as
the conditional probability P (Y | X), i.e., the sup-
port of X ∪ Y over the support of Y , is greater than
a given threshold.

Since association rules in order to be valid must be
common to a large number of individuals, i.e., their sup-
port must be larger than a given threshold, we might
be tempted to conclude that, if such a threshold is large
enough, we can always safely disclose the extracted as-
sociation rules.

The next example shows that this is not true.

Example 2 Consider the following association rule:

a1 ∧ a2 ∧ a3 ⇒ a4 [sup = 80, conf = 98.7%]

where sup and conf are the usual interestingness mea-
sures of support and confidence as defined above. Since
the given rule holds for a number of individuals (80),
which seems large enough to protect individual privacy,
one could conclude that the given rule can be safely dis-
closed. But, is this all the information contained in such
a rule? Indeed, one can easily derive the support of the
premise of the rule:

sup({a1, a2, a3}) =
sup({a1, a2, a3, a4})

conf
≈

80

0.987
≈ 81.05

Given that the pattern a1 ∧ a2 ∧ a3 ∧ a4 holds for 80
individuals, and that the pattern a1 ∧ a2 ∧ a3 holds for
81 individuals, we can infer that in our database there
is just one individual for which the pattern a1 ∧ a2 ∧
a3 ∧¬a4 holds. Later in the article we will show how the
knowledge inferred can be used to link the identity of
this individual to some sensitive information.

It is worth noting that this problem is very general:
the given rule could be, instead of an association, a clas-
sification rule, or the path from the root to the leaf in
a decision tree, and the same reasoning would still hold.
Moreover, it is straightforward to note that, unluckily,
the more accurate is a rule, the more unsafe it may be
w.r.t. anonymity.

In this article we say that the two itemsets
{a1, a2, a3} and {a1, a2, a3, a4} represent an inference
channel, for the anonymity of the individual correspond-
ing to the pattern a1∧a2∧a3∧¬a4. This is a trivial kind
of inference channel, but in general, much more complex
kinds of inference channels exist, as studied in the rest
of this paper.
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1.2 Article Contribution and Organization

In this article we study the anonymity problem in the
very general setting of patterns which are boolean for-
mulas over a binary database.

One might guess that each frequent pattern is related
to a relatively large group of individuals in the source
database, and therefore non-identifiability is guaranteed.
Unfortunately, as shown in Example 2, this is not the
case: a malicious adversary can reason on the collec-
tion of frequent patterns, and deduce new patterns from
the available ones, precisely identifying individuals or
small groups. In other words it is not sufficient to con-
strain each pattern to be anonymous in itself: we show
in this paper how also the combination of patterns al-
lows to infer new derived patterns, which may violate
anonymity and hence break the non-identifiability re-
quirement. This is the driving idea of our work.

To cope with this phenomenon we introduce a no-
tion of anonymity which applies to patterns – rather
than data – and study two natural problems: (i) how to
check whether or not a collection of patterns guarantees
anonymity, and (ii) if this is not the case, how to sanitize
the collection of patterns, i.e., how to transform the out-
put collection in such a way that anonymity is preserved,
along with the quality of the disclosed patterns.

In Section 2 we justify originality and adequacy of
our approach within the - rather young - state of the
art of Privacy Preserving Data Mining. In Section 3 we
briefly recall the works on k-anonymity on databases,
and discuss the benefits of shifting such concepts from
the data to the extracted patterns. Such discussion leads
to the formal definition of k-anonymous patterns in Sec-
tion 4. Here we characterize k-anonymous patterns, and
we study the possible channels of inference in a collection
of patterns that may be exploited by a malicious adver-
sary to threat anonymity of the individuals recorded in
the source data. The formal definition of the anonymity
preservation problem as a problem of logical inference,
is one of the major contributions of this article. Next,
the two practical problems are addressed: how to detect
the inference channels in a collection of patterns, and
how to block them. In Section 5 is defined a first näıve
algorithm to detect such potential threats which yields
a methodology to check whether the mining results may
be disclosed without any risk of violating anonymity. In
Section 6 we introduce a condensed representation of the
set of inference channels. A condensed representation is
a subset of the original collection of patterns which con-
tains the same information. The condensed representa-
tion we define has a twofold benefit, since it helps both
the detecting and the blocking task. On one hand it re-
duces the computational cost of the detection task, yield-
ing to an improved algorithm presented in Section 6. On
the other hand, exploiting the condensed representation
we avoid redundant sanitization and thus our blocking
algorithms (developed in Section 7), geared on the con-

densed representation, introduce less distortion. In Sec-
tion 8 we report the experimental analysis that we have
conducted in order to assess the distortion introduced by
our sanitization strategies; to measure time needed by
our sanitization framework and to compare empirically
the differences between k-anonymizing the data and k-
anonymizing the patterns. Finally, in Section 9 we de-
scribe some on-going and future works and we conclude.

The results described in this article represents a pre-
liminary step along a path that is crucial, both from the
ethical point of view and that of social acceptance – data
mining solutions that are not fully trustworthy will find
insuperable obstacles to their deployment. On the other
hand, demonstrably trustworthy solutions may open up
tremendous opportunities for new knowledge-based ap-
plications of public utility and large societal and eco-
nomic impact.

2 Related Work

As stated in the Introduction, many different approaches
to Privacy Preserving Data Mining have emerged in the
last few years. In the section we review the main ap-
proaches followed so far and we collocate our proposal
within this rather young state-of-the-art.

The Intensional Knowledge Hiding approach, also
known as sanitization, is aimed at hiding some inten-
sional knowledge (i.e. rules/patterns) considered sensi-
tive, which could be inferred from the data which is go-
ing to be disclosed. This hiding is usually obtained by
sanitizing the database in input in such a way that the
sensitive knowledge can no longer be inferred, while the
original database is changed as less as possible [6,11,15,
35,36,43]. Notice that this approach aims to a kind of
privacy which is more related to keep secret some corpo-
rate information, rather than individuals identity: thus,
we should better refer to it as secrecy.

Another approach, more aimed at the privacy of
the individual, is the Extensional Knowledge Hiding ap-
proach, sometimes referred to as distribution reconstruc-
tion. This approach addresses the issue of privacy preser-
vation by perturbing the data in order to avoid the iden-
tification of the original database rows, while at the same
time allowing the reconstruction of the data distribution
at an aggregate level, in order to perform the mining [2,
4,18–22,27,31,34,41,25]. In other words, the extensional
knowledge in the dataset is hidden, but is still possible
to extract valid intensional knowledge.

Both approaches described above are applicable in
contexts where what is disclosed is the data. During the
last year a novel approach, shifting the privacy prob-
lem from the data to the mining models, has emerged in
privacy preserving data mining [23,30,37]. All the previ-
ous approaches were focussed on producing a valid min-
ing model without disclosing private data, but they still
leave a privacy question open [30]: do the data mining
results themselves violate privacy?
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So far, just few works have investigated this issue.
The work in [30] compliments the line of research in se-
cure distributed data mining [12,14,16,17,26,29,40,46],
but focussing on the possible privacy threat caused by
the data mining results. In particular the authors study
the case of a classifier trained over a mixture of differ-
ent kind of data: public (known to every one includ-
ing the adversary), private/sensitive (should remain un-
known to the adversary), and unknown (neither sensi-
tive nor known by the adversary). The authors propose
a model for privacy implication of the learned classifier,
and within this model, they study possible ways in which
the classifier can be used by an adversary to compromise
privacy. The work in [37] has some common aspects with
the line of research in intensional knowledge hiding. But
this time, instead of the problem of sanitizing the data,
the problem of association rule sanitization is addressed.
The data owner, rather than sharing the data prefer to
mine it and share the discovered association rules. The
basic assumption is that the data owner knows a set of
restricted association rules that he does not want to dis-
close. The authors propose a framework to sanitize a set
of association rules protecting the restricted ones: they
show that in this context sanitizing directly the patterns,
is some more information-preserving than sanitizing the
data and mine the patterns from the sanitized data. This
is somehow similar, even if in a different context, to our
finding discussed in Section 8.3. In [23] a framework for
evaluating classification rules in terms of their perceived
privacy and ethical sensitivity is described. The pro-
posed framework empowers the data miner with alerts
for sensitive rules which can be accepted or dismissed
by the user as appropriate. Such alerts are based on an
aggregate Sensitivity Combination Function, which as-
signs to each rule a value of sensitivity by aggregating
the sensitivity value (an integer in the range 0 . . . 10) of
each attribute involved in the rule. The process of la-
belling each attribute with its sensitivity value must be
accomplished by the domain expert.

Our proposal clearly collocates within this new
emerging area, but with distinctive original features. A
common aspect of the three works above, is that they
all require some a priori knowledge of what is sensitive.
Instead we study when data mining results represent per
se a threat to privacy, without any background knowl-
edge of what is sensitive. The fundamental difference lies
in generality: we propose a novel, objective definition
of privacy compliance of patterns without any reference
to a preconceived knowledge of sensitive data or pat-
terns, on the basis of the rather intuitive and realistic
constraint that the anonymity of individuals should be
guaranteed. It should also be noted the different setting
w.r.t. the other works in privacy preserving data min-
ing: in our context no data perturbation or sanitization
is performed, as we allow real mining on the real data,
while focussing on the anonymity preservation proper-
ties of the extracted patterns.

3 k-Anonymity: from Data to Patterns

When the objective of a data owner is to disclose the
data, k-anonymity is an important method for protect-
ing the privacy of the individuals recorded in the data.
The concept of k-anonymity was introduced by Sama-
rati and Sweeney in [42,44]. In these works, it is shown
that protection of individual sources does not guaran-
tee protection when sources are cross-examined: a sensi-
tive medical record, for instance, can be uniquely linked
to a named voter record in a publicly available voter
list through some shared attributes. The objective of k-
anonymity is to eliminate such opportunities of inferring
private information through cross linkage. According to
this approach, the data holder identifies all possible at-
tributes in the private information that can be found in
other public databases, and thus could be exploited by
a malicious adversary by means of cross linkage. Sets of
attributes (like gender, date of birth, and zip code in the
example above) that can be linked with external data to
uniquely identify individuals in the population are called
quasi-identifiers. Once the quasi-identifiers are known, a
“sanitization” of the source data takes place: the data is
transformed in such a way that, for every combination
of values of the quasi-identifiers in the sanitized data,
there are at least k records that share those values. Such
a sanitization is obtained by generalization of attributes
(the quasi-identifiers) and, when needed, suppression of
tuples [45].

As stated in the Introduction, in this article we do
not study how to safely disclose data, but instead we
focus on the disclosure of patterns extracted by means
of data mining. In our context the data owner is not
willing to share the data – on the contrary, it is often
legally responsible for protecting the data – and, instead,
it is interested in publishing the knowledge discovered by
mining the data. Therefore, a malicious adversary could
only attack privacy exploiting the information which is
present in the patterns, plus his own background knowl-
edge about the technique used to extract the patterns.

A pattern produced by data mining techniques can
be seen as a select query, which returns the set of tu-
ples in the database which are captured by the given
pattern. Thus we can shift the concept of k-anonymity
from the data to the patterns in a straightforward way:
we say that the result of a data mining extraction is k-
anonymous if from any pattern inferred from such results
is not possible to identify a group of tuples of cardinality
less than k. More precisely:

– a single pattern p with support count s > 0 (i.e.,
occurring s times in the source database) is k-
anonymous iff s ≥ k, i.e., there are at least k tuples
in the database satisfying p;

– a collection of patterns, each with support count, is
k-anonymous iff each pattern in it is k-anonymous
as well as any further pattern whose support can be
inferred from the collection.
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As in the classical k-anonymity framework for
databases, also in our framework we can assume that
attributes and their corresponding values are divided
into two groups by the data owner: quasi-identifiers (i.e.,
public available attributes) and sensitive attributes (i.e.,
private attributes to be kept secret). In general, we can
have patterns containing only quasi-identifiers, only sen-
sitive attributes, or both. Notice that the information
that can possibly violate the anonymity of individuals,
as in the classical k-anonymity framework for databases,
is not the release of sensitive values, but the possibility
of linking individuals identities to sensitive data through
quasi-identifiers.

In the following we show an example of a possible at-
tack done by exploiting non k-anonymous patterns hold-
ing in the quasi-identifiers.

Example 3 Consider the two following association rules:

Age = 27 ∧ ZIP = 45254 ∧ Religion = Christian ⇒
Native Country = USA [sup = 758, conf = 99.8%]

Age = 27 ∧ ZIP = 45254⇒ Native Country = USA

[sup = 1053, conf = 99.9%]

Both rules have high support and high confidence, so
they are likely to be disclosed as interesting rules. No-
tice that they are also apparently safe (not anonymity
violating). In fact, in the first rule there’s one sensitive
attribute/value (Religion = Christian) in the premise
of the rule, so a malicious attacker should know this sen-
sitive attribute in order to apply the rule. But being a
sensitive attribute, Religion can not be known by any
attacker. In the second rule instead, we have only quasi-
identifiers, therefore we are not releasing any linking op-
portunity to sensitive information. Therefore these two
rules are apparently safe, but from them we can learn
that:

Age = 27 ∧ ZIP = 45254 ∧ ¬(Native Country = USA) ⇒

Religion = Christian [sup = 1, conf = 100%]

In fact from the first rule we can infer that there’s
only one individual such that: Age = 27∧ZIP = 45254∧
Religion = Christian ∧ ¬(Native Country = USA).
Moreover, from the second rule, we know that there
is only one individual such that: Age = 27 ∧ ZIP =
45254 ∧ ¬(Native Country = USA). Therefore we can
easily conclude that this individual is the same as before
and she is Christian. Age, postcode, and native coun-
try are public available information (quasi-identifiers),
which in this 100%-confidence rule, covering just one in-
dividual, are linked to a sensitive information as individ-
ual’s religion.

This is exactly the linking attack for which k-
anonymity defence has been developed. In the database
framework, once we have k-anonymized our data, we can
not identify a singular individual by means of a combina-
tion of quasi-identifiers. Similarly, in our framework, by

sanitizing non k-anonymous patterns where all the items
are quasi-identifiers, we block this kind of attack. More
concretely, in our framework, we identify and sanitize (by
increasing its support to k, or by decreasing it to 0) the
pattern Age = 27∧ZIP = 45254∧¬(Native Country =
USA), which is made only of quasi-identifiers.

In conclusion, in our framework by sanitizing the pat-
terns that non k-anonymous and made only of quasi-
identifiers we avoid linking attacks, unless they regards
at least k individuals.

In the following we study the problem of how to pro-
duce a set of patterns that are k-anonymous, and of
course, as close as possible to the real patterns holding
in the data. We set our investigations in the very gen-
eral context where the source data is a binary database,
and the kind of patterns extracted (and disclosed) are
frequent itemsets, i.e., sets of attributes which appear all
set to 1 in a number of tuples larger than a given fre-
quency threshold. Therefore, with the aim of facilitating
the theoretical investigation, and for sake of clarity of
the presentation, for the moment we do not consider the
semantics of the attributes, and the possibility of gen-
eralizing them. Moreover we do not distinguish between
quasi-identifiers and other attributes: in our context all
attributes are quasi-identifier. Note that these two as-
sumptions do not weaken our contribution; on the con-
trary we develop a very general theory that could be
easily instantiated to the more concrete case of categor-
ical data originating from relational tables. In the ex-
periments reported in the article, on binary databases,
we considered all the attributes as quasi-identifiers in or-
der to test our approach in the worst case scenario. In-
troducing the distinction between quasi-identifiers and
non, as well as the possibility of generalizing some at-
tributes, will just make our patterns sanitization task
easier, and would reduce the amount of distortion needed
to k-anonymize the patterns.

Finally, notice that a trivial solution to our problem
would be to first k-anonymize the data using some well
known technique, and then mine the patterns from the
k-anonymized data. In fact, by mining a k-anonymized
database no patterns threatening anonymity can be ob-
tained. But such approach would produce patterns im-
poverished by the information loss which is intrinsic in
the generalization and suppression techniques. Since our
objective is to extract valid and interesting patterns,
we propose to postpone k-anonymization after the ac-
tual mining step. In other words, we do not enforce k-
anonymity onto the source data, but instead we move
such a concept to the extracted patterns. Since there is
a clear correspondence between patterns and data, k-
anonymizing the patterns can be seen as k-anonymizing
just the portion of interest of data, the portion corre-
sponding to the patterns. Following this way we intro-
duce much less distortion. This issue will be further an-
alyzed in Section 8.3.
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4 k-Anonymous Patterns

A preliminary version of this section, containing the
basic definitions is in [8]. We start by defining binary
databases and patterns following the notation in [24].

Definition 1 (Binary Database) A binary database
D = (I, T ) consists of a finite set of binary variables
I = {i1, . . . , ip}, also known as items, and a finite mul-
tiset T = {t1, . . . , tn} of p-dimensional binary vectors
recording the values of the items. Such vectors are also
known as transactions.

Definition 2 (Pattern) A pattern for the variables in
I is a logical (propositional) sentence built by AND (∧),
OR (∨) and NOT (¬) logical connectives, on variables
in I. The domain of all possible patterns is denoted
Pat(I).

A binary database D is given in Figure 1(a). In this
context, a row or transaction of D is a tuple recording
the values of some attributes (or items) of an individual.
Therefore in this context, the objective of our analysis
is the anonymity of transactions.

According to Definition 2, e ∧ (¬b ∨ ¬d), where
b, d, e ∈ I, is a pattern. One of the most impor-
tant properties of a pattern is its frequency in the
database, i.e. the number of individuals (transactions)
in the database which make the given pattern true1.

Definition 3 (Support) Given a database D, a trans-
action t ∈ D and a pattern p, we write p(t) if t makes
p true. The support of p in D is given by the number of
transactions which makes p true:

supD(p) = |{t ∈ D | p(t)}|.

If for a given pattern this number is very low (i.e.
smaller than an anonymity threshold k) but not null,
then the pattern represents a threat for the anonymity
of the individuals about which the given pattern is true.

Definition 4 (k-Anonymous Pattern) Given a bi-
nary database D and an anonymity threshold k, a pat-
tern p is said to be k-anonymous if supD(p) ≥ k or
supD(p) = 0.

The objective of this article is to study when the
output of a mining extraction could be exploited by a
malicious adversary to identify non k-anonymous pat-
terns, i.e., small groups of individuals. In particular, we
focus on frequent itemset mining : one of the most basilar
and fundamental mining tasks.

Itemsets are a particular class of patterns: conjunc-
tions of positive valued variables, or in other words, sets

1 The notion of truth of a pattern w.r.t. a transaction t is
defined in the usual way: t makes p true iff t is a model of
the propositional sentence p.

Notation: patterns Notation: itemsets

supD(a ∨ f) = 11 supD(abc) = 6
supD(e ∧ (¬b ∨ ¬d)) = 4 supD(abde) = 7

supD(h ∧ ¬b) = 1 supD(cd) = 9

Table 1 Notation: example of general patterns and itemsets
with their support in the database D of Figure 1(a).

of items. The retrieval of itemsets which satisfy a mini-
mum frequency property is the basic step of many data
mining tasks, including (but not limited to) association
rules [3,5].

Definition 5 (σ-Frequent Itemset) The set of all
itemsets 2I , is a pattern class consisting of all possi-
ble conjunctions of the form i1 ∧ i2 ∧ . . . ∧ im. Given a
database D and a minimum support threshold σ, the set
of σ-frequent itemsets in D is denoted:

F(D, σ) = {〈X, supD(X)〉 | X ∈ 2I ∧ supD(X) ≥ σ}.

Frequent Itemset Mining (FIM), i.e., computing
F(D, σ), is one of the most studied algorithmic prob-
lems in data mining: hundreds of algorithms have been
developed and compared (see [1] for a good repository)
since the first proposal of the well-known apriori algo-
rithm [5]. As shown in Figure 1(b), the search space of
the FIM problem is a lattice, which is typically visited
breadth-first or depth-first, exploiting the following in-
teresting property: ∀X ⊂ Y ∈ 2I .supD(X) ≥ supD(Y ).

This property, also known as “anti-monotonicity of
frequency” or “Apriori trick”, is exploited by the apri-

ori algorithm (and by almost all FIM algorithms) with
the following heuristic: if an itemset X does not satisfy
the minimum support constraint, then no superset of X
can be frequent, and hence they can be pruned from the
search space. This pruning can affect a large part of the
search space, since itemsets form a lattice.

Itemsets are usually denoted in the form of set of
the items in the conjunction, e.g. {i1, . . . , im}; or some-
times, simply i1 . . . im. Table 1 shows the different nota-
tion used for general patterns and for itemsets.

Example 4 Given the binary database D in Figure 1(a),
and a minimum support threshold σ = 8, we have that:
F(D, 8) = {〈∅, 12〉, 〈a, 9〉, 〈b, 8〉, 〈c, 9〉, 〈d, 10〉, 〈e, 11〉,
〈ab, 8〉, 〈ae, 8〉, 〈cd, 9〉, 〈ce, 9〉, 〈de, 10〉, 〈cde, 9〉}.

As already stated, the problem addressed in this arti-
cle is given by the possibility of inferring from the output
of frequent itemset mining, i.e, F(D, σ), the existence
of patterns with very low support (i.e., smaller than
an anonymity threshold k, but not null): such patterns
represent a threat for the anonymity of the individuals
about which they are true.

Recall our motivating example: from the two dis-
closed frequent itemsets {a1, a2, a3} and {a1, a2, a3, a4}
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D
a b c d e f g h

t1 1 1 1 1 1 1 1 1
t2 1 1 1 1 1 0 1 0
t3 1 1 1 1 1 0 0 0
t4 1 1 1 1 1 1 1 0
t5 1 1 1 1 1 0 0 0
t6 1 1 1 1 1 0 0 0
t7 1 1 0 1 1 0 0 0
t8 1 0 0 0 1 1 1 0
t9 0 0 1 1 1 1 1 0
t10 0 0 1 1 1 0 0 0
t11 0 0 1 1 1 1 1 1
t12 1 1 0 0 0 1 1 0

(a)

cb

Ø

a

acab ad ae bd bebc cd ce de

abc

abcd abce

abcde

abde acde bcde

abd abeacd ace ade bcd bde cdebce

d e10

8 9

11

9 10

9

8

9 8 9

12
xyz3

Itemset

SUPPORT

be

abc

abcd abce

abcde

abde acde bcde

abd abeacd ace ade bcd bdebce

ac ad bdbc

(b)

Fig. 1 Running example: (a) the binary database D; and (b) a graphical representation of the lattice of itemsets 2I for
I = {a, b, c, d, e}: the set of σ-frequent (σ = 8) itemsets over D is displayed together with their supports (i.e., F(D, 8)). This
is what is disclosed, i.e., the whole information that a malicious adversary can use, while the grey area represents what is not
known. The singleton items f, g and h, and all their supersets, are not displayed: since they are infrequent, the adversary can
not even know that these items (or attributes) are present in the source data.

(and their supports) it was possible to infer the existence
of the non k-anonymous pattern a1 ∧ a2 ∧ a3 ∧ ¬a4.

Informally, we call inference channel any collection
of itemsets (with their respective supports), from which
it is possible to infer non k-anonymous patterns. In the
following we formally define and characterize inference
channels.

4.1 Inference Channels

Before introducing our anonymity preservation problem,
we need to define the inference of supports, which is the
basic tool for the attacks to anonymity.

Definition 6 (Database Compatibility) A set S of
pairs 〈X,n〉, where X ∈ 2I and n ∈ N, and a database
D are said to be compatible if ∀〈X,n〉 ∈ S.supD(X) = n.

Definition 7 (Support Inference) Given a set S of
pairs 〈X,n〉, where X ∈ 2I and n ∈ N, and a pattern
p ∈ Pat(I) we say that S |= sup(p) > x (respectively
S |= sup(p) < x) if, for all databases D compatible with
S, we have that supD(p) > x (respectively supD(p) < x).

Definition 8 (Inference Channel) An inference
channel C is a set of pairs 〈X,n〉, where X ∈ 2I and
n ∈ N, such that:

∃p ∈ Pat(I) : C |= 0 < sup(p) < k.

As suggested by Example 2, a simple inference chan-
nel is given by any itemset X which has a superset
X∪{a} such that 0 < supD(X)−supD(X∪{a}) < k. In
this case the pair 〈X, supD(X)〉, 〈X∪{a}, supD(X∪{a})〉
is an inference channel for the non k-anonymous pattern

X ∧ ¬a, whose support is directly given by supD(X) −
supD(X∪{a}). This is a trivial kind of inference channel.

Do more complex structures of itemsets exist that
can be used as inference channels?

In general, the support of a conjunctive pattern p =
i1 ∧ · · · ∧ im ∧ ¬a1 ∧ · · · ∧ ¬an can be inferred if we
know the support of itemsets I = {i1, . . . , im}, J = I ∪
{a1, . . . , an}, and every itemset L such that I ⊂ L ⊂ J .

Lemma 1 Given a pattern p = i1∧· · ·∧ im ∧¬a1∧· · ·∧
¬an we have that:

supD(p) =
∑

I⊆X⊆J

(−1)|X\I|supD(X)

where I = {i1, . . . , im} and J = I ∪ {a1, . . . , an}.

Proof (Sketch) The proof follows directly from the defi-
nition of support and the well-known inclusion-exclusion
principle [32].

Following the notation in [10], we denote the right-
hand side of the equation above as fJ

I (D).

Example 5 In the database D in Figure 1(a) we have that
supD(b ∧ ¬d ∧ ¬e) = f bde

b (D) = supD(b) − supD(bd) −
supD(be) + supD(bde) = 8 − 7 − 7 + 7 = 1.

Definition 9 Given a database D, and two itemsets
I, J ∈ 2I , I = {i1, . . . , im} and J = I ∪ {a1, . . . , an},
if 0 < fJ

I (D) < k, then the set

{〈X, supD(X)〉 | I ⊆ X ⊆ J}

constitutes an inference channel for the non k-
anonymous pattern p = i1 ∧ · · · ∧ im ∧ ¬a1 ∧ · · · ∧ ¬an.
We denote such inference channel CJ

I and we write
supD(CJ

I ) = fJ
I (D).
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Example 6 Consider the database D of Figure 1(a), and
suppose k = 3. We have that Ccde

∅ is an inference channel
of support 1. In fact we got that:
supD(Ccde

∅ ) = fcde
∅ (D) = supD(∅)− supD(c)− supD(d)−

supD(e)+supD(cd)+supD(ce)+supD(de)−supD(cde) =
12 − 9 − 10 − 11 + 9 + 9 + 10 − 9 = 1.

This means that there is only one transaction t ∈ D
is such that ¬c ∧ ¬d ∧ ¬e (transaction t12). A graphical
representation of this channel is given in Figure 2.

c

Ø

cd ce de

cde

d e10

9

11

9 10

9

9

12

Fig. 2 A detail of Figure 1(b): this is an inference channel,
(i.e, Ccde

∅ for k = 3).

The next Theorem states that if there exists a non k-
anonymous pattern, then there exists a pair of itemsets
I ⊆ J ∈ 2I such that CJ

I is an inference channel.

Theorem 1

∀p ∈ Pat(I) : 0 < supD(p) < k . ∃ I, J ∈ 2I : CJ
I

Proof Let us consider a generic pattern p ∈ Pat(I).
Without loss of generality p is in normal disjunctive
form: p = p1∨. . .∨pq, where each p1, . . . , pq is a conjunc-
tive pattern, i.e., a pattern made only by conjunction
and negation as the one in Lemma 1. We have that:

supD(p) ≥ max
1≤i≤q

supD(pi).

Since supD(p) < k we have for all patterns pi that
supD(pi) < k. Moreover, since supD(p) > 0 there is
at least a pattern pi such that supD(pi) > 0. There-
fore, there is at least a conjunctive pattern pi such that
0 < supD(pi) < k.

From Lemma 1, we have that ∃ I ⊆ J ∈ 2I :
supD(pi) = fJ

I (D). Since 0 < supD(pi) = fJ
I (D) < k

we have that CJ
I is an inference channel.

Corollary 1 Given a database D, and an anonymity
threshold k:

∄ I, J ∈ 2I : CJ
I ⇒ ∄p ∈ Pat(I) : 0 < supD(p) < k

5 Detecting Inference Channels

The problem addressed in the following is the detection
of anonymity threats in the output of a frequent itemset
extraction. From Corollary 1 we can conclude that by de-
tecting and sanitizing all inference channels of the form
CJ

I , we can produce a k-anonymous output which can be
safely disclosed. However, when we instantiate the gen-
eral theory above to the concrete case in which we want
to disclose a set of frequent itemsets (.i.e., F(D, σ) and
not the whole 2I), the situation is made more complex
by the frequency threshold. In fact, frequency divides
the lattice of itemsets 2I in two parts: the frequent part
which is disclosed, and the infrequent part (i.e., the grey
area in Figure 1(b)) which is not disclosed.

This division induces a distinction also on the kind
of patterns:

– patterns made only by composing pieces of F(D, σ);
– patterns made also using infrequent itemsets.

The following definition precisely characterize the
first kind.

Definition 10 (σ-vulnerable Pattern) Given a gen-
eral pattern p ∈ Pat(I), we can assume without loss
of generality that p is in normal disjunctive form: p =
p1∨. . .∨pq, where each pi is a conjunctive pattern. Given
a database D = (I, T ) and a minimum support threshold
σ, we define Pat(D, σ) ⊆ Pat(I) as the set of patterns
p = p1 ∨ . . . ∨ pq such that, for each conjunctive pattern
pi, if we consider the set of all items in it, i.e., the item-
set obtained removing the negation symbols from it, such
itemset is frequent. We call σ-vulnerable each pattern in
Pat(D, σ).

Example 7 Given a database D and a minimum support
threshold σ the pattern (a∧¬b)∨(d∧¬c) is in Pat(D, σ) if
〈ab, supD(ab)〉 ∈ F(D, σ) and 〈cd, supD(cd)〉 ∈ F(D, σ).
In the same case the pattern a∧d∧¬c is not in Pat(D, σ)
if 〈acd, supD(acd)〉 /∈ F(D, σ).

The interest in the σ-vulnerable patterns lies in the con-
sideration that a malicious attack starts from the deliv-
ered knowledge, i.e, the frequent itemsets.

We next project Theorem 1 on this class of patterns.

Theorem 2 Given a database D, a minimum support
threshold σ and an anonymity threshold k, we have that
∀p ∈ Pat(D, σ) : 0 < supD(p) < k there exist two
itemsets I, J ∈ 2I such that 〈I, supD(I)〉, 〈J, supD(J)〉 ∈
F(D, σ) and CJ

I .

Proof (Sketch) The proof follows directly from Theo-
rem 1 and Definition 10.

Corollary 2 Given a database D, and an anonymity
threshold k: ∄ 〈I, supD(I)〉, 〈J, supD(J)〉 ∈ F(D, σ) : CJ

I

⇒ ∄p ∈ Pat(D, σ) : 0 < supD(p) < k.
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Therefore, if we know that the set of frequent item-
sets F(D, σ) that we have extracted does not contain
any inference channel of the form CJ

I , we can be sure
that a malicious adversary will never infer from it a non
k-anonymous, σ-vulnerable pattern. In the rest of the
article we focus on this essential kind of patterns: as
stated above, a malicious adversary can easily find in-
ference channels made up only of elements which are
present in the disclosed output. However, these inference
channels are not the unique possible source of inference:
further inference channels involving also infrequent item-
sets could be possibly discovered, albeit in a much more
complex way. In fact, in [10] deduction rules to derive
tight bounds on the support of itemsets are introduced.
Given an itemset J , if for each subset I ⊂ J the support
supD(I) is known, such rules allow to compute lower
and upper bounds on the support of J . Let l be the
greatest lower bound we can derive, and u the smallest
upper bound we can derive: if we find that l = u then
we can infer that supD(J) = l = u without actual count-
ing. In this case J is said to be a derivable itemset. We
transpose such deduction techniques in our context and
observe that they can be exploited to discover informa-
tion about infrequent itemsets (i.e., infer supports in the
grey area of Figure 1(b)), and from these to discover in-
ference channels crossing the border with the grey area,
or even inference channels holding completely within the
grey area.

This higher-order problem is discussed later in Sec-
tion 9. However, here we can say that the techniques
to detect this kind of inference channels and to block
them are very similar to the techniques for the first kind
of channels. This is due to the fact that both kinds of
channels rely on the same concept: inferring supports of
larger itemsets from smaller ones. Indeed, the key equa-
tion of our work (Lemma 1) is also the basis of the de-
duction rules proposed in [10]. For the moment, let us
restrict our attention to the essential form of inference
channel, namely those involving frequent itemsets only.

Problem 1 (Inference Channels Detection) Given
a collection of frequent itemsets F(D, σ) and an
anonymity threshold k, our problem consists in detect-
ing all possible inference channels C ⊆ F(D, σ) : ∃p ∈
Pat(D, σ) : C |= 0 < supD(p) < k.

Our mining problem can be seen as a second-order
frequent pattern extraction with two frequency thresh-
olds: the usual minimum support threshold σ for item-
sets (as defined in Definition 5), and an anonymity
threshold k for general patterns (as defined in Defini-
tion 2).

Note that an itemset with support less than k is itself
a non k-anonymous, and thus dangerous, pattern. How-
ever, since we are dealing with σ-frequent itemsets, and
since we can reasonably assume that σ ≫ k, such pattern
would be discarded by the usual mining algorithms.

We just stated that we can reasonably assume σ to
be much larger than k. In fact σ, in real-world applica-
tions is usually in the order of hundreds, or thousands,
or (more frequently) much larger. Consider that having
a small σ on a real-world database, would produce an
extremely large number of associations in output, or it
would lead to an unfeasible computation. On the other
hand, the required level of anonymity k is usually in the
order of tens or even smaller. Therefore, it is reasonable
to assume σ ≫ k. However, for sake of completeness, if
we have σ < k then our mining problem will be trivially
solved by adopting k as minimum support threshold in
the mining of frequent itemsets.

In the rest of this paper we will avoid discussing this
case again, and we will always assume σ > k.

Definition 11 The set of all CJ
I holding in F(D, σ), to-

gether with their supports, is denoted Ch(k,F(D, σ)) =
{〈CJ

I , fJ
I (D)〉 | 0 < fJ

I (D) < k ∧ 〈J, supD(J)〉 ∈
F(D, σ)}.

Example 8 Consider the database D in Figure 1(a) and
suppose σ = 8 and k = 3. The following is the set of
inference channels holding in F(D, 8):
Ch(3,F(D, 8)) = {〈Cd

∅ , 2〉, 〈Cde
∅ , 1〉, 〈Cde

e , 1〉, 〈Cdc
d , 1〉,

〈Cdc
∅ , 2〉, 〈Cdce

de , 1〉, 〈Cdce
∅ , 1〉, 〈Cdce

e , 1〉, 〈Cce
∅ , 1〉, 〈Cce

e , 2〉,

〈Cae
a , 1〉, 〈Cab

a , 1〉, 〈Ce
∅, 1〉}.

Algorithm 1 Näıve Inference Channel Detector

Input: F(D, σ), k
Output: Ch(k,F(D, σ))
1: Ch(k,F(D, σ)) = ∅
2: for all 〈J, sup(J)〉 ∈ F(D, σ) do

3: for all I ⊆ J do

4: compute fJ

I ;
5: if 0 < fJ

I < k then

6: insert〈CJ

I , fJ

I 〉 in Ch(k,F(D, σ));

Algorithm 1 detects all possible inference channels
Ch(k,F(D, σ)) that hold in a collection of frequent item-
sets F(D, σ) by checking all possible pairs of itemsets
I, J ∈ F(D, σ) such that I ⊆ J . This could result in
a very large number of checks. Suppose that F(D, σ) is
formed only by a maximal itemset Y and all its subsets
(an itemset is maximal if none of its proper supersets
is in F(D, σ)). If |Y | = n we get |F(D, σ)| = 2n (we
also count the empty set), while the number of possible
CJ

I is
∑

1≤i≤n (n
i ) (2i − 1). In the following Section we

study some interesting properties that allow to dramat-
ically reduce the number of checks needed to retrieve
Ch(k,F(D, σ)).

6 A Condensed Representation

In this section we introduce a condensed representation
of Ch(k,F(D, σ)). A condensed representation of a col-
lection of patterns (in our case of Ch(k,F(D, σ))) is a
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subset of the collection which is more efficient to com-
pute, and from which we can reconstruct the original
collection without accessing the database again. In other
words it removes redundancy while preserving all the in-
formation.

The benefits of having such condensed representa-
tion go far beyond mere efficiency in the detection
phase. In fact, by removing the redundancy existing in
Ch(k,F(D, σ)), we also implicitly avoid redundant sani-
tization, when blocking the channels holding in F(D, σ),
to produce a safe output (the issue of how to sanitize the
inference channels found in F(D, σ) is addressed in Sec-
tion 7) .

Consider, for instance, the two inference channels
〈Ce

∅, 1〉 and 〈Cde
∅ , 1〉 holding in Ch(3,F(D, 8)) of our run-

ning example: one is more specific than the other, but
they both uniquely identify transaction t12. It is easy
to see that many other families of equivalent, and thus
redundant, inference channels can be found. How can
we directly identify one and only one representative in-
ference channel in each family of equivalent ones? The
theory of closed itemsets can help us with this problem.

Closed itemsets were first introduced in [38] and re-
ceived a great deal of attention especially by an algorith-
mic point of view [49,39]. They are a concise and lossless
representation of all frequent itemsets, i.e., they contain
the same information without redundancy. Intuitively, a
closed itemset groups together all its subsets that have
its same support; or in other words, it groups together
itemsets which identify the same group of transactions.

Definition 12 (Closure Operator) Given the func-
tion f(T ) = {i ∈ I | ∀t ∈ T, i(t)}, which returns all
the items included in the set of transactions T , and the
function g(X) = {t ∈ T | X(t)} which returns the set of
transactions supporting a given itemset X, the composite
function c = f ◦ g is the closure operator.

Definition 13 (Closed Itemset) An itemset I is
closed if and only if c(I) = I. Alternatively, a closed
itemset can be defined as an itemset whose supersets
have a strictly smaller support. Given a database D
and a minimum support threshold σ, the set of frequent
closed itemsets is denoted: Cl(D, σ) = {〈X, supD(X)〉 ∈
F(D, σ)|∄Y ⊃ Xs.t.〈Y, supD(X)〉 ∈ F(D, σ)}.

Example 9 Given the binary database D in Figure 1(a),
and a minimum support threshold σ = 8, we have that:
Cl(D, 8) = {〈∅, 12〉, 〈a, 9〉, 〈e, 11〉, 〈ab, 8〉, 〈ae, 8〉, 〈de, 10〉,
〈cde, 9〉}.

Definition 14 (Maximal Frequent Itemset) An
itemset I ∈ Cl(D, σ) is said to be maximal if and only if
∄J ⊃ I s.t. J ∈ Cl(D, σ).

Analogously to what happens for the pattern class of
itemsets, if we consider the pattern class of conjunctive
patterns we can rely on the anti-monotonicity property
of frequency. For instance, the number of transactions

for which the pattern a ∧ ¬c holds is always larger than
the number of transactions for which the pattern a∧ b∧
¬c∧¬d holds. This can be straightforwardly transposed
to inference channels.

Definition 15 Given two inference channels CJ
I and CL

H

we say that CJ
I � CL

H when I ⊆ H and (J \ I) ⊆ (L\H).

Proposition 1 CJ
I � CL

H ⇒ ∀D . fJ
I (D) ≥ fL

H(D).

It follows that, when detecting inference channels,
whenever we find a two itemsets H ⊆ L such that
fL

H(D) ≥ k, we can avoid checking the support of all
CJ

I � CL
H , since they will not be inference channels.

Definition 16 (Maximal Inference Channel) An
inference channel CJ

I is said to be maximal w.r.t. D,
k and σ, if ∀H,L such that I ⊆ H and (J \I) ⊆ (L\H),
fL

H = 0. The set of maximal inference channels is de-
noted MCh(k, Cl(D, σ)).

Proposition 2

CJ
I ∈ MCh(k, Cl(D, σ)) ⇒ I ∈ Cl(D, σ) ∧ J is maximal.

Proof i) I ∈ Cl(D, σ): if I is not closed then consider its
closure c(I) and consider J ′ = J ∪ (c(I) \ I). For the
definition of closure, the set of transactions containing
I is the same of the set of transactions containing c(I),
and the set of transactions containing J ′ is the same
of the set of transactions containing J . It follows that
CJ ′

c(I) � CJ
I and fJ

c(I) = fJ
I > 0. Then, if I is not closed,

CJ
I is not maximal.

ii)J is maximal: if J is not maximal then consider its
frequent superset J ′ = J ∪ {a} and consider I ′ = I ∪ a.
It is straightforward to see that fJ

I = fJ ′

I +fJ ′

I′ and that

CJ ′

I � CJ
I and CJ ′

I′ � CJ
I . Therefore, since fJ

I > 0, at least

one among fJ ′

I and fJ ′

I′ must be not null. Then, if J is
not maximal, CJ

I is not maximal as well.

Example 10 Consider the database D in Figure 1(a)
and suppose σ = 8 and k = 3. The following is the
set of maximal inference channels: MCh(3, Cl(D, 8)) =
{〈Ccde

∅ , 1〉, 〈Cab
a , 1〉, 〈Cae

a , 1〉, 〈Ccde
e , 1〉, 〈Ccde

de , 1〉}.

The next Theorem shows how the support of any
channel in Ch(k,F(D, σ)) can be reconstructed from
MCh(k, Cl(D, σ)).

Theorem 3 Given I ⊆ J ∈ 2I , let M be any maximal
itemset such that M ⊇ J . The following equation holds:

fJ
I (D) =

∑

c(X)

fM
c(X)(D)

where c(I) ⊆ c(X) ⊆ M and c(X) ∩ (J \ I) = ∅.
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Proof By definition, fJ
I is equal to the number of trans-

actions t s.t. CJ
I (t), i.e., all items in I are set to 1 and all

items in J \ I are set to 0. We prove that, in the sum-
mation in the right-hand side of the equation: (i) each
of such transactions is counted once, (ii) only once, and
(iii) no other transaction is counted.

i) we must show that every such transaction t is consid-
ered at least once. This means that exists an itemset X
such that c(I) ⊆ c(X) ⊆ M and c(X) ∩ (J \ I) = ∅.

Let Y denote the set of items in the M -projection
of t that are set to 1. Y is necessarily a frequent closed
itemset 2. Let X be the itemset such that c(X) = Y . We
have that c(I) ⊆ c(X) ⊆ M and c(X) ∩ (J \ I) = ∅.

Y = c(X)
c(I)
I

t 1 1 1 1 1 1 1 1 0 0 0 0 . . .

J

M

ii) we must show that in the summation we count each
such transaction t exactly once: this means that CM

c(X)

(with M fixed and varying c(X)) forms a partition of
the set of transactions t such that CJ

I (t). In fact, given
c(X1) ⊂ c(X2), we have that each item in c(X2) \ c(X1)
is set to 0 in the transactions t such that CM

c(X1)
(t), and

set to 1 in the transactions t such that CM
c(X2)

(t). As a
consequence, the same transaction can not be considered
by both CM

c(X1)
and CM

c(X2)
.

iii) For a transaction t in order to be counted, it must
exist an itemset X such that c(X) holds in t. Since we
require c(I) ⊆ c(X) ⊆ M and c(X) ∩ (J \ I) = ∅, no
transaction having an item in I set to 0, or an item in
J \ I set to 1, can be counted.

Corollary 3 For all 〈CJ
I , fJ

I (D)〉 ∈ Ch(k,F(D, σ)) we
have that, for any c(X) s.t. c(I) ⊆ c(X) ⊆ M and c(X)∩
(I \ J) = ∅, 0 ≤ fM

c(X)(D) < k .

Proof Since CJ
I � CM

c(X), and fJ
I (D) < k, we conclude

that fM
c(X)(D) ≤ fJ

I (D) < k. Moreover, for at least one

c(X) we have that fM
c(X)(D) > 0, otherwise we get a

contradiction to Theorem 3.

From Corollary 3 we conclude that all the addends
needed to compute fJ

I (D) for an inference channel are
either in MCh(k, Cl(D, σ)) or are null. Therefore, as
the set of all closed frequent itemsets Cl(D, σ) con-
tains all the information of F(D, σ) in a more compact

2 By contradiction, if Y is not closed, then there is at least
one other item a which is always set to 1 in all transactions t

such that Y (t). Since Y is the positive part the M -projection
of t, it follows that a is not in M , hence M ∪{a} is frequent,
hence M is not maximal.

representation, analogously the set MCh(k, Cl(D, σ))
represents, without redundancy, all the information in
Ch(k,F(D, σ)).

In the database D of Figure 1(a), given σ = 6
and k = 3, we have that |Ch(3,F(D, 6))| = 58 while
|MCh(3, Cl(D, 6))| = 5 (Figure 1(e)), a reduction of one
order of magnitude. On the same database for σ = 6 and
k = 3 (our running example, we got |Ch(3,F(D, 6))| =
13 while |MCh(3, Cl(D, 6))| = 5.

Such compression of the condensed representation is
also confirmed by our experiments on various datasets
from the FIMI repository [1], reported in Figure 3(a).

Another important benefit of our condensed repre-
sentation, is that, in order to detect all inference chan-
nels holding in F(D, σ), we can limit ourselves to re-
trieve only the inference channels in MCh(k, Cl(D, σ)),
thus taking in input Cl(D, σ) instead of F(D, σ) and thus
performing a much smaller number of checks. Algorithm
2 exploits the anti-monotonicity of frequency (Propo-
sition 1) and the property of maximal inference chan-
nels (Proposition 2) to compute MCh(k, Cl(D, σ)) from
Cl(D, σ). Thanks to these two properties, Algorithm 2
dramatically outperform the naive inference channel de-
tector (Algorithm 1), and scales well even for very low
support thresholds, as reported in Figure 3(b). Note that
the run-time of both algorithms is independent from k,
while it depends from the minimum support threshold.

Algorithm 2 Optimized Inference Channel Detector

Input: Cl(D, σ), k
Output: MCh(k, Cl(D, σ))
1: M = {I ∈ Cl(D, σ)|I is maximal};
2: MCh(k, Cl(D, σ)) = ∅;
3: for all J ∈M do

4: for all I ∈ Cl(D, σ) such that I ⊆ J do

5: compute fJ

I ;
6: if 0 < fJ

I < k then

7: insert 〈CJ

I , fJ

I 〉 inMCh(k, Cl(D, σ));

6.1 Anonymity vs. Accuracy: Empirical Observations

Algorithm 2 represents an optimized way to identify all
threats to anonymity. Its performance revealed adequate
in all our empirical evaluations using various datasets
from the FIMI repository [1]; in all such cases the time
improvement from the Näıve (Algorithm 1) to the op-
timized algorithm is about one order of magnitude, as
reported in Figure 3(b).

This level of efficiency allows an interactive-iterative
use of the algorithm by the analyst, aimed at finding the
best trade-off among privacy and accuracy of the collec-
tion of patterns. To be more precise, there is a conflict
among keeping the support threshold as low as possible,
in order to mine all interesting patterns, and avoiding
the generation of anonymity threats.
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Fig. 4 Experimental results on cardinality of MCh(k, Cl(D, σ)) on two datasets.

The best solution to this problem is precisely to find
out the minimum support threshold that generates a col-
lection of patterns with no threats, thus avoiding to in-
troduce the distortion needed to block the threats, and
thus preserving accuracy.

The plots in Figure 4(a) and (b) illustrate this point:
on the x-axis we report the minimum support threshold,
on the y-axis we report the total number of threats (the
cardinality of MCh(k, Cl(D, σ))), and the various curves
indicate such number according to different values of the
anonymity threshold k. In Figure 4(a) we report the plot
for the mushroom dataset (a dense one), while in Fig-
ure 4(b) we report the plot for the kosarak dataset
which is sparse. In both cases, it is evident the value of
the minimum support threshold that represents the best
trade-off, for any given value of k. However, in certain
cases, the best support threshold can still be too high
to mine a sufficient quantity of interesting patterns. In
such cases, the only option is to allow lower support

thresholds and then to block the inference channels in
the mining outcome. This problem will be the central
topic of the following sections.

7 Blocking Inference Channels

In the previous sections we have studied Problem 1: how
to detect inference channels in the output of a frequent
itemset extraction. Obviously, a solution to this problem
directly yields a method to formally prove that the dis-
closure of a given collection of frequent itemsets does not
violate the anonymity constraint: it is sufficient to check
that no inference channel exists for the given collection.
In this case, the collection can be safely distributed even
to malicious adversaries. On the contrary, if this is not
the case, we can proceed in two ways:
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– mine a new collection of frequent itemsets under dif-
ferent circumstances, e.g., higher minimum support
threshold, to look for an admissible collection;

– transform (sanitize) the collection to remove the in-
ference channels.

When it is needed to pursue the second alternative,
we are faced with a second problem, which is addressed
in this section.

Problem 2 (Inference Channels Sanitization)
Given a collection of frequent itemsets F(D, σ), and the
set of all its inference channels Ch(k,F(D, σ)), trans-
form F(D, σ) in a collection of frequent itemsets Ok,
which can be safely disclosed. Ok is the output of our
problem, and it must satisfy the following conditions:

1. Ch(k,Ok) = ∅;
2. ∃D′ : Ok = F(D′, σ);
3. the effects of the transformation can be controlled by

means of appropriate measures.

The first condition imposes that the sanitized output
Ok does not contain any inference channel. Note that in
the sanitization process, while introducing distortion to
block the “real” inference channels holding in F(D, σ),
transforming it in Ok, we could possibly create some new
“fake” inference channels (not existing in the original
database and thus not violating the anonymity of real
individuals). We do not allow this possibility: although
fake, such inference channels could be the starting point
for a backward reasoning of a malicious adversary, in
other terms, could open the door to inverse mining at-
tacks.

The second condition constraints the output collec-
tion of itemsets to be “realistic”; i.e., to be compati-
ble with at least a database. Note that, according to
Definition 7, we can infer everything from F(D, σ), if
F(D, σ) itself is not compatible with any database, or,
in other words, if it contains contradictions (for instance,
sup tdb(X) < supD(Y ) with X ⊂ Y ). Disclosing an out-
put which is not compatible with any database could
represent a threat. In fact, a malicious adversary could
recognize that the set of pattern disclosed is not “real”,
and he could exploit this leak by reconstructing the miss-
ing patterns, starting from those ones present in the out-
put. We call this kind of threat inverse mining attacks.

The inverse mining problem, i.e. given a set of σ-
frequent itemsets reconstruct a database compatible
with it, has been shown NP-complete [9]. However such
a problem can be tackled by using some heuristics [48].
In this paper, in order to avoid this kind of attacks, we
study how to sanitize a set of patterns in such a way
that the output produced is always compatible with at
least one database. Doing so, we avoid the adversary to
distinguish an output which as been k-anonymized from
a non k-anonymized one.

Finally, the third condition of Problem 2 requires to
control the distortion effects of the transform of the orig-

inal output by means of appropriate distortion measures
(see Section 7).

Note that our output Ok always contains also the
number of individuals in the database, or at least a san-
itized version of such number. In fact, since Ok must
be realistic, for the anti-monotonicity of frequency it
must always contain the empty itemset with its support,
which corresponds to the number of transactions in the
database. More formally, we can say that 〈∅, supD′(∅)〉 ∈
Ok and supD′(∅) = |D′|, where D′ is a database compati-
ble with Ok. The relevance of this fact is twofold. On one
hand the size of the database in analysis is a important
information to disclose: for instance, in a medical do-
main, the number of patients on which a novel treatment
has been experimented, and to which the set of extracted
association rules refers, can not be kept secret. On the
other hand, disclosing such number can help a malicious
adversary to guess the support of non k-anonymous pat-
terns.

One näıve attempt to solve Problem 2 is simply to
eliminate from the output any pair of itemsets I, J such
that CJ

I is an inference channel. Unfortunately, this kind
of sanitization would produce an output which is, in gen-
eral, not compatible with any database. As stated before,
we do not admit this kind of solution, because disclosing
an inconsistent output could open the door to inverse
mining attacks.

In this Section, under the strong constraints imposed
above, we develop two dual strategies to solve Problem 2.
The first one blocks inference channels by increasing the
support of some itemsets in F(D, σ). Such support in-
creasing is equivalent to adding transaction to the orig-
inal database D, and thus such strategy is named addi-
tive sanitization. The second strategy, named suppres-
sive sanitization3, blocks inference channels by decreas-
ing the support of some itemsets (equivalent to suppress
transactions from D).

7.1 Avoiding Redundant Distortion

Using our condensed representation of maximal infer-
ence channels introduced in Section 6, we remove the re-
dundancy existing in Ch(k,F(D, σ)), but this means to
implicitly avoid redundant sanitization, and thus we dra-
matically reduce the distortion needed to block all the
inference channels. In fact, to block an inference channel
CJ

I ∈ Ch(k,F(D, σ)) we have two main options:

– making the inference channel anonymous enough,
i.e., forcing fJ

I (D) ≥ k;

– making the inference channel disappear, i.e., forcing
fJ

I (D) = 0.

The following two propositions show that, whichever
option we choose, we can just block the channels in

3 A preliminary version of this second strategy is in [7].
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MCh(k, Cl(D, σ)), obtaining to block all the inference
channels in Ch(k,F(D, σ)).

Proposition 3 Given a database D, consider a database
D′ s.t. ∀〈CL

H , fL
H(D)〉 ∈ MCh(k, Cl(D, σ)) it holds that

fL
H(D′) ≥ k. Then from Proposition 1 it follows that
∀〈CJ

I , fJ
I (D)〉 ∈ Ch(k,F(D, σ)), fJ

I (D′) ≥ k.

Proposition 4 Given a database D, consider a database
D′ s.t. ∀〈CL

H , fL
H(D)〉 ∈ MCh(k, Cl(D, σ)) it holds that

fL
H(D′) = 0. Then from Proposition 3 it follows that
∀〈CJ

I , fJ
I (D)〉 ∈ Ch(k,F(D, σ)), fJ

I (D′) = 0.

In the following we exploit these properties to reduce
the distortion needed to sanitize our output.

7.2 Additive Sanitization

Given the set of frequent itemsets F(D, σ), and the set of
channels holding in it, the simplest solution to our prob-
lem is the following: for each CJ

I ∈ Ch(k,F(D, σ)), in-
crease the support of the itemset I by k to force fJ

I > k.
In order to maintain database-compatibility, the support
of all subsets of I is increased accordingly. This is equiva-
lent to add k transactions t = I to the original database
D. Clearly, we are not really adding transactions: this
is just to highlight that the transformed set of frequent
itemsets maintains database-compatibility. Moreover, it
will contain exactly the same itemsets, but with some
supports increased.

One could observe that it is not strictly necessary to
increase the support of I by k, but it is sufficient to in-
crease it by k − fJ

I to block the inference channel (mak-
ing it reach the anonymity threshold k). This solution
has two drawbacks. First, it creates new fake inference
channels (which are not allowed by our problem defini-
tion). Second, it would produce an output on which a
malicious adversary, could compute and find out a lot of
fJ

I = k. This could suggest to the adversary: (i) that a
k-anonymization has taken place, (ii) the exact value of
k, and (iii) the set of possible patterns which have been
distorted. Increasing the support of I by k we avoid all
these problems.

The third requirement of our problem is to minimize
the distortion introduced during the anonymization pro-
cess. Since in our sanitization approach the idea is to
increment supports of itemsets and their subsets (by
virtually adding transactions in the original dataset),
minimizing distortion means reducing as much as possi-
ble the increments of supports (i.e., number of trans-
actions virtually added). To do this, we exploit the
anti-monotonicity property of patterns, and the con-
densed representation introduced in Section 6. There-
fore we will actually feed the sanitization algorithm with
Cl(D, σ) and MCh(k, Cl(D, σ)), instead of F(D, σ) and
Ch(k,F(D, σ)). But we can do something more. In fact,
when adopting an additive strategy, some redundancy

can be found and avoided, even in MCh(k, Cl(D, σ)), as
described in the following.

Example 11 Consider the two maximal inference chan-
nels 〈Cab

a , 1〉, 〈Cae
a , 1〉 ∈ MCh(3, Cl(D, 8)) (Example 10).

According to the additive strategy we should virtually
add 3 transactions ′a′ for the first channel, and other
3 transactions ′a′ for the second channel. Obviously we
can just add 3 transactions to block both channels.

Definition 17 (Maximal Channels Merging) Two
inference channels CJ

I and CL
H can be merged if I ⊆ H

and H∩(J\I) = ∅; or viceversa, H ⊆ I and I∩(L\H) =
∅. Their merge is CJ

I ⊲⊳ CL
H = CJ∪L

I∪H .

Example 12 Mining the mushroom dataset (8124 trans-
actions) at 60% minimum support level (absolute sup-
port σ = 4874) we obtain 52 frequent itemsets (counting
also the empty set). With k = 10 the detection algorithm
can find 20 inference channels. Among them, only 3 are
maximal:

C
{85,86,39,34}
{85,34} , C

{85,59,86,34}
{85,34} , C

{85,86,90,36,34}
{85,90,34}

In this case all of them can be merged into a unique in-

ference channel: C
{85,59,86,39,34,90,36}
{85,34,90} . Therefore, increas-

ing the support of the itemset {85, 34, 90} and of all its
subsets by 10, we remove all the 20 inference channels
holding in the output of frequent itemset mining on the
mushroom dataset at 60% of support.

Algorithm 3 implements the additive sanitiza-
tion just described: it takes in input Cl(D, σ) and
MCh(k, Cl(D, σ)), and returns Ok, which in this case is
the sanitized version of Cl(D, σ). Obviously, if we want to
output a sanitized version of F(D, σ) instead of Cl(D, σ),
we can simply reconstruct it from the sanitized version
of Cl(D, σ) (recall that F(D, σ) and Cl(D, σ) contain ex-
actly the same information). The algorithm is composed
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Algorithm 3 Additive Sanitization

Input: Cl(D, σ),MCh(k, Cl(D, σ))
Output: Ok

1: //Merging phase
2: S ← ∅;
3: for all 〈CJ

I , fJ

I 〉 ∈ MCh(k, Cl(D, σ)) do

4: if ∃CJ
′

I′ ∈ S s.t. CJ

I and CJ
′

I′ can be merged
then

5: S ← S \ {CJ
′

I′ };

6: S ← S ∪ (CJ

I ⊲⊳ CJ
′

I′ );
7: else

8: S ← S ∪ {CJ

I };
9: //Distortion phase

10: for all 〈I, supD(I)〉 ∈ Cl(D, σ) do

11: for all CJ
′

I′ ∈ S s.t. I ⊆ I ′ do

12: supD(I)← supD(I) + k;
13: Ok ← Cl(D, σ)

by two phases: during the first phase all maximal chan-
nels are merged as much as possible, according to Def-
inition 17; then the resulting set of merged channels is
used in the second phase to select the itemsets whose
support must be increased.

Example 13 Consider MCh(3, Cl(D, 8)) in Example 10.
The 5 maximal inference channels can be merged giv-
ing 3 channels: Cabcde

a , Ccde
e and Ccde

de . Therefore, accord-
ing to the additive strategy, we sanitize Cl(D, 8) (Exam-
ple 9) virtually adding 3 transactions ′a′, 3 transactions
′e′, and 3 transactions ′de′. The resulting set is O3 =
{〈∅, 21〉, 〈a, 12〉, 〈e, 17〉, 〈ab, 8〉, 〈ae, 8〉, 〈de, 13〉, 〈cde, 9〉}.

7.3 Suppressive Sanitization

The basic idea of Suppressive Sanitization is to hide in-
ference channels, sending their support to 0: this can be
done by removing transactions t s.t. I ⊆ t∧(J\I)∩t = ∅.
Unfortunately, we can not simulate such suppression of
transactions simply by decreasing the support of the
itemset I by fJ

I for each CJ
I ∈ Ch(k,F(D, σ)), since we

would lose database-compatibility due to the other items
appearing in the dangerous transactions. Consider for in-
stance a transaction I ∪ {x, y, z}: removing it we reduce
the support of I, but as uncontrolled side effect, we also
reduce the support of the itemset I ∪ {x}. Therefore,
in order to maintain database-compatibility, we must
take into account these other items carefully. On way of
achieving this is to really access the database, suppress
the dangerous transactions, and reduce the support of
all itemsets contained in the suppressed transactions ac-
cordingly. But this is not enough. In fact, while in the
additive strategy described before, is sufficient to raise
the supports by k to be sure that no novel (fake) infer-
ence channel is created, the case is more subtle with the
suppressive strategy. The unique solution here is to per-
form again the detection algorithm on the transformed

Algorithm 4 Suppressive Sanitization

Input: Cl(D, σ),MCh(k, Cl(D, σ)),D
Output: Ok

1: whileMCh(k, Cl(D, σ)) 6= ∅ do

2: //Scan the database
3: for all t ∈ D do

4: if ∃〈CJ

I , fJ

I 〉 ∈ MCh(k, Cl(D, σ)) s.t.
I ⊆ t and (J \ I) ∩ t = ∅ then

5: //Transaction suppression
6: for all 〈X, supD(X)〉 ∈ Cl(D, σ) s.t. X ⊆ t do

7: supD(X)← supD(X)− 1;
8: //Compact Cl(D, σ)
9: for all 〈X, s〉 ∈ Cl(D, σ) do

10: if ∃〈Y, s〉 ∈ Cl(D, σ) s.t. Y ⊃ X or s < σ then

11: Cl(D, σ)← Cl(D, σ) \ 〈X, s〉;
12: detectMCh(k, Cl(D, σ)) in Cl(D, σ);
13: Ok ← Cl(D, σ);

database, and if necessary, to block the novel inference
channels found. Obviously, this process can make some
frequent itemsets become infrequent. This is a major
drawback of the suppressive strategy w.r.t. the additive
strategy which has the nice feature of maintaining the
same set of frequent itemsets (even if with larger sup-
ports).

Algorithm 4 implements the suppressive sanitization
which access the database D on the basis of the infor-
mation in MCh(k, Cl(D, σ)), and adjust Cl(D, σ) with
the information found in D. As for the additive strategy,
the following pseudo-code outputs a sanitized version of
Cl(D, σ) but nothing prevents us from disclosing a sani-
tized version of F(D, σ).

Example 14 Consider Cl(D, 8) and MCh(3, Cl(D, 8))
in Fig.1(d) and (e). Suppressive Sanitization removes
transactions which are directly involved in maximal
inference channels. In our example we got 5 maximal
inference channels 〈Ccde

∅ , 1〉, 〈Cab
a , 1〉, 〈Cae

a , 1〉, 〈Ccde
e , 1〉

and 〈Ccde
de , 1〉 corresponding to transactions t12, t8, t12, t8

and t7 respectively. The suppression of these 3 trans-
actions reduces the support of some closed itemsets.
In particular, at the end of the suppression phase
(line 8 of Algorithm 4) we got that Cl(D, 8) =
{〈∅, 9〉, 〈a, 6〉, 〈e, 9〉, 〈ab, 6〉, 〈ae, 6〉, 〈de, 9〉, 〈cde, 9〉}.
Compacting Cl(D, 8) means to remove from it itemsets
which, due to the transactions suppression, are no
longer frequent or no longer closed (lines 9 – 12), i.e.,
Cl(D, 8) = {〈cde, 9〉}. At this point Algorithm 4 invokes
the optimized detection algorithm (Algorithm 2) to
find out the maximal channels in the new Cl(D, 8), and
if necessary, starts a new suppression phase. In our
example this is not the case, since we have no more
inference channels. Therefore the resulting output,
which can be safely disclosed, is given by the itemset
′cde′ and all its subsets, all having the same support 9.



16 Maurizio Atzori et al.

8 Experimental Analysis

In this section we report the results of the experimental
analysis that we have conducted in order to:

– assess the distortion introduced by our sanitization
strategies;

– measure time needed by our sanitization framework
(inference channels detection plus blocking);

– compare empirically the differences between k-
anonymizing the data and k-anonymizing the pat-
terns.

8.1 Distortion Empirical Evaluation

In the following we report the distortion empirical evalu-
ation we have conducted on three different datasets from
the FIMI repository [1], with various σ and k thresholds,
recording the following four measures of distortion:

1. Absolute number of transaction virtually added (by
the additive strategy) or suppressed (by the suppres-
sive strategy).

2. The fraction of itemsets in F(D, σ) which have their
support changed in Ok:

| {〈I, supD(I)〉 ∈ F(D, σ) : supOk(I) 6= supD(I)} |

|F(D, σ)|

where supOk(I) = s if 〈I, s〉 ∈ Ok; 0 otherwise.
3. The average distortion w.r.t. the original support of

itemsets:

1

| F(D, σ) |

∑

I∈F(D,σ)

|supOk(I) − supD(I)|

supD(I)

4. The worst-case distortion w.r.t. the original support
of itemsets:

max
I∈F(D,σ)

{

| supOk(I) − supD(I) |

supD(I)

}

The first row of plots in Figure 6 reports the first
measure of distortion. Since the size of MCh(k, Cl(D, σ))
grows for larger k and for smaller σ, the number of trans-
actions added (by the additive strategy) or suppressed
(by the suppressive strategy) behaves accordingly. How-
ever, in few cases, the additive sanitization exhibits a
non-monotonic behavior (e.g., the local maximum for
σ = 55% and k = 50 in Figure 6(a)): this is due to the
non-monotonicity of the merge operation (Definition 17
and lines 4–6 of Algorithm 1). In general, for reasonable
values of σ, the number of transactions involved in the
sanitization is always acceptable (the total number of
transactions in mushroom, kosarak and retail are
respectively 8124, 990002 and 88162).

The percentage of itemsets whose support has been
distorted is reported in the second row of plots of Fig-
ure 6. Additive sanitization always behaves better than

suppressive: in fact, for each inference channel CJ
I , addi-

tive only changes the support of I and its subsets, while
suppressive changes the support of other itemsets con-
tained in the dangerous transaction. Non-monotonicity
(evident in Figure 6(d), but also present in Figure 6(e)
and (f)) is due to the fact that lowering the value of σ
some infrequent itemsets became frequent but they do
not contribute to new inference channels.

The third row of plots of Figure 6 reports the average
distortion introduced. Notice that this measure drasti-
cally penalizes the suppression approach that possibly
makes some itemsets become infrequent: for this item-
sets we count a maximum distortion of 1 (supOk(I) = 0).

It is worth noting that, while the number of itemsets
distorted is usually very large, the average distortion on
itemsets is very low: this means that quite all itemsets
are touched by the sanitization, but their supports are
changed just a little. Consider, for instance, the experi-
ment on kosarak (Figure 6(e) and (h)) with k = 50 and
σ = 0.6%: the additive strategy changes the support of
the 40% of itemsets in the output, but the average dis-
tortion is 0.4%; the suppressive sanitization changes the
100% of itemsets but the average distortion is 2.1%.

Finally, the fourth row of plots of Figure 6 reports the
worst-case distortion, i.e., the maximum distortion of the
support of an itemset in F(D, σ). Note that this mea-
sure is 100% whenever the suppressive strategy makes at
least one frequent itemset infrequent. While for the ad-
ditive strategy the itemset maximally distorted is always
the empty itemset, i.e. the bottom of the itemset lattice,
which, as discussed in Section 7, is always present in our
output Ok, and which represents the number of transac-
tions in the database. Since the empty itemset is subset
of any set, every single transaction virtually added by
the additive strategy increases its support.

Also w.r.t. this measure the additive strategy out-
performs the suppressive strategy, providing a reason-
able distortion. However, note that when the suppressive
strategy does not make any frequent itemset become in-
frequent (for instance in Figure 6(j) for k = 5 and a
support of 25%) the worst-case distortion is less than
the distortion introduced by the additive strategy.

A major drawback of the additive approach is that
the transactions virtually added are fake. The suppres-
sive approach, on the other hand, induces a stronger
distortion, but such distortion is only due to the hid-
ing of some nuggets of information containing threats to
anonymity. Therefore, in many practical situations, the
suppressive strategy could be a more reasonable choice,
guaranteing a more meaningful output.

8.2 Run-time Analysis

Although time performance is not a central issue in our
proposal, it is worth noting that the execution of both
strategies was always very fast. Figure 7 reports the time
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Fig. 6 Distortion empirical evaluation.
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Fig. 7 Experiments on run-time (both detection and sanitization).

needed to detect and sanitize inference channels, i.e., Al-
gorithm 2 followed by Algorithm 3 (Additive) or 4 (Sup-
pressive). Note that (quite obviously) run-time gener-
ally grows for growing k and shrinking σ. However, in
Figure 7(c) the suppressive strategy has an evident non
monotonic behaviour w.r.t. σ: this is due to the possibly
different number of sanitization cycles required by the
suppressive strategy for different σ.

8.3 Anonymizing Data Vs. Anonymizing Patterns

In the following we resume the thread of the discourse
we began in Section 3. As stated before, a trivial so-
lution to our pattern sanitization problem could be to
first k-anonymize the source database D using some well
known techniques (for instance the datafly algorithm
[45], or the incognito algorithm [33]), obtaining a k-
anonymized database D′, and then to mine the frequent
itemsets from D′, using for instance apriori. In fact,
by mining a k-anonymized database, the set of frequent
itemsets that we obtain is clearly safe, in the sense that
it does not contain inference channels. The situation is
described by Figure 8. We claim that, if the goal is to
disclose the result of the mining and not the source data,
such solution is overkilling.

Example 15 Consider again our running example: the
database D in Figure 1(a) with σ = 8 and k = 3. Sup-
pose that all items in I are quasi-identifier. If we try to
k-anonymize the data, the sanitization process would in-
volve also the tuples not covering any patterns. In partic-
ular, also the three singleton items which are infrequent
(i.e., f, g and h) would be involved in the sanitization.
Consider for instance the tuples t9, t10 and t11: if we con-
sider their projection on the frequent items (i.e., a, b, c, d
and e) these tuples are identical. In other words, the pat-
tern p = ¬a∧¬b∧c∧d∧e, describing the three transaction
above, is k-anonymous having supD(p) = 3 = k. There-
fore, if we sanitize the patterns such tuples would not be
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apriori
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?
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Pattern
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Fig. 8 Two alternatives paths from a source database D
to an output set of itemsets, Ok, which can be safely dis-
closed. One path first k-anonymizes the data, obtaining a k-
anonymized database D′ from which Ok is mined by means
of apriori. The second path first mines the set of frequent
itemsets F(D, σ) from the original database D, and then k-
anonymizes the result of the mining using, for instance our
Algorithm 3 or 4.

involved. On the contrary, if we first try to sanitize the
data, we must somehow sanitize these three tuples due
to differences in f, g and h.

It is natural to argue that the traditional k-
anonymization on data is developed for multivalued at-
tributes (not for binary), and it is particularly effective
in the cases in which there are only few quasi-identifiers
among the whole set of attributes. Following this con-
sideration, we further analyze the issue (graphically de-
scribed in Figure 8) by means of an experimentation on
the adult dataset from the UCI repository.

The following comparison is qualitative rather
than quantitative. This is due to the fact that data
anonymization algorithms perform attributes generaliza-
tion, and thus change the vocabulary of items, while
our method does not. This makes impossible to quan-
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Itemset Support ADD SUP

{Native-Country = United-States, Capital-Loss = 0, WorkClass = Private} 19237 19237 19237

{Capital-Loss = 0, Sex = Male} 19290 19290 19290

{ Race = White, Capital-Gain = 0, Income = Low} 18275 18275 18249

{Race = White, Capital-Loss = 0, Income = Low} 18489 18489 18489

{Sex = Male, Capital-Gain = 0} 18403 18403 18263

{Race = White, Capital-Loss = 0, WorkClass = Private} 18273 18273 18273

{Native-Country = United-States, Sex = Male} 18572 18572 18512

{Race = White, Native-Country = United-States, Capital-Loss = 0, Capital-Gain = 0} 20836 20836 20836

{Native-Country = United-States, WorkClass = Private, Capital-Gain = 0} 18558 18558 18493

{Hours-per-Week = (20,40]} 18577 18577 18446

{Capital-Loss = 0, WorkClass = Private, Capital-Gain = 0} 19623 19623 19573

{Native-Country = United-States, Capital-Loss = 0, Capital-Gain = 0, Income = Low} 19009 19009 19009

Table 2 The set of 12 maximal frequent itemset extracted from the database D with σ = 18100, and their supports. The third
and the fourth columns report their supports in the output Ok produced by our additive strategy (ADD), and suppressive
strategy (SUP).

I J fJ

I

{ } { Native-Country = United-States, Capital-Loss = 0, Workclass = Private} 36

{ } { Race = White, Capital-Loss = 0, WorkClass = Private} 49

{ Capital-Gain = 0 } { Race = White, Native-Country = United-States, Capital-Loss = 0, Capital-Gain = 0} 48

{ Capital-Gain = 0 } { Native-Country = United-States, Capital-Loss = 0, Capital-Gain = 0, Income = Low} 48

Table 3 The set of maximal inference channels MCh(50, Cl(D, 18100)).

titatively compare the output of the two strategies, for
instance, by means of the measures of distortion intro-
duced in Section 8.1.

As usually done when preprocessing data for associa-
tion rule or frequent itemset mining, we have discretized
the continuous-valued attributes. It is worth noting that
a multivalued attribute can be transformed into a set
of binary ones: one binary attribute for each possible
value of the multivalued attribute. This simple transfor-
mation allows to perform frequent itemsets (and thus
association rule) mining on real-world categorical data.
Applying it to the adult dataset we obtained 341 items
(or attribute-value pairs). Moreover, in the preprocess-
ing phase, we have removed tuples containing missing
values, obtaining a dataset with 30162 tuples. Let us de-
note this preprocessed dataset D. In the following we
describe the results of our experiments on D with a fre-
quency threshold σ = 18100 (i.e., ≈ 60% of the total
number of tuples in D), and an anonymity threshold
k = 50.

As a first step we have mined frequent itemsets from
D: the result is useful for comparing the distortions
introduced by the two different philosophies. We ob-
tained 41 frequent itemsets, which are also closed item-
sets (F(D, 18100) = Cl(D, 18100)). Among these 12 are
maximal, and they are reported in Table 2.

We have then applied the Optimized Inference Chan-
nel Detector (Algorithm 2) to Cl(D, 18100) obtaining
four maximal inference channels, which are reported in
Table 3. For instance consider the first inference chan-
nel: it indicates that in our dataset there are only 36

individuals such that: Native-Country 6= United-States,
Capital-Loss 6= 0, Workclass 6= Private. The fact that
our detector has found some inference channels, means
that the output F(D, 18100) can not be safely disclosed
if we want an anonymity level larger than k = 50.

We then proceed with our pattern sanitization. If we
apply the Additive strategy (Algorithm 3) we must try
to merge (see Definition 17) the four maximal inference
channels found by the channels detector. The merging
operation returns a unique inference channel CJ

I , where
I ={ Capital-Gain = 0 } and J = { Race = White,
Native-Country = United-States, WorkClass = Private,
Capital-Gain = 0, Capital-Loss = 0, Incomes = Low}.

Therefore, according to the additive sanitization, we
increase the support of the itemset {Capital-Gain = 0}
by k, which in this case is 50.

The Suppressive strategy, instead, virtually removed
195 transactions, but however no frequent itemset be-
came infrequent. In conclusion, both the additive and
the suppressive strategy maintain the original set of fre-
quent itemsets and they only slightly change the support
of a few itemsets. This is not the case with the other phi-
losophy (first k-anonymize the data and then mine the
frequent itemsets), as described in the following.

We implemented the well known datafly algorithm
[45] which k-anonymizes a database by generalizing
attribute which are quasi-identifier, and by removing
some tuples when needed. datafly is a heuristic-driven
greedy algorithm which does not guarantee minimality
of the distortion introduced. We have also experimented
using the incognito algorithm [33], kindly provided by
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Itemset Support

{Age = ∗, Native-Country = ∗, Race = ∗, Hours-per-Week = (20,40]} 18577

{Age = ∗, Native-Country = ∗, Race = ∗, Sex = Male, Capital-Gain = 0} 18403

{Age = ∗, Native-Country = ∗, Race = ∗, Sex = Male, Capital-Loss = 0} 19290

{Age = ∗, Native-Country = ∗, Race = ∗, WorkClass = Private, Capital-Gain = 0, Capital-Loss = 0} 19623

{Age = ∗, Native-Country = ∗, Race = ∗, Income = Low, Capital-Gain = 0, Capital-Loss = 0} 21021

Table 4 The set of maximal frequent itemsets obtained by mining D′ (the database k-anonymized by datafly and by
incognito). Note that the ∗ symbol stands for any, i.e., maximal generalization.

Itemset Support

{Age = ∗, Race = ∗, Income = ∗, Hours-per-Week = (20,40]} 18577

{Age = ∗, Race = ∗, Income = ∗, Sex = Male, Capital-Gain = 0} 18403

{Age = ∗, Race = ∗, Income = ∗, Sex = Male, Native-Country = North-America} 18652

{Age = ∗, Race = ∗, Income = ∗, Sex = Male, Capital-Loss = 0} 19290

{Age = ∗, Race = ∗, Income = ∗, WorkClass = Private, Capital-Gain = 0, Native-Country = North-America} 18642

{Age = ∗, Race = ∗, Income = ∗, WorkClass = Private, Capital-Gain = 0, Capital-Loss = 0} 19623

{Age = ∗, Race = ∗, Income = ∗, WorkClass = Private, Native-Country = North-America, Capital-Loss = 0} 19322

{Age = ∗, Race = ∗, Income = ∗, Capital-Gain = 0, Native-Country = North-America, Capital-Loss = 0} 23921

Table 5 The set of maximal frequent itemsets obtained by mining D′ (another solution provided by Incognito).

the authors, which can be considered the-state-of-the-
art of data anonymization. In fact incognito produces
minimal full-domain generalizations (i.e., it performs the
minimal number of generalization steps, therefore main-
taining as much information as possible while guaran-
teeing k-anonymity). Note that incognito outputs all
possible minimal generalizations, and that, although it
allows tuples suppression, in our experimentation the pa-
rameter defining the maximum number of allowed sup-
pressions has been kept at the default value 0. Both
datafly and incognito take in input the database D,
the set of quasi identifiers QI ⊆ I, and for each attribute
in QI a domain generalization hierarchy.

In the pattern sanitization framework we consider
every attribute as a possible source of threat. The
same approach is unapplicable when using datafly or
incognito(i.e., considering every attribute as a quasi-
identifier): in our case, we lost all the information con-
tained in the database, since all attributes were maxi-
mally generalized. We therefore drastically reduced the
number of quasi-identifier attributes to 5 (Age, Race,
Sex, Native-Country and Income). We had that only
3170 tuples out of 30162 were non k-anonymous, lead-
ing to attributes generalization (no tuple was suppressed
by datafly

4). After attribute generalization, both by
means of datafly and incognito, we have mined the
resulting anonymized database, D′ by means of the
apriori algorithm.

In Table 4 are reported the 5 maximal frequent item-
sets obtained by mining the D′ produced by datafly.
Note that the same generalization, and thus the same
anonymized database and the consequent maximal fre-
quent itemsets, is produced by incognito as one of the

4 Note that this choice is taken by the algorithm.

minimal generalizations. Recall that incognito outputs
all possible minimal generalizations. In Table 5 we report
the maximal frequent itemsets obtained by mining the
anonymized database given by the first minimal gener-
alization produced by incognito.

By comparing Table 2 with Table 4 and 5, we can
readily observe the huge loss of information obtained by
mining a k-anonymized database. The itemsets in ta-
bles 4 and 5 are extremely generic, if compared with the
12 patterns of Table 2, due to unnecessary generalization
in the source data. We have also conducted the same
kind of analysis on other datasets (e.g., the census-

income dataset from the UCI repository), obtaining the
same kind of unnecessary generalizations w.r.t. the san-
itization focussed on patterns.

Another important difference is given by the com-
putation time requirements. In fact, while sanitizing the
patterns always requires few seconds, computing a min-
imal k-anonymization of the database requires instead
a time ranging from tens of seconds (adult dataset us-
ing 5 quasi-identifiers) to several hours (census-income

dataset using 8 quasi-identifiers). All known minimal
database anonymization algorithms require exponential
time (in the number of quasi-identifiers), since the de-
cisional version of the problem has been proved to be
NP-Hard, while existing bound for approximated solu-
tions are currently far from optimality.

In conclusion, if the goal is not to disclose data, but
the result of mining, sanitizing the mined patterns yields
better quality results than mining anonymized source
data: the pattern sanitization process focuses only on
the portions of data pertinent to the harmful patterns,
instead of the whole source dataset.
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9 Conclusion and Future Work

We introduced in this paper the notion of k-anonymous
patterns. Such notion serves as a basis for a formal ac-
count of the intuition that a collection of patterns, ob-
tained by data mining techniques and made available to
the public, should not offer any possibilities to violate
the privacy of the individuals whose data are stored in
the source database. To the above aim, we formalized
the threats to anonymity by means of inference channel
through frequent itemsets, and provided practical algo-
rithms to (i) check whether or not a collection of mined
patterns exhibits threats, and (ii) eliminate such threats,
if existing, by means of a controlled distortion of the
pattern collection. The overall framework provides com-
prehensive means to reason about the desired tradeoff
between anonymity and quality of the collection of pat-
terns, as well as the distortion level needed to block the
threatening inference channels. Concerning the block-
ing strategies, it is natural to confront our method with
the traditional sanitization approach where the source
dataset is transformed in such a way that the forbidden
patterns are not extracted any longer. We, on the con-
trary, prefer to transform the patterns themselves, rather
than the source data. In our opinion, this is preferable
for two orders of reasons. First, in certain cases the in-
put data cannot be accessed more than once: a situation
that occurs increasingly often as data streams become a
typical source for data mining. In this case there is no
room for repeated data pre-processing, but only for pat-
tern post-processing. Second, as a general fact the distor-
tion of the mined patterns yields better quality results
than repeating the mining task after the distortion of
the source data, as thoroughly discussed in Section 8.3.

The first objective of our on-going investigation is
the characterization of border crossing inference chan-
nels; i.e., inference channels also made of itemsets which
are not frequent. Recall that in Section 5 we defined a
subset of all possible patterns, namely σ-vulnerable pat-
terns (Definition 10), and proved that our detection and
sanitization methodology produces an output which is
k-anonymous w.r.t. σ-vulnerable patterns.

Example 16 Consider again our running example
of Figure 1 with σ = 8 and k = 3. As shown in
Example 13, the set of closed frequent itemsets
resulting from the additive sanitization is O3 =
{〈∅, 21〉, 〈a, 12〉, 〈e, 17〉, 〈ab, 8〉, 〈ae, 8〉, 〈de, 13〉, 〈cde, 9〉}.
From Theorem 2 we know that all σ-vulnerable patterns
such as (a ∧ ¬b) ∨ (c ∧ ¬e) are k-anonymous, i.e. there
exists at least a database, compatible with O3, in which
such pattern does not appear or it appears at least k
times. Therefore, a malicious attacker can not infer, in
any possible way, that the cardinality of the group of
individuals described by such pattern is for sure lower
than k.

Unfortunately, Theorem 2 applies to σ-vulnerable
pattern such as (a ∧ ¬b) ∨ (c ∧ ¬e), i.e., both itemsets

{ab} and {ce} are frequent; but it does not apply, for in-
stance, to the pattern a∧ b∧¬c, since the itemset {abc}
is not frequent.

In the particular case of our running example, all
non σ-vulnerable patterns are also k-anonymous, in
other terms no border crossing inference channels can
be found. This means that O3 is completely safe. To
prove this, we show that exists a 3-anonymous database
compatible with O3 (w.r.t. σ = 8).

a b c d e
1 1 1 1 1 x4
0 0 1 1 1 x5
0 0 0 1 1 x4
1 0 0 0 1 x4
1 1 0 0 0 x4

Similarly, we can show that also the O3 produced by
the suppressive strategy is completely safe.

Unfortunately this ad-hoc proofs can not be applied
in general. We are provable protected under attacks to σ-
vulnerable patterns, but, although hardly, it is possible
to find set of sanitized itemsets that allow the attacker
to discover non σ-vulnerable patterns that are non k-
anonymous.

Example 17 Suppose that for a given database, and with
thresholds σ = 5 and k = 3, after our pattern san-
itization we got the following set of itemsets: O3 =
{〈ab, 9〉, 〈ac, 8〉, 〈bc, 5〉, 〈a, 14〉, 〈b, 14〉, 〈c, 13〉, 〈∅, 22〉}.

By applying deduction rules [10], we can infer some
information on the support of the infrequent itemsets
{abc}. In fact we got that:
sup(abc) ≥ sup(ab) + sup(ac) − sup(a) = 3, and
sup(abc) ≤ sup(∅)−sup(a)−sup(b)−sup(c)+sup(ab)+
sup(ac) + sup(bc) = 22 − 14 − 14 − 13 + 9 + 8 + 5 = 3.
Therefore, although it has not been disclosed, we can
conclude that the support of the infrequent itemset {abc}
is exactly 3. From this we can discover a border crossing
inference channels: Cabc

bc which as support 2 < k. We
have inferred that the non σ-vulnerable patterns b∧c∧¬a
is also non k-anonymous.

This kind of attacks are very difficult but, in some
cases, possible. We are actually characterizing them, and
studying ad hoc detection and sanitization techniques.

Other issues, emerging from our approach, are worth
a deeper investigation and are left to future research.

One path of research regards the mapping of our the-
oretical framework to the more concrete case of categor-
ical data originating from relational tables. In this con-
text, we could exploit the semantics of the attributes
in order to apply generalization techniques similar to
what done by classical k-anonymization [45]. Moreover,
we could introduce in our framework the distinction be-
tween quasi-identifiers and sensitive attributes and focus
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our pattern sanitization techniques only to the projec-
tion of patterns on the quasi-identifiers. After this con-
cretization step, we should be able to provide a more
comprehensive empirical evaluation of our approach: to
this purpose we intend to conduct a large-scale exper-
iment with real life bio-medical data about patients to
assess both applicability and scalability of the approach
in a realistic, challenging domain.

Another open problem, deserving further investi-
gation, regards the release multiple collections of k-
anonymous itemsets extracted from the same source
database, but with different support thresholds. A ma-
licious adversary receiving more than one of this collec-
tions can violate the k-anonymity defense. However, in
the case we want to release multiple collections of pat-
terns we can adopt the following straightforward solu-
tion. If we want to share N set of patterns with support
thresholds respectively σ1, σ2, . . . , σN , then we have to
mine and k-anonymize the set of itemsets extracted with
min1≤i≤N σi. From this set of itemsets (k-anonymized)
we can select the various collections corresponding to
the various σi. The most informative set of patterns re-
leased is the one with σ = min1≤i≤N σi; but this is k-
anonymous and thus there is no problem, while the other
sets are just subsets of this, thus containing less infor-
mation, and conjoining them we cannot infer any non
k-anonymous pattern. The solution described could not
be always applicable. In fact, the data owner must know
in advance the value min1≤i≤N σi. If he does not know
this value, then he can still use a value small enough for
σ and then share subsets w.r.t. the σ required situation
by situation.

Finally, we plan to investigate whether the proposed
notion of anonymity preserving pattern discovery may
be applied to other forms of patterns and models, for in-
stance, classification or clustering models. In those sce-
narios, we should study how to produce a model that,
while maintaining accuracy, it provably does not allow
an attacker to infer information regarding less than k
individuals in the original training set.

In any case, the importance of the advocated form of
privacy-preserving pattern discovery is evident: demon-
strably trustworthy data mining techniques may open
up tremendous opportunities for new knowledge-based
applications of public utility and large societal and eco-
nomic impact.
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