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ABSTRACT
We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed
by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant back-
ground pressures of CO (6 × 10−8 Torr) and O2 (3 × 10−8 Torr). Under these conditions, we detect two transient CO species with narrow 2π∗
peaks, suggesting little 2π∗ interaction with the surface. Based on polarization measurements, we find that these two species have opposing
orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface.
We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray
energies than the 2π∗ region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background
pressure was three times lower (2 × 10−8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π∗ region,
we observed adsorbed CO and a distribution of OC–O bond lengths close to the CO oxidation transition state, with little indication of gas-
like CO. The shift toward “gas-like” CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O
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coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole–dipole interaction while
simultaneously increasing the CO oxidation barrier.
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INTRODUCTION

The elementary processes that occur between molecules and
metal surfaces are key to understanding heterogenous catalytic reac-
tions since they determine the available reaction pathways, selec-
tivity, and kinetic rates. Insights into the details of the dynamics
controlling these processes are important not only for describing
catalytic reactions but also for predicting highly efficient and selec-
tive catalysts. It is of fundamental importance to examine how
changing not only the catalytic surface but also the gas phase com-
position can affect these processes and, correspondingly, reaction
pathways.

CO oxidation and desorption on metal surfaces have long been
models for the study of reaction dynamics in catalysis.1–8,8–22 In
this study, we investigate laser-induced CO desorption and oxida-
tion on oxygen-covered Ru(0001) under CO-rich conditions at the
C K-edge using symmetry-resolved time-resolved x-ray absorption
spectroscopy (TR-XAS). We find two different CO species with dif-
ferent preferred orientations develop after laser excitation, each with
narrow 2π∗ gas-like peaks, suggesting little interaction between 2π∗
and the surface. At higher x-ray energies, we find weak signals for
bent CO2, showing that the CO oxidation channel is still active. We
compare our results to previous results not obtained under CO-rich
conditions.

Optical pump/x-ray probe studies under CO-only conditions
on Ru(0001) observed a transient intermediate gas-like precursor
state of CO prior to desorption.11 This state, which had long been
theorized,23–26 traps CO in a physisorption well with little inter-
action with the surface and arises due to the increased rotational
entropy of CO. When the experiments were repeated with oxygen-
covered Ru(0001) under less CO-rich conditions than presented
here, little evidence of this precursor state, or any CO gas-like states,
was present.1 Density functional theory (DFT) calculations showed
that a long-range σ-driven interaction between the CO molecules
and the surface due to the presence of O gives rise to a pre-
ferred perpendicular orientation of desorbing CO. This reduces the
rotational entropy of CO and, consequently, destabilizes the asso-
ciated precursor state. These results emphasize that not only is the
catalytic surface a determinate of the reaction outcome but also
the gas phase composition can critically control the final reaction
paths.

EXPERIMENTAL

We employed pump–probe spectroscopy to access the ultrafast
dynamics, with the pump being a 400 nm femtosecond laser pulse
and the probe being a femtosecond x-ray free-electron laser (XFEL)
pulse around the C K-edge. The experiments were performed using
the DiProl endstation at the FERMI XFEL in Trieste, Italy. FERMI is
a two-stage fully seeded soft x-ray free electron laser,27 with access to
x-ray energies in the range of the carbon 2π∗ (∼288 eV) feature. As

a seeded source, FERMI provides x-ray pulses with very little time
jitter with respect to the optical pump pulses. The surface science
endstation (Titan) was transported from Stockholm University to
FERMI and installed downstream from the permanent DiProl end-
station. The endstation is equipped with standard surface-science
preparation tools, including an ion-sputtering gun, sample cooling,
and sample heating by radiation and electron bombardment. Other
tools include a four-axis sample manipulator to provide both full
sample translation and sample rotation, a high-efficiency and large-
solid-angle fluorescence yield (FY) detector, and beam monitors and
timing tools that are used for the spatial and temporal overlapping
of optical laser with the XFEL pulses.

During the pump–probe measurement, 400 nm optical laser
pulses with a pulse duration of ∼100 fs and laser fluence close to, but
below the damage threshold for Ru(0001) induced the reaction. The
subsequent temporal evolution was probed using the XFEL pulses.
The optical laser and x-ray laser were collinear with respect to each
other and at 3○ grazing incidence with respect to the sample surface.
The soft x-ray pulses were generated within the two-stage seed-
ing scheme of the FERMI free-electron laser (FEL)27,28 and were of
∼50 fs duration. Since the XFEL laser seed and optical pump pulses
are generated from the same laser system, the optical laser pump
and the XFEL probe are intrinsically synchronized very closely to
one another although there is some thermal drift. This results in
a time resolution of ∼110 fs. A fluorescent phosphor screen was
used to visualize the XFEL beam to spatially overlap the optical laser
with the XFEL beam. To achieve temporal overlap, a two-step pro-
cess was used. First, the tip of an in-vacuum SMA cable was moved
into overlapped beams. The XFEL and optical laser pulses both cre-
ate short electronic pulses on the SMA cable that can be measured
and visualized using a GHz-bandwidth oscilloscope. By adjusting
the delay between the optical laser and XFEL, both electronic pulses
on the oscilloscope could be temporally overlapped to within a few
picoseconds. In the second step, temporal overlap on the ∼100 fs
scale was established by monitoring the x-ray total fluorescence yield
(TFY) XAS intensity from CO adsorbed on a Ru(0001) surface as a
function of delay between the optical laser and FEL. The ultrafast x-
ray response to laser-induced CO desorption in the CO/Ru(0001)
system has been well studied.11,29 We monitored the XAS inten-
sity at 289 eV, which is on the high-energy flank of the CO 2π∗
resonance.

In our measurements, a well-established surface science
method1 was initially employed to produce a clean, well-ordered
Ru(0001) surface. To this end, the ruthenium crystal was treated
by repeated cycles of Ne+ sputtering and high-temperature flash
annealing in an O2 atmosphere at 1070 K. The molecular adlayer
was then prepared in the following way: The sample was first dosed
with 20 L [Langmuir (L) = 1 × 10−6 Torr for 1 s] of O2 when the
temperature dropped below 620 K. Subsequently, the sample was
exposed to CO at a temperature of 170 K to reach CO saturation
coverage. This procedure has been shown to give the well-known
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(2O + CO)/Ru(0001) honeycomb surface structure, where the O
atoms sit on hollow sites in a honeycomb structure and the CO
molecules sit on the top sites at the center of each hexagon.30 During
the measurements, a background gas pressure of 6 × 10−8 Torr CO
and 3 × 10−8 Torr O2 was maintained, while the sample temperature
remained at ∼100 K. In order to have a newly prepared surface spot
during the measurements, the sample was continuously scanned and
each spot on the sample was revisited after a cycle period of 10–20 s
to repopulate the spots that had been previously measured. Every
2–3 h, we cleaned the sample and prepared a fresh monolayer of CO
and O using the procedure described above to ensure our sample
was not contaminated.

We recorded the TR-XAS data using polarizations that were in-
plane with respect to the Ru(0001) surface and out-of-plane with
respect to the Ru(0001) surface at a repetition rate of 10 Hz. The
central average XFEL photon energy was scanned over the desired
range around the carbon K-edge resonance with a step of 0.3 or
0.5 eV depending on the resonance range (e.g., pre-edge or post-
edge of the 1s to 2π∗ resonance). The delay between the optical laser
and the XFEL pulse was set to pre-defined values before recording
1000 XFEL shots for each photon energy and delay combination. At
early timescales (−1.0–2.0 ps), data were recorded at 0.25 ps inter-
vals. Extended time delays were recorded at 5.0 and 10.0 ps. We
continuously measured laser-induced CO2 desorption using a mass
spectrometer to ensure that CO2 production and, hence, surface
conditions remained constant throughout the measurements (see
the supplementary material).

The raw experimental recorded data were post-processed based
on the data analyses of the FERMI online spectrometer on a shot-
to-shot basis. For this analysis, we checked the spectral intensity
distribution for each XFEL shot and obtained the central photon
energies, bandwidth, and intensity of each shot. In the data process-
ing, shots with low (close to zero) intensity and large FEL bandwidth
(FHWM > 0.5 eV) were filtered out. We sorted all shots based on
their central photon energy into bins of 0.1 eV width. For each bin,
the TFY intensity was normalized by the incident intensity and the
standard error was calculated based on Poisson statistics.

RESULTS

Figure 1 shows the C K-edge in-plane and out-of-plane TR-
XAS spectra for the 2π∗ region of CO. Selected time slices are

FIG. 1. False color plot of the CO 2π∗ region TR-XAS spectra for (left) in-plane
and (center) out-of-plane polarizations. Red indicates highest intensity, and blue
indicates lowest intensity. The dashed lines represent the peak positions for CO(A),
CO(B), and CO(ads). Right: The geometry of the x-ray laser polarization with respect
to the surface for in-plane and out-of-plane.

FIG. 2. Top: CO 2π∗ region TR-XAS spectra showing (left) in-plane and (right) out-
of-plane polarizations. The data are binned using 1.0 ps bins for better statistics.
The dashed lines represent fits for the peaks using Gaussian profiles, as described
in the text. Bottom: The corresponding TR-XAS spectra fits at 10 ps time delay. The
dashed vertical lines indicate the center of the fitted peaks.

represented in Fig. 2, where data are averaged over 1.0 ps time bins
for better statistics. Three features are evident in the data: (1) a broad
peak near 288 eV representing adsorbed CO, referred to as CO(ads);
(2) a narrow peak centered at the CO gas phase value of 287.42 eV,
referred to as CO(A), both in the in-plane scan; and (3) a second nar-
row peak between the adsorbed and gas phase energies at 287.7 eV,
referred to as CO(B) in the out-of-plane scan. After femtosecond laser
excitation, the CO(ads) peak decreases in intensity and redshifts to
lower energy. CO(A) and CO(B) peaks, without any initial intensity
in the unpumped spectrum, continuously grow in strength over the
10 ps timeframe of the data. These trends can be seen in Fig. 3, where
the unpumped signal has been subtracted from the data.

We fit each of the CO peaks with a Gaussian profile. The
CO(ads) feature is centered at 288.0 eV with a FWHM of 0.94 eV.
CO(A) is centered at 287.42 eV31 with a FHWM of 0.24 eV. CO(B)

FIG. 3. Changes in the CO 2π∗ region TR-XAS spectra relative to the unpumped
system for (left) in-plane and (right) out-of-plane polarizations. The dashed vertical
lines indicate the center of the fitted peaks.
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consists of two peaks, one centered at 287.7 eV with a FWHM
of 0.24 eV and a broader, lower-energy peak at 287.08 eV with a
FWHM 0.42 eV. See the section titled “Discussion” for more details.
The top panel of Fig. 4 shows the transient changes of the spec-
tral features as a function of pump–probe delay for the three CO
species. The CO(ads) peak intensity decreases on the 0.45 ± 0.05 ps
timescale, while the intensities of the CO(A) and CO(B) peaks rapidly
increase over a 0.78 ± 0.04 ps timescale, as shown by the solid lines.
The CO(A) and CO(B) peaks continue to increase in intensity over
the 10 ps timescale, and their intensities are nearly identical to each
other. The increase in intensity arises as adsorbed CO enters these
gas-like states although quantitative estimates are not possible as
gas-like CO absorbs more strongly than adsorbed CO. After 2 ps, the
CO(ads) peak starts to recover some of its original intensity but is still
redshifted.

As the CO 2π∗ orbitals lie in the plane perpendicular to the
CO molecular axis, excitation of these orbitals requires the polar-
ization of the x rays to be perpendicular to the CO molecular axis.
For CO molecules oriented perpendicular to the surface, only in-
plane absorption intensity (IIP), and no out-of-plane intensity (IOP),
would thus be observed. For CO molecules with their axis paral-
lel to the surface, the out-of-plane intensity would be twice that of
the in-plane intensity. We calculated the relative orientations of the
three different CO spectral features by calculating the polarization
anisotropy parameter ρ given by the difference between the inten-
sities of the in-plane and out-of-plane fits compared to the sum of
their intensities,

ρ = IIP − IOP

IIP + IOP
.

If the CO molecule is perpendicular to the surface, ρ = 1 will result,
while parallel CO will yield ρ = −1/3. The bottom panel of Fig. 4
shows the experimental value of ρ for the three different CO spectral
features as a function of delay time. After laser excitation, CO(ads)
moves toward a more parallel orientation with respect to the sur-
face, as indicated by the decreasing ρ value. Despite the similar
peak intensities, CO(A) favors a more perpendicular orientation to
the surface than unpumped CO(ads), while CO(B) favors a more

FIG. 4. Top: The time evolution of the TR-XAS features based on our fitting model.
The in-plane and out-of-plane intensity are summed together for each CO species.
Solid lines represent the evolution for each peak on the 2 ps timescale, and the
dashed lines are added to aid the eye. Bottom: Polarization anisotropy parameter
ρ = (IIP − IOP)/(IIP + IOP) resulting from the CO fits of the spectra for different x-
ray polarizations as a function of pump–probe delay. Higher values of ρ represent
CO in a more perpendicular orientation (maximum value of 1), and lower values
represent CO in a more parallel orientation (minimum value of −1/3).

perpendicular orientation to the surface. The orientation differences
highlight that these are distinct gas-like CO species.

We confirmed that gas-phase CO2 is produced using mass spec-
trometry (see the supplementary material) and even see evidence
that the resonant x-ray pulses enhance CO oxidation. This is likely
due to the core-excited CO becoming vibrationally excited, promot-
ing CO oxidation.32 Despite the confirmation of CO2 formation,
changes in the CO 2π∗ region are dominated by CO desorption
dynamics, obscuring any observable CO oxidation dynamics. Bent
CO2 has been reported as an anionic precursor to CO and O
and may form in the reverse process of CO oxidation.33–35 We
recorded data at x-ray energies above the CO 2π∗ resonance, up to
295 eV, where we observe bent surface CO2 on the surface. Figure 5
shows the TR-XAS bent CO2 peak corresponding to a bent, weakly

FIG. 5. Left: Difference spectra of the
bent CO2 region grouped with 1.0 ps
time bins and 0.2 eV energy bins for
better statistics. The unpumped data
are subtracted from all time bins. Right:
The change in integrated intensities from
293.4 to 294.0 eV using 0.25 ps time
steps.
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chemisorbed CO2 species.1 The integrated intensity between 293.4
and 294 eV is displayed on the right panel of Fig. 5. Due to the σ-
bond character of this state, we see more intensity in the in-plane
geometry, as expected. The intensity of the signal steadily rises over
the course of 10 ps, implying that this is likely driven by thermal
processes of the phonon bath heating up due to electron–phonon
coupling.

DISCUSSION

In our measurements, we initially prepared the CO+O hon-
eycomb structure; however, our experimental conditions required
continuous background pressures of CO and O2 at ∼100 K. Below
149 K, O forms a 2 × 1 structure and CO forms a disordered over-
layer with a coverage of 0.36 monolayer (ML).22 Some of O that
adsorbs to replace previously reacted O may adsorb in the p(2 × 1)
phase. O2 requires two nearby vacancies to dissociatively adsorb on
the surface. Isolated O vacancies would likely remain as vacancies
until a nearby vacancy develops to allow O2 to dissociate as the dif-
fusion barrier for O on Ru(0001) is relatively high, between 0.55 and
0.70 eV.36 Adsorbed CO is known to block the adsorption of other
species, including O2, further increasing O vacancies. As a result,
our surface likely has a lower O coverage and a higher CO coverage
than the initially prepared CO+O honeycomb structure. Mass spec-
trometry data show that CO2 desorption yields do not change over
time, indicating that the surface has reached a steady state. See the
supplementary material.

Using the polarization dependence of the integrated intensities
of the unpumped spectra, we calculate an average tilt angle of the
initial state of the adsorbed CO to be 42○ ± 3○ from the surface
normal. See the supplementary material for details on the calcula-
tion. Previous studies have reported CO tilt angles on O/Ru(0001).
On the p(2 × 2) (O+CO)/Ru(0001) surface (0.25 ML O), CO tilt
angles of 12.6○ ± 4.6○ were inferred from LEED data at 120 K, while
on the p(2 × 2) (2O + CO)/Ru(0001) surface (0.50 ML O in hon-
eycomb structure), no information on tilt angles was reported.30,37

The tilt angle of CO toward neighboring O atoms has been calcu-
lated to be up to 41○ on the (2 × 2) (2CO+O)/Ru(0001) surface
with less than a 0.03 eV barrier from the perpendicular position.38

The coverage and structure of O on the surface impact the CO tilt
angles, and the resulting overlayer structure from the experimental
conditions seems to favor larger CO tilt angles than similar previous
studies.

On the sub-picosecond timescale after laser excitation, the
CO(ads) 2π∗ intensity redshifts and decreases in strength. Previ-
ous investigations of the dynamics induced by ultrafast laser pulses
for CO + O on Ru(0001) have found that electron- and phonon-
mediated processes both play a central role in CO oxidation and
desorption.2,12 In laser-induced chemical reactivity on Ru(0001), the
frustrated rotation of CO, the CO internal stretch, and the O–Ru
surface vibration39,40 are excited on the sub-picosecond timescale by
coupling to the electron bath.41,42 Excitation of the frustrated rota-
tion of CO can lead to a small redshift in the 2π∗ peak, and excitation
of the internal stretch can cause a modest decrease in the XAS inten-
sity.42 Prior studies of CO on Ni(100) have shown that there is a
redshift and broadening of the CO 2π∗ peak as CO shifts from the
top-site to hollow-site.43 The broadening of the adsorbed peak is
due to stronger interaction with the surface. Due to the emergence

of other features overlapping with the adsorbed CO intensity, it is
difficult to identify whether the CO 2π∗ peak broadens although
prior studies of CO on Ru(0001) and O/Ru(0001) have reported that
CO does become more highly coordinated immediately after laser
excitation.1,11

The intensities of the CO(A) and CO(B) peaks continuously
increase over the 10 ps timeframe that the data were recorded.
These gradual increases in intensity suggest that hot phonon modes,
which heat up on the picosecond timescale due to electron–phonon
coupling, are required for CO desorption, consistent with prior
studies.11,44,45 The narrowness of both peaks (FWHM of 0.24 eV)
suggests that there is a strong reduction in the interaction of the
CO 2π∗ system with the surface, similar to the previously reported
precursor state.11,22 This transient precursor state was experimen-
tally observed on CO/Ru(0001) in pump–probe experiments by
exciting with 400 nm femtosecond laser pulses and recording the
time-resolved x-ray absorption spectroscopy (TR-XAS) signal for
the O K-edge using an x-ray free electron laser (XFEL).11 Subsequent
pump–probe studies at the O K-edge found little evidence of this
precursor state when O was coadsorbed on the Ru(0001) surface.
The free energy surfaces for CO desorbing from CO/Ru(0001) and
2O–CO/Ru(0001) have been previously calculated using DFT.44,46–49

On Ru(0001), the 5σ state of CO exhibits a repulsive interaction with
the surface due to Pauli repulsion,44 while the CO π system facili-
tates bonding with the surface. The DFT results showed that when
present, the O atoms pull electron density away from neighboring
Ru atoms, reducing the σ-repulsion between CO and the metal sur-
face,44 giving rise to the long-range interaction. Since 5σ lies along
the intermolecular axis, this CO–surface interaction only occurs in
the perpendicular orientation, leading to a preferred perpendicu-
lar orientation of the desorbing CO. At such long distances, it is
highly unlikely that the 2π∗ system would be interacting with the
surface, and we would expect to see CO gas-like behavior in the spec-
tra. The gas-like behavior and favored perpendicular orientation to
the surface are consistent with the behavior of CO(A) although it is
unclear whether the CO(A) molecules are trapped in a physisorption
state.

TD-DFT calculations were performed to simulate the polariza-
tion independent CO 2π∗ C K-edge x-ray spectra as CO desorbs
from the O/Ru(0001) surface in the parallel and perpendicular ori-
entations (see the supplementary material). We examined three
different oxygen coverages, motivated by the possibility that we have
less surface oxygen than the prepared (2O + CO)/Ru(0001) honey-
comb structure. The first is the honeycomb structure that arises from
the saturated coadsorption of CO and O. In this structure, O has a
0.5 monolayer (ML) coverage, where 1 ML is defined as the ratio of
the number of adsorbates to the number of surface metal atoms. Two
modified structures were added to represent half the oxygen cover-
age of the honeycomb structure (0.25 ML), as illustrated in Fig. 6.
Both modified structures gave rise to indistinguishable x-ray spec-
tra. For perpendicular CO, 2π∗ forms an antibonding orbital with
the metal dπ states, which increases the 2π∗ energy. When the CO
tilts from the perpendicular position to parallel, the symmetry of
2πx
∗ and 2πy

∗ is broken as one orbital is pointed toward the sur-
face and the other is parallel to it. In the parallel orientation, there is
an increased interaction between 2π∗ and the surface, making pos-
sible bonding contributions with the metal and lowering the 2π∗
energy. These bonding contributions appear in the spectra below
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FIG. 6. Calculated XAS spectra at the
C K-edge. A range of CO–surface
distances for (top left) perpendicular
CO and (bottom left) parallel CO on
O/Ru(0001) in the honeycomb structure.
Top right: The honeycomb structure of
O/Ru(0001), and two modified structures
with half the O coverage of the hon-
eycomb structure. Bottom right: CO at
2.9 Å above the O/Ru(0001) honeycomb
structure and the two modified O adlay-
ers. Only one of the modified spectra
is shown as the two structures yielded
indistinguishable spectra.

287 eV for CO(B), while the main peak intensity is at 287.7 eV.
There is a much smaller chemical shift from the gas phase to the
interacting state for parallel CO compared to perpendicular CO. As
the surface–CO distance increases, there is a significant lowering of
the main peak intensity for parallel CO compared to perpendicu-
lar CO, where we almost have a gas phase CO 2π∗ character at
2.3 Å. For parallel CO, the bonding interaction is almost absent by
4.0 Å although still weakly observed. At 7.0 Å, as expected, the sur-
face interactions disappear for both orientations, and the CO is in
the gas phase.

We have previously reported TR-XAS CO oxidation at the O
K-edge under similar conditions where the pressure of CO was three
times lower than reported here (2 × 10−8 Torr) while maintaining
the same O2 pressure.1,29,44 It is important to note that these experi-
ments were not polarization sensitive. We refer to these prior studies
as the “low CO exposure” data and the current study as the “high CO
exposure” data.

For the previously reported low CO exposure, virtually no gas-
like CO was detected1 although some gas-like CO may have been
present as a small shoulder of the main CO peak between 534 and
536 eV. If present, this would indicate a low concentration of gas-like
CO. The 2π∗ region was dominated by states along the CO oxi-
dation pathway. In stark contrast, the results presented here show
almost exclusively CO desorption dynamics in the 2π∗ region, with
little evidence of CO oxidation. It appears that the high CO exposure
strongly favors CO desorption over oxidation, in contrast with low
CO exposure.

In a recent paper by Tetenoire et al.,50 the energy barriers asso-
ciated with CO oxidation and desorption on the O/Ru(0001) surface
were calculated as a function of CO coverage. The authors stud-
ied CO coverages of 0.25 ML (low), 0.375 ML (intermediate), and

0.50 ML (high) on the p(2 × 1) O structure (0.5 ML O) and the hon-
eycomb structure, which has a CO coverage of 0.25 ML. They found
that the desorption barrier drops significantly with the CO cover-
age by 1.0 eV from the low and honeycomb CO coverages to the
intermediate CO coverage and by another 0.1 eV from the interme-
diate to high CO coverage. This decrease arises from the CO–CO
dipole interaction that competes against CO binding to the surface.
With the high CO exposure, surface CO would more quickly block
O adsorption sites, increasing the concentration of CO on the sur-
face and pushing the system toward the high CO coverage behavior
predicted by Tetenoire et al.

Tetenoire et al. also predicted the existence of a physisorption
well for CO desorption at intermediate and high coverages. The min-
imum of the CO–surface physisorption potential well varies with the
CO adsorption site and surface coverage but is generally 1–5 Å above
the equilibrium CO–surface bond distance. One of the most favor-
able physisorption wells arises from the intermediate coverage with
CO desorbing from a location between a top site and a fcc site, with a
tilt toward the fcc site. At these CO–surface distances, our calculated
XAS spectra show that the 2π∗ peak for the perpendicular CO has
gas-like behavior.

Between 2.8 and 3.3 Å, the calculated XAS spectra for parallel
CO with O in the honeycomb structure show that the higher energy
2π∗ antibonding state remains constant at an energy higher than
the gas phase CO peak. For the structures with half the O cover-
age, the calculated shift is even higher in energy. The experimental
shift is between the two, indicating that we likely have an O coverage
between 0.25 ML and 0.5 ML. The lower energy 2π∗ bonding peak
has a strong dependence on the CO–surface distance between 2.3
and 3.3 Å. A collection of molecules in this range would give rise to
XAS spectra that feature a narrow higher-energy antibonding peak
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and a broader, lower-intensity, lower-energy bonding peak, corre-
sponding to our observations. This suggests that the more parallel
CO(A) is trapped within these CO–surface bond distances.

Under low CO exposure, little gas-like CO was observed. On
the other hand, experiments probing gas-like products have shown
that the primary species leaving the surface in laser-induced chem-
istry on CO/O/Ru(0001) is CO, not CO2.2 The origin of the lack
of signatures of gas-like CO in the low CO exposure TR-XAS data
remains unclear. It may be that the existence of a physisorbed (pre-
cursor) state, where CO concentration can build up, is a requirement
for strong detection of gas-like CO in TR-XAS, similar to that found
in CO desorption on Ru(0001).11 The likely different surface cover-
ages of CO and O also play a key role in the balance between CO
desorption and CO oxidation.

Tetenoire et al. showed that the CO oxidation transition-state
barrier initially decreases from the low CO coverage to intermediate
CO coverage by 0.4 eV but then sharply increases by 1.2 eV at high
CO coverage. The CO oxidation transition state barrier for both the
low and intermediate CO coverages is lower than for the honeycomb
structure, which is still 0.34 eV lower than the high coverage limit. In
the low CO exposure experiments, O was readsorbing on the surface
just above 100 K,1 well below the honeycomb transition temperature
of around 214 K.22 The low CO exposure experiments may be closer
to the intermediate CO coverage with an O structure of p(2 × 1)
than to the honeycomb structure. At higher x-ray energies, between
293 and 294 eV, we directly observe the adsorbed bent CO2 state.
The intensity of this feature steadily increases over 10 ps. It is likely
that the CO oxidation signature is present in the 2π∗ region but is
simply drowned out by large CO gas-like features. As CO desorbs
from the surface immediately after laser excitation, the system would
transition from the high coverage limit to intermediate or low cov-
erages, bringing down the activation barrier for CO oxidation. In
other words, some CO may need to desorb prior to the CO oxidation
channel becoming favorable.

CONCLUSION

We recorded TR-XAS spectra showing the time evolution of
CO desorption and CO oxidation on O/Ru(0001). The 1s–2π∗ reso-
nance of adsorbed CO rapidly undergoes a redshift and decrease in
intensity after laser excitation, potentially from the excitation of the
frustrated rotation, internal stretch, and/or moving to more highly
coordinated sites. At longer timescales, some CO molecules detach
from the surface with a reduced π∗ interaction with the surface. Two
states are observed having differing orientations. These results are in
stark contrast with similar experiments performed previously under
lower CO exposure conditions, where no physisorbed or gas-like CO
was observed. We expect the higher CO exposure of this study to
lead to a higher CO coverage and lower O coverage, decreasing the
barriers for CO desorption and potentially increasing the barriers
for CO oxidation. While the dominant pathway is CO desorption,
we do still observe a relatively weak feature at high x-ray energies
associated with bent CO2.

SUPPLEMENTARY MATERIAL

See the supplementary material for mass spectrometer data,
calculation of CO tilt angles, and details of XAS spectra calculations.
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