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Artificial Intelligence (AI) has come to prominence as one of the major components 
of our society, with applications in most aspects of our lives. In this field, complex 
and highly nonlinear machine learning models such as ensemble models, deep neural 
networks, and Support Vector Machines have consistently shown remarkable accuracy 
in solving complex tasks. Although accurate, AI models often are “black boxes” which 
we are not able to understand. Relying on these models has a multifaceted impact and 
raises significant concerns about their transparency. Applications in sensitive and critical 
domains are a strong motivational factor in trying to understand the behavior of black 
boxes. We propose to address this issue by providing an interpretable layer on top of 
black box models by aggregating “local” explanations. We present GLocalX, a “local-first”
model agnostic explanation method. Starting from local explanations expressed in form 
of local decision rules, GLocalX iteratively generalizes them into global explanations by 
hierarchically aggregating them. Our goal is to learn accurate yet simple interpretable 
models to emulate the given black box, and, if possible, replace it entirely. We validate
GLocalX in a set of experiments in standard and constrained settings with limited or 
no access to either data or local explanations. Experiments show that GLocalX is able to 
accurately emulate several models with simple and small models, reaching state-of-the-art 
performance against natively global solutions. Our findings show how it is often possible to 
achieve a high level of both accuracy and comprehensibility of classification models, even 
in complex domains with high-dimensional data, without necessarily trading one property 
for the other. This is a key requirement for a trustworthy AI, necessary for adoption in 
high-stakes decision making applications.

© 2021 Published by Elsevier B.V.

1. Introduction

In the last decade, Artificial Intelligence (AI) decision systems have been widely used in a plethora of applications such 
as credit score, insurance risk, and health monitoring, in which accuracy is of the utmost importance [1]. Complex nonlinear 
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machine learning models such as ensemble models, deep neural networks (DNN) and Support Vector Machines (SVM) have 
shown remarkable performance in these tasks, and have made their way into a large number of systems [2]. Unfortunately, 
their state-of-the-art performance comes at the cost of a clear interpretation of their inner workings [3]. These “black box” 
models have an opaque, hidden internal structure that humans do not understand [4]. Relying on black box systems is 
becoming increasingly risky both for their lack of transparency and the systematic bias they have shown in real-world 
scenarios [5]. The lack of proper explanations also has ethical implications, legally reported in the General Data Protection 
Regulation (GDPR), approved by the European Parliament in May 2018. The GDPR provides restrictions and guidelines for 
automated black box decision-making processes which, for the first time, introduces a “right to explanation” on the decisions 
of the system. More specifically, the GDPR introduces a right to meaningful explanations when one is subject to automated 
AI systems [6–8].

Given the great interest on the topic [9,2,4,10], several works in the literature try to explain opaque models with one 
of two goals: either providing instance explanations for a given decision by using a local approach [11–14], or providing 
global explanations able to describe the overall logic of the black box [15,16]. These approaches differ both on their task and 
their use case, with local approaches having the upper hand in several scenarios. As stated, local approaches [11,33] provide 
explanations of single instances and are beneficial to a plethora of users with different needs and resources at their disposal. 
Model developers, who have access both to data and black box, can directly inspect the model; analysts can audit the model 
on a small sample of instances; users can retrieve an explanation on a decision that involves them directly, gain trust in the 
model and, possibly, an actionable recourse to follow up the decision. On the other hand, global approaches have stricter 
requirements. Users may require access both to the model and the data used to train and validate the model [17,15,18]. On 
the other hand, most local approaches are model agnostic [11,33], i.e., they do not assume knowledge of the black box or its 
internals, while global approaches may depend on the black box model [4]. In spite of this additional layer of abstraction, 
local approaches have repeatedly shown competitive performances similar to global approaches, mainly due to the smaller 
set of decisions to explain. Finally, local approaches inherently enjoy a high degree of explanation independence, as they 
provide different views on data and are able to grasp qualitatively different patterns, providing different explanations for 
similar instances when confounding factors are at play [19,20]. This behavior is reminiscent of bagging estimators, as local 
approaches are a peculiar bagging in which each model is fit on one sample. Feature transformations are also typical of 
local approaches [11,13] as they are for bagging approaches.

Following these premises, we posit that leveraging local approaches for tackling global tasks can yield the benefits of the 
former and overcome the constraints of the latter. In this paper, we decline the local-global dichotomy in favor of a Local to 
Global interpretation and propose a formal definition of this problem and an algorithm to solve it. Three assumptions [21]
underpin our approach:

1. Logical Explanability. We believe that the cognitive vehicle for offering explanations should be close to the language of 
reasoning, that is logic. For this reason we adopt rule-based local explanations [12,22].

2. Local Explainability. While a black box can be arbitrarily complex, we assume that in the neighborhood of each spe-
cific instance there is a high chance that the decision boundary of the black box is simple enough to be accurately 
approximated by an explanation [11].

3. Explanation Composition. We assume that similar instances admit similar explanations [23,24] and that similar expla-
nations are likely to be composed together into slightly more general ones.

We support these hypotheses with GLocalX (GLObal to loCAL eXplainer), a model-agnostic “local-first” explanation algo-
rithm. GLocalX is based on the idea of deriving global explanations by inference on a set of logical rules representing local 
explanations. GLocalX aggregates local explanations expressed in form of logical rules into a global explanation by itera-
tively “merging” the rules in a growing hierarchical structure while accounting for both fidelity, i.e., accuracy in emulating 
black box predictions, and complexity of the rules. The merge procedure estimates a distance between explanations and 
yields a set of sorted candidate pairs to merge. Then, the pair with minimum distance satisfying constraints on both fidelity 
and complexity is processed to guarantee generalization and the updated explanation replaces the selected pairs. Constraint 
satisfaction is ensured on each merge. This guarantees high fidelity and low complexity on the final explanation yielded by
GLocalX.

We showcase the Local to Global formulation in two constrained scenarios typical of real-world use cases: in the former, 
we consider as available input a restricted number of local explanation rules; while in the latter, we consider no data avail-
able for the global explanation construction. These settings can occur when the model is proprietary or data is inaccessible 
due to privacy concerns. Empirical results over different black box models and datasets indicate that GLocalX achieves both 
a high fidelity and a low complexity of the rule set representing the model explanation. Compared to transparent models 
that either optimize model complexity or fidelity, but not both, GLocalX reaches simultaneously high fidelity and low com-
plexity. The high accuracy in prediction tasks also suggests that GLocalX might be used directly as a transparent model to 
replace global classifiers adopted in AI systems.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 presents the local to global 
problem formulation and the idea adopted for solving it. Section 4 describes the proposed hierarchical approach for the 
global explanation. Experimental results are presented in Section 5. Finally, Section 6 concludes the paper and discusses 
new research directions.
2
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2. Related work

To the best of our knowledge, no global frameworks merging local explanations are present in the literature. However, 
related work comprises of a set of both global and local explanation methods [4]. In addition, we can distinguish between 
methods that explain the black box post-hoc, and methods that are, on the other hand, explainable by design [21].

Explainable by design algorithms directly solve the classification problem [4] and yield an interpretable and global model. 
The most well known interpretable by design families of models comprise of the Decision Tree [25] (dt) and the rule-
based classifiers (rbc), such as cpar [26], Decision Sets [27,28] and corels [29]. cpar [26] combines the positive aspects of 
both associative classification and traditional rule-based classification, greedily generating a small set of rules directly from 
training data. Decision Sets [28] are “collections of if-then rules that can be considered in any order”. Given a set of rules, a 
set of functions is used to identify a subset which enjoys low internal conflict and several other desirable properties such as 
coverage, shortness, and accuracy. corels [29] also generates compact explanations with a optimality guarantees by using a 
discrete optimization technique for building sorted rule lists over categorical feature spaces. We observe different approaches 
to tackling the complexity of the interpretable global model, with some families ignoring it [26], partially acknowledging 
it [30] or fully including it [27] in the construction phase.

Concerning post-hoc black box explanation, several foundational works rely on training explainable by design models 
leveraging queries to black box models. An example of this family is the Conj Rules approach [31], which interprets a neural 
network by framing rule extraction as a learning problem. Along the same lines is Trepan [15], a refinement of the previous 
approach based on a decision tree specifically built for explaining the behavior of a black box. The original training data 
and a randomized extension of it are labeled by the black box and used as training data for an interpretable model. The 
model learns a Decision Tree that maximizes both the gain ratio [32] and the current model fidelity to the black box. An 
advantage of Trepan with respect to common tree classifiers [25] is that by enriching the dataset all splits are performed 
on a considerable amount of data. Another approach using a single tree approximation as an interpretable explanation of 
the global model is InTrees [16]. It extracts, measures, prunes and selects the final explanation rules from tree ensembles, 
and calculates frequent variable interactions. We underline that the InTrees approach is model-dependent and cannot be 
generalized for explaining every black box, while in Trepan we can plug in any query-able black box, making Trepan a more 
powerful and flexible algorithm.

More recently, we are observing a shift of paradigm towards local approaches for explaining the decision of black box 
classifiers for a single instance. These approaches assume that complex black box models such as deep neural networks 
implement an overall global logic too complex to be explained and/or understood. Conversely, they assume that local pre-
dictions of a single instance can be explained. We call this assumption of explainability in a local neighborhood the local 
explainability assumption. lime [11] is the first attempt to derive a local explanation, as it relies on instances randomly 
generated in the neighborhood of the instance to be explained. The authors propose a feature importance framework in 
which instances are mapped to a simpler interpretable space on which a linear model is used to compute an importance 
score for each interpretable feature. Interpretable features are then mapped back to the original feature space to provide 
an explanation. lime also provides a global feature importance tool to assess the feature relevance to discriminate in clas-
sification tasks, LIME-SP. Feature importance is the target of another local explainability model, shap [33], which frames 
feature importance as a collaborative game in which features are rewarded according to their contribution to the black box 
prediction. The game is framed in a formal game theory setting in which features approximate the provably unique Shapley 
values [34]. Based on the neighborhood generation premise is also lore [13], which populates neighborhoods via genetic 
programming, optimizing both for the neighborhood distance and its label distribution. As in lime, the neighborhood is 
then used to train an explainable model from which an explanation is extracted. lore employs Decision Trees as explain-
able models, hence, other than returning a rule as an explanation, it is able to generate a set of counterfactual explanations, 
i.e., a set of rules similar to the one returned, but with a different outcome. This feature is particularly valuable in actionable 
settings, in which the model user may understand what changes to apply to data to comply with the black box predictions. 
The authors of lime also propose anchors [12], an algorithm that generates explanations in the form of decision rules by it-
eratively guessing premises and optimizing their precision. An anchor explanation consists of a minimal set of premises that 
guarantees a baseline of accuracy even when new premises are added. To quote the authors, an anchor “is a rule [..] such 
that changes to the rest of the feature values of the instance do not matter.” Local explanation methods have repeatedly 
shown high accuracy, seldom outperforming global models. This, jointly with the local explainability assumption, prompts us 
to ask whether we can leverage local models to learn global ones while preserving their high fidelity.

3. Local to global explanation problem

In the following we introduce basic notations of classification on tabular data and we define the notion of explanation
and the local to global explanation problem for which we propose a solution.

A classifier is a function f : X (m) → Y which maps data instances (tuples) x from a feature space X (m) with m input 
features to a decision y in a label space Y . We write f (x) = y to denote the decision y given by f , and f (X) = Y as a 
shorthand for 〈 f (x) | x ∈ X〉. We assume that any classifier can be queried at will. Here we restrict to binary classification 
but the formulation and the solution can be easily extended to multi-class and multi-label problems. An instance x consists 
of a set of m attribute-value pairs (ai, vi), where ai is a categorical or continuous feature and vi is a value from the 
3
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domain of ai . We denote with b a black box classifier whose internals are either unknown to the observer or known but 
uninterpretable by humans. Examples include deep neural networks, SVMs, and ensemble classifiers like Random Forest and 
AdaBoost classifiers [32,2,4].

As explanation e we consider a decision rule r, i.e., e = 〈r = P → y〉. The decision rule r describes the rea-
son for the decision y = b(x), P = {p1, . . . , ps} is a set of premises in conjunctive form, and y is the rule out-
come. As an example, let us consider the following explanation for a loan request for a user x = {(age=22), (job =
unemployed), (amount= 10k), (car = no)}:

e = 〈r = {age≥25, job = unemployed, amount ≤ 10k}→deny〉
We name explanation theory E = {e1, . . . , en} a set of explanations, i.e., a set of decision rules. We indicate with E =
{E1, . . . , E N} a set of explanation theories. We account for logical explanation theories as the explanations are expressed 
in the form of logical rules.

According to [4], the local explanation problem consists in retrieving an explanation which describes the reason be-
hind a decision taken by a black box model b for a single instance x (local). On the other hand, the global explanation 
problem consists in finding the reasons for the classification for any instance in X taken by a black box model b. In 
this setting, the local to global problem consists in exploiting a set of local explanations, describing the reasons behind 
single (local) decisions, to understand the overall (global) logic of an opaque classifier used in an AI system. Formally, 
we define the problem as follows:

Definition 1 (Local to Global Explanation Problem). Let e1, . . . , en ∈ E be a set of local explanations for a black box classifier b
defined in a human-interpretable domain E . The local to global explanation problem consists in finding a function g yielding 
an explanation theory E = g(e1, . . . , en) ⊂ E , such that E describes the overall logic according to which b makes decisions.

In order to solve the local to global explanation problem we need to generalize the local explanations, as they are accu-
rate and faithful locally but not globally. Given a black box b adopted in an AI system, and a set of instances Xle = {x1, . . . , xn}
explained locally, and their local explanations {e1, . . . , en}, we aim to solve the problem by deriving an explanation theory 
E = {e′

1, . . . , e
′
k} by refining with an aggregation function g the local explanations into an explanation theory emulating the 

global decision logic of the black box b. Thus, the human-interpretable domain E consists in a set of logical decision rules.

4. Local to global hierarchy of explanation theories

GLocalX (GLObal to loCAL eXplainer) is an explanation method that hierarchically merges local explanations into a global 
explanation theory. In particular, GLocalX takes as input a set of local explanations in form of explanation theories E =
{E1, . . . , En} where each theory Ei = {ei} is formed by a single explanation, i.e., |Ei | = 1 ∀Ei ∈E. GLocalX iteratively merges
the explanation theories and finally returns an explanation theory E = {e′

1, . . . , e
′
k} which emulates the global behavior of 

the black box b simultaneously maintaining the overall model simple and interpretable.
At each iteration, GLocalX merges the closest pair of explanation theories Ei, E j by using a notion of similarity between 

logical theories. The pairs are filtered out according to merge quality criterion: if no pair satisfying the criterion is found,
GLocalX halts prematurely without building the full hierarchy. The resulting hierarchy of explanation theories can be rep-
resented by using a tree-like diagram called dendrogram [35]. There are two key elements in the GLocalX approach: (i)
similarity search, which allows to select which theories to merge and refine, and (ii) a merge function, which allows to refine 
the explanations. We explore our choices in Section 4.1 and Section 4.2, respectively. Finally Section 4.3 describes how to 
use for a classification task an explanation theory capturing the global behavior of the black box model.

GLocalX is detailed in Algorithm 1. Given a set of explanation theories E , a pairwise similarity function and a quality 
criterion, we sort logical theories by similarity in a queue Q1 (line 3). Then, we sample a batch of data to merge the can-
didate theories (line 5). Using batches instead of the whole training dataset favors diverse merges, as the merge procedure 
has different behaviors according to the data at hand. In the merge loop, we pop the queue to find the most similar pair 
of theories whose merge satisfies a quality criterion (line 7) and, we run the merge operation (line 8), and if the merge is 
advantageous (line 9), the merged theory is kept.2 As a quality criterion we have selected the Bayesian Information Criterion 
(BIC) [36], as it rewards models for their simplicity and accuracy. BIC has been successfully adopted in various techniques, 
i.e., clustering, adopting bisecting hierarchical refinement of the model [37,38]. After a successful merge we replace the 
two mergees Ei, E j with the merged theory Ei+ j (line 13). If no advantageous merge is found, GLocalX halts. This process 
is iterated until no more merges are possible (line 14). Finally, explanations with low fidelity are filtered out to reduce 
the output size (line 15): we use a parameter α to indicate this per-class trimming threshold. Specifically, we select the 
top-α explanations by fidelity, �α−1 for positive and negative class, respectively. In addition to this, we introduce αq , a 
relative trimming criterion discarding rules with fidelities under the αqth fidelity percentile. Trimming explanations with 
low fidelity allows us to retain only the best explanations to provide in output.

1 Q is the set of sorted candidates theories.
2 Ei+ j indicates the merged theories and does not refer to the sum of the indexes.
4
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Algorithm 1 GLocalX(E, α).
Input: E explanation theories, α filter threshold
Output: E explanation theory

1: E ← ∅
2: repeat
3: Q ← sort(E) � sort pairs of theories by similarity
4: merged ← False
5: X ′ ← batch(X)
6: while ¬ merged ∧ Q �= ∅ do
7: Ei , E j ← pop(Q) � select most similar theories
8: Ei+ j ← merge(Ei , E j , X ′) � merge theories
9: if bic(Ei+ j ) ≤ bic(Ei ∪ E j ) then � verify improvement

10: merged ← True
11: break
12: if merged then � merge occurred
13: E ← update(Ei , E j , Ei+ j ) � update hierarchy
14: until | E |> 1 ∧ merged � until the merge is successful
15: E ← filter(E, α) � Filter final theory
16: return E

4.1. Finding similar theories

Selecting pairs of theories to merge requires the definition of a pairwise similarity function on logical explanation theo-
ries (line 2, Algorithm 1). To this aim, we define the similarity of two theories E1, E2 as the Jaccard similarity [32] of their 
coverage on a given instance set X :

similarity X (Ei, E j) = |coverage(Ei, X) ∩ coverage(E j, X)|
|coverage(Ei, X) ∪ coverage(E j, X)| .

An explanation e = 〈r = P → y〉 covers an instance x if the premise P of r is satisfied by x. We extend the notion of coverage 
to explanation theories by saying that an explanation theory E covers an instance x if there is at least an explanation e ∈ E
covering x. coverage(E, X) returns the set of records in X covered by the set of explanations in E , i.e., coverage(E, X) = {x ∈
X | ∃ e ∈ E. e covers x}. Conversely, covered(x, E) returns the set of explanations in E with coverage on x, i.e., covered(x, E) =
{e ∈ E | x ∈ coverage(e, {x})}. As for coverage, we extend this notion to sets of records by saying that a record x is covered
by an explanation theory E if there is at least an explanation e ∈ E that covers x.

The larger is the shared coverage of Ei and E j on X , the more similar the two logical explanation theories are. Coverage 
similarity is a two-faceted similarity measure that captures (i) the premise similarity and (ii) the coverage similarity. The 
former is straightforward: rules with similar premises will have similar coverage. The latter balances the premise similarity 
to avoid that rules with similar premises but low coverage sway the similarity score.

4.2. Merging explanation theories

The merge function allows GLocalX to generalize a set of explanation theories while balancing fidelity and complexity 
through approximate logical entailment. As detailed in the following, the merge involves two operators, join and cut, to 
simultaneously generalize and preserve a high level of fidelity. In particular, in the logical domain, generalization seldom 
involves premises relaxation or outright removal [39]. Thus, GLocalX advances the state-of-the-art in exploiting also this 
kind of generalization. We highlight that generalization comes at a fidelity cost, as the more general a set of premises is, 
the more likely it is to capture unwanted instances. Pushing for generalization may pull down fidelity. These contrasting 
behaviors are the focal point in a Local to Global setting and must be dealt with accordingly. We tackle this double-faced 
problem with a merge function that handles both rule generalization and fidelity.

We illustrate our proposal with a trivial example. Suppose we have two explanation theories, E1 = {e1, e2} and E2 =
{e′

1, e
′
2}, with e1, e′

1 explaining a record x1 and e2, e′
2 explaining a record x2.

E1 = {e1 = {age ≥25, job = unemployed,amount ≤ 10k}→ deny

e2 = {age ≥50, job = office clerk}→ deny}
E2 = {e′

1 = {age ≥20, job = manager,amount > 8k}→ accept

e′
2 = {age ≥40, job = office clerk,amount > 5k}→ deny}

The resulting merge yields the following rules E1+2:

E1+2 = {e′′
1 = {age ≥25, job = unemployed,amount ≤ 10k}→ deny

e′′ = {age ∈[20, 25], job = manager,amount ∈[8k,10k]}→ accept
2

5
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Algorithm 2 merge(Ei, E j, X).
Input: Ei , E j explanation theories, X batch
Output: E(i+ j) explanation theory

1: E ← Ei ∪ E j

2: for x ∈ X do
3: Ci ← covered(x, E j ) � retrieve rules in Ei covering x
4: C j ← covered(x, E j ) � retrieve rules in E j covering x
5: C= ← non-conflicting(x, Ci , C j ) � non-conflicting rules in Ci , C j and covering x
6: C �= ← conflicting(x, Ci , C j ) � non-conflicting rules in Ci , C j covering x
7: E ← E \(Ei ∪ E j)

8: E= ← join(C=)
9: E �= ← cut(C �= , X )

10: E ← E ∪ E= ∪ E �=
11: return E

e′′
3 = {age ≥40}→ deny}

In E1+2, rules with equal predictions from different explanation theories have been generalized by relaxing their premises 
(rule e′′

3) while rules with different predictions have been specialized by further constraining them (rule e′′
2 ). Specifically, 

e′′
1, e′′

2 results from a cut on e1, e′
1, that is e1 − e′

1.
More formally, given two explanation theories Ei, E j , the merge function applies two operators on the explanation theo-

ries to derive a new theory approximately entailed by the two: the join and the cut operators. The former allows merging 
non-conflicting rules while the latter allows merging conflicting rules [27]. A set of explanations E = {e1, . . . , en} part of a 
logical explanation theory is considered conflicting on an instance x if two or more of them cover an instance x but lead to 
two different outcomes. The merge of two logical explanation theories Ei and E j applies the join operator on non-conflicting
explanations and the cut operator on conflicting explanations iteratively on each instance in the batch. We detail this pro-
cess in Algorithm 2. The resulting set of explanations composes the new explanation theory Ei+ j (line 8, Algorithm 1). The 
candidate merge is then tested for considering the equilibrium between fidelity and complexity with the Bayesian Informa-
tion Criterion (BIC) [36] computation. In our case, the model log-likelihood is computed as the rules fidelity, and the model 
complexity as the average rule length.

In the following we provide details of the join and cut operators. The two operators move in opposite directions: join

generalizes explanations, possibly at a fidelity cost, while the cut specializes explanations, possibly at a generalization cost. 
In other words, the former allows generalization while the latter regularizes it. Inspired by [40], we define the join and the
cut operators through an alternative representation of decision rules. Let X̂i be the set of subspaces on the feature i. Given 
a decision rule r = P → y we have that any Pi ∈ X̂i is a subspace on the feature i. The premise P of the rule identifies a 
quasi-polyhedron defined as a subspace of X̂ (m):

P = {Pi, . . . , P j} ∈ P(X̂1 × · · · × X̂m)

We say that an instance x satisfies P if ∀Pi ∈ P . xi ∈ Pi , thus, x satisfies P if it lies in the subspace defined by the quasi-
polyhedron. We define the operators join (⊕) and cut (�) exploited by the merge function based on this quasi-polyhedron 
interpretation.
Reasoning in the polyhedral space. The polyhedral interpretation lends itself to a straightforward approximate inference 
algorithm, which we call “of inclusion”. Given the equivalence of decision rules and quasi-polyhedra, a rule s with quasi-
polyhedron P s is inferred by another rule r with quasi-polyhedron Pr (r −→ s) if and only if its premises (and thus the record 
satisfying them) are implied by the other. Simply put, all instances satisfied by s are also satisfied by r. Quasi-polyhedra-
wise, it follows that P s ⊆ Pr . Hence, inference by inclusion produces flat reasoning paths in which the implied local rules 
are elevated to global explanations, yielding a “global” model just as local as before. With this consideration in mind, we 
reject exact inference in favor of approximate inference in which join and cut perform approximate rule entailment.

Join. The join operator aims to generalize a set of non-conflicting explanations relaxing their premises, hence generalizing 
the associated rules. Given two quasi-polyhedra P and Q , the join (⊕) is defined as follows:

P ⊕ Q = {P1 + Q 1, . . . , Pm + Q m}
where:

Pi + Q i =
{

Pi ∪ Q i non-empty intersection

[min{Pi ∪ Q i},max{Pi ∪ Q i}) empty intersection

∅ Pi is empty ∨ Q i empty

Example. Consider the following two explanations:

e1 = {age ≥ 50, job = office clerk} → deny

e2 = {age ≥ 40} → deny
6
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The merge function applies the join operator e1 ⊕ e2 and returns

e′
1 = {age ≥ 40} → deny

The shared feature age has a non-empty intersection (age ≥ 50 ∩ age ≥ 40 �= ∅), hence it is generalized to encompass both 
premises according to the first case. On the non shared feature job = office clerk we have one empty quasi-polyhedron, 
hence it is removed according to the third case.

Cut. The cut operator acts in a complementary fashion by slicing quasi-polyhedra. Here, the goal is to preserve the better 
rules, and confine the lesser ones to subspaces in which they have high fidelity. In other words, the aim is to remove 
overlaps between rules by subtracting them. This directly translates to subtracting quasi-polyhedra. Formally, given two 
quasi-polyhedra P and Q , the cut (�) is defined as:

P � Q = {P1 − Q 1, . . . , Pm − Q m}
where:

Pi − Q i =
{

{Pi,∅} Q i empty

{Pi, Q i \ Q i} otherwise

Note that, unlike the join operator, the cut operator is not symmetric, hence P � Q �= Q � P . With our goal of preserv-
ing high fidelity rules and restrict lower fidelity rules in mind, it is straightforward to select subtracted and subtracting 
polyhedron, with the two rules being the one with higher and lower fidelity, respectively.
Example. Consider the following two explanations:

e1 = {age ≥ 25, job = unemployed,amount ≥ 10k} → deny

e2 = {age ≥ 20, job = manager,amount > 8k} → accept

where the first one is the dominant one, that is, the one with highest fidelity. The merge function applies the cut operator 
e1 � e2 and returns

e1 = {age ≥ 25, job = unemployed,amount ≥ 10k} → deny

e′
1 = {age ∈ [20, 25], job = manager,amount ∈ [8k,10k]} → accept

We note that e1 is preserved as-is while the premises of e2 are further constrained to reduce overlap. Namely, age is 
constrained to remove overlap on age ≥ 25 and amount is constrained to remove overlap on amount ≥ 10k.

We highlight that ⊕ and � strictly operate on the premises of rules, ignoring their outcome, which is preserved after the 
merge. Moreover, join and cut produce sets of different cardinality. While cut preserves the number of rules, join indeed 
lessens it by subsuming it in a smaller more general explanation set.

4.3. Interpretable classification

The global explanation theory E mimes the black box decision logic for predicting a set of instances. By construction, 
E is not exhaustive nor mutually exclusive, i.e., not all records are necessarily covered by at least one rule while covered 
records may be covered by more than one rule. We address the former case with a default majority rule and the latter with 
a voting schema.

We exploit E as a rule-based classifier to replace the opaque black box b in the prediction task. Moreover, E may also 
be used for explaining the decision of the black box b on a single instance x. Clearly, as a global explanation, it can be less 
accurate than the local one, due to manipulations applied to capture the global behavior of the black box.

It is important to highlight that, given an instance x we could have more than one decision rule (explanation) in E
that satisfies x, and some of them can also be conflicting. As a consequence, to apply E for classifying x or explaining 
b(x) we need a mechanism for deriving a decision when multiple covering rules have different outcomes. In line with the 
literature [17], we employ the following: given a record x, we select the rule with the highest accuracy among the ones 
covering x, and use its outcome as prediction. Note that this mechanism replicates the Laplacian scoring schema proposed 
in [17] and the Falling Rule List schema introduced by [18] setting a number of voting rules to one.

5. Experiments

In this section, after presenting the experimental setup, we report an analysis of GLocalX on a set of standard bench-
mark datasets and a real-world proprietary dataset, and compare GLocalX to native baselines and state-of-the-art global 
explainers. Moreover, we analyze GLocalX in two settings: in the former, we provide GLocalX with a restricted number 
7
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Table 1
Datasets statistics.

instances features |Xbb| |Xle| |Xts|
adult 32,560 10 22,791 6,837 2,930
compas 7,214 18 5,048 1,514 649
german 1,000 19 699 209 89
diva 8,000 88 4800 1600 1600

Fig. 1. Validation schema: Xbb is used for training the black box, Xle is the partition to explain, while Xts is reserved for validating the fidelity and the 
accuracy. The dashed line indicates the labels predicted by the black box and on which the model fidelity is estimated.

of rules while in the latter, we do not provide GLocalX with any data. GLocalX has been developed in Python.3 The ex-
periments were performed on 16-core Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 128 GB of RAM. For 
the local rule extraction we selected lore [22] due to its high fidelity and stability [24]. Alternatives are anchors [12] or 
generating a random local neighborhood like in lime [11] and the using locally a rule based classifier.

5.1. Experimental setup

We showcase the proposed approach on three benchmark datasets frequently used in the literature, namely adult,4

compas,5 and german,6 and a real world proprietary dataset, diva.7

The adult dataset includes 48, 842 instances with information like age, job, marital status, race, capital loss, capital 
gain, etc. The labels have values “<=50K” or “>50K”, indicating whether the person will earn more or less than 50k$ in 
this fiscal year. The compas recidivism dataset contains the features used by the COMPAS algorithm for scoring defendants 
and their risk of recidivism (Low, Medium and High), for over 4, 000 individuals. We have considered the two classes “Low-
Medium” and “Medium” as equivalent to map the task into a binary classification task. The dataset includes features like: 
age, sex, race, priors count, days before screening arrest, length of sentence, charge degree, etc. In german each one of 
the 1, 000 persons is classified as a “good” or “bad” creditor according to attributes like age, sex, checking account, credit 
amount, loan purpose, etc. Finally, diva is a privately released dataset on fraud evasion, periodically issued by the Italian 
Ministry of Economics.8 diva records financial activities for more than 12, 000 citizens, including their past financial credit 
score, declared income and property value, debt and several taxation detailed infos. The labels mark fraudulent citizens. 
These datasets contain both categorical and continuous features. Missing values, if present, were replaced by the mean for 
continuous features and by the mode for categorical ones. Details are reported in Table 1. Similarly to the training/test 
classical split, we split the dataset into three partitions: Xbb , the set of records to train a black box model; Xle , the set of 
locally explained records which is also used as reference set by GLocalX for calculating coverage and fidelity in training 
phase, and by the global competitors for training; Xts , the held-out set of records to validate the fidelity and accuracy of
GLocalX. Fig. 1 depicts this three-way split.

We validate GLocalX on its ability to mime Deep Neural Networks (DNN), Random Forests (RF) and Support Vector 
Machines (SVM). The black boxes have been trained on Xbb with grid searches on a 3-fold cross-validation schema. Given 
the poor performances of DNNs and SVMs on diva and german datasets, they were experimented upon only on Random 
Forests. Performance in terms of accuracy of these black boxes are reported in Table 2 (3rd column). Given the novelty of the 
problem and the lack of local to global explainer in the literature,9 we compare GLocalX against natively global frameworks: 

3 The Python implementation is available at https://github .com /msetzu /glocalx.
4 https://archive .ics .uci .edu /ml /datasets /Adult.
5 https://github .com /propublica /compas -analysis.
6 https://archive .ics .uci .edu /ml /datasets /statlog +(german +credit +data).
7 https://kdd .isti .cnr.it /project /diva.
8 Due to privacy and legal concerns, we are not allowed to publicly release the dataset.
9

lime [11] and some other recent works extending lime claim to obtain a global explanation by joining local feature importance but in fact the resulting 
model is just a set of numbers and cannot be used to replace the black box, nor expresses in logical form the logic adopted by the black box for taking 
decisions.
8
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Table 2
Black box accuracy on the various dataset (3rd column), and performance of a decision tree 
(dt) trained on the black box models and dt are trained on Xbb, ybb where ybb is the ground 
truth. Both the black box models and the decision tree are evaluated on the Xts.

Dataset Black Box Accuracy dt Accuracy dt Size dt Length

adult DNN 0.868
RF 0.860 0.813 5452 16.611 ± 6.150
SVM 0.860

compas DNN 0.611
RF 0.548 0.587 1514 6.271 ± 1.985
SVM 0.557

german RF 0.753 0.896 68 5.294 ± 2.065

diva RF 0.900 0.848 934 11.233 ± 5.268

Decision Tree [25] (dt), Pruned Decision Tree10 (pdt) in a C4.5 [25] implementation, and cpar [17], a rule-based classifier 
(rb) implemented in the LUCS-KDD library.11

In addition, we also experiment with GLocalX in a particular setting in which only local explanations e1, . . . , en are 
provided, and no data Xle is available. We call this setting synthetic and name it GLocalX* for short. In this case, we assume 
to have some information on the feature distribution, and employ a data generation and sampling schema similar to [15] to 
construct a training dataset for GLocalX of the same size of Xle . Specifically, the joint distribution has been estimated with a 
Gaussian density estimator, which has then been randomly sampled to build a training set for GLocalX*. This dataset is then 
provided as input, and GLocalX is executed as previously defined. With GLocalX*, we wish to grasp the learning abilities 
of GLocalX when a minimal input comprised exclusively of the local rules and data distributions is provided. A minimal 
assumption of knowledge on the data distribution is needed to validate the merging procedure. Relaxing this assumption 
would reduce the merging problem in a logical inference one, as no quantitative evaluation of any merge can be performed, 
leaving only intra-rule implication as a form of rule generalization. In other words, when no knowledge on the data is 
available, the Local to Global problem is equivalent to a logic inference problem.

5.2. Evaluation measures

Given a black box b and the explanation theory E returned either by GLocalX or by a global transparent model, we 
consider the following properties in evaluating its performance:

• fidelity(Y , ̂Y ) ∈ [0, 1] where Y and Ŷ are the predictions returned by the rules in E or by the black box b, respectively. 
The fidelity is the accuracy of the transparent global model in approximating the behavior of b [3,18].

• size(E) = |E| is the number of explanations in the explanation theory E .
• length(E) ∈R+ is the mean number of premises of the rules in E .
• accuracy(Y , Y ∗) ∈ [0, 1] where Y is the classification returned by the rules in E (or by the black box b), and Y ∗ are the 

real labels. It answers the questions: how good is the transparent model represented by E in solving the classification 
problem? Can we replace b with E?

If not differently specified, the results in the rest of this section use Xbb to train the black box classifiers, Xle to extract 
local explanations,12 run GLocalX and learn the global interpretable models dt, pdt and rb, and Xts for evaluating the 
fidelity. Thus, the fidelity and the accuracy refer to Xts , while the size and length refer to models learned on Xle . Experiments 
have been run with a batch size of 128.13

5.3. Empirical motivation of the local to global explanation problem

Besides the motivation presented in the introduction and in the problem definition section we show here an empirical 
reason for the local to global explanation problem. Table 2 shows the performance of an interpretable model, i.e., a Decision 
Tree (dt), trained on the same training set of the black box, i.e., Xbb, Ybb where Ybb are the real labels. The results highlight 
that although dt has a high accuracy (4th column), it is usually lower than the accuracy of the black box classifiers (3rd

10 A pruned decision tree is a decision tree with maximum dept equals to four. We adopt four as maximum dept as it is the measure used in Optimal 
Decision trees [41]. We do not compare with Optimal Decision trees due to the complexity of running the models that requires a particular architecture 
and the non public availability of the code.
11 https://cgi .csc .liv.ac .uk /~frans /KDD /Software.
12 Specifically, one explanation per record: the number of local explanations is directly inferred by the size of Xle in Table 1.
13 Smaller batches are not large enough for performing reasonably accurate inference, while larger sets tend to reduce the diversity and number of merges. 

In a preliminary stage of the research we have tested several batch sizes in {2i}, i ∈ {1, . . . , 8}, with 128 yielding satisfying results on all datasets.
9
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Table 3
Sensitive features for the recidivous and non-recidivous group. Average number of prior of-
fenses and percentage of past recidivists, violent recidivists, african-americans and caucasians.

Feature Recidivous Non-recidivous

prior offenses 9.89 ± 5.18 2.75 ± 4.23
past recidivous (%) 74 ± 0.43 0.42 ± 0.49
violent recidivous (%) 19 ± 0.39 0.09 ± 0.29
african-american (%) 70 ± 0.45 0.50 ± 0.50
caucasian (%) 21 ± 0.41 33 ± 0.47

column) in most of the cases (justifying the black box usage). At the same time, despite being interpretable, the dt does 
not guarantee a real explicability. Indeed, the good levels of accuracy come at the cost of a very high complexity (5th,6th
columns) of the learned model. This is testified by the high size (number of rules derived from the dt) and average rule 
length of the dt, making the overall transparent model non-interpretable in practice. We show in the following how GLo-

calX, that works on a much smaller portion of data, is able to reach comparable performance in terms of fidelity while 
maintaining an admissible complexity of the explanation theory returned.

5.4. Qualitative evaluation

In this section, we show an example of explanation theory E yielded by GLocalX. We use as example the explanation 
theory returned by GLocalX, for explaining the behavior of the RF black box on compas, α = 6. GLocalX achieves a fidelity 
of 0.86 with a set of 6 rules inferred from 1, 515 starting local rules:

E = {e1 = {prior offenses ≥ 4,age < 45,

sex = male} → Non-recidivous;
e2 = {prior offenses ≥ 4,age < 45, sex = male,

charge degree = light} → Non-recidivous;
e3 = {age ≤ 43,prior offenses < 4,past recidivous = no,

sex = male, charge degree = light} → Non-recidivous;
e4 = {past time in prison < 8} → Recidivous;
e5 = {priors count < 4,past time in prison < 1} → Recidivous;
e6 = {priors count < 2,past time in prison < 8} → Recidivous;

}
The explanations for the two classes show very different behaviors. For the Non-recidivous class, explanations are 

rather lengthy, and account for the defendant’s prior offenses, age, current charge and prior recidivous behavior. Young men 
with a handful of light crimes and previous non-recidivous behavior appear to be the demographic of the non-recidivous 
behavior. The Recidivous class shows different explanations, with brief rules involving exclusively the previous time in 
prison and the previous offenses.

On first sight, these explanations appear to be more coarse and do not show any self-evident bias towards sensitive 
features, e.g., race, of the defendants. Table 3 reports average values for the records covered by the two sets of explanations. 
The recidivous explanations target, as expected, defendants with a high number of prior offenses (9.89 on average), high 
past recidivism (74%) and past violent recidivism (19%). Intuitively, these are highly predictive features which one might 
expect to lead to future recidivism. Moreover, the explanations indicate a possible bias against african-americans, which 
appear to be recidivous at a much higher rate (70%) than caucasians (50%).

5.5. Impact of the filter parameter

First of all, we report an analysis of the impact of the filter parameter used to filter out rules from the final explanation 
theory returned by GLocalX. Here we use the relative trimming criterion αq instead of the absolute one to minimize 
dataset-specific dependencies and study the effects of the filter across the fidelity distribution. Table 4 reports the fidelity
and complexity (size and length) of GLocalX varying αq for the various datasets and black box models analyzed. The fidelity 
is lower for values of αq around 75 and peaks around αq = 95, suggesting that a large number of rules may mislead the 
predictions of the model. We can attribute this behavior to the use of batches in the construction phase: as stated in 
Section 4, the highest-fidelity rule is selected by verifying the fidelity of the rules on the batch at hand. Hence, poor rules 
with good performance only on single batches may leak into the final model.With respect to the complexity we observe a 
10
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Table 4
Impact of the filter parameter αq on GLocalX performance in terms of fidelity, size, and length and various datasets and black box classifiers. We observe 
that when considering simultaneously the three evaluation measures the best performance are reached for αq = 95, suggesting that few rules are sufficient 
for mimicking the global black box behavior.

b αq fidelity size length black box αq fidelity size length

a
d
u
l
t

DNN

75 .872 53 6.73 ± 1.84

c
o
m
p
a
s

DNN

75 .769 16 2.93 ± 0.99
90 .905 17 6.43 ± 1.76 90 .751 8 2.71 ± 0.69
95 .911 10 5.33 ± 1.15 95 .757 5 2.25 ± 0.43
99 .909 3 7.00 ± 0.00 99 .759 4 2.33 ± 0.47

RF

75 .845 27 10.25 ± 1.03

RF

75 .829 27 5.57 ± 1.52
90 .862 11 10.80 ± 0.60 90 .873 9 5.37 ± 1.49
95 .865 7 11.00 ± 0.57 95 .874 6 5.20 ± 1.72
99 .867 2 12.00 ± 0.00 99 .875 10 8.00 ± 0.00

SVM

75 .859 56 4.67 ± 1.39

SVM

75 .827 19 6.22 ± 1.54
90 .868 22 4.61 ± 1.25 90 .861 7 5.66 ± 0.47
95 .902 10 4.22 ± 1.13 95 .860 4 5.66 ± 0.47
99 .865 3 4.50 ± 0.50 99 .851 2 6.00 ± 0.00

d
i
v
a

RF

75 .855 48 3.91 ± 0.96

g
e
r
m
a
n

RF

75 .786 2 4.00 ± 0.00
90 .873 16 3.86 ± 0.71 90 .786 2 4.00 ± 0.00
95 .806 9 3.75 ± 0.82 95 .786 2 4.00 ± 0.00
99 .814 3 4.00 ± 1.00 99 .786 2 4.00 ± 0.00

consistent decrease in size and a slight increase in explanation length across datasets and black boxes. Thus, more complex 
rules seem to compensate for less rules in the explanation theory.

5.6. Effect of the number of local rules

As second experiment we analyze the effect on the performance of GLocalX of a reduced number or local explana-
tion rules e1, . . . , ek (k < n) is provided in input with respect to considering a large set or all the available rules form 
Xle . This scenario is of particular interest for applications where extracting rules is costly, there are additional constraints 
on the computation time, or simply there is a low number of available local explanations. In practice, we provide as 
input to GLocalX a subset of the rules available extracted with lore from Xle . Specifically, we provide GLocalX with 
β = {1%, 20%, 40%, 60%, 80%} of the available rules, randomly sampling them in 10 independent trials.14 Fig. 2 reports fi-
delity and the size averaged over trials. To lessen the impact of the α-trimming, we report results with α = q50%, i.e., 
instead of selecting the top-α explanations, we trim those with fidelity under the 50th percentile. GLocalX shows small 
fluctuations in fidelity (left axis). In particular, varying β we observe an overall slight fidelity improvement. While there is 
a small drop in fidelity, these results suggest that GLocalX can be used with smaller sets of rules, at the cost of fidelity. 
On the other hand, the main effect of β is registered on the size (right axis) that significantly grows with the number of 
input rules. We remark that in this experiment we used αq = 50 that causes a smaller number of rules to be filtered out. 
Therefore, the α (αq) parameter should be tuned not only according to the required fidelity and size, but also according to 
the number of input rules. In the rest of this section we report results using all the local rules returned by lore from Xle if 
not differently specified.

5.7. Effectiveness of the global explainers

The final goal of GLocalX is to provide a global explanation of a black box classifier. In order to test the effectiveness in 
replicating the black box behavior we compare the fidelity and complexity of the explanation theories returned by GLocalX

and GLocalX* with the rule sets returned by the interpretable global models (dt, cpar, pdt) trained on Xle with the labels 
returned by the black box. In addition, as a baseline local to global method we compare against an approach (uni) that 
simply performs the union of the local decision rule and adopts all of them as explanation theory. For GLocalX we select 
α to be lower than the smallest competitor, in this case pdt. Table 5 reports the results of this comparison. GLocalX and
GLocalX* are shortened as glx and glx* for readability purposes. For each dataset and black box the highest fidelity and 
lowest size and length are underlined.

The results show the ability of GLocalX to find explanation theories with a high fidelity and low complexity. We observe 
that GLocalX has a competing fidelity which is comparable to the one of the best global explainer (generally the dt) as it is 
always only less than a 0.1 lower. The loss is more evident when explaining DNNs, while it is negligible for the other black 
box classifiers. At the same time, GLocalX or GLocalX yield the lowest size (number of rules) of the global explanation 
resulting in a simple and compact but effective model. It is important to notice that GLocalX learns sets of rules one order 
of magnitude smaller than cpar and one/two orders of magnitude smaller than the dt. This suggests that accounting for 

14 german, which has a low number of rules, has been tested for β = {20%, 40%, 60%, 80%}.
11
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Fig. 2. Effect of the number of local rules in GLocalX with αq = 50. The red line denotes the fidelity, while the gray the size of GLocalXvarying the number 
of rules. The blue line denotes the fidelity of GLocalX using all the available rules.

complexity and fidelity at the same time in the merging process can yield good results in both metrics. The dt has a 
comparable number of rules with GLocalX and a fidelity within 8% of the one of GLocalX. In terms of rule length, GLocalX

learns rules consistently shorter than the dt, but longer than pdt and cpar who are the best performers according to this 
evaluation metric. However, as previously stated, the sets of rules learned by cpar are one/two orders of magnitude larger 
than the size of the explanation theory returned by GLocalX. On the other hand, the dt has on average more than two
times the number of rules of GLocalX and in a real scenario this can cause confusion, especially if every feature model a 
complicated concept.

GLocalX show remarkable higher performances than uni. Also GLocalX*, that does not have access to data, ob-
tains similar fidelity to GLocalX, with fidelities 3% lower in the worst configuration. This indicates that just aggregating 
all the local explanations together is not beneficial for obtaining an effective global explanation. The local explana-
tion rules must be carefully processed in order to remove useless and/or misleading local aspects that do not help in 
understanding the global reasons for the classification. Finally, GLocalX* shows a slightly lower performance than GLo-

calX with fidelity scores lower than 2−3% and non-monotonic pattern on length and size, which are shorter/longer 
and smaller/larger across datasets and black boxes.

We adopt the non-parametric Friedman test [42] for comparing the average ranks of explanation methods over multiple 
datasets and black boxes with respect to the fidelity, size and length. The null hypothesis that all methods are equivalent is 
rejected for p−value < 0.05 for fidelity, p−value < 0.0001 for size, and p−value < 0.0005 for length.

5.8. Replacing the black box with a global explainer

As final experiment, we test the performance of GLocalX in terms of accuracy, i.e., we consider predictions on the real 
dataset labels, rather than the ones predicted by the black box. With this experiment, we aim to understand whether GLo-

calX can be used to replace the black box classifier instead of being used only for understanding the classification reasons. 
12
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Table 5
Effectiveness of the global explainers in terms of fidelity, size and length on different datasets and black box classifiers b. GLocalX and GLocalX* (having 
not access to the data) are indicated with glx and glx*, respectively. For each dataset and black box the highest fidelity and lowest size and length are 
underlined. GLocalX has a high fidelity comparable with the best performer, the lowest complexity in terms of size.

b method fidelity size length b method fidelity size length

a
d
u
l
t

,α
=

10

DNN

glx .912 5 6.00 ± 1.0

c
o
m
p
a
s

,α
=

5

DNN

glx .759 3 2.33 ± 0.4
glx* .880 10 6.30 ± 2.5 glx* .756 6 4.50 ± 0.9
cpar .929 100 3.78 ± 2.4 cpar .821 69 3.11 ± 1.4
dt .917 1068 7.22 ± 1.9 dt .789 1014 6.00 ± 1.8
pdt .908 28 2.71 ± 0.8 pdt .780 30 2.33 ± 0.6
uni .880 6838 3.86 ± 2.2 uni .627 1515 4.65 ± 1.7

RF

glx .902 10 4.00 ± 1.0

RF

glx .870 6 3.66 ± 2.4
glx* .876 10 3.20 ± 1.5 glx* .862 6 4.33 ± 1.1
cpar .944 107 2.57 ± 1.3 cpar .908 53 2.86 ± 1.6
dt .959 926 7.43 ± 1.6 dt .906 452 4.91 ± 1.4
pdt .935 26 2.53 ± 0.8 pdt .886 30 2.60 ± 0.7
uni .876 838 5.00 ± 1.4 uni .658 1515 3.52 ± 1.2

SVM

glx .865 10 7.70 ± 3.4

SVM

glx .860 6 4.33 ± 1.3
glx* .854 10 6.10 ± 2.9 glx* .840 6 4.16 ± 0.8
cpar .848 95 4.77 ± 3.0 cpar .858 70 3.04 ± 1.3
dt .875 2956 7.57 ± 1.6 dt .875 824 4.58 ± 1.0
pdt .854 24 2.50 ± 0.6 pdt .850 30 2.53 ± 0.7
uni .854 6838 3.54 ± 2.4 uni .696 1515 4.08 ± 0.8

d
i
v
a

,α
=

25

RF

glx .854 26 3.26 ± 0.9
g
e
r
m
a
n

,α
=

2

RF

glx .786 2 3.00 ± 1.0
glx* .848 26 3.88 ± 1.3 glx* .766 2 5.87 ± 2.4
cpar .850 221 2.03 ± 1.0 cpar .773 18 2.33 ± 1.4
dt .853 976 10.63 ± 3.9 dt .830 76 4.50 ± 1.7
pdt .836 28 3.21 ± 0.9 pdt .796 28 2.78 ± 0.8
uni .794 2013 2.90 ± 1.0 uni .766 210 5.62 ± 2.4

Table 6
Accuracy of the global explainers on Xts adopted as replacement of the black box models. For each dataset, the first line report the average accuracy of 
the black box classifiers indicated with b. The average accuracy (and standard deviation) among the various black box classifiers is reported for each global 
explainer. �acc is calculated as the difference between the model fidelity and accuracy. The closer to 0, the better it is. The average (and standard deviation) 
size and length complete the table.

method accuracy �acc size length

a
d
u
l
t

b .801 ± 0.056
cpar .816 ± 0.148 −0.091 ± 0.042 139.1 ± 217.2 7.526 ± 1.464
dt .945 ± 0.062 0.027 ± 0.039 1654.0 ± 1134.5 7.430 ± 0.159
glx .792 ± 0.019 0.101 ± 0.013 8.3 ± 2.8 5.533 ± 1.601
pdt .894 ± 0.057 −0.005 ± 0.043 16.6 ± 14.4 2.519 ± 0.139

c
o
m
p
a
s

b .673 ± 0.033
cpar .790 ± 0.108 −0.072 ± 0.377 43.7 ± 79.5 4.948 ± 1.306
dt .593 ± 0.514 −0.264 ± 0.366 762.0 ± 288.7 4.988 ± 0.225
glx .726 ± 0.002 0.103 ± 0.049 5.00 ± 1.73 4.611 ± 0.976
pdt .868 ± 0.025 0.029 ± 0.363 20.0 ± 17.3 2.566 ± 0.004

d
i
v
a

b .908
cpar .850 0.020 221.0 2.031
dt .854 −0.0170 976.0 10.680
glx .824 0.029 26.0 3.192
pdt .836 −0.021 28.0 3.214

g
e
r
m
a
n

b .700
cpar .880 −0.006 5.2 2.103
dt .915 −0.000 26.0 2.789
glx .726 0.006 2.0 3.000
pdt .898 −0.000 10.0 1.892

Table 6 reports the average accuracy values across the various black box classifiers for GLocalX and for the interpretable 
classifiers adopted as competitors on the held-out test set Xts . Table 6 also reports the standard deviation of the accuracy 
and the accuracy delta �acc ∈ [0, 1] calculated as the difference between the model fidelity and accuracy. An explainable 
model with minimum �acc score (�acc = 0) is as accurate on the dataset labels as it is faithful to the black box labels. 
In other words, we can expect similar performances when the explainable model is deployed to predict the actual dataset 
labels. As the fidelity-accuracy gap grows (�acc approaching 1), the explainable model is significantly more faithful to the 
black box and less accurate on the dataset, that is, it overfits the black box labels at the cost of the dataset labels. In other 
13
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Table 7
Average �acc on Xts . The lower the value, the better are the performance of a global 
explainer as it indicates stability between the capacity of mimicking the black box 
behavior and the ability of being adopted as a classifier.

�acc

adult 0.128 ± 0.008
compas 0.228 ± 0.017
diva 0.026 ± 0.023
german 0.009 ± 0.007

�acc

cpar −0.037 ± 0.052
dt −0.063 ± 0.135
glx 0.073 ± 0.015
pdt 0.005 ± 0.020

(a) Aggregation by dataset. (b) Aggregation by method.

words, we should expect a worse performance when the explainable model is deployed the actual dataset labels. The first 
line of each dataset reports the average accuracy for the black box classifiers b.

GLocalX falls behind some of the competitors in terms of accuracy, with accuracy values lower up to 7% and 15% for
compas and adult, respectively. The �acc is low for most models, with the dt showing a peculiar behavior. Indeed, its 
�acc is highly unstable, with values ranging from −0.264 to 0.027. GLocalX, cpar and pdt, which all comprise of simpler 
models, show lower variance. These results are strengthened by the numbers in Table 7 that report the average �acc
aggregated respectively per dataset and per global explanation model, i.e., a zoom out from the previous Table. Datasets 
show a wildly different behavior, with |�acc | as low as 0.006 (0.6% absolute increase) and as high as 0.086 (9% absolute 
increase). Neither dataset size nor average fidelity or accuracy appear to correlate with these deltas. Surprisingly, pdt shows 
a positive average �acc , indicating a better accuracy than fidelity. While this confirms the above considerations on model 
simplicity, it should be noted that the pdt are actually showing better performance on a label distribution different than the 
one they were trained on. Among the other models, GLocalX shows the lowest �acc , ≈ ×1.5 times lower than cpar and 
≈ 2.8× lower than dt. Therefore, since the explanation theory E returned by GLocalX guarantees not only high fidelity and 
small complexity, but also an high accuracy in classification, it can successfully be used for replacing the original black box 
classifier.

6. Conclusions

In this paper we have proposed GLocalX, a model agnostic Local to Global explanation algorithm based on logic rules 
for AI systems using non interpretable machine learning models in the decision process. Starting from local explanations,
GLocalX derives global explanations to describe the overall logic of a black box model. The proposed method applies 
a hierarchical approach to derive a global explanation from the local ones. GLocalX tackles both explanation complex-
ity and fidelity in emulating the AI decision system behavior. The results suggest that GLocalX can be a valid Local to 
Global approach, as it tends to provide faithful and simple models. GLocalX outperforms the trivial union of rules and it is 
competitive with natively global explanators especially in terms of complexity. Finally, experiments also highlight that the 
explanation theories of GLocalX might be used directly as transparent predictors with performances similar to other global 
predictors.

The key advantage of GLocalX lies in its flexibility: merging and regularizing explanations as they are generated al-
lows for a plethora of extensions. Among them we indicate direct human-guided regularization, with ad-hoc regularization 
penalizing reliance on some features rather than others, alignment to existing expert knowledge and balancing the fidelity-
complexity equilibrium. In this paper, we defined an explanation with logical rules. A direct follow-up would be the 
extension to fuzzy and non-CNF rules, empowering reasoning with uncertainty. Adaptation to non-logical domains such 
as sequences, text and images is a primary objective, either by mapping them to logical rules, or re-defining the merge and 
similarity function in different domains. In addition, future investigations could be directed to the development of different 
merging functions and stopping criteria. An obvious extension is to study how to consider non-logic explanations and the 
application to other families of black boxes. Images and text may be good stride in this direction. Finally, an interesting 
future research direction is to study how to provide more informative causal explanations, able to capture the causal rela-
tionships among the (endogenous as well as exogenous) variables and the decision, based on data observed by appropriately 
querying the black box.
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