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Abstract

In this technical report, we detail NA DA (Not-A-DAtabase), an open-source software writ-
ten in Python that generates datasets of regular two-dimensional geometric shapes based on
probabilistic distributions (https://github.com/GDelCorso/NA DAtabase.git). NA DA comes
with an intuitive GUI (Graphical User Interface) that allows users to define shapes, colors, and
distributions of features of datasets consisting of image sets and CSV files containing metadata
for each element. These databases can be saved to provide a unique identifier of the dataset,
allowing perfect reproducibility or easy modification of the dataset using the GUI or directly by
calling the generator class. Therefore, NA DA is a tool to help and support the investigation
of trustworthiness, overconfidence, uncertainty, and computation time of machine learning and
deep learning models.

Contents

1 Introduction 1

2 The GUI and its elements 2

2.1 On startup . . . . . . . . . . . . . 2

2.2 The tabbed interface . . . . . . . . 3

2.2.1 Shapes and Colors . . . . . 4

2.2.2 Sampler properties . . . . . 5

2.3 Uncertainties . . . . . . . . . . . . 6

2.4 Continuous distribution . . . . . . 7

2.5 Multivariate distribution . . . . . . 7

3 Code review 8

3.1 The GUI . . . . . . . . . . . . . . . 8

3.2 Sampling . . . . . . . . . . . . . . 8

3.3 Shape Generator . . . . . . . . . . 9

1 Introduction

With the increasingly rapid and growing devel-
opment of Deep Learning architectures, the need
to find methods to verify the level of Trustwor-
thiness has also grown, especially about the need
to estimate the reliability of predictions in several
areas, such as medicine, biology, automation, and
bioengineering [1, 2, 3, 4, 5, 6, 7]. In several ap-
plication areas, artificial neural networks suffer
from major drawbacks due to problems with the
training sets they are trained on, which may be
small, noisy, unbalanced, or contain biases and
outliers.

For this reason, it has become increasingly im-
portant to focus on the search for models that
are more robust and reliable, and that allow us
to better evaluate certain aspects such as repro-
ducibility, interpretability, and uncertainty quan-
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tification [8, 9].

Given that the behavior of an artificial neural
network is strongly dependent on the character-
istics of the training set, it is important to be
able to test its overconfidence and understand
how much the behavior of the network depends
on the characteristics of the training set or on the
properties of the network itself.

To study the behavior of artificial neural net-
works, there are several well-known synthetic
databases in the literature, such as: DSprite
[10], 2D-geometric shapes [11], or XYsquares
[12]. However, these synthetic databases are sub-
optimal for the study of probabilistic relation-
ships between input (i.e., images) and model out-
put, particularly for the development of methods
and software for quantifying uncertainties. In-
deed, each database implicitly assumes a mul-
tivariate statistical relationship between the pa-
rameters characterising the image (e.g., rota-
tion, magnification, greyscale, presence of shapes,
etc.). For example, a database containing all the
rotations (0 to 360°) of a geometric shape and a
set of possible colour variants (e.g., red, blue and
yellow) is equivalent to assuming a uniform dis-
tribution of rotation and colour and imposing in-
dependence between the two variables. However,
the presence of correlations between input vari-
ables and heavy-tailed or asymmetric marginal
distributions play a key role in the analysis of
probabilistic networks and, in particular, their
ability to detect out-of-distribution or unreliable
values in the test data.

The use of non-synthetic public databases,
on the other hand, provides more realistic dis-
tributions, but it is almost impossible to ob-
tain image-level annotation of the properties de-
scribed (e.g., rotation, colour variations, etc.).
Therefore, these databases can only serve as a
confirmation of the generalisation capabilities
of the models under investigation by providing
little insight into the details of the probabilis-
tic method under consideration. Examples of
synthetic dataset include MNIST [13], Fashion-
MNIST [14], or Natural-Sprites/Kitti-masks [15].

Formally then, this paper provides a novel tool
for constructing a synthetic database (Not-A-

DAtabase, NA DAtabase), while maintaining
complete control over the multivariate distribu-
tions of the parameters characterising the im-
ages. NA DAtabase Tool (hereafter NA DA) is a
Python-based software that generates regular ge-
ometric shape databases based on probabilistic
distributions (https://github.com/GDelCorso/
NA DAtabase.git). The databases consist of im-
age records and CSV files containing metadata
for each entry.

NA DA allows the definition of shapes, colors
and distributions through its user-friendly GUI
(Graphical User Interface). The distributions
of the various characteristics can be managed
and modified as needed to allow the study of
the behavior of architectures by focusing on spe-
cific aspects. This generator also provides the
possibility of adding different types of noise to
the generated databases, and allows differen-
tiable transitions from polygonal figures to cir-
cles through a curvature management function.
Furthermore, NA DA allows the management of
the accuracy of the attribution label, so that it
can be used as a tool to study the behavior of
architectures during the classification task.

2 The GUI and its elements

The software comes with a graphical user inter-
face (GUI) that helps the user to easily define the
dataset properties and wraps the entire dataset
definition and image generation.

Figure 1: Folder structure.

2.1 On startup

Upon startup, the application will prompt you to
either create a new database or load an existing
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one (Fig. 2). Saved databases are stored in the
folder named output , located within the main
directory (Fig. 1).

Figure 2: Startup: create a new database or load
an existing one.

If the user chooses to create a new database,
he/she must specify the desired name (Fig. 3). If
a database with the same name already exists, a
warning message will be displayed and you will
be asked to provide a different name.

Figure 3: Database name prompt.

Once a unique name has been defined (or an ex-
isting database has been loaded), the main inter-
face window will open (Fig. 4). The window is

divided into two parts. The upper part contains
three buttons and a messaging box. The lower
part features a tabbed interface (5 tabs with their
respective content).

The buttons in the upper part are:

• Tab info : displays a concise informa-
tional overview of the currently active tab.

• Save Database : saves partial CSV files,
one per tab.

• Generate Images : merges the partial
CSV files into a combined one and gener-
ates the image dataset. The button will re-
main disabled until the data has been saved
for the first time.

The Message box will display last success/error
message that occurred.

2.2 The tabbed interface

The tabbed interface (Fig. 4) contains 5 tabs with
their relative content:

• Shapes and Colors: in this tab you can
create shapes/colors combinations, provid-
ing the probability of each of them.

• Sampler Properties: This tab contains
the properties of the dataset and option-
ally the addresses for classification ground
truth.

• Uncertainties: This tab contains the
marginal distribution of each continuous
random variable and classification noise for
every couple of shapes and colors.

• Continuous distribution: Provides the
marginal distribution of each continuous
random variable.

• Multivariate distribution: In this tab
it is possible to fill the correlation matrix
in terms of probability between continuous
variables for every couple of shapes and col-
ors.
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Figure 4: Main GUI panel: the tabbed interface allows to switch between different tabs to define
the database properties.

Figure 5: Add Shape Color Prompt. Valid values
include 0 (circle) or a number of vertices greater
than or equal to 2.

2.2.1 Shapes and Colors

In this section it’s possible to create several com-
binations of shapes and colors, organized in an in-
tuitive matrix. The colors will populate the rows
and the shapes will be inserted into the columns.
Shapes are determined by the number of vertices,
and colors by their hexadecimal value.
By clicking on the Add Shape/Add Color but-
ton, you can set these values and add a
shape/color into the matrix.
For shapes, the minimum value is 3 (a triangle),
except for zero which defines a circle (Fig. 5).
You can pick a color using the color wheel (ad-
justing the brightness with the slider) or by typ-
ing the hex code into the designated field (Fig. 6).
The probability matrix (Fig. 8) is highly cus-
tomizable at different level:

• Detail level: Modify the probability of
each individual shape-color pair;

• Shape level: Modify the probability of

a single shape, regardless of its associated
color. The probabilities of each shape-color
pair are updated accordingly to ensure that
they sum to 1.

• Color level: Modify the probability of
a single color, regardless of its associated
shape. The probabilities of each shape-
color pair are updated accordingly to en-
sure that they sum to 1.

Figure 6: Add Color Prompt, values can be se-
lected using the color wheel or by entering the
hex code directly.

• Automatic locking: Changes lock depen-
dent probabilities to ensure matrix consis-
tency.

• Custom locking: Use the switches to
lock/unlock cells/rows/columns. Locked
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Figure 7: Uncertainties panel.

cells cannot be updated until they are un-
locked, allowing the user to fine-tune the
desired probabilities.

Figure 8: Shapes and Color probability matrix
example. Red cells correspond to locked values.
Switches allow to lock or unlock single cells or
entire rows/columns.

At any time, by clicking the Reset p matrix
button, the probability values of the matrix can
be reset redistributing uniformly the probabili-
ties such that the sum of each row and column is
exactly 1 (i.e., a probability of 100%).

2.2.2 Sampler properties

In this tab it’s possible to define the sampler and
database properties, including the addresses for

classification ground truth. Let’s examine these
properties:

• Dataset size: the maximum number of
generated images. The number of images to
be generated is divided among the classes
defined in the shape and color probability
matrix. In this way, each shape and color is
represented by a number of images exactly
equal to the chosen probability.

• Sampling strategy: define the technique
for sampling a probability distribution.
Possible values are:

– MC: Monte Carlo, the standard ran-
dom sampling strategy characterized
by a given random seed for repro-
ducibility.

– LHC: Latin HyperCube Sampling, an
efficient sampling strategy that drasti-
cally smoothes the empirical sampling
distribution.

– LDS: (Sobol’) Low Discrepancy Se-
quence, an efficient pseudo-random

5



Figure 9: The Uncertainties Popup panel for a given subset of shapes/colors.

sampling strategy that further im-
proves sampling smoothness for low-
dimensional parameter spaces.

• Random seed: The number used to ini-
tialize the random generator. It ensures full
reproducibility of data generation.

• Resolution: The resolution in pixels of the
images sides (the canvas is a square).

• Background color: The color in Hex-
adecimal value of the images background.

• Allow out of border: If you select this
option, shapes can extend beyond the im-
age borders, but their center will always re-
main inside. (Unless this option is selected,
Monte Carlo sampling is the sole permitted
method.)

• Correlation: The nonparametric correla-
tion measure. It’s a read only value and is
set on Spearman monotonic correlation.

It’s also possible to redefine the mappings be-
tween shapes and colors within the Correct
Classes panel. In fact, even if the database it-
self contains all the information to allow users to
define their own correct class, the GUI allows the
correct class to be selected using internal logical
operators. As a result, the final database will
contain a column with a ready-to-use classifica-
tion label to speed model testing. More complex
labels (or multi-label alternatives) can be defined
by users directly in the final database.

2.3 Uncertainties

The Uncertainty panel allows the user to deter-
mine the marginal distribution of any continu-
ous random variable associated with any specific
shape-color combination (Fig. 7).
Classification noise can be set globally for all
shapes and color pairs. It quantifies the uncer-
tainty in predicting a class for a given instance.
This is also known as labeling noise, because it
represents the risk of incorrectly labeled data. By
choosing an original shape/color (Shape 1/Color
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1), a target shape/color (Shape 2/Color 2), and a
probability p, each instance of the original Shape
1/Color 1 is given a wrong Shape 2/Color 2 label
with probability p. If one of the fields is empty,
only the other field is considered (i.e. Red/- to
Blue/-, p = 0.3 maps 30% of red shapes to blue
ones, regardless of shape). Conversely, use the
randomize (r) switch to randomly reshuffle to any
possible shape or color.
This tab also allows the user to manipu-
late noise uncertainty distributions. These
distributions affect the Deformation (from
original shape to circle), Blur , amount
of White Noise , presence of Holes , and

Additive Noise / Multiplicative Noise
(which affect the regression values). Users can
adjust the noise uncertainties for shape-color
pairs, either one at a time (using the m button)
or for multiple pairs at once (by selecting them
and clicking the Edit selected button). In
both cases, a top panel will pop up (Fig. 9). In
the Popup panel , for each variable, it is possi-
ble to specify a distribution of different kinds of
uncertainties/noises and the corresponding val-
ues of the lower bound, upper bound, mean and
standard deviation (sigma). Possible distribu-
tions are:

• Constant: mean;

• Uniform: lower, higher bounds;

• Gaussian: mean, standard deviation;

• Truncated Gaussian: lower, higher
bounds, mean, standard deviation.

2.4 Continuous distribution

In this tab, as with continuous random vari-
ables, we can characterize each variable through
a probability distribution and its associated val-
ues (Fig. 10). Following the previous parameter,
the possible continuous distributions can be de-
fined as Constant, Uniform, Gaussian or Trun-
cated Gaussian. The selected distributions affect
each color/shaped combination. In particular,
the center position (described by its x/y relative
values), the radius and the rotation (in degrees).

2.5 Multivariate distribution

Figure 11: Multivariate distribution matrix.

To modify the relationship between the con-
tinuous variables introduced in the Continuous
Distribution tab, we can act on the multivariate
relationship between the variables (Fig. 11). Fol-
lowing Sklar’s theorem and the copula formalism,
for each shape/color combination we can define
the corresponding Spearman correlation values
(used to define the Gaussian copula). For details
on copula formalism and Sklar’s theorem, see
[16]. Users can modify the correlation matrix for
individual shape-color pairs using the m button.
To adjust multiple pairs at once, select them and
click the Edit Selected button.

Figure 12: Spearman Correlation Matrix.

In both cases the correlation matrix will pop up
(Fig. 12). Values showing * imply that some
color/shape couples have different values; mod-
ifying these values in the matrix updates each
couple to the provided value. Values must be
floating-point number between -1 and 1, includ-
ing -1 and 1 themselves. The correlation matrix
must be positive definite, a warning is given if
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Figure 10: Continuous parameter distribution. This applies to any color/shape combination. By
acting on the correlation matrix, the multivariate distribution can be controlled.

this condition is not met. It’s also possible to
normalize one or more matrices by selecting them
and clicking the ”Normalize Selected” button to
ensure positive definiteness.

3 Code review

NA DA is a Python software application entirely
developed for the purpose of constructing image
databases. Its core is built upon a robust in-
frastructure composed of fundamental numerical
libraries such as NumPy and Pandas, providing a
solid foundation for data manipulation and anal-
ysis.

In order to meet specific requirements of the ap-
plication domain, a custom library has been de-
veloped, specifically designed for shape drawing.

3.1 The GUI

The Graphical User Interface (GUI) has been de-
veloped leveraging the flexibility of CustomTkin-
ter [17], a third-party library that enables the
creation of modern and highly adaptable graph-
ical interfaces. The GUI was designed using an
object-oriented approach to improve code read-
ability and extensibility. Classes were distributed
across multiple files to enhance modularity and
maintainability.

Each tab within the application is controlled by
a dedicated class, promoting better organization.

To further improve flexibility, dependency injec-
tion was implemented. This ensures that class
dependencies are explicitly managed, reducing

tight coupling.

Additionally, helper classes were introduced to
encapsulate common functionalities, reducing
code redundancy.

Finally, the Color Picker component was ex-
tended to allow direct input of hexadecimal color
values, offering users more precise control over
color selection.

3.2 Sampling

The Sampling strategies are included as stan-
dalone class (NA DA package). Initializing the
class NA DA.random sample(· · · ) requires the
dataframes that describe the properties of the
dataset. The dataframes are those generated by
the GUI, but the class can be initialized using ex-
isting dataframes. This allows to modify the .csv
directly with ad hoc software without the need of
the graphical interface.

Once the class is initialized, the whole process
can be called using the method autoprocess() .
This method imports the data from the .csv
files, defines the multivariate distribution ac-
cording to Sklar’s theorem and the Spear-
man correlation matrix using the OpenTURNS
Python library [18], and then generates a

combined dataframe.csv . This data frame is
organized into rows, each corresponding to an
image with all the features (image properties, fig-
ure features, uncertainties, noise, etc.) needed to
generate the images.
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3.3 Shape Generator

The process of synthesizing images, starting from
the structured CSV data generated by the sam-
pler, is orchestrated by a pipeline composed of
four interdependent classes. Parallel execution,
enabled by a dedicated multiprocessing library,
leverages available hardware resources to signifi-
cantly accelerate the generation of visual output,
especially on multi-core systems.
Here’s the classes involved:

• MorphShapes DB Builder: This class
serves as the entry point for the image
generation process. It is invoked by the
sampler’s generate images() method and
takes as input the path to the CSV file

combined dataframe.csv , which is also
generated by the sampler. The class addi-
tionally accepts parameters such as a GUI
instance for displaying progress, if applica-
ble, and a flag to enable parallel processing.

• Main Surface: This class defines a two-
dimensional canvas on which geometric
shapes can be drawn. It provides an in-
terface to configure the visual properties
of the surface, such as dimensions, back-
ground color, and an optional background
image.

The class additionally provides the follow-
ing methods:

– drawShape : Accepts an instance of a
Shape class, representing the geomet-
ric shape to be drawn. An optional
boolean parameter specifies whether
to enable anti-aliasing, an algorithm
that improves the visual quality of
shape edges by smoothing them to
avoid the ’jagged’ effect. Anti-aliasing
is enabled by default.

– blur : Applies a Gaussian blur to the
entire surface, with a blur radius de-
termined by the power argument (de-
fault value: 2). Higher power values
result in a stronger blur effect.

– addNoise : Applies a weighted Gaus-
sian noise to the entire surface. the

noise power argument is the alpha
channel of the noise and must be a
value between 0 and 1 (default value:
0.5)

– emmental : Creates holes on the main
canvas. It takes the desired number of
holes (default: 2) and a seed value to
initialize the random number genera-
tor. This seed ensures consistent hole
placement for repeatable results.

– show : Displays the result on screen.

– save : Saves the result to a specified
file (a filename must be provided).

• PIL Drawing: To enhance the quality of
graphical representations, particularly for
circular shapes, we replaced OpenCV’s ren-
dering engine with Pillow. OpenCV exhib-
ited significant rendering issues with circu-
lar shapes at low resolutions (Fig. 13). This
wrapper class re-implements OpenCV’s im-
age generation methods, leveraging Pillow’s
graphics engine. As a result, we achieved a
substantial improvement in graphical out-
put.

Figure 13: Ellipse (major 10px, minor 5px)
from Pillow (top) and OpenCV (bottom).

• Shape: This class models a set of regu-
lar geometric shapes, specifically polygons
inscribed within a circle. Each shape is de-
fined by its center, radius, and the number
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of its sides (if the number of sides is zero,
the shape is a circle).

Shapes can be personalized by adjusting
their color, orientation, and morphing pa-
rameter. Morphing deforms the shape from
its original state towards a circle. A morph
value of 100% results in a shape with the
same area as its enclosing circle.

Figure 14: Triangle Morphing (from left to
right morph percentage: 0%, 30%, 70%,
100%).

To get a continuous (and differentiable) de-
formation between the original shape and a
circle, we defined df ∈ [0, 100] as the defor-
mation parameter. df = 0 corresponds to
the original shape, while df = 100 leads to
a complete deformation (i.e., a circle).

Figure 15: Deformation formula.

According to Fig. 15, for each side of the
shape (of length ℓ) inscribed in the circum-
ference of radius R and center C1, we want
to define a center C2 such that the side is
replaced by the arc of circumference with
center C2 passing through the two vertices
of the original side. The center C2 is de-
fined by its distance d2 from the original
center C1. If d2 → ∞, the shape is the
original, while if d2 = 0, C1 ≡ C2 and the
shape is deformed to a circle. The formula

for the derivation of d2 is the following:
ℓ = R ·

√
2− 2 cos (360/n)

R1 =
√
R2 − (ℓ/2)2

d1 =
df

100 · (R−R1)

d2 =
(ℓ/2)2−2d1R1−d2

1

2d1

(1)

which leads to a differentiable deforma-
tion from the original shape to the circum-
scribed circumference.

References

[1] Ahmed Shihab Albahri, Ali Mohammed,
Mohammed Abdulraheem Fadhel, Alhamzah
Alnoor, Noor S. Baqer, Laith Alzubaidi,
Osamah Shihab Albahri, Abdullah Hussein
Alamoodi, Jinshuai Bai, Asma Salhi, José I.
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