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Abstract In the quest for high-performance quantum thermal machines, looking for an optimal thermo-
dynamic efficiency is only part of the issue. Indeed, at the level of quantum devices, fluctuations become
extremely relevant and need to be taken into account. In this paper we study the thermodynamic uncer-
tainty relations for a quantum thermal machine with a quantum harmonic oscillator as a working medium,
connected to two thermal baths, one of which is dynamically coupled. We show that parameters can be
found such that the machine operates both as a quantum engine or refrigerator, with both sizeable efficiency
and small fluctuations.

1 Introduction

The rapid development of quantum technologies calls
for a deeper understanding of thermodynamics and
energetics at a microscopic level, where unavoidable
quantum effects have to be taken into account. The
extension of classical concepts of thermodynamics to
the quantum realm is not only at the forefront of fun-
damental theoretical research [1–6], but also relevant for
new nanodevice applications [7–12]. Mastering the ther-
modynamics of quantum systems far from equilibrium,
from energy storage to energy transfer and transduction
and heat–to–work conversion, is of great importance
for emerging technologies with applications in quan-
tum computing [12–14], quantum communication [15,
16], and quantum sensing [17].

Spurred by the rapid emergence of new quantum
technology platforms, in the last few years the first
prototype realizations of quantum thermal machines
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[11, 18–21] and quantum batteries [22, 23] have been
reported, calling for new theoretical and experimen-
tal investigations, even including extensions to non-
Hermitian quantum thermodynamics [24, 25]. For
instance, a great interest revolves around heat nano-
engines and refrigerators where the working medium
(WM) is a quantum system coupled to several ther-
mal reservoirs. Indeed, it has been shown that a multi-
terminal configuration can improve both the output
power and the efficiency at maximum power [26–35].
Also, the impact of quantum coherence on the perfor-
mance of thermal machines has been inspected [36–45],
as well as the role of the uncertainty principle [46].

Quantum devices are highly sensitive to fluctuations
that may limit device performances [4, 19, 47–49], in
contrast to macroscopic devices, where usually fluctu-
ations can be safely neglected. To assess fluctuations,
the thermodynamic uncertainty relations (TURs) have
been recently introduced [50–60] and a unified tool-
box for describing current fluctuations in the context of
open quantum systems has been proposed [61]. These
TURs combine steady-state currents J , their fluctua-
tions DJ and dissipation (measured by the entropy pro-
duction rate Ṡ), giving limits on the precision of cur-
rents for a given dissipation. Indeed, in Ref. [50] it was
reported that for certain classical Markovian systems,
the signal-to-noise ratio satisfies a TUR bound, showing
that relative current fluctuations are lower bounded in

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-023-00949-8&domain=pdf
http://orcid.org/0000-0002-9129-2154
https://orcid.org/0000-0002-0510-0524
mailto:luca.razzoli@uninsubria.it
mailto:fabio.cavaliere@unige.it
mailto:matteo.carrega@spin.cnr.it
mailto:maura.sassetti@unige.it
mailto:giuliano.benenti@uninsubria.it


Eur. Phys. J. Spec. Top.

terms of the inverse entropy production rate. By intro-
ducing a dimensionless trade-off parameter QJ , TURs
can be expressed as

QJ ≡ Ṡ
DJ

J2
≥ 2kB , (1)

where kB is the Boltzmann constant (from now on we
will set kB = 1). After that, several bounds for TURs
[62–70], and their possible violations, have been put for-
ward under different assumptions, starting from classi-
cal Markovian dynamics to quantum systems, includ-
ing time-dependent forces and the role of time-reversal
symmetry. For instance, when the model preserves
time–reversal–symmetry it has been shown that, at
least in the linear regime [57, 65], the trade-off param-
eter Q never achieves values lower than 2. Recently,
experimental results on TURs have appeared [55]. They
thus represent new tools to inspect the performances
of so-far unexplored resources based on non-thermal
states, correlations and quantum coherences in non-
equilibrium quantum systems [47].

In this work, we propose a physically implementable
quantum thermal machine and investigate its opera-
tion. We consider a single quantum harmonic oscilla-
tor, a paradigmatic model and a building block of many
quantum technologies [12, 13, 71–77], as the WM cou-
pled to two thermal reservoirs. One of them is statically
linked, while the other one is modulated at a frequency
Ω (monochromatic driving). Driven system-bath cou-
plings offer enhanced design flexibility, such as the pos-
sibility to switch between regimes of quantum heat
engine or refrigerator [33, 78]. Here we are interested in
assessing the precision of the currents in such regimes,
by studying the TURs related to the heat current and
the work current (i.e., the total exchanged power). Via
a systematic perturbative approach, we obtain expres-
sions for the thermodynamic quantities and the TURs,
that can be numerically integrated with standard tech-
niques. Even though we report no violation of TURs,
i.e., we do not observe values of Q < 2, we show that Q
can attain minimal values (close to 2) both in the engine
and refrigerator regimes, accompanied by sizeable effi-
ciency. Values Q ≈ 2 are related to a nearly optimal
trade-off of the three desiderata we commonly want for
a heat engine (refrigerator)—finite output power (cool-
ing power), efficiency (coefficient of performance) close
to the Carnot value, and small fluctuations—as Q can
be explicitly written in terms of them [63]. In the limit
of very small damping, simple analytical expressions for
the TURs are obtained, which support our findings.

In Sect. 2 the model is illustrated, along with the defi-
nition of all thermodynamic quantities and correspond-
ing correlators describing their fluctuations. We then
evaluate their quantum and time averaged values in the
dynamical steady state, to lowest order in the strength
of the dynamical coupling. Results are reported and dis-
cussed in Sect. 3, and conclusions are drawn in Sect. 4.
Appendix A provides details on the adopted perturba-
tive approach, while Appendix B illustrates all the pos-
sible operating modes of the proposed quantum thermal
machine.

2 Model and general setting

2.1 Model

We consider a minimal model for an operating heat
engine in the quantum regime. A single quantum har-
monic oscillator acts as the WM and is coupled to
two thermal reservoirs, respectively kept at tempera-
tures T1 and T2 –see Fig. 1. The total Hamiltonian is
(� = kB = 1)

H(t) = HWM +
2∑

ν=1

[
Hν + H

(t)
int, ν

]
, (2)

where the Hamiltonian of the WM is

HWM =
p2

2m
+

1
2
mω2

0x
2, (3)

with m and ω0 the mass and the characteristic fre-
quency. The Hamiltonian of the ν = 1, 2 reservoir is
described in the usual Caldeira-Legget framework [79,
80] in terms of an infinite set of independent harmonic
oscillators as

Hν =
+∞∑

k=1

[
P 2

k, ν

2mk, ν
+

1
2
mk, νω2

k, νX2
k, ν

]
, (4)

and the interaction between the WM and the ν–th
reservoir is

H
(t)
int, ν=

+∞∑

k=1

[
−gν(t)ck, νxXk, ν +

g2ν(t)c2k, ν
2mk, νω2

k, ν

x2

]
, (5)

where ck, ν describes the interaction strength and the
counter–term ∝ x2 prevents the renormalization of the
WM potential. Following Refs. [33, 78, 81], we focus on
a dynamical coupling situation to establish a working

Fig. 1 Setup. Schematic depiction of the setup under inves-
tigation. The WM – a quantum harmonic oscillator with
characteristic frequency ω0 – is in contact with two ther-
mal reservoirs at temperatures Tν , with ν = 1, 2. The WM
can exchange heat currents Jν with the reservoirs and total
power P with an external source. The purple dashed lines
represent the coupling between the WM and the thermal
reservoirs. The coupling to the ν = 1 reservoir is modulated
in time with frequency Ω, while that to the ν = 2 reservoir
is static
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thermal machine in a periodic steady state regime. In
particular, we assume here that the dimensionless cou-
pling to the ν = 1 reservoir is modulated in time as
g1(t) = cos(Ωt), with Ω the driving frequency, while
the ν = 2 coupling is kept constant g2(t) = 1 – see
the sketch in Fig. 1. At the initial time t0→ −∞, the
reservoirs are assumed in their thermal equilibrium at
temperatures Tν , with the total density matrix written
in a factorized form as

ρ(t0) = ρWM(t0) ⊗ ρ1(t0) ⊗ ρ2(t0), (6)

with

ρν(t0) =
e−Hν/Tν

Tr
{
e−Hν/Tν

} (7)

and with ρWM(t0) the initial density matrix of the WM.
In the Heisenberg picture the equations of motion

for the WM and reservoir degrees of freedom [81] are,
respectively,

ẋ(t) =
p(t)
m

,

ṗ(t) = − mω2
0x(t) +

2∑

ν=1

+∞∑

k=1

[
gν(t)ck, νXk, ν(t)

−
g2ν(t)c2k, ν
mk, νω2

k, ν

x(t)
]
, (8)

and

Ẋk, ν(t) =
Pk, ν(t)
mk, ν

,

Ṗk, ν(t) = − mk, νω2
k, νXk, ν(t) + gν(t)ck, νx(t),

(9)

where overdots denote time derivatives.
The solution for the position operator of the k–th

oscillator of the ν–th reservoir is

Xk, ν(t) = ξk, ν(t) +
ck, ν

mk, νωk, ν
·

·
∫ t

t0

ds gν(s)x(s) sin[ωk, ν(t − s)] ,

(10)

ξk, ν(t) = Xk, ν(t0) cos[ωk, ν(t − t0)]

+
Pk, ν(t0)
mk, νωk, ν

sin[ωk, ν(t − t0)]. (11)

The usual fluctuating force operator, a stochastic force
which the reservoir exerts on the WM and that obeys
stationary Gaussian statistics, is defined as [79]

ξν(t) ≡
+∞∑

k=1

ck, νξk, ν(t), (12)

with zero quantum average 〈ξν(t)〉 = Tr{ξν(t)ρ(t0)} =
0 and correlation function 〈ξν(t)ξν′(t′)〉 ≡ Lν(t −
t′)δν, ν′ , with

Lν(t − t′) = Lν, s(t − t′) + Lν, a(t − t′). (13)

Here, the symmetric (s) and anti-symmetric (a) contri-
butions with respect to the time argument are

Lν, s(t) =
∫ +∞

0

dω

π
Jν(ω) coth

(
ω

2Tν

)
cos(ωt), (14)

Lν, a(t) = −i

∫ +∞

0

dω

π
Jν(ω) sin(ωt). (15)

In the above expressions, the so-called spectral density
[79]

Jν(ω) =
π

2

+∞∑

k=1

c2k, ν
mk, νωk, ν

δ(ω − ωk, ν) (16)

has been introduced. It governs the properties of
the ν–th reservoir, e.g. its possible non–Markovian
behaviour [82–86]. The precise shape of Jν(ω) will be
specified later.

2.2 Thermodynamic quantities

In this work we focus on thermodynamic quantities in
the long time limit, when a periodic steady state has
been reached. Therefore, all quantities of interest can
be averaged over one period of the drive T = 2π/Ω,
and are therefore well-defined both for weak and strong
coupling [87–90]. The average heat current Jν of the
ν–th reservoir and the total power P can be written as
[78]

P =
1
T

∫ t̄+T

t̄

dt′
2∑

ν=1

Tr

[
∂H

(t′)
int, ν

∂t′
ρ(t′)

]
, (17)

Jν = − 1
T

∫ t̄+T

t̄

dt′Tr
[
Hν

d
dt′

ρ(t′)
]
, (18)

where ρ(t) is the total density matrix, describing the
WM plus reservoirs at time t , and, here and in the fol-
lowing, t̄ denotes a large positive time. It is worth not-
ing that a positive sign in the above quantities indicates
an energy flow towards the WM. Since the power con-
tribution is associated to the temporal variation of the
interaction term, it is only due to the dynamical cou-
pling of the WM to the ν = 1 bath. An energy balance
relation holds true,

P + J1 + J2 = 0, (19)

reflecting the first law of thermodynamics [6, 47, 78].
An important quantity to assess the thermodynamic
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performances is the time–averaged entropy production
rate, related to the heat currents by [6, 47, 88]

Ṡ = −
2∑

ν=1

Jν

Tν
, (20)

with Ṡ ≥ 0 in accordance to the second law of thermo-
dynamics [47].

Due to dissipation, all quantities undergo fluctuations
that affect the device performances. During the whole
time interval t−t0, fluctuations can be characterized by
auto–correlation functions [57, 79]: Given an observable
O(t) we define

DO(t) =
1

t − t0

∫ t

t0

ds

∫ t

t0

ds′〈O(s)O(s′)〉, (21)

where t − t0 is a large time interval, t − t0 → +∞,
and where 〈A(t)〉 ≡ Tr{A(t)ρ(t0)} denotes the quan-
tum average. In this limit, the above auto–correlation
function reduces to a single integral, that can be written
as [57]

DO(t) =
∫ +∞

0

dτ〈{O(t), O(t − τ)}〉, (22)

with {A, B} = AB+BA the anti–commutator, leading
to the period–averaged fluctuations

DO =
1
T

∫ t̄+T

t̄

ds DO(s). (23)

3 Results

The dynamics of the driven dissipative quantum system
can be solved by resorting to non-equilibrium Green
function formalism [91–93], as described in Ref. [81]. In
this work, however, we will only focus on the case in
which the modulated coupling (ν = 1) is much weaker
than the static one (ν = 2). Under these circumstances,
a perturbative expansion can be used to evaluate all the
quantities introduced above. To do so, it is convenient
to rewrite the total Hamiltonian in Eq. (2) as

H(t) = H(0) + ΔH(t), (24)

as the sum of an unperturbed Hamiltonian, H(0), and
ΔH(t), the time–dependent interaction with the reser-
voir ν = 1:

H(0) = HWM +
2∑

ν=1

Hν + Hint, 2; ΔH(t) = H
(t)
int, 1.

Deferring all details to Appendix A, here we quote the
final results for the quantities of interest defined in

Sect. 2.2 and obtained at the lowest-order perturbative
correction. The total power P and the heat current J1 are

P = −Ω
∫ +∞

−∞

dω

4πm
J1(ω + Ω)N(ω)χ′′

0(ω),

(25)

J1 =
∫ +∞

−∞

dω

4πm
(ω + Ω)J1(ω + Ω)N(ω)χ′′

0(ω),

(26)

where we have introduced

N(ω) = coth
(

ω + Ω
2T1

)
− coth

(
ω

2T2

)
(27)

and the response function χ0(t) (see Appendix A)
whose Fourier transform is

χ0(ω) = − 1
ω2 − ω2

0 + iωγ2(ω)
, (28)

where γ2(ω) =
∫ +∞

−∞ dteiωtγ2(t) is the damping kernel
of the ν = 2 bath in Fourier space with

γν(t) ≡
+∞∑

k=1

c2k, ν
mk, νω2

k, ν

cos(ωk, νt). (29)

Here and in the following the double prime denotes the
imaginary part. In the following we will focus only on
J1 and P , but J2 can be easily obtained from the energy
balance expressed by Eq. (19). The auto–correlation
functions for the total power, DP , and for the heat cur-
rent, DJ1 , are

DP = Ω2

∫ +∞

−∞

dω

4πm
J1(ω + Ω)R(ω)χ′′

0(ω),

(30)

DJ1=
∫ +∞

−∞

dω

4πm
(ω + Ω)2J1(ω + Ω)R(ω)χ′′

0(ω),

(31)

with

R(ω) = coth
(

ω + Ω
2T1

)
coth

(
ω

2T2

)
− 1. (32)

Hereafter, we focus on the specific case of a system
with a structured, Lorentzian spectral density for the
dynamically coupled bath

J1(ω) =
d1mγ1ω

(ω2 − ω2
1)2 + γ2

1ω2
, (33)

peaked at ω ≈ ω1, with typical broadening γ1, and
coupling strength parameterized by d1. Such a spec-
tral density offers a great versatility, i.e., exploiting
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Fig. 2 Energy currents and operating modes. Panels a and
b show, as a density plot, the average power P and heat
current J1 as a function of the driving frequency Ω and the
resonance frequency ω1. Both quantities are here normalized
to γ2

2 . The dashed line marks the resonance condition ω1 =
ω0 − Ω. In all panels T1 = 0.4ω0, T2 = 0.8ω0, γ1 = 0.05ω0,
γ2 = 0.01ω0, and d1 = 10−3ω4

0

different resonant conditions between external drive Ω
and ω1, and is known to induce non–Markovian effects
[78, 82–86], a necessary condition to have a dynam-
ical heat engine in this setup [78]. In the case of a
Ohmic spectral density, instead, the present quantum
thermal machine would not operate as heat engine [78].
A Lorentzian spectral density can be either obtained
in cavity–optomechanical systems [71, 72] or in circuit-
QED setups [73, 94], with the latter representing a par-
ticularly convenient solid–state platform which allows
to tune dynamical couplings up to a high degree of pre-
cision [95]. For the statically coupled contact we choose
a Ohmic spectral density J2(ω) = mγ2ω, which implies
γ2(ω) ≡ γ2 in Eq. (28).

3.1 Average thermodynamic quantities

The quantum-thermodynamical properties of this setup
have been investigated recently [78]. It has been shown
that it can either operate as a quantum engine or
a quantum refrigerator depending on the parameters.
Here we focus on the case γ1, 2 � ω0, favourable to
obtain better performances and smaller fluctuations,
and on temperatures in the quantum regime Tν < ω0.
In particular, we show here the case T2 = 2T1, with
T1 = 0.4ω0.1

Results for the total power P and for the heat current
J1, obtained by numerically integrating Eqs. (25),(26)
are shown as density plots in Fig. 2a, b as a function
of the driving frequency Ω and ω1. Depending on the
sign of Jν and P different operating modes are identi-
fied (see Appendix B) [33]. Here we focus on the most
relevant ones: Heat engine with P < 0 and J1 < 0 and

1To be consistent with the perturbative approach, d1 in
Eq. (33) has been chosen small enough so that the peak
value of J1(ω) satisfies J1(ω1) � mω2

0 .

Fig. 3 Quantifying fluctuations via TURs. Density plot of
QP (a) and QJ1 (b) as a function of Ω and ω1. Parameters
as in Fig. 2

refrigerator with P > 0 and J1 > 0. The best perfor-
mance for these operating modes occurs, for T1 < T2,
when ω1 = ω0 −Ω is satisfied [78], see the dashed line.2

We mention that the performance of proposed
dynamical quantum heat engine has been investigated
beyond the weak-coupling regime in Sect. IV.C of Ref.
[78]. In that regime, we observe a broadening of the
power resonance line, which appears to be detuned with
respect to ω1 = ω0−Ω, and it is possible to achieve sen-
sibly larger power outputs. However, higher efficiency is
observed in the weak-coupling regime. The heat engine
is lost in the limit of very strong coupling.

3.2 Thermodynamic uncertainty relations

It is now interesting to assess the impact of fluctuations
on the performance of this setup. To this end, we use
TURs [50, 57, 62, 65, 96]. We are particularly interested
in the engine and refrigerator regimes and thus in the
TURs for P and J1, expressed in terms of the trade-off
parameter QP and QJ1 as [57, 65, 96]

QP = Ṡ
DP

P 2
≥ 2 QJ1 = Ṡ

DJ1

J2
1

≥ 2. (34)

These TURs combine energy flows, their fluctuations,
and the entropy production rate in a dimensionless
quantity expressing the trade-off between how the sys-
tem fluctuates with respect to the quality (in terms of
magnitude and degree of dissipation) of the energy flow.
The lower Qμ (with μ ∈ {P , J1}), the better the opera-
tion of the thermal machine [63].Figure 3 shows density
plots of the numerically evaluated QP (a) and QJ1 (b)
as a function of Ω and ω1 and it is clear that Qμ > 2
everywhere. Via extensive numerical investigations we
can report that regardless of all parameter configura-
tions, Qμ < 2 is never found in this model, and thus
no violation of TUR bounds [50, 57, 65] occurs. The
trade-off parameters can attain very large values, see
the white regions in the plots, and even diverge – e.g.

2The situation for T1 > T2 is essentially mirrored along
the axis ω1 = ω0. In this case the best engine and refriger-
ator operating regimes occur along the resonance condition
ω1 = ω0 + Ω [78].
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Fig. 4 Efficiency vs. fluctuations. Panel a shows as a red
curve the efficiency, normalized to the Carnot limit, of the
thermal machine operating as an engine, and QP as a green
line, as a function of Ω along the resonance line ω1 = ω0−Ω –
see Fig. 2. Panel b shows the same quantities along the same
resonance, but in the regime where the machine operates as
a refrigerator. Parameters as in Fig. 2

at the crossover between the engine and the refrigerator
regimes along ω1 = ω0 −Ω (due to J1, P crossing zero).
Interestingly, however, they are instead particularly low
(even approaching Qμ ≈ 2) around the latter resonance
line, where the best performances occur. Let us then
relate Qμ to the efficiency η = −P/J2 (engine mode) or
to the coefficient of performance COP = J1/P (refriger-
ator mode), normalized to the respective Carnot limits
ηC = 1− T1

T2
and COPC = T1

T2−T1
.3Figure 4a shows η/ηC

(red line) and QP (green line) as a function of Ω within
the engine region along the dashed line of Fig. 2. As is
clear, there is a large range of driving frequencies where
QP is very close to 2. Furthermore, when it attains its
minimum value, for Ω ≈ 0.35ω0, the efficiency of the
engine is ≈ 0.7ηC . On the other hand, when the engine
operates at its maximum efficiency of η ≈ 0.95ηC , QP

almost doubles. Notice also that QP diverges at the
boundaries of the engine regime and that the maximum
of η is located in close proximity of one of these edges.
The situation in the refrigerator regime is qualitatively
similar, and is reported in Fig. 4b. From a different per-
spective, the trade-off parameter QP (QJ1) in Eq. (34)
expresses the performance of the heat engine (refriger-
ator) as a trade-off between three desiderata [63]: (i)
Finite (or even large) average output power −P > 0
(cooling power J1 > 0), (ii) an efficiency η (COP) close
to the Carnot value ηC (COPC), and (iii) constancy,
i.e., small fluctuations DP (DJ1). Indeed, we can rewrite
Eq. (34) as

QP = − 1
T1

DP

P

[
ηC

η
− 1

]
≥ 2,

QJ1 =
1
T2

DJ1

J1

[
1

COP
− 1

COPC

]
≥ 2, (35)

where, we recall, T1 < T2. Therefore, attaining values
Qμ ≈ 2 means achieving a nearly optimal performance

3For the parameters chosen here, ηC = 0.5 and
COPC=1.

of the machine, intended as a trade-off between the
above desiderata.

To gain further insight, we can exploit the fact
that in the limit γ2 → 0 one can approximate [78]
χ′′
0(ω) ≈ π

2ω0

∑
p=±1 pδ(ω − pω0), with δ(ω) the Dirac

delta. The integrals in Eqs. (25),(26),(30),(31) are then
easily solved, leading to

P = − Ω
8mω0

∑

p=±1

pJ1(ω0 + pΩ)Np,

J1 =
1

8mω0

∑

p=±1

(ω0 + pΩ)J1(ω0 + pΩ)Np,

DP =
Ω2

8mω0

∑

p=±1

J1(ω0 + pΩ)Rp,

DJ1 =
1

8mω0

∑

p=±1

(ω0 + pΩ)2J1(ω0 + pΩ)Rp,

where Np = N(pω0) and Rp = R(pω0) – see
Eqs. (27),(32). In the regime γ1 � ω0 considered in this
paper, restricting along the resonance line ω1 = ω0 − Ω
one can safely drop all terms with p = +1 in the above
expressions [78]. Then, after simple rearrangements one
can see that in this limit QP ≡ QJ1 , with

Qμ =2
(

ω0

2T2
− ω0 − Ω

2T1

)
coth

(
ω0

2T2
− ω0 − Ω

2T1

)
.

This proves that, at least in the above limits, the TURs
are never violated and Qμ ≥ 2 in agreement with our
numerical findings. Indeed, in this limit Qμ = 2 pre-
cisely when Ω = Ω∗ = ω0ηC , which is the “turning
point” between the operation as an engine and that as a
refrigerator along the resonance [78]. There, at Ω = Ω∗,
we have η → ηC (with P → 0) and COP→COPC (with
J1 → 0). The net coalescence of engine and refrigera-
tor modes is lifted at finite values of γν , which results
in η < ηC (COP<COPC), with the maximum for η
(COP) occurring at Ω � Ω∗ (Ω � Ω∗). Also, when γν

is small but non-zero the trade-off parameters are no
longer identical, and develop the divergence near Ω∗

seen in Fig. 4.

4 Conclusions

In this paper we have analyzed the fluctuations of the
heat current and power exchanged between a quan-
tum thermal machine with a single quantum harmonic
oscillator as the WM and two thermal baths at uneven
temperature, in the presence of a dynamical coupling
between the WM and one of the baths. Such a machine
can operate either as a quantum heat engine or as refrig-
erator depending on the frequency of the drive and the
other parameters. To understand the impact of fluc-
tuations on such operating modes we have developed
expressions for the fluctuations to leading order in the
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amplitude of the dynamical coupling. Such expressions
allow us to numerically evaluate the trade-off param-
eters QP and QJ1 associated to total power (in the
engine case) or heat current from the cold bath (in the
refrigerator case), whose magnitude is associated to the
strength and impact of fluctuations. We report no viola-
tion of the lower bound proposed for these quantities in
the literature. However, we have found that in typical
operating regimes the trade-off parameters can reach
values very close to the lower bound, implying a nearly
optimal trade-off between efficiency (COP), (cooling)
power output, and small fluctuations, with an efficiency
of about 70% of the Carnot limit in the case of a quan-
tum engine. In the limit of weak damping, appropriate
for the regime of parameters considered in this paper,
we have also developed an analytical approximation for
the trade-off parameters, which supports our findings
and shows that TUR bounds cannot be violated in our
model, at least for weak damping.

Despite no violation of TURs has been found, show-
ing that the trade-off parameters can attain small val-
ues in sensible operating regimes is a first step towards
the development of optimal protocols for the operation
of quantum thermodynamic machines. Future develop-
ments of this work may lead to consider more complex
driving protocols for the thermal machine, which could
help to even increase the efficiency at the lowest values
of the trade-off parameters. Also, it will be interesting
to look for more complex quantum thermal machines,
either in multi–terminal or multi–WM configurations.
Due to their ability to perform multiple thermodynam-
ical tasks at once [33], assessing the impact of fluctu-
ations can be a key issue towards their optimization.
As a final outlook, further extensions of the present
work may include considering squeezed baths [97–103]
to assess if and to which extent performance of the pro-
posed quantum heat machine can be improved by non-
thermal baths [104–107].
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Appendix A: Perturbative approach

In this Appendix we derive the explicit expressions
for the average thermodynamic quantities in Eqs. (25),
(26), and their auto–correlation functions in Eqs. (30),
(31). We start by writing the Hamiltonian as in
Eq. (24). In the interaction picture (label I), we freeze
out the time evolution generated by H(0), so an observ-
able A is defined as

AI = eiH(0)(t−t0)ASe
−iH(0)(t−t0), (36)

with the label S denoting the Schrödinger picture.
Operators in the Heisenberg (label H) and in the inter-
action picture are related via

AH(t) = U †
I (t, t0)AI(t)UI(t, t0), (37)

where

UI(t, t0) = T exp
{

−i

∫ t

t0

dsΔHI(s)
}

(38)

is the propagator in the interaction picture, with T the
time-ordering symbol. We are interested in the lowest-
order perturbative correction with respect to the inter-
action strength ck, 1. Recalling that ΔH(t) = H

(t)
int, 1,

given in Eq. (5), according to Eq. (36) we can write

ΔHI(t) ≈ −
+∞∑

k=1

g1(t)ck, 1xI(t)ξk, 1(t). (39)

Indeed, it is possible to show that Xk, 1;I = ξk, 1(t),
with ξk, 1(t) defined in Eq. (11). Using Eqs. (12), (37)
and considering UI(t, t0) ≈ 1 − i

∫ t

t0
dsΔHI(s), in the

Heisenberg picture the position operator of the WM can
be written as

x(t) = x(0)(t) + Δx(t), (40)

where x(0)(t) ≡ xI(t) according to Eq. (36) and where
the perturbative correction is

Δx(t)=−i

∫ t

t0

ds g1(s)
[
x(0)(s)ξ1(s), x(0)(t)

]
. (41)
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Appendix A.1: Heat current and total power

We start by considering the average heat current J1.
From Eq. (18), as detailed in Ref. [81], we have the
general, exact expression

J1 = −
∫ t̄+T

t̄

ds

T g1(s)
〈
x(s)

[
ξ̇1(s)+

+
∫ s

t0

ds′ g1(s′)x(s′)F1(s − s′)
]〉

, (42)

where we have introduced

F1(t) =
+∞∑

k=1

c2k, 1
mk, 1

cos(ωk, 1t) (43)

with Fourier transform F1(ω) = 2ωJ1(ω). We obtain
the perturbative expansion of Eq. (42),

J1 = −
∫ t̄+T

t̄

ds

T g1(s)
{

〈x(0)(s)ξ̇1(s)〉 + 〈Δx(s)ξ̇1(s)〉

+
∫ s

t0

ds′ g1(s′)〈x(0)(s)x(0)(s′)〉F1(s − s′)
}

, (44)

by expanding x (t) as in Eq. (40) and retaining terms up
to O(c2k, 1), as the latter represent the first perturbative
correction to J1. We now perform the quantum average
on the initial state of Eq. (6), exploiting the fact that
〈x(0)(t)ξ̇1(t)〉 = 0 and that

〈Δx(t)ξ̇1(t)〉 = − i

∫ t

t0

ds g1(s)·

· 〈[x(0)(s), x(0)(t)]〉Z1(s − t), (45)

where we have defined

Z1(t − t′) ≡ 〈ξ1(t)ξ̇1(t′)〉 =
d
dt′

L(t − t′), (46)

where the decomposition in symmetric and antisym-
metric contributions

Z1(t − t′) = Z1, s(t − t′) + Z1, a(t − t′), (47)

has been introduced, see Eq. (13). Finally, we arrive at
the expression for the heat current

J1 = −
∫ t̄+T

t̄

ds

T

{ ∫ s

t0

ds′g1(s)g1(s′)F1(s − s′)·

· 〈x(0)(s)x(0)(s′)〉 − i

∫ s

t0

ds′ g1(s′)g1(s)·

· Z1(s′ − s)〈[x(0)(s′), x(0)(s)]〉
}

. (48)

To perform the average over T we observe that the
correlation function

C(t, t′) = 〈x(0)(t)x(0)(t′)〉 (49)

only depends, in the long time limit t  t0, on the
time difference t − t′, i.e., in the long time limit C(t,
t′) = C(t−t′). This allows to change variable τ = s−s′,
to perform the limit t0 → −∞, and thus to obtain

J1 = − 1
2

∫ +∞

0

dτ{F1(τ) cos(Ωτ)C(τ)

− iZ1(−τ) cos(Ωτ)[C(−τ) − C(τ)]}. (50)

By direct inspection one finds that F1(t) = −2iZ1, s(t)
and introducing the response function χ0(t) ≡
imθ(t)〈[x(0)(t), x(0)(0)]〉 (see [108]) with θ(t) the Heav-
iside step function, whose Fourier transform is given in
Eq. (28), it is then possible to rewrite the average heat
current as in Eq. (26).

Turning to the average total power of Eq. (17), as
detailed in Ref. [81], we have the general, exact expres-
sion

P =

∫ t̄+T

t̄

ds

{
− ġ1(s)〈x(s)ξ1(s)〉

+ ġ1(s)

〈
x(s)

∫ s

t0

ds′ γ1(s − s′)
d

ds′ [g1(s
′)x(s′)]

〉}
.

Following the same steps of the perturbative expansion
detailed above, after the quantum average we get

P =
∫ t̄+T

t̄

ds

T

{
2
∫ s

t0

ds′
[
L1(s′ − s)ġ1(s)g1(s′)·

· C ′′(s − s′)
]

−
∫ s

t0

ds′
[
ġ1(s)g1(s′)C(s − s′)·

· d
ds′ γ1(s − s′)

]
+ γ1(0)ġ1(s)g1(s)C(0)

}
. (51)

Taking the average over the period of the drive, recall-
ing Eqs. (13), (14), (15) and exploiting the identity
γ̇1(t) = −2iL1, a(t) one obtains Eq. (25). Notice that the
above results are fully consistent with those obtained
using a fully non-equilibrium Green function formal-
ism in the perturbative regime (see Appendix E of Ref.
[78]).

Appendix A.2: Correlation functions

The auto–correlation function given in Sect. 2.2 can
be evaluated in the perturbative regime following steps
similar to those described above. Here we briefly outline
the procedure to obtain DJ1 : Starting from the defini-
tion of Eq. (22), to lowest order it is sufficient to con-
sider only the zero-th order term x(0)(t) of the position
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operator x (t) in Eq. (40). Then, the fluctuations of J1

can be written as

DJ1(t) =
∫ +∞

0

dτg1(t)g1(t − τ)·

·
〈
{x(0)(t)ξ̇1(t), x(0)(t − τ)ξ̇1(t − τ)}

〉
.

The quantum averages in the above expression decouple
in terms of the form 〈x(0)(t)x(0)(t′)〉 ≡ C(t, t′) – see
Eq. (49) – and in terms of the form

〈ξ̇1(t)ξ̇1(t′)〉 =
d
dt

d
dt′

L1(t − t′). (52)

Exploiting again the time translational invariance C(t,
t′) = C(t − t′) and following steps analogous to those
discussed above, the fluctuations of J1 averaged over T
– see Eq. (23) – turn out to be Eq. (31). In complete
analogy, we derive the period–averaged fluctuations of
the power P in Eq. (30).

Appendix B: Operating modes

The operating modes of a thermal machine where the
WM is connected to two thermal baths (ν = 1, 2) can
be classified studying the sign of the heat currents Jν

and of the total power P . Assuming T1 < T2, the only
achievable modes in a two–terminal device are the two
pure “heat engine” (P < 0, J1 < 0, J2 > 0) and “heat
pump” modes (P > 0, J1 < 0, J2 < 0), the hybrid
“refrigerator–pump” mode (P > 0, J1 > 0, J2 < 0),
and the “wasteful” mode (P > 0, J1 < 0, J2 > 0) [33].
The latter is commonly labeled as “wasteful” [109, 110]
since in this configuration heat flows from the hot bath
at T2 to the cold one at T1 while the WM absorbs power.
We note that other works [78, 111, 112] use different
names for such operating modes, e.g., “dissipator” for
“heat pump” and “accelerator” for “wasteful”. We also
use, in the main text, “refrigerator” in place of “refrig-
erator–pump” for shortness, although it actually corre-
sponds to the hybrid mode where the machine simulta-
neously operates as refrigerator and heat pump. Indeed,
the pure “refrigerator” mode can not be observed in
a two–terminal device [110]. All the possible operat-
ing modes of the quantum thermal machine discussed
in Sect. 3 are shown in Fig. 5 (see also Supplemental
Information in Ref. [33]). We recall that, in this setup,
the bath ν = 1 is the Lorentzian bath with dynamical
coupling, the bath ν = 2 is the Ohmic bath with static
coupling, and J2 = −P − J1 from Eq. (19).

Fig. 5 Operating modes. All the possible operating modes
of the quantum thermal machine discussed in main text as
a function of the driving frequency Ω and the resonance
frequency ω1: Heat pump (P), refrigerator–pump (RP), heat
engine (E), and wasteful (W). Parameters as in Fig. 2
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10. M.J. Mart́ınez-Pérez, F. Giazotto, A quantum diffrac-
tor for thermal flux. Nat. Commun. 5, 3579 (2014)

11. J.P. Pekola, B. Karimi, Colloquium: quantum heat
transport in condensed matter systems. Rev. Mod.
Phys. 93, 041001 (2021)

12. L. Arrachea, Energy dynamics, heat production and
heat-work conversion with qubits: toward the devel-
opment of quantum machines. Rep. Prog. Phys. 86,
036501 (2023)

123



Eur. Phys. J. Spec. Top.

13. P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S.
Gustavsson, W.D. Oliver, A quantum engineer’s guide
to superconducting qubits. Appl. Phys. Rev. 6, 021318
(2019)

14. A. Calzona, M. Carrega, Multi-mode architectures for
noise-resilient superconducting qubits. Supercond. Sci.
Technol. 36, 023001 (2023)
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