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Abstract11

Species commonness is often related to abundance and species conservation

status. Intuitively, a �common species� is a species that is abundant in a

certain area, widespread and at low risk of extinction. Analysing and classi-

fying species commonness can help discovering indicators of ecosystem status

and can prevent sudden changes in biodiversity. However, it is challenging

to quantitatively de�ne this concept. This paper presents a procedure to

automatically characterize species commonness from biological surveys. Our

approach uses clustering analysis techniques and is based on a number of

numerical parameters extracted from an authoritative source of biodiversity

data, i.e. the Ocean Biogeographic Information System. The analysis takes

into account abundance, geographical and temporal aspects of species dis-

tributions. We apply our model to North Sea �sh species and show that

the classi�cation agrees with independent expert opinion although sampling
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biases a�ect the data. Furthermore, we show that our approach is robust to

noise in the data and is promising in classifying new species. Our method

can be used in conservation biology, especially to reduce the e�ects of the

sampling biases which a�ect large biodiversity collections.

Keywords: Species Commonness, OBIS, Conservation biology, North Sea,12

Clustering, D4Science13

1. Introduction14

The term �common species� refers intuitively to a species that is abun-15

dant in a certain area, widespread and at low risk of extinction. By con-16

sequence, �rare species� are less abundant and possibly threatened. Auto-17

matically detecting common and rare species, and how their status changes18

through time, is an important step in understanding the consequences of en-19

vironmental change for ecosystem functioning. In particular, the abundance20

of a species in a community or ecosystem is a key indicator of its ecological21

role and ecosystem function therefore depends on the identities and relative22

numbers of common and rare species [1]. For instance, rare species may have23

unique functional traits [2] and make particular contributions to diversity24

[3]. On the other hand, common species may underpin ecosystem function25

where they dominate in terms of biomass [4, 5, 6]. Both human activity26

and natural environmental change typically a�ect the relative abundances27

of species [7]. Monitoring changes in the relative abundance of species is28

straightforward when working on individual, well-monitored systems. How-29
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ever, anthropogenic-driven environmental change is a�ecting entire ecosys-30

tems, requiring large-scale ecological e�orts [8]. One approach to monitor31

species commonness at large scale and in a certain time frame, is to perform32

meta-analyses on studies of multiple individual communities. This is useful33

for extracting general trends across multiple taxa [9]. An alternative is to34

take advantage of the increasing availability of large-scale compilations of35

biodiversity data, such as the UK's National Biodiversity Network (NBN)36

[10], the Global Biodiversity Information Facility (GBIF) [11], or the Ocean37

Biogeographic Information System (OBIS) [12]. These compilations include38

millions of opportunistic records of the distributions of very large numbers39

of species, often across multiple decades. This temporal dimension o�ers40

signi�cant potential to track the relative commonness of species through41

time. However, it is di�cult to extract robust estimates that are insensitive42

to changes and biases in sampling e�ort, from those heterogeneous and un-43

structured data sources [13]. The major issue is that it is hard to separate the44

signal of the actual relative commonness of a species in the system from the45

noise of sampling e�ort that varies in time and space, and in its taxonomic46

focus. For instance, a species may appear common across a given decade in47

a large dataset because there was at that time an intensive sampling pro-48

gramme targeting it. Its subsequent reduction in apparent abundance may49

simply re�ect the end of that programme, rather than anything of ecological50

signi�cance.51

In this paper, we present a method to classify the degree of commonness52
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of marine �sh species in a certain area and time frame, using a large data53

collection of biodiversity data. In particular, we rely on the OBIS data col-54

lection and, for the purposes of methodological development, we focus on55

�sh from the North Sea, a subset of 70 well-studied but unevenly-sampled56

species. We use clustering analysis to automatically extract commonness57

classes from unstructured data and compare these classes with expert opin-58

ion. Reliable concordance between our method and experts, suggests that59

classifying commonness for less well-studied taxa or regions from data col-60

lections such as OBIS may be possible. We also assess the performance of61

our method in terms of (i) accuracy (using cross-validation), (ii) robustness62

to random noise in the data, (iii) dependency on the variables we chose to63

represent species commonness and (iv) dependency on our de�nition of these64

variables.65

The paper is structured as follows: section 2 gives an overview on tech-66

niques for identifying species commonness. Section 3 describes the survey67

data we used. Section 4 reports the variables we de�ned to model the prob-68

lem and describes our modelling approach. Section 5 reports an evaluation69

of the robustness of our method. It includes a comparison between our auto-70

matic classi�cation and the classi�cations produced by two experts. Section71

6 discusses the results, suggests possible usages of our technique and includes72

conclusive remarks.73
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2. Overview74

Species commonness and rarity have been investigated in several scienti�c75

works. Most approaches derive species commonness from species abundance76

distributions (SADs) [14, 15]. The intimate connection between abundance77

and commonness (or rarity) is widely recognized, even if an explicit de�ni-78

tion of this dependency is unknown [5]. Approaches to model such depen-79

dency and to discover new correlated parameters, range from machine learn-80

ing based approaches to explicit modelling. In this last case, models specify81

the role that each parameter has in de�ning species commonness. Search-82

ing for these parameters usually requires analyses by domain experts. For83

example, Preston [16] analyses how abundance is distributed among species.84

He recognises the importance of characteristics like (i) the total number of85

living individuals, (ii) the total number of individuals living at any instant86

on a given area, (iii) the ratio of the number of individuals with respect to87

another species, (iv) the number of observed individuals in di�erent data88

collections. Some authors suggest that common species tend to be common89

everywhere, as re�ected in a general positive relationship between local pop-90

ulation density and regional distribution [17, 18, 19, 20]. These species also91

tend to remain common through time [21, 22], with major changes in the92

rank-order of species commonness rather rare. In other studies, common93

species have been identi�ed with species widely distributed on a territory,94

whereas rare species have been indicated as those in the Red List for the95

same territory. For example, using these de�nitions, Pearman et al. [23]96
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detect spatial patterns for common species in Switzerland. In order to ac-97

count for this heterogeneity of parameters, other works have promoted using98

standard measures and data to compare common and rare species [24].99

Unfortunately, no single satisfactory formal de�nition of species common-100

ness and rarity has been found, especially using explicit modelling. Clustering101

analysis is a promising approach coming from machine learning techniques102

that may help to address this. This technique has been widely used for103

identifying classes of species characteristics. For example, clustering envi-104

ronmental properties has proven to be useful in detecting vegetation types105

[25], in modelling the coexistence of plants in agro-ecosystems [26] and in106

detecting new agro-ecosystems [27]. Clustering analysis can also account for107

the lack of sampling uniformity in data collections, for example to group108

several species together when few data are available [28].109

3. Data110

Our model needs to be trained on species observation data. In order111

to identify the best training data, we searched for a dataset which was (i)112

su�ciently large and complex that relative commonness was not straight-113

forward to ascertain but where (ii) the number of species was not too large114

and (iii) independent estimates of relative commonness were available from115

expert opinion. Points (ii) and (iii) restricted us to well-known species, with116

o�cially accepted scienti�c names available from the authoritative World117

Register of Marine Species (WoRMS) [29, 30]. In order to extract data, we118
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consulted the Ocean Biogeographic Information System (OBIS) [31]. OBIS is119

the world's largest database on the diversity, distribution and abundance of120

all marine life. OBIS was initiated in 2000 by the Census of Marine Life and121

now runs under the auspices of UNESCO's Intergovernmental Oceanographic122

Commission. It currently provides free access to 40 million observations of123

115,000 marine species, integrated from more than 1,600 datasets provided by124

nearly 500 institutions worldwide. OBIS is an amalgam of many individual125

datasets from research projects, national monitoring programmes, museum126

collections and so on, targeting di�erent taxa in di�erent areas, often using127

di�erent methods over di�erent years. We limited our analysis on North Sea128

�sh, because �sh (Pisces3) represents 50% of all data in OBIS and the North129

Sea has relatively the highest amount of observations of all areas in the world.130

Thus, we extracted observation records from OBIS and de�ned the spatial131

boundaries of North Sea according to the International Hydrographic Orga-132

nization (IHO) indications. Furthermore, we selected only species observed133

between 2000-2009, as OBIS is particularly rich of datasets and occurrence134

records for the North Sea in this period. This selection produced a list of135

247 scienti�c species names, 70 of which had distinct and accepted species136

names according to WoRMS. We used this subset of 70 species from OBIS137

as a benchmark to develop and evaluate our method.138

3LSID: urn:lsid:marinespecies.org:taxname:11676
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4. Method139

Starting from the dataset described in the section 3, we used clustering140

analysis to automatically derive classes of commonness. The aim was also141

to search for a classi�cation robust enough to account for sampling biases.142

Clustering analysis requires de�ning variables on the data. This section re-143

ports the steps of our analysis from the de�nition of these variables to the144

selection and application of the clustering model.145

4.1. Variables de�nition146

The choice of the variables to use in a data mining experiment is very147

di�cult when there is no formal de�nition of the phenomenon to model.148

Clustering analysis requires that each element to cluster is associated with a149

numeric vector. Thus, in our case we had to associate a vector of real numbers150

to each species, where the numbers were correlated with species commonness.151

Furthermore, such numbers had to be as independent as possible from each152

other. This was necessary to reduce noise during the clustering process.153

The works reported in section 2, suggest that factors related to abundance154

and extent are correlated with species commonness. On the other hand, we155

know that collections of observations can contain biases. In particular, non-156

uniform sampling in time of the observations a�ects the estimation of species157

extents. We decided to classify the degree of commonness of each species in158

our benchmark dataset on the time frame of one decade (2000-2009), and159

to produce one classi�cation per species for the decade. The main reason160
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is that we wanted to explore the robustness of the classi�cation rather than161

producing an analysis of commonness trends. Thus, we took into account the162

rate of species observations in the decade. In particular, we considered the163

monthly observations of the species. This rate depends also on the datasets164

contained in the OBIS collection. A species that is contained in several165

datasets (each with a di�erent survey scope) is likely to be often encountered166

in that area.167

This process resulted in the following variables, whose de�nition was168

guided by a cycle of interactions with domain experts. They refer only to169

records from the North Sea, extracted with proper geo-spatial queries:170

Abundance (A): average number of reported individuals per observation.171

This quantity takes into account the number of individuals reported each172

time a species is observed:173

A =
n. of individuals reported in the record

n. of observation records

Intra-Dataset Observations (IntraDO): average number of observations per174

dataset. These datasets come from di�erent OBIS contributors, e.g. Fish-175

Base and NOAA. This parameter accounts for the frequency of presence of176

a species in each dataset. If the quantity is high, then the species is often177

reported by the OBIS contributors:178

IntraDO =

∑
D n. of observations in dataset D

n. of datasets in OBIS
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Inter-Dataset Observations (InterDO): fraction of datasets containing ob-179

servation records for a species. This parameter accounts for the observation180

frequency of a species among the OBIS contributors:181

InterDO =
n. of datasets with at least one observation for the species

n. of datasets in OBIS

Extension (E): fraction of 0.1 degree cells in the North Sea, for which at least182

one observation was reported. This measure accounts for the distributional183

extent of the species:184

E =
n. of 0.1 degree cells containing observations for the species in North Sea

n of 0.1 degree cells in North Sea

Time Rate (TR): fraction of months containing at least one observation185

record. This measure accounts for the time rate of the species observations:186

TR =
n. of months containing species observations between 2000 and 2009

n. of months between 2000 and 2009

Time Rate of Many Observations (TRMO): fraction of months containing187

a signi�cant number of observations. This is an alternative measure of the188

observation rate, which accounts for the months in which it was frequent to189

observe the species. Based on the values of species known to be common or190

rare, we calculated that 10 observations were a signi�cant threshold in the191
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2000-2009 decade.192

TRMO =
n months containing at least 10 species observations

n. of months between 2000 and 2009

Extracting the values of these variables from our benchmark generated193

a set of 70 vectors of 6 Real numbers, each referring to one species between194

2000 and 2009. The values of the variables would need to be recalculated195

if the focus area and time range change. Applying the same calculations196

to other data collectors than OBIS, would require �nding correspondence in197

the new collection for the elements constituting the above formulae. These198

elements can be reconstructed from (i) geo-localized observation records, (ii)199

the number of individuals per observation, (iii) the identity of the datasets200

containing the observations, (iv) observation dates. Most data collectors (e.g.201

GBIF and FishBase) support such information, which reassures us of the202

potential generality of this approach. Nevertheless, the OBIS Postgres-based203

collection provides very easy and fast access to retrieve the above values.204

4.2. Clustering205

Clustering analysis is a data mining technique which is able to group206

together numeric vectors, according to a certain similarity criterion. In the207

case of real valued vectors, similarity is usually measured in terms either of208

density or of euclidean distances. In our case, we wanted to verify if clustering209

could extract classes of similarity related to species commonness. To this end,210

we selected two alternative clustering techniques, named X�Means [32] and211
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DBScan [33]. The former uses a distance based approach, while the latter212

uses a density-based approach. We selected such algorithms because they213

automatically �nd the best number of clusters from the data.214

DBScan is a density-based clustering algorithm. It searches for an optimal215

number of clusters on the basis of two parameters: epsilon and min points.216

The former is a distance threshold that de�nes the neighbourhood of a point217

(epsilon-neighbourhood), while the latter is the minimum number of points218

required to form a dense region. The DBSCAN algorithm starts selecting an219

arbitrary point. Then it takes the epsilon-neighbourhood of the point and,220

if this contains at least min points elements, it aggregates the points into a221

cluster. Otherwise, it assumes that this point could be later found in the222

epsilon-neighbourhood of another point (and thus added to the cluster of223

that point), and moves to another point. The process analyses all the points224

and creates density-connected clusters. For further details see Ester et al.225

[33].226

X�Means is a variant of the popular K-Means algorithm [34], which intro-227

duces several e�ciency enhancements. An important di�erence with respect228

to K-Means is that the number of optimal clusters to search for is not speci-229

�ed a priori. Instead, it requires to set a minimum and a maximum number230

of clusters (Kmin and Kmax) to search for. The X�Means algorithm starts231

from Kmin and adds centroids as far as Kmax is reached. At each step, the232

K�Means algorithm is run, which �nds the best assignment of the vectors to233

the indicated number of clusters. K�Means indicates a score for this assign-234
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ment, based on the distortion measure, i.e. the average squared distance of235

the points to their clusters centroids. The X�Means algorithm outputs the236

result of the K�Means that gave the best score, and consequently the best237

number of clusters. X�Means also adds e�ciency enhancements to K�Means,238

using kd -trees [35] and blacklisting to support processing. Furthermore, at239

each step of the computation, the location of the centroids of the additional240

clusters is decided using the Bayesian Information Criterion (BIC) [36]. For241

further details see Pelleg and Moore [32].242

We applied clustering analysis to our North Sea species benchmark. In our243

experiment, we searched for the clustering analysis detecting the lowest num-244

ber of clusters and presenting a uniform distribution of the vectors in these245

clusters. We used the implementations running on the D4Science Statistical246

Manager Service [37, 38], which hosts such procedures as-a-Service. We used247

several con�gurations for both the algorithms. Eventually, the best con�gu-248

ration for DBScan was obtained by setting epsilon = 100 andminpoints = 2.249

Unfortunately, this ended in 38 clusters and was not practical to use. On250

the other hand, the X�Means algorithm was executed by asking to search251

for a number of clusters between 1 and 50. Although the interval was large,252

the algorithm ended in only four clusters. The algorithm found an optimal253

separation of the vectors according to their relative euclidean distance. Fur-254

thermore, we noticed that such clusters could be given an interpretation.255

The dataset and the results are available as supplementary material of this256

paper.257
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The normalized distribution of the mean values of the variables is re-258

ported in Table 1 for each X�Means cluster. Table 2 reports examples of259

vectors associated to the clusters and Figure 1 displays the distribution of260

the values of the clustering variables over the clusters. Table 3 reports the261

interpretation we gave to these clusters, based on the distributions of their262

centroids and of the variables values. Cluster number 1, interpreted as the263

class of �Common� species, contains 12 vectors (corresponding to 12 species),264

and is characterized by very high values of almost each variable. This means265

that the species in this cluster are frequent, widespread and with high in-266

dividual density. Cluster 2 (�Moderate Commonness�) contains 21 vectors267

with lower individual density with respect to cluster 1. The most evident268

characteristics are moderate distributional extent and moderate frequency of269

observation. Cluster 3 (�Moderate-Low Commonness�) contains 23 vectors270

presenting a low individual density and only moderate reporting frequency271

by several datasets. Finally, cluster 4 (�Low Commonness�, which includes272

rare species) contains 14 species which are very localized and with low indi-273

vidual density. In this case, we use the term widespread to indicate that the274

species has a large geographical range, in which it is likely to be observed.275

The term localized means that the species lives in highly localized zones, but276

there could be a certain distance between such zones. Finally, individual277

density is de�ned high if a large number of individuals are encountered each278

time the species is observed.279
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5. Evaluation280

5.1. Agreement with experts281

In this section, we evaluate the performance of the classi�cation produced282

by X�Means with respect to expert opinion. In order to create a comparison283

reference, two of us (Bailly and Cattrijsse) performed independent classi�-284

cation assignments on the 70 benchmark species of North Sea �sh, based285

on expert opinion. Each expert separately assigned the appropriate cluster286

to each species, selecting among those in Table 3. The experts did not be-287

long to the same institute: Expert 1 (Cattrijsse) is a researcher in Coastal288

Marine Biology working for the Vlaams Instituut voor de Zee (VLIZ), while289

Expert 2 (Bailly) is a biologist working in the biodiversity informatics �eld290

for the World Fish Center. The result of this classi�cation is available as291

supplementary material attached to this paper.292

We estimated the agreement between all the classi�cations using the ab-293

solute percentage of agreement, de�ned as the percentage of matching assign-294

ments. Furthermore, we also calculated Cohen's Kappa [39], which estimates295

the agreement between two evaluators with respect to purely random assign-296

ments. Cohen's Kappa allows comparing complex classi�cation tasks (e.g.297

with many classes) with simpler ones (e.g. dichotomous scenarios) where298

high agreement could have occurred by chance. Table 4 reports the Cohen's299

Kappa values of the agreements, along with two di�erent interpretations300

commonly used in literature [40, 41]. It is notable that in this experiment301

the absolute percentage agreement re�ects the Kappa values. The values are302
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symmetric, thus we report them once per pair of evaluators.303

In order to give insight about the di�erences between the classi�cations304

assignments, we report the example of the lesser pipe�sh Syngnathus rostel-305

latus4, which Expert 2 and X�Means assign to Moderate-Commonness, and306

Expert 1 to Common. This species presents an Abundance (A) parameter307

value equal to 17.16, quite far from the 325.27 of the common dab Limanda308

limanda5, which is �Common� according to all the assignments. A signi�-309

cant di�erence is recorded also for the IntraDO values, which is 101.75 for310

the lesser pipe�sh and 24521.14 for the common dab. Indeed, Syngnathus311

rostellatus has a lower number of observation records for (407 records) with312

respect to Limanda limanda (171648 records). This in�uences the behaviour313

of X�Means, but its classi�cation can be still considered viable because it314

agrees with one of the two experts. Figure 2 depicts the distribution of the315

observation records of the above species, aggregated at 0.5 degrees resolution.316

One interesting consideration is that, even if the classi�cation classes were317

automatically detected by the X�Means algorithm, the overall agreement318

with both the experts is good. On the other hand, the agreement between319

the two experts is poor. This indicates that the problem is objectively hard,320

but clustering seems able to reconcile the divergent opinions in some way.321

The disagreement between experts could be due to their di�erent inter-322

pretation of the clusters descriptions. Thus, we investigated this aspect by323

4LSID: urn:lsid:marinespecies.org:taxname:127389
5LSID: urn:lsid:marinespecies.org:taxname:127139
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aggregating the not Common clusters into a generic Non�Common cluster.324

Table 5 reports the evaluation in this case. The agreement between Expert325

2 and clustering is excellent, while the aggregation introduces misalignment326

between Expert 1 and clustering. This is due to a general tendency by Expert327

1 to classify more in the Moderate�Commonness class.328

We repeated the same evaluation aggregating the Common and theModerate�329

Commonness clusters into one cluster, and the Moderate�Low and Low�330

Commonness clusters into another cluster. Table 6 reports the agreement331

in this case. With this aggregation, the agreement by both the experts with332

the clustering analysis is good, and highest agreement is still with Expert 2.333

These experiments highlight that even changing the de�nition of the clus-334

ters, there is a sensible agreement between experts and clustering. This335

indicates reliability of the automatic classi�cation. It is notable that the336

variables used by the clustering analysis are likely to be a�ected by biases,337

especially when the species is poorly reported in time and is rarely reported338

by the OBIS contributors. Clustering accounts for the lack of information of339

some variables, because it compensates with information from the other vari-340

ables. This comes out from the variables combination made by the euclidean341

distances and by the subsequent optimization process. Furthermore, produc-342

ing classes of commonness (instead of commonness scores) hides �ne-grain343

di�erences between the vectors.344
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5.2. Performance evaluation345

We measured the robustness of our method in terms of (i) classifying new346

species, (ii) dependency on noise, (iii) dependency on the clustering variables347

and (iv) on their de�nitions. In particular, we calculated the performance on348

classifying species that were not included in the training set. To this aim, we349

used cross-validation. We randomly selected 90% of the species to produce350

clusters. We checked if the clusters coincided with the ones extracted using351

100% of the species (complete set), and then we used the other 10% of the352

species to check if their associated vectors were assigned to the same clusters353

as in the complete set. We used only 10% of the species as test set because354

our benchmark dataset had small size. In each experiment, we calculated the355

accuracy of the classi�cation as the ratio between correct assignments and356

overall assignments. In the end, we averaged the accuracies of ten executions.357

In all the experiments the clusters coincided with the ones of the complete set.358

The overall (averaged) accuracy was 98.57%. This means that for the North359

Sea case our clusters are stable and the model is promising in classifying new360

species.361

As further step, we checked the robustness of our classi�cation to noise.362

As explained before, the data we extracted from OBIS contain sampling363

biases. The good agreement of our method with expert opinion already sug-364

gests that our approach can manage these biases. Nevertheless, we explored365

this aspect further by adding an increasing amount of white noise to our366

data and checking if the clusters remained stable, i.e. if the newly identi�ed367
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clusters were still the ones of Table 3. We added white noise directly to our368

variables and Table 7 reports the results: a 10% noise level means that we369

randomly added or subtracted up to the 10% of a variable value. Referring370

to Table 7, up to 1% of noise there is no change in the clustering and even371

at 5% the clusters are very similar to the ones without noise, because most372

of the species in the original (�clean� data) clusters are found in the corre-373

sponding newly found clusters. The number of clusters changes when 10%374

of noise is reached, but at this level the newly found clusters have still corre-375

spondence with the original clusters. For example, the species belonging to376

the original cluster 1 are largely included in the newly found cluster 1. The377

original cluster 2 corresponds to both the new clusters 1 and 2, whereas the378

original cluster 3 and 4 correspond to the new clusters 2 and 3 respectively.379

Over 10% of noise the original clusters are no more recognizable. It is our380

opinion that this limit is a reasonable indicator of robustness to noise. It381

is remarkable, in fact, that our data are already biased and the white noise382

only adds more bias.383

As additional step, we evaluated the in�uence of each variable on the384

clustering analysis. Table 8 reports the results of the clustering analysis385

when we exclude one variable at time. The number of clusters changes and386

the identity of the original clusters is lost in most of the cases. It is notable387

that when InterDO is missing, the number of clusters is overestimated. In the388

other cases, the clustering is very simplistic and does not allow easy semantic389

interpretations. In particular, clusters 1, 3 and 4 are merged together, which390

19



means that common and uncommon species are mixed up. These changes391

indicate that all the variables have an important role (i.e. carry a remarkable392

amount of information) in the de�nition of the clusters of Table 3. Our393

de�nitions are related to indicators taken from other studies and come from394

expert opinion (see section 4.1). This analysis con�rms that they all have395

a key role in producing species commonness classes that agree with expert396

opinion.397

As �nal step, we checked if the commonness classes depend on our de�ni-398

tions of the variables (see section 4.1). Table 9 reports how the results of the399

clustering analysis change when the variables de�nitions are slightly altered.400

The new de�nitions in Table 9 still include information that is correlated to401

the original de�nitions. For example, in one of the experiments we rede�ned402

A as the number of recorded individuals, without dividing for the number of403

observations. In another case, we de�ned one time variable as the ratio be-404

tween the two time variables TRMO and TR. The last row of Table 9 reports405

the case in which all the variables de�nitions are altered. In all the cases, the406

clustering analysis identi�es four clusters. Furthermore, the original clusters407

are recognizable in all the cases and sometimes the output coincides with the408

one of the original model. This means that the clustering analysis is �exible409

enough to exploit the information associated to the variables, even when the410

variables de�nitions change.411

20



6. Discussion and conclusions412

In this paper we have presented an approach to classify species common-413

ness. We have trained our models on a dataset extracted from the OBIS data414

collection and focusing on North Sea �shes. The performance has been eval-415

uated by comparing automatic assessments with the opinions of two experts.416

We have demonstrated that our process has good agreement with expert417

opinion although our analysed dataset contains sampling biases. We have418

further explored this robustness, by evaluating the e�ects that random noise419

in the data has on the classi�cation. The results indicate that the model420

is reasonably robust in managing noise. Furthermore, we have used cross-421

validation to calculate the performance of our model in classifying species422

that had not been included in the training set. The performance indicates423

that the identi�ed clusters are stable for the North Sea species. This gives424

suggestions about the possible generalisation of our method. In fact, our425

clustering analysis is also applicable to other areas and large biodiversity426

data collections. Applying our method to other regions than North Sea re-427

quires the model to be trained on new data. Indeed, we conducted the same428

analysis on 222 species from OBIS at global scale. Also in this case, we429

found an optimal separation into four clusters6 having the same percentage430

distributions as in Table 1. This result indicates that our classi�cation could431

be valid for other areas too, but validating this hypothesis requires further432

6The complete classi�cation is available on the D4Science e-Infrastructure for consul-
tation: http://goo.gl/TYuD6P
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investigation and much more e�ort in terms of experts' reviews. We will433

address this issue in future experiments.434

We have demonstrated that our process is more dependent on the in-435

formation included in the variables than to their de�nition. This is useful436

when applying our analysis to other biodiversity data collections that report437

information in a di�erent way from OBIS.438

Finally, we have demonstrated also that our set of variables contains a439

su�cient amount of information to identify four reliable commonness clas-440

si�cations. Using a lower number of variables would produce less re�ned441

classi�cations and less clusters (see Table 8). This is a remarkable property,442

since we de�ned the variables based on interactions with ecology and data443

experts (i.e. not using automatic data selection [42]). This may suggest that444

our variables are ecologically meaningful, i.e. they are really correlated to445

species commonness.446

From our analysis, new biodiversity and ecosystem indicators could be447

identi�ed and this will be part of our future investigations. For example,448

using our method a species could be found, today, to be �less common� in449

a certain area with respect to a previous time period. This could indicate a450

change of the ecosystem in that area or that the species has been over�shed.451

Our method could be also a way to reconcile the opinions of di�erent experts452

about the commonness of a set of species. For example, it could be used as a453

supporting tool for biologists, who would rely on an �external� opinion when454

discussing about species commonness. Furthermore, classifying commonness455
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for �shes in a well�studied region is a �rst step towards working on less known456

taxa in other regions.457

Our experiments highlight the intrinsic di�culty of the problem, but the458

proposed technique represents a step forward in classifying species common-459

ness and in understanding which factors are related to this concept. A data460

provider like OBIS could embed such method to alert a user about the pos-461

sible commonness of a species in a certain area. In this context, we are462

planning to build an interface allowing a user to select an IHO area and463

a time rage, and to retrieve the species possibly classi�ed as Common or464

Moderately�Common. Currently, our clustering technique is released as soft-465

ware [43, 44] inside the i-Marine e-infrastructure [45], which grants free access466

to statistics about the OBIS database and allows sharing datasets, biological467

analyses and experimental results.468
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A IntraDO InterDO E TR TRMO

Cluster 1 85.3% 85.4% 33.9% 64.3% 35.4% 47.1%
Cluster 2 9.5% 12.4% 26.6% 26.4% 31.5% 37.5%
Cluster 3 4.8% 2.1% 21.4% 8.3% 23.4% 14.7%
Cluster 4 0.4% 0.1% 18.1% 1.0% 9.6% 0.6%

Table 1: Normalized distributions of the mean values of the variables in the X�Means
clusters.
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Sp. scienti�c name A IntraDO InterDO E TR TRMO Cluster
Sprattus sprattus 7921.81 2779.67 0.44 0.031 0.44 0.39 1
Trisopterus esmarkii 5477.46 2502.11 0.44 0.027 0.45 0.44 1
Gadus aegle�nus 1680.20 8869.78 0.67 0.039 0.49 0.48 1
Trachurus trachurus 2067.49 1294.33 0.56 0.035 0.45 0.42 2
Pollachius virens 250.39 1433 0.44 0.013 0.43 0.37 2
Platichthys �esus 11.02 647.89 0.56 0.013 0.59 0.5 2
Ammodytes lancea 663.20 49.22 0.67 0.0036 0.26 0.1 3
Mustelus asterias 16.52 96.89 0.33 0.0046 0.38 0.21 3
Scophthalmus rhombus 2.58 82.33 0.56 0.010 0.4 0.17 3
Pomatoschistus pictus 38.17 2.67 0.33 0.00032 0.083 0 4
Ciliata septentrionalis 5.75 6.22 0.33 0.00076 0.1 0.0083 4
Labrus bergylta 0.07 6.56 0.33 0.00044 0.13 0.017 4

Table 2: Examples of vectors of parameters (with related clusters) for some of the species
included in our benchmark dataset.
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Cluster
Number Label De�nition

Frequent,
Cluster 1 Common widespread,

high individual density
Moderately frequent,

Cluster 2 Moderate Commonness moderately widespread,
medium individual density

Poorly widespread,
Cluster 3 Moderate-Low Commonness poorly-moderately frequent,

low individual density
Localized,

Cluster 4 Low Commonness not frequent,
very low individual density

Table 3: Interpretation of the X�Means clusters as classes of species commonness.
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Kappa values on 4 Clusters

Expert 2 Clustering
Expert 1 0.24 0.57
Expert 2 0.48

Kappa interpretation Fleiss/Landis�Koch

Expert 2 Clustering
Expert 1 Poor/Slight Good/Moderate
Expert 2 Good/Moderate

Absolute Percentage of Agreement

Expert 2 Clustering
Expert 1 46.5% 67.4%
Expert 2 61.4%

Table 4: Agreement with Kappa statistic and absolute percentage of agreement on the
classi�cation of species in four clusters: Common, Moderate�Commonness, Moderate�Low
Commonness, Low�Commonness. The table in the middle reports interpretations for the
Kappa values.
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Kappa values on Comm./Non-Comm. classes

Expert 2 Clustering
Expert 1 0.34 0.39
Expert 2 0.78

Kappa interpretation Fleiss/Landis�Koch

Expert 2 Clustering
Expert 1 Marginal/Fair Marginal/Fair
Expert 2 Excellent/

Substantial

Absolute Percentage of Agreement

Expert 2 Clustering
Expert 1 67.4% 69.8%
Expert 2 92.9%

Table 5: Agreement with Kappa statistic and absolute percentage of agreement on the
classi�cation of species in two clusters: Common, Non�Common. The table in the middle
reports interpretations for the Kappa values.
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Kappa values on 2 aggregated Clusters

Expert 2 Clustering
Expert 1 0.26 0.67
Expert 2 0.52

Kappa interpretation Fleiss/Landis�Koch

Expert 2 Clustering
Expert 1 Marginal/Fair Good/Substantial
Expert 2 Good/Moderate

Absolute Percentage of Agreement

Expert 2 Clustering
Expert 1 67.4% 83.7%
Expert 2 75.7%

Table 6: Agreement with Kappa statistic and absolute percentage of agreement on the
classi�cation of species in two aggregated clusters: Common and Moderate�Common vs.
Moderate�Low and Low�Commonness. The table in the middle reports interpretations for
the Kappa values.
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Response to Noise
Distribution of the original clusters
on the newly found clusters

Added noise
Found
Clusters
(C1, C2,..,Cn)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

0.1% 4

100% C1
0% C2
0% C3
0% C4

0% C1
100% C2
0% C3
0% C4

0% C1
0% C2
100% C3
0% C4

0% C1
0% C2
0% C3
100% C4

1% 4

100% C1
0% C2
0% C3
0% C4

0% C1
100% C2
0% C3
0% C4

0% C1
0% C2
100% C3
0% C4

0% C1
0% C2
0% C3
100% C4

5% 4

100% C1
0% C2
0% C3
0% C4

4% C1
96% C2
0% C3
0% C4

0% C1
0% C2
91% C3
9% C4

0% C1
0% C2
0% C3
100% C4

10% 3
70% C1
30% C2
0% C3

43% C1
48% C2
9% C3

17% C1
66% C2
18% C3

0% C1
14% C2
86% C3

50% 1 100% C1 100% C1 100% C1 100% C1

Table 7: Output of our clustering analysis in response to random noise added to the data.
The results are reported with respect to an increasing percentage of added noise. The
percentages indicate the distribution of the clusters associated to the clean data over the
clusters found for the noisy data.
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Variables in�uence on the clustering analysis
Distribution of the original clusters
on the newly found clusters

Excluded
variable

Found
Clusters
(C1, C2,..,Cn)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

A 2
100% C1
0% C2

78% C1
22% C2

100% C1
0% C2

100% C1
0% C2

IntraDO 2
100% C1
0% C2

78% C1
22% C2

100% C1
0% C2

100% C1
0% C2

InterDO 5

100% C1
0% C2
0% C3
0% C4
0% C5

13% C1
87% C2
0% C3
0% C4
0% C5

0% C1
0% C2
61% C3
39% C4
0% C5

0% C1
0% C2
0% C3
29% C4
71% C5

E 1 100% C1 100% C1 100% C1 100% C1

TR 2
100% C1
0% C2

70% C1
30% C2

100% C1
0% C2

100% C1
0% C2

TRMO 2
100% C1
0% C2

30% C1
70% C2

100% C1
0% C2

100% C1
0% C2

Table 8: Modi�cations in the species clustering when one variable at time is excluded.
The percentages indicate the distribution of the original clusters over the newly calculated
clusters.
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In�uence of variables rede�nitions on the clustering analysis
Distribution of the original clusters
on the newly found clusters

Rede�ned
variable

Found
Clusters
(C1, C2,..,Cn)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

A′ =n. of individuals 4

100% C1
0% C2
0% C3
0% C4

0% C1
100% C2
0% C3
0% C4

0% C1
0% C2
100% C3
0% C4

0% C1
0% C2
0% C3
100% C4

A′′ =n. of obs. 4

100% C1
0% C2
0% C3
0% C4

0% C1
96% C2
4% C3
0% C4

0% C1
0% C2
91% C3
9% C4

0% C1
0% C2
0% C3
100% C4

IntraDO′ =avg. n. of obs.
in datasets containing
species obs.

4

100% C1
0% C2
0% C3
0% C4

9% C1
91% C2
0% C3
0% C4

0% C1
0% C2
100% C3
0% C4

0% C1
0% C2
0% C3
100% C4

InterDO′ =n. of datasets
containing species obs.

4

100% C1
0% C2
0% C3
0% C4

0% C1
100% C2
0% C3
0% C4

0% C1
0% C2
100% C3
0% C4

0% C1
0% C2
0% C3
100% C4

TR′ =n. of months with obs. 4

100% C1
0% C2
0% C3
0% C4

30% C1
70% C2
0% C3
0% C4

0% C1
40% C2
60% C3
0% C4

0% C1
0% C2
0% C3
100% C4

TRMO′ =n. of months
with at least 10 obs.

4

100% C1
0% C2
0% C3
0% C4

35% C1
65% C2
0% C3
0% C4

0% C1
0% C2
100% C3
0% C4

0% C1
0% C2
0% C3
100% C4

T=TRMO/TR
(subst. to TR and TRMO)

4

100% C1
0% C2
0% C3
0% C4

30% C1
70% C2
0% C3
0% C4

0% C1
0% C2
61% C3
39% C4

0% C1
0% C2
0% C3
100% C4

A′, IntraDO′,
InterDO′, TR′,
TRMO′

4

100% C1
0% C2
0% C3
0% C4

8% C1
92% C2
0% C3
0% C4

0% C1
0% C2
100% C3
0% C4

0% C1
0% C2
0% C3
100% C4

Table 9: Modi�cations in the species clustering when variables are rede�ned in a slightly
di�erent way from our default de�nitions. The percentages indicate the distribution of the
original clusters over the newly calculated clusters.
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Figure 1: Distribution of the values of our variables over the four clusters identi�ed by our
model.

40



Figure 2: a. Representation of observation records from OBIS for Syngnathus rostellatus,
aggregated at 0.5 degrees b. Representation of observation records from OBIS for Limanda
limanda, aggregated at 0.5 degrees.
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