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Strain represents an ubiquitous feature in semiconductor heterostructures, and can be engineered
by different means in order to improve the properties of various devices, including advanced MOS-
FETs and spin-based qubits. However, its treatment within the envelope function framework is well
established only for the homogeneous case, thanks to the theory of Bir and Pikus. Here, we gener-
alize such theory to the case of inhomogeneous strain. By fully accounting for the relativistic effects
and metric aspects of the problem, we derive a complete envelope-function Hamiltonian, including
the terms that depend on first and second spatial derivatives of the strain tensor.

I. INTRODUCTION

Strain represents a common feature in semiconductor
nanostructures. It develops spontaneously during their
fabrication process, because of the lattice mismatch be-
tween heterogeneous layers, and can be induced by cool-
ing the system to cryogenic temperatures, due to the
presence of materials with different thermal-expansion
coefficients [1–3]. As an uncontrolled or unaccounted
phenomenon, strain can result in significant differences
between the actual and the nominal properties of the
nanostructure. On the other hand, strain can be inten-
tionally engineered, in order to modulate the band struc-
ture and increase the carrier mobility, an approach that
is actively pursued, e.g., with MOSFETs [4, 5] or silicon
nanowires [6].
These effects are particularly relevant in

semiconductor-based implementations of quantum
computing. Silicon and germanium quantum dots have
emerged as promising hosts of electron- or hole-spin
qubits [7–27], whose properties can be strongly affected
by strain. In particular, it has been shown that in these
systems inhomogeneous strain can modify both the
localization of the confined particle and its coupling to
external fields, specifically through a modulation of the
Rabi frequency [28] and of the g-factor [29].
The tool of election for simulating the properties of

spin qubits in semiconductor quantum dots is represented
by the Luttinger and Kohn (LK)’s envelope-function for-
malism [30–32]. This applies to crystalline systems sub-
jected to a spatially slow-varying external potential, such
as the one generated by the metal gates used in electro-
statically defined nanostructures. Describing the effects
of strain on the electron and hole states requires an ex-
tension of LK’s theory, which was developed by Bir and
Pikus (BP) for the case where the strain tensor is small
and homogeneous [33–37]. Even in these conditions, the
absolute displacements of the ions (with respect to the
unstrained crystal) may be comparable or larger than the
lattice constant. This makes the displacements unsuit-
able as an expansion parameter for the electron-nuclei
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potential, unlike for the theory of electron-phonon inter-
actions [38]. BP’s key idea was to introduce a new set
of electron coordinates that make the power expansion of
the electron-nuclei potential in the strain tensor possible,
thus enabling a perturbative calculation of the electron
and hole states.
In view of the above, a generalization of BP’s theory

to the case of inhomogeneous strain would be highly de-
sirable, but is far from trivial. In our understanding, the
previous attempts that have been made in this direction
are affected by significant shortcomings. These consist
either in an incorrect treatment of the Schrödinger equa-
tion in the required set of curvilinear coordinates, result-
ing in the non-hermiticity of the particle Hamiltonian
[39], or in the use of a non-practical basis set within a
non-relativistic treatment, which precludes from the out-
set an accurate description of spin-orbit interactions [40].
In this Article, we extend BP’s theory to the case of

inhomogeneous strain in a rigorous and comprehensive
way. This is achieved by properly taking into account the
modifications to the quantum-mechanical formalism that
arise when the metric is non-Cartesian [41, 42], and by
including relativistic corrections to the Schrödinger equa-
tion via a low-energy expansion of the covariant Dirac
equation [43]. Our central result — applicable to a vari-
ety of semiconductor nanostructures, in the presence of
slowly-varying inhomogeneous strain and external elec-
trostatic potential — is a set of equations, whose solu-
tion gives the envelope functions within a manifold of
arbitrary dimension. From these we derive, as a relevant
case, the strain-related 6-band Hamiltonian for the hole
states in silicon and germanium, and more generally in
crystals with diamond structure. For the sake of read-
ability, the main logical steps that have been followed are
reflected in the structure of the main text, which contains
the main results. The complete derivations are reported
in the Appendices and in the Supplementary Material
(SM) [44], to which we provide detailed reference at each
step.

II. INHOMOGENEOUS STRAIN

The first step consists in the introduction of a curvilin-
ear coordinate system, which allows to express the nuclei
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potential in the strained system as a perturbative expan-
sion in the strain tensor. This approach, introduced by
BP for the case of homogeneous strain and generalized to
the inhomogeneous case by Zhang [39], is recalled here
for the reader’s convenience. In the original Cartesian
reference frame, let rC define the electronic coordinates,
while Ri,0 and Ri ≡ Ri,0 + ui are the nuclei positions
in the absence and in the presence of strain, respectively.
Generalizing BP’s approach to the case of inhomogeneous
strain, one introduces a set of curvilinear coordinates r

to describe the electronic position. These are related to
the rC by the equation [39]:

rαC = rα + uα(r) , (1)

where the Greek indices label vector components (α =
1, 2, 3). The continuous inhomogeneous displacement
u(r) is assumed to be an invertible and differentiable
function of r to all needed orders. It fulfils the conditions
u(Ri,0) = ui and |u(r)| ≪ |r|. The former condition al-
lows for the expansion of the nuclei potential in powers
of the strain in the transformed coordinate frame, while
the latter condition follows from the assumption that the
strain tensor is small everywhere.
Given the displacement functions uα, the components

of the strain tensor can be defined as follows:

εαβ(r) ≡ ∂βuα(r) , (2)

where ∂β ≡ ∂/∂rβ. Provided that the strain tensor is
small and varies slowly over the scale of a unit cell, by
applying the transformation in Eq. (1), one can express
the potential Un generated by the nuclei in the strained
system in the form:

Un(r) ≈ Un,0(r) + εαβ (r) Uβ
α (r) . (3)

Here, Un,0 is the potential in the unstrained system and
Uβ
α is a strain-independent function that has the same

periodicity as the unstrained lattice, while the product
εαβ (r) Uβ

α (r) is in general not periodic. Further details
on the nuclei potential relations are provided in Appendix
A. In Appendix B, instead, we give a formal derivation of
the relations between Hamiltonians and wave functions
in two coordinate systems connected by a point transfor-
mation such as Eq. (1). Here and in the remainder of
this Article, we use Einstein’s summation convention on
repeated Greek indexes.

III. THE SCHRÖDINGER PROBLEM IN

CURVILINEAR COORDINATES

The second step consists in deriving the general ex-
pression of the Schrödinger equation for an electron in
curvilinear coordinates, with the inclusion of the spin-
orbit term. The adoption of the curvilinear coordinates
r implies the introduction of a nontrivial metric tensor,
i.e. a gµν 6= −δµν [41]. As a result, the matrix element of

a local operator Â between two arbitrary electron (spino-
rial) states is given by:

〈
Ψ
∣∣Â
∣∣Φ
〉
=

∫
dr
√
−g(r)Ψ†(r) · A(r)Φ(r) , (4)

where g(r) = det [gµν(r)]. The definition of inner prod-
ucts can be obtained from the above equation simply by
replacing the generic operator A with the identity. As a
technical but crucial point, we note that, in a curvilin-
ear coordinate system, the definition in Eq. (4) should be
used in evaluating the hermiticity of operators and the
scalar products between states, rather than its Cartesian
counterpart, corresponding to

√
−g(r) = 1 [39].

In order to obtain the correct Hamiltonian in curvi-
linear coordinates and to include spin-orbit coupling, we
generalize the covariant formulation of the Schrödinger
equation given in Ref. [41], which applies to a non-
relativistic Hamiltonian. Starting from the covariant
Dirac equation for the 4-component electron field in an
electromagnetic potential [43], which holds for arbitrary
metric tensors, we take the non-relativistic limit and al-
low for a nontrivial metric in the spatial sector only. The
result is a Schrödinger equation for 2-spinors that can
be augmented with any order of relativistic corrections,
while inheriting the covariance of the initial Dirac equa-
tion.
In the absence of magnetic field and up to the first

order in the relativistic corrections, the Hamiltonian can
be written as: H = Hkin + Hrel + U , where the kinetic
term reads

Hkin = − ~
2

2m

[(
∇2

Cr
ν
)
∂ν − gµν∂µ∂ν

]
, (5)

U is a generic scalar potential, and the dominant com-
ponent in the relativistic term is given by the spin-orbit
Hamiltonian

Hso = − i~2

4m2c2

(
∂rµ

∂rαC

∂rν

∂rβC
σαβ

)
(∂µU) ∂ν . (6)

Here, we adopt the notation ∇2
C ≡ ∂2/(∂rαC∂r

α
C). Be-

sides, σαβ = −ǫ̃αβγσγ , where ǫ̃αβγ is the invariant Levi-
Civita symbol and −σγ are the Pauli matrices.
Relying on the generalized expression of the matrix

elements and of the inner product [Eq. (4)], one can
write the matrix elements of the Hamiltonian between
2-component spinors in a manifestly Hermitian way, as-
suming that the wave functions either vanish at infinity,
or satisfy the Born-von Karman boundary conditions.
Further details on the relativistic terms of the Hamil-
tonian and on the boundary conditions are provided in
Appendices C and D, respectively.

IV. CURVILINEAR COORDINATES FROM

THE STRAIN TENSOR

The equations reported in the previous paragraph pro-
vide a general framework, which can be applied to the
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present problem, where the non-Cartesian character of
the coordinates results from the presence of inhomoge-
neous strain. In fact the strain tensor determines the
Jacobian Jα

β ≡ ∂β∂rαC = δαβ +εαβ , as can be deduced from

Eqs. (1) and (2). As to the metric tensor, to first order
in the strain tensor, it can be expressed as

gµν ≈ −δµν − ενµ − εµν , (7)

under the assumption that ‖εi(r)‖ ≪ 1, and thus J−1 ≈
1− ε. From this it also follows that

√−g ≈ 1 + tr(ε).
The above relations provide the dependence of Hkin

and Hso on the strain tensor, mediated by the inverse Ja-
cobian, ∇2

C and gµν . To the first order in the strain ten-
sor, the kinetic and spin-orbit components of the Hamil-
tonian can thus be written as follows:

Hkin = − ~
2

2m

[
∂2

∂rµ∂rµ
+
←−
∂ µ

(
ενµ + εµν

)−→
∂ ν

]
, (8)

Hso = −iη
(
fµσ

µν−→∂ ν −
←−
∂ νσ

µνfµ +Σν−→∂ ν −
←−
∂ νΣ

ν
)
,

(9)

where

η ≡ ~
2/(8m2c2) ,

fµ ≡ ∂µUn,0 ,

Σν ≡
(
∂µε

α
β

)
Uβ
ασ

µν + εαβ
(
∂µU

β
α

)
σµν − ενβfασαβ

− εαµfασµν , (10)

and the arrows above the differential operators specify
whether these must be applied to the wave function on
the left or right sides of the Hamiltonian when evaluating
its matrix elements.
As to the potential, induced by the nuclei, its expres-

sion is given by the sum of the unstrained contribution
and of a perturbation that depends linearly on the strain
tensor [Eq. (3)].
The derivations of the above equations can be found

in Appendices C and D.

V. GENERALIZED LUTTINGER-KOHN

THEORY

In the LK solution scheme, the electron Hamiltonian
matrix is derived in an orthonormal basis, and then re-
duced to a block structure by means of a suitable canon-
ical transformation, which effectively separates the rele-
vant manifold from the others, while perturbatively ac-
counting for the inter-manifold coupling. In the present
Section, this procedure is generalized in order to include
the case of a curvilinear set of coordinates, with consis-
tently defined orthonormality relations.

In order to identify a complete basis set, we initially
consider the part of the Hamiltonian that is of order zero
in the strain. Being this a periodic function of r, one
can apply Bloch’s theorem in order to derive its eigen-
functions ψn,k = eik·run,k(r) and eigenvalues En(k).
In view of an expansion around, e.g., the Γ point, it
is convenient to introduce also the LK functions [30]
χn,k ≡ eik·run,0(r). In the curvilinear coordinates nei-
ther the Bloch nor the LK functions form an orthonor-
mal basis [45], according to the inner product defined in
Eq. (4). However, the orthonormality relations can be
recovered by suitably modifying the LK functions, ac-
cording to the relations [38]:

χn,k ≡
χn,k

[−g(r)]1/4
≈
[
1− 1

2
tr ε(r)

]
eik·run,0(r) . (11)

Analogous modifications can be applied in order to re-
cover the orthonormality relations for the Bloch func-
tions.

In the modified LK basis, the matrix elements of the
first-order strain-dependent component of the Hamilto-
nian read:

〈
χn,k

∣∣Ĥ(1)
∣∣χn′,k′

〉
= − ~

2

4m
|k − k′|2 ε̃µ

µ (k − k′) δn,n′ + ε̃µ
ν (k − k′)

(
Dν

µ + kαLνα;µ + k′αL∗να;µ + kαk′βQν
αβ;µ

)
n,n′

, (12)

where ε̃µ
ν (q) is the Fourier transform of the strain ten-

sor. The last parentheses on the right include the
deformation-potential terms; in particular, the k- inde-
pendent quantities D, L and Q are given respectively by

Dν
µ ≡ Dν

µ +∆Dν
µ , (13a)

Lνα;µ ≡ Lν
α;µ +∆Lν

α;µ , (13b)

Qν
αβ;µ ≡ Qν

αβ;µ +∆Qν
αβ;µ , (13c)

where the (dominant) non-relativistic components are

Dν
µ ≡ Uν

µ −
1

m
pµpν , (14a)

Lν
α;µ ≡ −

~

2m
(δναpµ + δµαpν) , (14b)

Qν
αβ;µ ≡ −

~
2

2m

(
δµαδ

ν
β + δναδ

µ
β

)
, (14c)
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while the relativistic corrections read

∆Dν
µ ≡ iη

(
2
←−
∂ ασ

αβUν
µ

−→
∂ β +

←−
∂ βσ

νµfβ

−←−∂ βσ
νβfµ − σνµfβ

−→
∂ β + σνβfµ

−→
∂ β

)
, (15a)

∆Lν
α;µ ≡ η

(
2σαβUν

µ

−→
∂ β + σνµfα − σναfµ

)
, (15b)

∆Qν
αβ;µ ≡ iησαβUν

µ , (15c)

in terms of the quantities defined in Eqs. (10). In the
above, pµ = −i~∂µ, and the quantities depending on the
band indices n and n′ in Eq. (12) are defined by the
relation

(A)n,n′ ≡
(2π)3

Ωcry

∫
dr u†n,0(r) · Aun′,0(r) . (16)

The next step consists in decoupling the low-energy
manifold of interest (n ≤ N) from the higher-energy
states (n > N), using Löwdin partitioning [31, 32, 39, 46].
This amounts to applying a canonical transformation to

the Hamiltonian, Ĥ = e−Ŝ Ĥ eŜ ≡ Ĥ + ∆Ĥ , and to

its eigenstates, |φ〉 = e−Ŝ |ψ〉. The transformation is

such that Ĥ is approximately block-diagonal in band
space, and specifically displays negligible coupling terms
between the relevant manifold and the remote bands.
If inter-manifold couplings related to the deformation-
potential terms can be neglected, then the correction ∆Ĥ
for the N -dimensional low-energy manifold has the stan-
dard effective-mass form [31].

Further technical details on the derivation of Eq. (12)
are given in Appendix E and Section I of the SM [44]. De-
tails on the manifold decoupling are presented in Section
II of the SM [44].

VI. ENVELOPE FUNCTIONS

The last step consists in the derivation of the con-
fined particle states within the relevant N -dimensional
manifold. The electron Hamiltonian includes an external
confining potential Uext, such as that induced by metal-
lic gates in electrostatically-defined quantum dots, which
adds to the nuclear contribution: U = Un + Uext. We
remark that, for consistency, the external potential must
be expressed in the curvilinear coordinates r; i.e., if the
potential is initially known as a function Uext; C(rC) of
the Cartesian electronic coordinates, then the expression
to be used here is Uext(r) = Uext; C[r+u(r)]. Therefore,
this quantity depends on the strain tensor through u(r).
The external potential is assumed to be a slowly-varying
function of r on the scale of the lattice constant, so as to
justify an envelope-function approach. In particular, the
eigenfunctions of H can be written as:

φ(r) ≡
〈
r
∣∣φ
〉
=

1

[−g(r)]1/4
∑

n≤N

Fn(r)un,0(r) , (17)

where the N quantities denoted as Fn(r) are the un-
known envelope functions. These are determined by di-
agonalizing in band and position spaces the envelope-

function Hamiltonian ĤEF = Ĥ
(0)

EF + Ĥ
(1)

EF, where Ĥ
(0)

EF

is formally the standard k · p term in the r coordinates,

and Ĥ
(1)

EF is given by:

Ĥ
(1)

EF = εµ
ν (r)

[
D

ν
µ +

(
L

ν
α;µ +L

∗ν
α;µ

)
k̂α +Q

ν
αβ;µk̂αk̂β

]
− i [∂αε

µ
ν (r)]

(
L

ν
α;µ +Q

ν
αβ;µk̂β

)
+

~
2

4m

[
∇2εµµ(r)

]
1 , (18)

with k̂α ≡ −i∂α. Here D, L, and Q are matrices in band
space, whose elements are defined according to Eqs. (16)
and (13)-(15); 1 is the identity matrix in band space.
It should be emphasized that Eq. (17) is the spinor

wave function in the curvilinear reference frame r, while
the wave function in the Cartesian frame is given by
φC(rC) = φ[r(rC)], where r(rC) is the inverse of the
transformation Eq. (1). Further details on the deriva-
tion of the envelope-function Hamiltonian are given in
Appendix F.

Equation (18) is the main result of this work. It con-
tains terms that have not been considered in the litera-
ture, and that cannot be inferred from the homogeneous
case by replacing a constant strain tensor with a position-
dependent one. These terms can be either intra- (n = n′)
or inter-band (n 6= n′), and depend on the first or on the

second spatial derivatives of the strain tensor. Besides,

the terms linear in ε(r) and ∝ k̂α or ∝ k̂αk̂β are non-
zero also in the case of homogeneous strain, but have
been neglected in previous analyses.

VII. VALENCE STATES IN DIAMOND

STRUCTURES

As a specific but practically relevant application, we
consider the valence bands of a crystal with diamond
structure, such as silicon or germanium. In this case,
the three relevant orbital states are built from p-type
atomic orbitals, and thus carry an angular momentum
l = 1. This, combined with the s = 1/2 spin of the
electron, gives rise to a j = 3/2 quartet and a j = 1/2
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doublet (N = 6). In this basis, the dominant part of
the spin-orbit is diagonal, and gives rise to a splitting
∆SO between the j = 3/2 and j = 1/2 states at the
Γ point [47]. We here discuss the Hamiltonian that is
obtained after neglecting the other spin-orbit contribu-
tions. Then: L coincides with L, which vanishes at the
band maximum; D reduces to the non-relativistic defor-
mation potentialsD; Q equalsQ, which consists of purely
intraband (n = n′) contributions. The strain-dependent
component of the envelope-function Hamiltonian matrix,
Eq. (18), thus becomes:

Ĥ
(1)

EF ≈
{

~
2

4m

[
∇2εµµ(r)

]
− ~

2

m
εsymαβ (r)k̂αk̂β

− ~
2

m

[
k̂αε

sym
αβ (r)

]
k̂β

}
1+ εµ

ν (r)D
ν
µ . (19)

Here, εsymαβ ≡ 1
2 (ε

α
β + εβα) is the symmetric part of the

strain tensor, and Dν
µ is the matrix of non-relativistic

deformation potentials.

The three main new terms in Eq. (19) are diagonal in
the band index. The first one, ∝ ∇2εµµ(r), is a function
of coordinates only, hence it represents an effective cor-
rection to the electrostatic potential, which might affect
the hole confinement in a nanostructure. Now, the trace
of the strain tensor is proportional to that of the stress
tensor, and it can be shown [48] that the Laplacian of the
latter vanishes in an isotropic system. However, crystals
are not isotropic, and the deviation from isotropy is re-
sponsible for the existence of this term. The second term,

∝ k̂αk̂β , represents a spatially-dependent correction to
the effective-mass terms, where the spatial dependence is
due to the inhomogeneity of the strain tensor. This term
is also nonzero in the case of an homogeneous strain;
however, it has been ignored so far. The third term,

∝ k̂β , has a completely new form, being linear in the
momentum operator. It is not analogous to a spin-orbit
coupling, since it does not couple different bands.

In order to provide an order-of-magnitude estimate of
the new terms, we consider the stress tensor used in
Ref. [49], adapted to describe a MOSFET with two stres-
sors placed on top of the source and drain regions [22]
(details are given in Appendix G). We find that, in such
a system, the typical energy scales characterizing the new
terms is 10−2 meV, corresponding to frequencies of the
order of 2÷ 5 GHz. In particular, the terms quadratic in
the momentum induce a spatial modulation of the hole
effective masses in Si of approximately 1% ÷ 2%. The
hard-to-control modulation of the confinement induced
by the term ∝ ∇2εµµ(r) is small and mostly relevant far
from the center of the channel (close to the stressors);
therefore, it likely has a small impact on the effective con-
finement. However, the impact of all the derived terms is
ultimately device- and material- dependent: they should
thus be accounted for in order to obtain an accurate mod-
eling of all nanostructures where the strain tensor varies
on the length scale of the particle wave function.

VIII. CONCLUSIONS

By combining solid-state theory and relativistic quan-
tum mechanics in a non-Cartesian geometry, we have
derived the envelope-function Hamiltonian for a general
semiconductor nanostructure subjected to a small and
slowly-varying inhomogeneous strain. Our theory re-
quires, as an input, the strain tensor, which can be com-
puted for each given device via finite-element methods
based on the minimization of the elastic energy density
[28]. Numerical calculations of the electron/hole states
based on our theory are expected to provide an accu-
rate modelling of the effects of inhomogeneous strain on
quantum-dot spin qubits. In particular, they will allow
to engineer spin-orbit interactions and g-tensor modula-
tions aimed at improving the qubits’ manipulability.
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Appendix A: Inhomogeneous strain and expansion

of the nuclei potential

In the literature, there are two definitions of the strain
tensor. The first one, which we adopt in the present
work, is given by Eq. (2) and is consistent with that used
in other envelope-function treatments [31, 33, 39]. The
strain tensor reported in the second definition is the sym-
metrized version of that given in the first one:

εsymα,β (r) ≡
1

2

[
∂uα(r)

∂rβ
+
∂uβ(r)

∂rα

]
=

1

2

[
εαβ(r) + εβα(r)

]
.

(A1)

This is the quantity that enters the expression of the in-
finitesimal variation in the distance between two points,
in going from an unstrained to a strained system [4]. The
two definitions do not necessarily coincide, since in gen-
eral εαβ(r) 6= εβα(r). Within the second convention, the

quantity introduced in Eq. (2) is termed the deformation

tensor, the symmetric quantity in Eq. (A1) is termed the
strain tensor, while the antisymmetric combination

εantisymα,β (r) ≡ 1

2

[
εαβ(r)− εβα(r)

]
. (A2)

is called the rotation tensor.
The formal solution of Eq. (2), as noticed also in

Ref. [39], is

uα(r) = uα(r0) +

∫ r

r0

εαβ(r
′)dr′β , (A3)
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where the line integral is performed over any path con-
necting r0 to r. In the specific case of an homogeneous
strain, considered by Bir and Pikus [33], this reduces to

uα(r) = εαβr
β . (A4)

In the absence of strain, the potential generated by the
nuclei is periodic, and is given by

Un,0(rC) =
∑

i

U1n (rC −Ri,0) . (A5)

The same quantity can be rewritten as

Un,0(rC) =
∑

i

U1n (rC −Ri,0) Θ[rC ∈ C0(Ri,0)] ,

(A6)

where U1n is a pseudopotential, and the contribution due
to the nucleus at Ri,0 goes to zero outside the unit cell
C0(Ri,0), centered on the same nucleus. This amounts to
a mere re-summation of contributions due to all nuclei,
and can be done in the strained system as well. In the
rigid-ion approximation, with reference to the strained
unit cells C [Ri,0 + u(Ri,0)], the nuclei potential is writ-
ten as

Un;C(rC) =
∑

i

U1n [rC −Ri,0 − u(Ri,0)]

×Θ{rC ∈ C [Ri,0 + u(Ri,0)]} . (A7)

After the coordinate transformation rC = r + u(r) ≡
t(r), setting Un;C(rC) = Un;C[t(r)] ≡ Un(r), one obtains

Un(r) =
∑

i

U1n [r + u(r)−Ri,0 − u(Ri,0)]

×Θ{t(r) ∈ C [t(Ri,0)]} . (A8)

Since the strain, besides being small, varies slowly within
a unit cell, the condition imposed by the function Θ
is satisfied only when r is close to Ri,0 and, therefore,
u(r)−u(Ri,0) is small. Therefore, the following approx-
imation holds:

uν(r)− uν(Ri,0) ≈
∂uν(r)

∂rµ
(
rµ −Rµ

i,0

)

≡ ενµ (r)
(
rµ −Rµ

i,0

)
. (A9)

From this it follows that

U1n [r + u(r)−Ri,0 − u(Ri,0)]

≈ U1n

{[
δαβ + εαβ (r)

] (
rβ −Rβ

i,0

)}

≈ U1n (r −Ri,0) +
∂U1n (r −Ri,0)

∂
(
rα −Rα

i,0

) εαβ (r)
(
rβ −Rβ

i,0

)
.

(A10)

Summing over the atoms, one obtains the total potential
as in Eq. (3), where

Uβ
α (r) ≡

∑

i

∂U1n (r −Ri,0)

∂
(
rα −Rα

i,0

)
(
rβ −Rβ

i,0

)
(A11)

has the same periodicity as the unstrained lattice.

Appendix B: Concepts related to point

transformations

The Schrödinger equation,

Ĥ
∣∣ψ
〉
= E

∣∣ψ
〉
, (B1)

can be written in position representation after introduc-
ing a spatial coordinate frame. The purpose of this Ap-
pendix is to compare the representations corresponding
to two different spatial coordinate frames R and R

′, con-
nected by a spatial transformation. In the first (un-
primed) frame, positions are measured by the coordinates
r, and a position eigenstate is defined by

r̂
∣∣R; r

〉
= r

∣∣R; r
〉
, (B2)

where r̂ is the position operator in R. The decomposition
of the identity in coordinate space is [41]

∫
dΩ
∣∣R; r

〉〈
R; r

∣∣ = 1̂ , (B3)

where dΩ ≡ dr
√
−g(r) is the elementary volume in co-

ordinate space, g(r) being the determinant of the metric
tensor. The orthonormality relation between the position
eigenstates in the R reference frame is

〈
R; r1

∣∣R; r2
〉
≡ δ(r1, r2) ≡

1√
−g(r1)

δ(r1 − r2) . (B4)

Multiplying Eq. (B1) by
〈
R; r

∣∣, one obtains the usual
coordinate-space Schrödinger problem:

H(r)ψ(r) = E ψ(r) , (B5)

where

ψ(r) ≡
〈
R; r

∣∣ψ
〉
,
〈
R; r

∣∣Ĥ
∣∣ψ
〉
≡ H(r)ψ(r) ,

〈
R; r1

∣∣Ĥ
∣∣R; r2

〉
≡ δ(r1, r2)H(r2) , (B6)

and the eigenstate of the Hamiltonian in Hilbert space
representation is

∣∣ψ
〉
=

∫
dΩ
∣∣R; r

〉
ψ(r) . (B7)

To solve the same Schrödinger problem as in Eq. (B1),
one can equivalently choose the different coordinate
frame R

′, with coordinates r′, connected to the previ-
ous representation via r = t(r′). It should be noted that
this is a relation between the position eigenvalues mea-
sured in different reference frames on the same position
eigenstate. This means that the following relations be-
tween the position eigenstates in the two reference frames
hold:

∣∣R; t(r′)
〉
=
∣∣R′; r′

〉
,
∣∣R; r

〉
=
∣∣R′; t−1(r)

〉
. (B8)

In other words, if a position measurement on a position
eigenstate gives the result r′ in the reference frame R

′,
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then the result of the position measurement on the same
state gives the result t(r′) in the reference frame R:

r̂
∣∣R; t(r′)

〉
= t(r′)

∣∣R; t(r′)
〉
, r̂′

∣∣R′; r′
〉
= r′

∣∣R′; r′
〉
,

(B9)

where r̂′ is the position operator in R
′.

In the primed representation, the identity decomposi-
tion is
∫
dΩ′

∣∣R′; r′
〉〈
R

′; r′
∣∣ = 1̂ ,

〈
R

′; r′
1

∣∣R′; r′
2

〉
= δ′(r′

1, r
′
2) .

(B10)

The Schrödinger problem is represented in R
′ as

H ′(r′)ψ′(r′) = E ψ′(r′) , (B11)

with

∣∣ψ
〉
=

∫
dΩ′
∣∣R′; r′

〉
ψ′(r′) . (B12)

One should now derive the relation between ψ(r) and
ψ′(r′), and that between H(r) and H ′(r′). The most
direct way to do so is to consider the scalar product be-
tween any two states

∣∣Φ1

〉
and

∣∣Φ2

〉
, which must be the

same independently of the reference frame where it is
evaluated:

〈
Φ1

∣∣Φ2

〉
=

∫
dΩ [Φ1(r)]

∗ Φ2(r) =

∫
dΩ′ [Φ′

1(r
′)]∗ Φ′

2(r
′) .

(B13)

We now change variables in the first equality according
to r = t(r′), using the transformation property of the
determinant of the metric tensor,

√
−g′(r′) = |J(r′)|

√
−g[t(r′)] , (B14)

where J(r′) is the determinant of the Jacobian matrix.
Therefore, under this change of coordinates it holds that
∫
dΩ {Φ1(r)}∗Φ2(r) =

∫
dΩ′ {Φ1[t(r

′)]}∗ Φ2[t(r
′)]

=

∫
dΩ′ [Φ′

1(r
′)]∗ Φ′

2(r
′) . (B15)

Since this must hold for any couple of states
∣∣Φ1

〉
and∣∣Φ2

〉
, one concludes that

Φ′(r′) = Φ[t(r′)] if r = t(r′) . (B16)

Therefore,

ψ′(r′) = ψ[t(r′)] if r = t(r′) , (B17)

which provides the relation between the wave functions
in the two reference frames.
In order to derive an analogous relation between the

Hamiltonians, let us consider again Eq. (B8). Multiply-
ing both sides of the first equation by

〈
R; r

∣∣, and using

the orthonormality of the position eigenstates in R, one
obtains

〈
R; r

∣∣R′; r′
〉
= δ [r, t(r′)] =

δ[r − t(r′)]√
−g(r)

. (B18)

Analogously, multiplying both sides of the second equa-
tion by

〈
R

′; r′
∣∣, and using the orthonormality of the po-

sition eigenstates in R
′, one obtains

〈
R

′; r′
∣∣R; r

〉
= δ′

[
r′, t−1(r)

]
=
δ
[
r′ − t−1(r)

]
√
−g′(r′)

. (B19)

The two transformation laws between position eigen-
states in the two reference frames are equivalent, due
to the composition law of a Dirac delta with a function.
Equipped with Eqs. (B18) and (B19), it is now possible
to compare the quantities

H(r1, r2) ≡
〈
R; r1

∣∣Ĥ
∣∣R; r2

〉
(B20)

and

H ′(r′
1, r

′
2) ≡

〈
R

′; r′
1

∣∣Ĥ
∣∣R′; r′

2

〉
. (B21)

Inserting twice the decomposition of the identity in the
original reference frame in Eq. (B21) and using the scalar
product relations derived above, one obtains

H ′(r′
1, r

′
2)

=

∫
dΩ1

∫
dΩ2

〈
R

′; r′
1

∣∣R; r1
〉
H(r1, r2)

〈
R; r2

∣∣R′; r′
2

〉

= H [t(r′
1), t(r

′
2)] , (B22)

which provides the relation between the Hamiltonians in
the Cartesian and in the curvilinear coordinates.

Appendix C: Derivation of the covariant

Schrödinger equation, with relativistic corrections

In this Appendix, Greek indexes refer to the compo-
nents of vectors and tensors in a curvilinear reference
frame, while Latin indexes refer to such components in a
Cartesian (rectilinear) reference frame, which coincides
with the laboratory reference frame of the main text
(note that in the main text Greek indexes are used for
both frames). The 4-component space-time coordinate
is denoted as x in the curvilinear frame, and as xC in
the Cartesian frame. The metric tensor in the x frame is
denoted as gµν , while the metric tensor in the xC frame
is ηab = diag(1,−1,−1,−1). The relation between the
two metric tensors is [43]

gµν = eaµ e
b
ν ηab , (C1)

where the tetrad fields eµa satisfy

eµae
a
ν = δµν , eµae

b
µ = δba . (C2)
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In the case at hand, since the two coordinate frames are
connected by a point transformation, one has

eaµ =
∂xaC
∂xµ

, eµa =
∂xµ

∂xaC
, (C3)

i.e., the tetrad vectors coincide with the Jacobian matrix
of the transformation between the two coordinate sys-
tems. This ensures the conservation of the infinitesimal
arc length squared,

ηab dx
a
C dx

b
C = gµν dx

µ dxν , (C4)

which must be independent of the chosen coordinates.

1. Covariant Dirac equation

We start from the covariant Dirac equation [43] for the
4-component electron field Ψ,

γµ (i~∇µ − eAµ)Ψ−mcΨ = 0 , (C5)

where Aµ is the 4-potential of the electromagnetic field,
and ∇µ is the covariant derivative; the latter acts on the

4-spinor as follows:

∇µΨ ≡ ∂µΨ+ ΓµΨ , (C6)

where ∂µ is the ordinary derivative, and

Γµ ≡
1

2
ηace

c
ν

(
∂µe

ν
b + eρbΓ

ν
ρµ

)
Gab ,

Gab =
1

4

(
γaγb − γbγa

)
. (C7)

The coordinate-invariant Dirac matrices satisfy

γaγb + γbγa = 2ηab , (C8)

while the spacetime-dependent Dirac matrices (entering
the covariant Dirac equation) are defined as γµ = eµaγ

a;
thus, they satisfy

γµγν + γνγµ = 2gµν . (C9)

In terms of the tetrads, the Christoffel symbols are
written as:

Γν
ρµ ≡

1

2
gνβ (∂µgβρ + ∂ρgβµ − ∂βgρµ) =

1

2
eνi
(
∂µe

i
ρ + ∂ρe

i
µ

)
+

1

2
ηklηije

ν
ke

β
l

[
eiρ

(
∂µe

j
β − ∂βejµ

)
+ eiµ

(
∂ρe

j
β − ∂βejρ

)]
.

(C10)

In the case at hand, since Eq. (C3) holds, one has

∂µe
i
ρ =

∂2xiC
∂xµ∂xρ

= ∂ρe
i
µ , (C11)

and Eq. (C10) simplifies as

Γν
ρµ = eνi

(
∂ρe

i
µ

)
. (C12)

The combinations needed for the covariant derivative are

1

2
ηace

c
νe

ρ
bΓ

ν
ρµG

ab =
1

2
ηace

ρ
b

(
∂ρe

c
µ

)
Gab , (C13)

and

γµΓµ =
1

2
ηac
[
ecν (∂de

ν
b ) + eµd

(
∂be

c
µ

)]
γdGab

=
1

2
ηac
[
ecµ (∂de

µ
b )− (∂be

µ
d ) e

c
µ

]
γdGab = 0 , (C14)

where we have used the fact that ∂µ (e
c
νe

ν
b ) = 0, and

thus ecν∂µe
ν
b = −eνb∂µecν . Therefore, the covariant Dirac

equation, when the tetrad coincides with the Jacobian
matrix, reduces to

i~eµnγ
n∂µΨ− eeµnAµγ

nΨ−mcΨ = 0 . (C15)

In the following, we choose the coordinate-invariant
Dirac matrices in the Dirac form,

γ0 =

(
12×2 02×2

02×2 −12×2

)
; γa =

(
02×2 σa

−σa 02×2

)
, (C16)

where σa, with a ∈ {1, 2, 3}, are the Pauli matrices.

2. Restriction to spatial-only transformation

In the problem at hand, the coordinate transforma-
tion only involves the spatial coordinates (µ ∈ {1, 2, 3}),
affecting the corresponding sector of the metric tensor,
while the time coordinate (µ = 0) is untouched. There-
fore, we specialize our treatment to the cases where
e0µ = δ0µ and ea0 = δa0 . All tetrads are independent of
time.

It is then convenient to write the Dirac equation in a
way that explicitly separates time from the spatial coor-
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dinates. Equation (C15) can thus be transformed into

(
1 0
0 −1

)
i~∂tΨ =

(
0 cσµPµ

−cσµPµ 0

)
Ψ

+

(
mc2 + eV 0

0 mc2 − eV

)
Ψ , (C17)

where x0 = ct, ∂0 = 1
c∂t, A0 = 1

cV , Pµ ≡ −i~∂µ + eAµ,
and the coordinate-dependent Pauli matrices are defined
as

σµ ≡ eµnσn . (C18)

This is rephrased as an eigenproblem, by setting

Ψ ≡ e−iEDt/~

(
Ξ
Φ

)
, (C19)

where ED is the (Dirac) energy eigenvalue, while Ξ and
Φ are two-component spinors depending only on the spa-
tial coordinates (eigenstates). This results in the follow-
ing coupled equations for the 2-component spinor eigen-
states:

(
ED −mc2 − eV

)
Ξ = cσµPµΦ ,(

ED +mc2 − eV
)
Φ = cσµPµΞ . (C20)

The spinor Φ is obtained as a function of Ξ from the
second equation; substituting the resulting expression in
the first equation, one obtains an eigenvalue equation for
the spinor Ξ alone:

[
cσµPµ

1

2mc2 + E − eV cσ
νPν + eV

]
Ξ = E Ξ . (C21)

where the Schrödinger eigenenergy is E ≡ ED − mc2.
This equation is exact.

3. Schrödinger equation with relativistic

corrections, in curvilinear coordinates

In order to recover the Schrödinger equation and the
lowest-order relativistic corrections, one must perform an
approximation based on the assumption that 2mc2 ≫
|E − eV |, namely,

1

2mc2 + E − eV =
1

2mc2

(
1 +

E − eV
2mc2

)−1

≈ 1

2mc2
− E − eV

4m2c4
. (C22)

Inserting this into Eq. (C21), one obtains

[
(σµPµ)

2

2m
− σµPµ

E − eV
4m2c2

σνPν + eV

]
Ξ ≈ E Ξ . (C23)

To remove E from the left-hand side of the above equa-
tion (to lowest order in v/c), we notice that

(E − eV )σνPνΞ = σνPν (E − eV ) Ξ− i~σν (∂νeV ) Ξ

≈ (σνPν)
3

2m
Ξ− i~σν (∂νeV ) Ξ . (C24)

Equation (C23) can thus be written as an eigenvalue
equation

H Ξ ≈ E Ξ , (C25)

where the Hamiltonian is given by

H =
(σµPµ)

2

2m
+ eV

︸ ︷︷ ︸
nonrelativistic

− (σµPµ)
4

8m3c2
+

i~ (σµPµ)σ
ν (∂νeV )

4m2c2︸ ︷︷ ︸
relativistic corrections

≡ Hnonrel +Hrel . (C26)

4. Hamiltonian in curvilinear coordinates

Finally, by making the electromagnetic potentials ex-
plicit, and using the properties of the Pauli matrices,
one can rewrite the terms Hnonrel and Hrel appearing in
Eq. (C26) as follows:

Hnonrel =
1

2m

{
− ~

2 (−gµν) ∂µ∂ν − ~
2
(
∇2

Cx
ν
)
∂ν

+ i~e [eµa (∂µe
a
ν)A

ν + (∂µA
µ) + 2Aµ∂µ]

− e2AµA
µ − e~σcBc

}
+ eV, (C27)

Hrel = −
1

8m3c2

{
− ~

2 (−gµν) ∂µ∂ν − ~
2
(
∇2

Cx
ν
)
∂ν

+ i~e [eµa (∂µe
a
ν)A

ν + (∂µA
µ) + 2Aµ∂µ]

− e2AµA
µ − e~σcBc

}2

+
~
2

4m2c2
(
∇2

CeV
)
− i~

4m2c2
(∂µeV ) gµνPν

+
~

4m2c2
(
eµae

ν
bσ

ab
)
(∂µeV )Pν . (C28)

In the above expressions, σa = ηabσ
b, where the im-

plicit summation on the Latin indices only involves the
three spatial coordinates. Besides, we have introduced
σab ≡ −ǫ̃ abcσc and the components of the magnetic field
with respect to the rectilinear reference frame, Bc ≡
ǫ̃ abc (∂aAb); here, ǫ̃

abc is the totally antisymmetric Levi-
Civita symbol, which, unlike the Levi-Civita tensor, takes
the same values in all reference frames. Finally, we have
used the symbol ∇2

C, which can be converted to curvilin-
ear coordinates through:

∇2
C = ∂a∂a = −∂a∂a = −eαa∂αeaβ∂β

= −eαa
(
∂αe

a
β

)
∂β − ∂α∂α

= −eαa
(
∂αe

a
β

)
gβγ∂γ −

(
∂αg

αβ
)
∂β − gαβ∂α∂β .

(C29)
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Alternatively (and more simply), the relevant derivatives
can be computed in the rectilinear coordinate frame first,
and then the resulting expressions can be converted in
curvilinear coordinates.

In the main text, we consider the case where there is no
magnetic field (Aµ = 0), and only spin-orbit coupling is
retained among the relativistic corrections. In this case,
the Hamiltonian simplifies to the sum of the kinetic term
given in Eq. (5), the scalar potential U ≡ eV , and the
spin-orbit term given in Eq. (6). For notational conve-
nience and self-containedness, in the main text we have
written the tetrads explicitly in terms of the inverse Ja-
cobian matrix, and we have used Greek indices also for
the components of the Cartesian coordinates; since such
coordinates themselves are indicated explicitly by means
of the subscript C, there is no ambiguity.

Appendix D: Matrix elements of the Hamiltonian in

a manifestly Hermitian form

Using the definition of the matrix elements in the pres-
ence of an arbitrary metric tensor [Eq. (4)], one can
write the matrix elements of the Hamiltonian between 2-
component spinors

∣∣Ξn

〉
in a manifestly Hermitian way,

assuming that the wave functions either vanish at in-
finity, or satisfy the Born-von Karman boundary condi-
tions (BvKBCs). The three terms of the Hamiltonian
[see Eqs. (5) and (6)] give the following contributions:

〈
Ξn

∣∣Ĥkin

∣∣Ξm

〉
= − ~

2

2m

∫
dr
√−ggµν ∂Ξ

†
n

∂rµ
· ∂Ξm

∂rν
, (D1)

〈
Ξn

∣∣Û
∣∣Ξm

〉
=

∫
dr
√−g U Ξ†

n · Ξm , (D2)

〈
Ξn

∣∣Ĥso

∣∣Ξm

〉
= − i~2

8m2c2

∫
dr
√−g ∂r

µ

∂rαC

∂rν

∂rβC
(∂µU)

×
[
Ξ†
n · σαβ · (∂νΞm)−

(
∂νΞ

†
n

)
· σαβ · Ξm

]
.

(D3)

These forms are obtained by applying partial integration,
using the boundary conditions, and exploiting the prop-
erties of the metric tensor.

As an example, we show the explicit derivation of the
first contribution. One starts from

〈
Ξn

∣∣Ĥkin

∣∣Ξm

〉

= − ~
2

2m

∫
dr
√−gΞ†

n ·
[(
∇2

Cr
ν
)
− gµν ∂

∂rµ

]
∂Ξm

∂rν
,

(D4)

which follows from Eq. (5). Now, partial integration with
respect to rµ is applied to the second term of this inte-
gral; the boundary term vanishes due to the boundary

conditions, and the remaining term is

〈
Ξn

∣∣Ĥkin

∣∣Ξm

〉
= − ~

2

2m

∫
dr

[
√−g

(
∇2

Cr
ν
)
Ξ†
n

− ∂
(
−gµν√−gΞ†

n

)

∂rµ

]
· ∂Ξm

∂rν
. (D5)

The derivative with respect to rµ at the second term
inside the square brackets is carried on by applying the
following identities:

∂µ(−gµν) = −ηabecµ(∂ceµa)eνb +
(
∇2

Cr
ν
)
,

∂µ
√−g = √−geαa (∂µeaα) ,

gµνeαa (∂µe
a
α) + ηab(∂ce

µ
a)e

c
µe

ν
b = 0 , (D6)

which follow directly from the definitions of the met-
ric tensor and of the tetrads, and from the fact that
∂ae

α
c = ∂ce

α
a in the case at hand, because the tetrads

are defined via a point transformation from a Cartesian
reference frame. After this, one directly obtains Eq. (D1).
Equation (D3) follows from a similar derivation.
The symmetry of the matrix elements in Eqs. (D1-D3)

can be made explicit by formally rewriting the operators
themselves as follows:

Ĥkin = − ~
2

2m

←−
∂ µg

µν−→∂ ν , (D7)

Ĥso = − i~2

8m2c2

[
∂rµ

∂rαC

∂rν

∂rβC
(∂µU)σαβ−→∂ ν

−←−∂ ν
∂rµ

∂rαC

∂rν

∂rβC
(∂µU)σαβ

]
, (D8)

where the arrow above a derivative operator indicates the
direction along which the derivative operator acts, when
evaluating a matrix element; it is intended that, within
this convention, the derivatives do not act on the metric
factor

√−g inside the integrals. These two definitions
are equivalent to Eqs. (5) and (6); the same convention
is used in Eqs. (8) and (9), which are the expansions of
Eqs. (D7) and (D8), respectively, to the first order in the
strain tensor.

Appendix E: Secular equation up to first order in

the strain tensor

We now derive the expressions of the matrix elements
of the Hamiltonian up to first order in the strain compo-
nents on the χ basis, i.e. we derive Eq. (12) by evaluating
the matrix elements of Eqs. (E3) and (E4). By construc-
tion, the χ are orthonormal, i.e., they satisfy

〈
χn,k

∣∣χn′,k′

〉
=

∫
dr
√
−g(r)χ†

n,k(r) · χn′,k′(r)

= δn,n′ δ(k − k′) . (E1)
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with the representation of the scalar product in a curvi-
linear reference frame, given by Eq. (4).
It is convenient to introduce the quantity

(
Ψ
∣∣Â
∣∣Φ
)
≡
∫
drΨ†(r) ·A(r)Φ(r) , (E2)

which, as mentioned in the main text, is not a scalar
product in the curvilinear reference frame, which is given

instead by Eq. (4). The quantity in Eq. (E2), neverthe-
less, will appear in the following derivation, due to the
fact that the accuracy of the theory up to the first or-
der in the strain tensor also requires the expansion of√
−g(r) in Eq. (4).

For the purposes of the present derivation, it is conve-
nient to rewrite the Hamiltonian H = Hkin+Un+Hso +
Uext as H = H0 +H1 + Uext, where

H0 ≡ Hkin,0 + Un,0 +Hso,0 = − ~
2

2m

∂2

∂rµ∂rµ
+ Un,0 −

i~2

8m2c2

[
(∂µUn,0) σ

µν−→∂ ν −
←−
∂ νσ

µν (∂µUn,0)
]

(E3)

and

H1 ≡ Hkin,1 + Un,1 +Hso,1 = − ~
2

2m

←−
∂ µ

(
ενµ + εµν

)−→
∂ ν + εαβU

β
α

︸ ︷︷ ︸
H1,nonrel

− i~2

8m2c2

(
Σν−→∂ ν −

←−
∂ νΣ

ν
)

︸ ︷︷ ︸
H1,so

(E4)

collect the terms which are, respectively, independent of
and linear in the strain tensor; Uext is left untouched.
Using the equation

∂χn′,k′

∂rν
≈ ∂χn′,k′

∂rν
− 1

2

∂εγγ
∂rν

χn′,k′ − 1

2
εγγ
∂χn′,k′

∂rν
, (E5)

and keeping the BvKBCs into account, one obtains:

〈
χn,k

∣∣Ĥ0

∣∣χn′,k′

〉
=

∫
dr
√−g χ†

n,kH0χn′,k′

≈
(
χn,k

∣∣Ĥ0

∣∣χn′,k′

)
− ~

2

4m

∫
dr
∂εγγ
∂rµ

∂
(
χ†
n,k · χn′,k′

)

∂rµ

=
(
χn,k

∣∣Ĥ0

∣∣χn′,k′

)
+

~
2

4m

∫
dr

∂2εγγ
∂rµ∂rµ

(
χ†
n,k · χn′,k′

)

=
(
χn,k

∣∣Ĥ0

∣∣χn′,k′

)
+

~
2

4m

(
χn,k

∣∣ (∇2trε
) ∣∣χn′,k′

)
, (E6)

accurately to the first order in the strain tensor. Then,
the equation

〈
χn,k

∣∣Ûext

∣∣χn′,k′

〉
=
(
χn,k

∣∣Ûext

∣∣χn′,k′

)
(E7)

holds exactly, because Ûext is a function of position only,
and

〈
χn,k

∣∣Ĥ1

∣∣χn′,k′

〉
≈
(
χn,k

∣∣Ĥ1

∣∣χn′,k′

)
, (E8)

because Ĥ1 is of order 1 in the components of the strain
tensor.
As a result, one has that:

〈
χn,k

∣∣Ĥ
∣∣χn′,k′

〉
≈
(
χn,k

∣∣Ĥ0

∣∣χn′,k′

)
+
(
χn,k

∣∣Ûext

∣∣χn′,k′

)

+
~
2

4m

(
χn,k

∣∣ (∇2trε
) ∣∣χn′,k′

)

+
(
χn,k

∣∣Ĥ1

∣∣χn′,k′

)
. (E9)

The detailed evaluation of the matrix elements appearing
in the right-hand side of Eq. (E9) is presented in Sections
I and II of the SM [44].

Appendix F: Envelope-function Hamiltonian

Since the transformed Hamiltonian, obtained after the
manifold decoupling, is block-diagonal, its eigenstates are
combinations of the basis states belonging to a single
block. For the low-energy block, an eigenstate is written
as

∣∣φ
〉
≡
∑

n≤N

∫

1BZ

dk Cn(k)
∣∣χn,k

〉
, (F1)

where the coefficients Cn(k) satisfy
∑

n′≤N

∫

1BZ

dk′H(N)
n,n′(k,k

′) Cn′(k′) = ECn(k) . (F2)

The slowly-varying envelope functions are defined as

Fn(r) ≡
∫

1BZ

dk eik·rCn(k) , (F3)

and they allow to write the spinorial wave function
〈
r
∣∣φ
〉

in the form given by Eq. (17) of the main text. Equation
(F2) is rewritten in terms of the envelope functions as

∑

n′≤N

∫

1BZ

dk eik·r
∫

1BZ

dk′H(N)
n,n′(k,k

′) Cn′(k′)

= EFn(r) . (F4)

To simplify the left-hand side of Eq. (F4), we distin-
guish three types of matrix elements of the Hamiltonian:
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• those having the form δ(k−k′)Λn,n′(k): these give

∑

n′≤N

Λn,n′(−i∇)Fn′(r) , (F5)

analogously to standard envelope-function theories;

• those having the form Ũn,n′(k − k′): these in-
clude the external potential and formally analogous
terms, for which the standard treatment is applica-
ble; under the assumption that the envelope func-
tions are slowly varying, they contribute terms

∑

n′≤N

Un,n′(r)Fn′(r) ; (F6)

• those having the form ε̃µ
ν (k − k′)

[
Xν

µ(k,k
′)
]
n,n′

.

This is a new category of terms, which do not map
onto those related to homogeneous strain, because
the Fourier transform of the strain tensor is not a
Dirac delta.

The contributions to the left-hand side of Eq. (F4)
which include the formally new terms are written as

∑

n′≤N

∫

1BZ

dk eik·r
∫

1BZ

dk′ ε̃µ
ν (k − k′)

[
Xν

µ(k,k
′)
]
n,n′

× Cn′(k′)

=
∑

n′≤N

∫
dr′εµ

ν (r
′)

1

(2π)3

∫

1BZ

dk eik·(r−r′)

×
∫

1BZ

dk′eik
′·r′

{(
Dν

µ

)
n,n′

+ kα
(
Lνα;µ

)
n,n′

+ k′α
(
L∗να;µ

)
n′,n

+ kαk′β
(
Qν

αβ;µ

)
n,n′

}
Cn′(k′) . (F7)

The first contribution to the right-hand side of Eq. (F7)
is

∑

n′≤N

(
Dν

µ

)
n,n′

∫
dr′εµ

ν (r
′)

1

(2π)3

∫

1BZ

dk eik·(r−r′)

×
∫

1BZ

dk′eik
′·r′Cn′(k′)

≈ εµ
ν (r)

∑

n′≤N

(
Dν

µ

)
n,n′

Fn′(r) , (F8)

the second contribution is

∑

n′≤N

(
Lνα;µ

)
n,n′

∫
dr′εµ

ν (r
′)

1

(2π)3

∫

1BZ

dk eik·(r−r′)kα

×
∫

1BZ

dk′eik
′·r′Cn′(k′)

≈ −i
∑

n′≤N

(
Lνα;µ

)
n,n′

∫
dr′εµ

ν (r
′)Fn′ (r′)

∂δ (r − r′)

∂rα

= −i
∑

n′≤N

(
Lνα;µ

)
n,n′

∂ [εµ
ν (r)Fn′(r)]

∂rα
, (F9)

the third contribution is

∑

n′≤N

(
L∗να;µ

)
n′,n

∫
dr′εµ

ν (r
′)

1

(2π)3

∫

1BZ

dk eik·(r−r′)

×
∫

1BZ

dk′eik
′·r′

k′α Cn′(k′)

≈ −i
∑

n′≤N

(
L∗να;µ

)
n′,n

εµ
ν (r)

∂Fn′(r)

∂rα
, (F10)

and the fourth contribution is

∑

n′≤N

(
Qν

αβ;µ

)
n,n′

∫
dr′εµ

ν (r
′)

1

(2π)3

∫

1BZ

dk eik·(r−r′)kα

×
∫

1BZ

dk′eik
′·r′

k′βCn′(k′)

≈ −
∑

n′≤N

(
Qν

αβ;µ

)
n,n′

∫
dr′εµ

ν (r
′)
∂Fn′(r′)

∂r′β
∂δ (r − r′)

∂rα

= −
∑

n′≤N

(
Qν

αβ;µ

)
n,n′

∂

∂rα

[
εµ
ν (r)

∂Fn′(r)

∂rβ

]
. (F11)

In deriving the expressions above, we have used

1

(2π)3

∫

1BZ

dk eik·(r−r′) ≈ δ (r − r′) , (F12)

which is an approximate relation, only valid when this
quantity is multiplied by a slowly-varying spatial func-
tion, such as envelope functions and components of the
strain tensor.
Collecting all terms, one obtains

∑

n′≤N

[(
Ĥ(0)

EF

)

n,n′

+
(
Ĥ(1)

EF

)

n,n′

]
Fn′(r) = EFn(r) ,

(F13)

where

(
Ĥ(0)

EF

)

n,n′

≡
[
En(0) +

~
2k̂2

2m
+ Uext(r)

]
δn,n′

+
~πα

n,n′

m
k̂α +

~
2Παβ

n,n′

m2
k̂αk̂β (F14)

is formally the same as the standard k · p Hamiltonian

[31], but with the k̂α operators defined in curvilinear co-

ordinates, and
(
Ĥ(1)

EF

)

n,n′

is the strain-dependent term

defined in Eq. (18).

Appendix G: Numerical estimates

1. Strain model in a MOSFET

Here we provide quantitative estimates for the new
Hamiltonian terms that depend on the inhomogeneous



13

strain tensor and its derivatives. For simplicity, we re-
fer to the approximate Hamiltonian of Eq. (19) and we
apply it to describe a model silicon nanostructure. We
consider a system similar to the one described in Ref. [49],
consisting of a MOSFET with two SiGe stressors placed,
respectively, above the source and the drain gates. An
analytical model that approximately describes the stress
tensor in such a system can be derived by solving the
elasticity problem of a localized force on a semi-infinite
plate [48, 49].

From the stress tensor, one should then obtain the
strain tensor εαβ(r) by applying the compliance relations

[4], and the displacement uα(r) by integrating the strain
tensor according to Eq. (A3), taking e.g. r0 = 0 and
u(0) = 0 (which is equivalent to fixing the origin of the
laboratory reference frame). However, the expression of
the stress tensor given in Ref. [49] is notoriously an ap-
proximate one, which does not satisfy the compatibility
equations exactly [48]. A consequence of this fact is that
there exists no function uα(r) such that the strain ten-
sor derived from the given stress (let us call it εapprox.)
satisfies Eq. (2).

An equivalent alternative formulation of this statement

is that the line integral in Eq. (A3), when evaluated on
εapprox., depends on the path connecting r0 to r. This
can be verified by comparing the results obtained with
the following paths [with r ≡ (x, y, z)]:

Path 1 : (0, 0, 0)→ (x, 0, 0)→ (x, y, 0)→ (x, y, z) ,

Path 2 : (0, 0, 0)→ (0, 0, z)→ (0, y, z)→ (x, y, z) .
(G1)

We notice, however, that the displacements obtained by
using these two paths are nearly identical almost every-
where. The discrepancies occur on small domains close to
the stressors, where the simplifying assumptions beyond
the analytical solution for the stress tensor apparently
imply some non-physical behavior if Path 1 is used.
Therefore, we assume that the displacement obtained

with Path 2 is the physically correct one, and we adopt
its expression for the function u(r). Inverting our per-
spective, we now take this as our starting point, and we
obtain the strain tensor εαβ(r) analytically by applying

Eq. (2). The strain tensor obtained in this way, by con-
struction, is uniquely defined and obviously satisfies the
compatibility conditions.
The displacement field that we adopt is then given by:

ux(r) =
σ0t

2π

4∑

i=1

si

{(
−s11 + s12 +

s44
2

) z2

x2i + z2
+
(
s11 − s12 +

s44
2

) z2

(x− xi)2 + z2

+
(
s11 + s12 +

s44
2

)
ln

(
(x− xi)2 + z2

x2i + z2

)}
,

uy(r) = 0 ,

uz(r) =
σ0t

π

4∑

i=1

si

{(
s11 − s12 −

s44
2

) xiz

x2i + z2
− s44

2

(x− xi)z
(x− xi)2 + z2

− (s11 + s12) arctan

(
z

xi

)

+
s44
2

arctan
(xi
z

)
− s44

2
arctan

(
xi − x
z

)}
. (G2)

Here: s11, s12 and s44 are the compliance constants of Si
[4]; {xi; i = 1, 2, 3, 4} is the set of sidewall positions defin-
ing the extension of the stressors; generalizing Ref. [49],
we take

x1 = −w − d

2
, x2 = −d

2
, x3 =

d

2
, x4 = w +

d

2
,

(G3)

where w is the stressors’ width (along the x direction)
and d is their separation (d is larger than the MOSFET
channel length); si are signs that account for the ori-
entations of the forces applied by the stressors (taking
s1 = s3 = +1 and s2 = s4 = −1, one reproduces the con-
figuration of Ref. [49]); t is the thickness of the stressors
in the z direction, and σ0 is the biaxial stress parameter

in the SiGe stressors.

2. Main new terms due to the inhomogeneity of

strain

We focus on the approximate envelope-function Hamil-
tonian given in Eq. (19) and discuss the three main new
terms resulting from our formulation, all of which are
diagonal in the band index:

T̂1 ≡
~
2

4m

[
∇2εµµ(r)

]
, T̂2 ≡ −

~
2

m
εsymαβ (r)k̂αk̂β ,

T̂3 ≡
~
2

m

[
∂αε

sym
αβ (r)

]
i k̂β . (G4)
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FIG. 1. Components (a) ux and (b) uz of the displacement
from Eq. (G2), as functions of x and for selected values of
z = 1 nm (gray), 2 nm (brown), 3 nm (blue), 4 nm (red),
5 nm (green). Parameters (σ0 = −1.9 GPa, t = 50 nm,
w = 180 nm) are taken from Ref. [49], except for d = 30
nm. Vertical dashed lines correspond to the extremities of the
channel at x = ±11 nm (black) and to the internal borders of
the stressors at x = ±15 nm (orange).

We start from the first term, T̂1. The trace of the
strain tensor is proportional to the trace of the stress
tensor, and it can be shown [48] that the laplacian of the
latter vanishes in an isotropic system. Therefore, in such
systems T̂1 vanishes identically. However, crystals are not
isotropic, and assuming that they are is an approxima-
tion that might fail on small spatial scales such as those
pertaining to nanostructures (the anisotropy of crystals
is reflected in the values of the compliance parameters,
which connect stress and strain tensors). Overall, T̂1 is
a function of coordinates only, which appears on the di-
agonal of the k · p matrix. Therefore, it represents a
correction to the slow-varying confinement potential.

The term T̂2 is a quadratic function of the momen-
tum operator acting on the envelope functions; it can
be viewed as a spatially-dependent correction to the
effective-mass terms, where the spatial dependence is due
to the inhomogeneity of the strain tensor. This is the only
term among those in Eq. (G4) that survives if the strain
is homogeneous; however, it has been ignored so far.

The term T̂3 has a completely new form, being linear
in the momentum operator. It is not analogous to a spin-
orbit term, since it does not couple different bands.
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FIG. 2. Quantity T1(r) (a) as a function of x for selected
values of z (same colors and conventions as in Fig. 1), and (b)
as a function of z for selected values of x = 0 nm (gray), 2.5
nm (brown), 5 nm (blue), 7.5 nm (red), and 10 nm (green).

3. Numerical values

We here present numerical estimates related to the
quantities T̂1, T̂2 and T̂3. For illustrative purposes, we
use the experimental values given in Ref. [49] to define
the stressors (σ0 = −1.9 GPa, w = 180 nm, t = 50 nm),
but we assume that the distance d between them can be
changed. In particular, we apply this analysis to a hy-
pothetical device based on the 22nm-FDSOI technology
[50], and we take d = 30 nm. The resulting displace-
ment field is displayed in Fig. 1. The following discus-
sion is not meant to be exhaustive of all possible cases;
it rather illustrates the main physical features of the new
terms. Their actual values and the extent of their impact
on the physical properties of the confined hole states are
strongly device-dependent, and a comprehensive analysis
of the parameter space is beyond the scope of the present
work.

In Fig. 2 we plot T1(r) as a function of position. As dis-
cussed in the main text, this quantity should be thought
of as an effective correction to the confinement potential.
As can be seen from Fig. 2(a), for values of z close to the
top of the channel, this correction develops attractive (re-
pulsive) pockets for electrons (holes), close to the ends of
the channel along the x direction. In certain geometries,
this might be an unwanted source of perturbation for the
confinement, especially in the electron case, where the
lateral attractive pockets compete with the confinement
at the center of the channel. In the particular device dis-
cussed here, however, such effect seems to be minor, due
to the small values achieved by T1 over the channel and
its near-uniformity close to the center of the channel.
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FIG. 3. Prefactors of the quadratic forms of the momentum
components appearing in T̂2 as functions of x, for selected
values of z (same colors and conventions as in Fig. 1). (a)

coefficient of k̂2

x
, (b) coefficient of k̂2

z
, (c) coefficient of k̂xk̂z.

The operator T̂2 is determined by the coefficients of

the quadratic forms k̂αk̂β , which, apart from a multi-
plicative constant, are the symmetric components of the
strain tensor. They are shown in Fig. 3. For the consid-
ered device, the diagonal terms (xx) and (zz) are even
functions of x, and they reach values of the order of sev-
eral meV · nm2 close to the center of the channel, while
the (zx) term is an odd function of x, and its values in
the relevant region are smaller. For comparison, the co-

efficients of k̂2x and k̂2z in the k · p Hamiltonian for heavy
and light holes in silicon are:

~
2

2mx,H
= 176.174 meV · nm2 ,

~
2

2mx,L
= 150.342 meV · nm2 ,

~
2

2mz,H
= 137.426 meV · nm2 ,

~
2

2mz,L
= 189.089 meV · nm2 , (G5)

where mα,h is the effective mass along direction α, and
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FIG. 4. Prefactors of the linear forms of the momentum com-
ponents appearing in T̂3 as functions of x, for selected values
of z (same colors and conventions as in Fig. 1). (a) coefficient

of k̂x, (b) coefficient of k̂z.

h = H/L denotes heavy/light holes. Therefore, the T̂2
term produces a sizeable, spatially-dependent correction
to the effective masses, which for the considered device
can be of the order of ≈ 1% to 2%, depending on the hole
species and on the direction.

Finally, the term T̂3 is determined by the spatially-
dependent coefficients multiplying the components of the
momentum operator. For the case at hand, these are
displayed in Fig. 4. The considered geometry produces

coefficients of k̂x and k̂z that are, respectively, an odd
and an even function of x. Therefore, in this partic-

ular case, the k̂x term likely has a minor impact on

the states of the confined holes; the k̂z term, instead,
is associated with characteristic energies of the order of〈

~
2

m ∂αε
sym
αz

〉
k̂z ≈ ~2

m ∂αε
sym
αz

1
Lz

, where Lz is a typical con-

finement length along the z direction, and ~2

m ∂αε
sym
αz is an

average value of the coefficient depicted in Fig. 4(b) close
to the center of the channel. Taking for the latter a repre-
sentative value of 0.1 meV·nm, and Lz ≈ 10 nm or 5 nm
(as in currently available or downscaled MOSFETs, re-
spectively [22]), one obtains energy scales of the order of
≈ 0.01÷0.02 meV, corresponding to effective frequencies
of ≈ 2.4÷ 4.8 GHz.
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SUPPLEMENTARY MATERIAL

In this Supplementary Material, we provide technical details related to the derivation of the results presented in
the main text. In particular, in Section I we derive the matrix elements of the Hamiltonian in curvilinear coordinates
on the basis of modified Luttinger-Kohn states, and in Section II we detail the procedure for decoupling the manifold
of interest from the remote bands.
In the following, equations specified by a number preceded by S [e.g., Eq. (S1)] are those of the present Supplemen-

tary Material, while other specifications [e.g., Eq. (10) or Eq. (E9)] refer to the main text or its Appendices.

I. EVALUATION OF THE MATRIX ELEMENTS NEEDED FOR THE SECULAR EQUATION

We now evaluate the four terms in the left-hand side of Eq. (E9) one by one. In the following, these definitions will
be used:

uσn,0(r) ≡
∑

G

eiG·rũσn,0(G) , (S1)

with the normalization

(2π)3
∑

σ

∑

G

ũσ∗n,0(G) ũσn′,0(G) = δn,n′ , (S2)

and

Un,0(r) ≡
∑

G

eiG·rŨn,0(G) . (S3)

It is also convenient to introduce the Fourier transform of the strain tensor (on the infinite q domain),

εαβ(r) ≡
∫
dq ε̃α

β (q) e
iq·r ⇔ ε̃α

β (q) ≡
1

(2π)3

∫
dr εαβ(r) e

−iq·r , (S4)

where ε̃α
β (−q) =

[
ε̃α
β (q)

]∗
, because the strain tensor is real. Homogeneous strain is obtained as a particular case, by

setting ενλ(r) = ενλ ⇔ ε̃ ν
λ (q) = ενλ δ(q) .

4. Term due to Ĥ0

The first term in the right-hand side of Eq. (E9) is evaluated using standard techniques [30, 31], since it is formally
the same as the one arising in k · p theories for unstrained systems in Cartesian coordinates:

(
χn,k

∣∣Ĥ0

∣∣χn′,k′

)
=

∫
dr χ†

n,k(r)

{−~2∇2
r

2m
+ Un,0(r)− i

~
2

4m2c2
σ ·
[
[∇rUn,0(r)]×∇r

]}
χn′,k′(r)

= δ(k − k′)

{
δn,n′

[
En(0) +

~
2k2

2m

]
+

~

m
k · πn,n′

}
. (S5)

Here, En(0) is the energy eigenvalue of band n at the expansion point (here taken to be Γ ≡ 0), and πn,n′ is defined
according to the following equation:

δ (k − k′)πn,n′ ≡
∫
dr e−i(k−k′)·ru†n,0(r)πrun′,0(r) , (S6)

where

πr ≡ −i ~∇r +
~σ × [∇rUn,0(r)]

4mc2
≡ pr +∆prel

r (S7)

is an operator in position space and a matrix in spin space. For practical use, Eq. (S6) can be rewritten as

πn,n′ =
(2π)3

Ωcry

∫
dr u†n,0(r)πrun′,0(r) , (S8)

where Ωcry is the crystal (i.e. the normalization) volume.
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5. Term due to Ûext

Also the second term in the right-hand side of Eq. (E9) is evaluated using standard techniques [30, 31]. It should be
kept in mind, however, that the external potential must be expressed in curvilinear coordinates r. Therefore, while
its expression in Cartesian coordinates does not depend on ε, its expression in r coordinates acquires a dependence
on ε via the coordinate transformation rC → r. In general, the external potential does not admit an expansion in
powers of ε. This is not a problem, as it can be incorporated non-perturbatively into the Luttinger-Kohn equations,
as long as it retains a slow spatial dependence with respect to the scale of a unit cell. Therefore,

(
χn,k

∣∣Ûext

∣∣χn′,k′

)
=

∫
dr χ†

n,k(r)Uext(r)χn′,k′(r) ≡ (2π)3
∑

σ

∑

G

∑

G′

ũσ∗n,0(G) ũσn′,0(G
′) Ũext(k − k′ +G−G′) ,

(S9)

where

Ũext(k) ≡
1

(2π)3

∫
dr e−ik·r Uext(r) . (S10)

Assuming that the external potential is smooth over a lattice unit cell, it is posited that Ũext in Eq. (S9) is not zero
only if its argument lies inside the first Brillouin zone. Since k and k′ are both inside the first Brillouin zone, the
quantity k − k′ +G −G′ satisfies the requirement only if G = G′ or if G −G′ is a nearest-neighbour of the origin
in the reciprocal lattice. In the latter case, vectors k and k′ can satisfy the constraint if they are close to opposite
sides of the first Brillouin zone. Nevertheless, this case is usually neglected, and only G = G′ is considered. Under
this approximation, the standard result is obtained:

(
χn,k

∣∣Ûext

∣∣χn′,k′

)
≈ δn,n′ Ũext(k − k′) . (S11)

Analogous approximations will be adopted in the remainder of the derivation, while dealing with the inhomogeneous-
strain terms.

6. Orthogonality correction

The third term of the right-hand side of Eq. (E9) is the strain-dependent correction that ensures the orthonormality
of the basis set. The corresponding Hamiltonian term is a slowly-varying function of position, formally analogous to
an additional external potential. Therefore, the treatment of this term is analogous to that of Ûext in the previous
Subsection. Applying the same approximation, one obtains:

(
χn,k

∣∣ ~
2

4m

(
∇2trε̂

) ∣∣χn′,k′

)
≈ −δn,n′

~
2

4m
|k − k′|2 ε̃µ

µ (k − k′) . (S12)

7. Terms due to Ĥ1

To evaluate the contributions to Eq. (E9) due to Ĥ1, it is convenient to split them into a nonrelativistic term and
a spin-orbit term, as in Eq. (E4). The two terms will be considered separately.
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a. Nonrelativistic term

The nonrelativistic term is given by the expression:

(
χn,k

∣∣Ĥ1,nonrel

∣∣χn′,k′

)
=
∑

σ

∫
dr

{
e−i(k−k′)·ruσ∗n,0(r) ε

α
β (r)Uβ

α (r)u
σ
n′,0(r)

− ~
2

2m

∂
[
e−ik·ruσ∗n,0(r)

]

∂rµ
[
ενµ(r) + εµν (r)

] ∂
[
uσn′,0(r)e

ik′·r
]

∂rν

}

= (2π)3
∑

σ

∑

G

ũσ∗n,0(G)
∑

G′

ũσn′,0(G
′)

{
∑

G′′

ε̃µ
ν (k − k′ +G−G′ −G′′) Ũν

µ (G
′′)

− ~
2

2m
ε̃µ
ν (k − k′ +G−G′) [(Gµ + kµ) (G′ν + k′ν) + (Gν + kν) (G′µ + k′µ)]

}
, (S13)

where the Fourier transforms listed at the beginning of this Section have been used.
Since the strain tensor is assumed to have a slow spatial dependence, ε̃µ

ν (q) is non-zero only if q belongs to the first
Brillouin zone. The arguments of the Fourier transform of the strain tensor in Eq. (S13) are (k− k′ +G−G′ −G′′)
and (k − k′ +G −G′). In the first case, the requirement of slow spatial variation of the strain tensor imposes that
G−G′ −G′′ is either zero, or one of the nearest neighbours of the origin in the reciprocal space; in the second case,
the same holds for G−G′.
Along the lines of the approximation that is usually adopted for the slowly-varying confining potential (see the

previous Subsection), we set to zero the combinations of reciprocal lattice vectors which are summed with k − k′

inside the arguments of the slowly-varying functions. Then, the following identities are introduced:

(2π)3
∑

G

ũ†n,0(G) · ũn′,0(G) =
(2π)3

Ωcry

∫
dr u†n,0(r) · un′,0(r) = δn,n′ ,

(2π)
3
∑

G

ũ†n,0(G) · ũn′,0(G)Gν =
(2π)3

Ωcry

∫
dr u†n,0(r) ·

(
−i ∂
∂rν

)
un′,0(r) ≡

1

~
(pν)n,n′ ,

(2π)
3
∑

G

ũ†n,0(G) · ũn′,0(G)GνGµ =
(2π)3

Ωcry

∫
dr u†n,0(r) ·

(
−i ∂
∂rν

)(
−i ∂
∂rµ

)
un′,0(r) ≡

1

~2
(pµpν)n,n′ ,

(2π)
3
∑

G

∑

G′

ũ†n,0(G) · ũn′,0(G
′)Ũν

µ (G−G′) =
(2π)3

Ωcry

∫
dr Uν

µ (r)u
†
n,0(r) · un′,0(r) ≡

(
Uν
µ

)
n,n′

, (S14)

where Ωcry is the crystal (i.e. the normalization) volume.
In terms of these quantities, the result reads as

(
χn,k

∣∣Ĥ1,nonrel

∣∣χn′,k′

)
≈ ε̃µ

ν (k − k′)

{
(
Uν
µ

)
n,n′
− ~

2

2m

[
2

~2
(pµpν)n,n′ +

1

~
(pµ)n,n′ (k

ν + k′ν)

+ (kµ + k′µ)
1

~
(pν)n,n′ + (kµk′ν + k′µkν) δn,n′

]}
. (S15)

The content of the curly braces in Eq. (S15) can be expressed in terms of the quantities given in Eqs. (13a-c) of the
main text.

b. Relativistic term

The relativistic contribution is due to the operator

H1,so = − i~2

8m2c2

(
Σν−→∂ ν −

←−
∂ νΣ

ν
)
, (S16)
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where Σν is defined in Eq. (10). It is convenient to elaborate this quantity as follows:

Σν(r) =

{
∂

∂rµ
[
εαβ(r)U

β
α (r)

]}
σµν +

(
∂Un,0(r)

∂rα

)[
ενµ(r)σ

µα − εαµ(r)σµν
]

= i
∑

G′′

∫
dq ei(q+G′′)·r

{[
Ũβ
α (G

′′) ε̃α
β (q) (q

µ +G′′µ)−G′′αŨn,0(G
′′) ε̃α

µ (q)
]
σµν +G′′αŨn,0(G

′′) ε̃ ν
µ (q)σ

µα
}

≡ i
∑

G′′

∫
dq ei(q+G′′)·r [Sµ(q,G

′′)σµν + Zν
µα(q,G

′′)σµα
]
. (S17)

The matrix element is then:

(
χn,k

∣∣Ĥ1,so

∣∣χn′,k′

)
= − i~2

8m2c2

∫
dr

[
χ†
n,k(r) · Σν(r) · ∂χn′,k′(r)

∂rν
−
∂χ†

n,k(r)

∂rν
· Σν(r) · χn′,k′(r)

]

= i
~
2

8m2c2
(2π)3

∑

G,G′,G′′

ũ†n,0(G) · σµν · ũn′,0(G
′)
{
(kν +Gν + k′ν +G′ν)Sµ (q,G

′′)

+ (kα +Gα + k′α +G′α)Zα
µν (q,G

′′)
}∣∣∣

q=k+G−k′−G′−G′′

. (S18)

Consistently with the approximation that was already discussed for the previous terms, here G′′ = G−G′ should
be substituted in the whole expression. In particular,

Sµ (q,G
′′)
∣∣∣
q=k+G−k′−G′−G′′

≈ δG′′,G−G′

[
Ũβ
α (G−G′) ε̃α

β (k − k′) (kµ +Gµ − k′µ −G′µ)

− (Gα −G′α) Ũn,0(G −G′)ε̃α
µ (k − k′)

]
, (S19)

and

Zα
µν(q,G

′′)
∣∣∣
q=k+G−k′−G′−G′′

≈ δG′′,G−G′ (Gα −G′α) Ũn,0(G−G′)ε̃ ν
µ (k − k′) . (S20)

Finally, the following identities hold for any function U(r) having the same periodicity as the lattice:

(2π)
3
∑

G,G′

ũ†n,0(G) · σµν · ũn′,0(G
′) Ũ(G−G′) =

(2π)3

Ωcry

∫
dr u†n,0(r) · σµν · un′,0(r)U(r) ≡ (σµνU)n,n′ ,

(2π)
3
∑

G,G′

ũ†n,0(G) · σµν · ũn′,0(G
′) Ũ(G−G′) (Gα −G′α) =

(2π)3

Ωcry

∫
dr u†n,0(r) · σµν · un′,0(r)

(
−i∂U(r)

∂rα

)

≡ 1

~
[σµν (pαU)]n,n′ ,

(2π)
3
∑

G,G′

ũ†n,0(G) · σµν · ũn′,0(G
′) Ũ(G−G′)Gα =

(2π)3

Ωcry

∫
dr

(
i
∂u†n,0(r)

∂rα

)
· σµν · un′,0(r)U(r)

≡ 1

~
[←−p α (σµνU)]n,n′ ,

(2π)
3
∑

G,G′

ũ†n,0(G) · σµν · ũn′,0(G
′) Ũ(G−G′)G′α =

(2π)3

Ωcry

∫
dr u†n,0(r) · σµν ·

(
−i∂un′,0(r)

∂rα

)
U(r)

≡ 1

~
[(σµνU)−→p α]n,n′ ,

(2π)
3
∑

G,G′

ũ†n,0(G) · σµν · ũn′,0(G
′) Ũ(G−G′)GαG′β =

(2π)3

Ωcry

∫
dr

(
i
∂u†n,0(r)

∂rα

)
· σµν ·

(
−i∂un′,0(r)

∂rβ

)
U(r)

≡ 1

~2
[←−p α (σµνU)−→p β ]n,n′

,

(2π)3
∑

G,G′

ũ†n,0(G) · σµν · ũn′,0(G
′) Ũ(G−G′) (Gν +G′ν) (Gµ −G′µ) ≡ 1

~2
[←−p ν (σ

µνpµU) + (σµνpµU)−→p ν ]n,n′
.

(S21)
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The result is

(
χn,k

∣∣Ĥ1,so

∣∣χn′,k′

)
≈ i

~
2

8m2c2
ε̃α
β (k − k′)

{
2kµk′ν

(
σµνUβ

α

)
n,n′

+ 2kµ
1

~

[(
σµνUβ

α

)−→p ν

]
n,n′

+ 2k′ν
1

~

[←−p µ

(
σµνUβ

α

)]
n,n′

+ 2
1

~2

[←−p µ

(
σµνUβ

α

)−→p ν

]
n,n′

+ (kν + k′ν)
1

~

[
σβα (pνUn,0)− σβν (pαUn,0)

]
n,n′

+
1

~2

[←−p ν

(
σβαpνUn,0

)
−←−p ν

(
σβνpαUn,0

)
+
(
σβαpνUn,0

)−→p ν −
(
σβνpαUn,0

)−→p ν

]
n,n′

}
. (S22)

8. Total matrix element

Combining the terms derived above, one can express Eq. (E9) as

〈
χn,k

∣∣Ĥ
∣∣χn′,k′

〉
≈
〈
χn,k

∣∣Ĥ(0)
∣∣χn′,k′

〉
+
〈
χn,k

∣∣Ĥ(1)
∣∣χn′,k′

〉
, (S23)

where

〈
χn,k

∣∣Ĥ(0)
∣∣χn′,k′

〉
≡
(
χn,k

∣∣Ĥ0

∣∣χn′,k′

)
+
(
χn,k

∣∣Ûext

∣∣χn′,k′

)

= δ(k − k′)

{
δn,n′

[
En(0) +

~
2k2

2m

]
+

~

m
k · πn,n′

}
+ δn,n′ Ũext(k − k′) (S24)

is formally analogous to the standard k · p Hamiltonian (but expressed in curvilinear coordinates), and

〈
χn,k

∣∣Ĥ(1)
∣∣χn′,k′

〉
≡ ~

2

4m

(
χn,k

∣∣ (∇2trε
) ∣∣χn′,k′

)
+
(
χn,k

∣∣Ĥ1

∣∣χn′,k′

)

= − ~
2

4m
|k − k′|2 ε̃µ

µ (k − k′) δn,n′ + ε̃µ
ν (k − k′)

(
Dν

µ + kαLνα;µ + k′αL∗να;µ + kαk′βQν
αβ;µ

)
n,n′

(S25)

is the correction due to strain, as reported in Eq. (12) of the main text, where the deformation potentials are defined
in Eqs. (13)-(15).

II. MANIFOLD DECOUPLING

We here apply Löwdin partitioning in order to decouple a low-energy manifold of bands, with n ∈ {1, 2, . . . , N},
from the higher (remote) bands with n > N . Using the notation of Ref. [32], the Hamiltonian is written as

Ĥ ≡ Ĥ(0) + Ĥ(1) + Ĥ(2) , (S26)

where Ĥ(0) is diagonal in the band and crystal-momentum indices, Ĥ(1) contains all intra-manifold terms, and Ĥ(2)

contains the inter-manifold terms. In the case at hand, using Eqs. (S23)-(S25), the three parts are written as

Ĥ(0) ≡
∑

n

∫

1BZ

dk

[
En(0) +

~
2k2

2m

] ∣∣χn,k

〉〈
χn,k

∣∣ , (S27)

Ĥ(1) ≡



∑

n≤N

∑

n′≤N

+
∑

n>N

∑

n′>N



∫

1BZ

dk
~

m
k · πn,n′

∣∣χn,k

〉〈
χn′,k

∣∣

+
∑

n

∫

1BZ

dk

∫

1BZ

dk′

[
Ũext(k − k′)− ~

2

4m
|k − k′|2 ε̃µ

µ (k − k′)

] ∣∣χn,k

〉〈
χn,k′

∣∣

+




∑

n≤N

∑

n′≤N

+
∑

n>N

∑

n′>N




∫

1BZ

dk

∫

1BZ

dk′ε̃µ
ν (k − k′)

[
Xν

µ(k,k
′)
]
n,n′

∣∣χn,k

〉〈
χn′,k′

∣∣ , (S28)
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Ĥ(2) ≡




∑

n≤N

∑

n′>N

+
∑

n>N

∑

n′≤N




∫

1BZ

dk

∫

1BZ

dk′

{
δ(k − k′)

~

m
k · πn,n′ + ε̃µ

ν (k − k′)
[
Xν

µ(k,k
′)
]
n,n′

} ∣∣χn,k

〉〈
χn′,k′

∣∣,

(S29)

where

[
Xν

µ(k,k
′)
]
n,n′

=
(
Dν

µ

)
n,n′

+ kα
(
Lνα;µ

)
n,n′

+ k′α
(
L∗να;µ

)
n′,n

+ kαk′β
(
Qν

αβ;µ

)
n,n′

. (S30)

A canonical transformation

Ĥ = e−ŜĤeŜ ,
∣∣φ
〉
= e−Ŝ

∣∣ψ
〉
, (S31)

is applied to block-diagonalize Ĥ(2), while preserving the already block-diagonal form of Ĥ(0) + Ĥ(1). Following the
procedure outlined in Ref. [32], one writes

Ĥ = Ĥdiag + Ĥnondiag , (S32)

Ĥdiag =

∞∑

j=0

1

(2j)!

[
Ĥ(0) + Ĥ(1) , Ŝ

](2j)
+

∞∑

j=0

1

(2j + 1)!

[
Ĥ(2) , Ŝ

](2j+1)

= Ĥ(0) + Ĥ(1) +
[
Ĥ(2) , Ŝ

]
+

1

2

[[
Ĥ(0) + Ĥ(1) , Ŝ

]
, Ŝ
]
+ . . . , (S33)

Ĥnondiag =
∞∑

j=0

1

(2j + 1)!

[
Ĥ(0) + Ĥ(1) , Ŝ

](2j+1)

+
∞∑

j=0

1

(2j)!

[
Ĥ(2) , Ŝ

](2j)

= Ĥ(2) +
[
Ĥ(0) + Ĥ(1) , Ŝ

]
+

1

2

[[
Ĥ(2) , Ŝ

]
, Ŝ
]
+ . . . . (S34)

The operator Ŝ is chosen so that Ĥnondiag ≈ 0. Expanding Ŝ = Ŝ(1)+ Ŝ(2)+ . . ., this condition is satisfied by imposing

[
Ĥ(0) , Ŝ(1)

]
= −Ĥ(2) ,

[
Ĥ(0) , Ŝ(2)

]
= −

[
Ĥ(1), Ŝ(1)

]
, . . . . (S35)

The resulting first term of the expansion is

Ŝ(1) = −



∑

n≤N

∑

n′>N

+
∑

n>N

∑

n′≤N



∫

1BZ

dk

∫

1BZ

dk′
δ(k − k′) ~

mk · πn,n′ + ε̃µ
ν (k − k′)

[
Xν

µ(k,k
′)
]
n,n′

En(0) +
~2k2

2m − En′(0)− ~2k′2

2m

∣∣χn,k

〉〈
χn′,k′

∣∣ .

(S36)

The second term, S(2), displays an additional large denominator with respect to S(1), so it is much smaller and it will
be neglected here.

The effective Hamiltonian after the canonical transformation is then

Ĥ ≈ Ĥ(0) + Ĥ(1) +
[
Ĥ(2) , Ŝ(1)

]
, (S37)

where terms of order ∝ ε2 must be discarded from the expression of
[
Ĥ(2) , Ŝ(1)

]
, since the present theory is accurate
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only up to the first order in the strain tensor. The resulting Hamiltonian restricted to the n ≤ N manifold is:

Ĥ(N) ≈
∑

n≤N

∫

1BZ

dk

[
En(0) +

~
2k2

2m

] ∣∣χn,k

〉〈
χn,k

∣∣+
∑

n≤N

∑

n′≤N

∫

1BZ

dk
~

m
k · πn,n′

∣∣χn,k

〉〈
χn′,k

∣∣

+
∑

n≤N

∑

n′≤N

∑

n′′>N

∫

1BZ

dk
~

m
k · πn,n′′

~

m
k · πn′′,n′

(
1

En(0)− En′′(0)
+

1

En′(0)− En′′ (0)

) ∣∣χn,k

〉〈
χn′,k

∣∣

+
∑

n≤N

∫

1BZ

dk

∫

1BZ

dk′

[
Ũext(k − k′)− ~

2

4m
|k − k′|2 ε̃µ

µ (k − k′)

] ∣∣χn,k

〉〈
χn,k′

∣∣

+
∑

n≤N

∑

n′≤N

∫

1BZ

dk

∫

1BZ

dk′ε̃µ
ν (k − k′)

[
Xν

µ(k,k
′)
]
n,n′

∣∣χn,k

〉〈
χn′,k′

∣∣

+
∑

n≤N

∑

n′≤N

∑

n′′>N

∫

1BZ

dk

∫

1BZ

dk′ε̃µ
ν (k − k′)

∣∣χn,k

〉〈
χn′,k′

∣∣

×
[
~

m
k · πn,n′′

[
Xν

µ(k,k
′)
]
n′′,n′

(
1

En(0)− En′′(0)
+

1

En′(0) + ~2k′2

2m − En′′(0)− ~2k2

2m

)

+
[
Xν

µ(k,k
′)
]
n,n′′

~

m
k′ · πn′′,n′

(
1

En(0) +
~2k2

2m − En′′(0)− ~2k′2

2m

+
1

En′(0)− En′′ (0)

)]
. (S38)

The last three lines represent a small contribution with respect to the dominant, strain-independent one, and they
will be neglected here. Under this approximation, the matrix elements of Eq. (S38) are written as

〈
χn,k

∣∣Ĥ
∣∣χn′,k′

〉
≈
〈
χn,k

∣∣Ĥ
∣∣χn′,k′

〉
+ δ(k − k′)

~
2Παβ

n,n′

m2
kαkβ , (S39)

where n, n′ ≤ N , and

Παβ
n,n′ ≡

∑

n′′>N

(
πα
n,n′′π

β
n′′,n′

En(0)− En′′(0)
+

πα
n,n′′π

β
n′′,n′

En′(0)− En′′(0)

)
. (S40)
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