|

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

A FUNCTIOWAL PLUS PREDICATE LOGIC PROGRAMMING
LANGUAGE

M. Bellia, P. Degano, G. Levi

Nota interna B80-16

Giugno 1980

(*) (+)

+
Marco Bellia(), Pierpaolo Degano , Giorgio Levi

1. Introduction.
In the last few years, languages based on first order logic became very populear,

due to several reasons that make them good candidates not only as specification lan-
guages, but also as practical programming languages.

The main features of such languages are:

i) They have a clear mathematical basis, which allows to define a straightforward
formal semantics and which provides a natural environment for proving properties
of programs;

ii) They are nice examples of applicative languages, whose semantics is not based on
state transitions, and they lead to a hierarchically structured non von Neumann
programming style /1/; '

iii) Last but not least, today's technology allows to design efficient implementations

/2-6/.

Predicate logic programming languages. can be classified according to the kind of
procedures they define. In the first class (relational languages) procedures are de-
fined as relations. The first example of a relational language is PLANNER /7/.
Kowalski's language /8/ is a milestone within this family, because of the formal defini-
tion of procedures as sets of Horn clauses, and its clean mathematical semantics /9/.
On Kowalski's footsteps, PROLOG /2-6, 10-11/ and other similar languages /12-14/ have
been proposed. In the second class of languages (functional languages) procedures are
defined by sets of functional equations. Languages within such a class have been motiva-
ted by several different problems, namely proving program properties in formal systems
/15-19/, and abstract data type specification /20-23/.

There are no definite arguments in favour of. one class against the other, yet each
class has its own appealing features. Namely, a uniform evaluation rule can more easily
be defined for functional languages, while relational languages lead to non-determin-
istic interpreters, Properties of programs (i.e. lemmas and theorems to be used in
symbolic simplificétions) are more expressively defined within the functional approach.
On the other hand, relational languages are exactly what is needed to describe proce-
dures with more than one output.

The language described in this papeb is based on an attempt to combine relational
and functional languages in a unified environment, which provides the best features of

both approaches.
Our goal was to design a first order logic language, which allows to define both

functions and procedures. Our language is a proper extension of functional languages
enriched with somewhat constrained Horn clauses. The constraints are concerned with
distinguishing between input and output parameters and sequencing of literals. In the
resulting language, predicates play the role of standard programming language proce-
“dures. Moreover, it is possible to define an efficient deterministic interpreter.

(+) Istituto di Elaborazione dell'Informazione - C.N.R., Via S.Maria, 46 - 156100 Pisa

(ITALY)
(#) Istituto di Scienze dell'Informazione - Universitd di Pisa - I56100 Pisa (ITALY)

2. The Syntax of FPL.

The Functional plus Predicate Logic (FPL) programming language is a strongly typed
first order language, whose programs are equations defined according to first order
logic over the alphabet A={s,C,D,V,F,R}, where:

5. is a set of identifiers. Given S, we define a sort s which is:
i) simple if se¢ S, 1i) functional if s& S*=S, 1ii) relational if s& S*—wS¥,
iz a family of sets of constant symbols indexed by simple sorts.
D is a family of sets of data constructor symbols indexed by functional sorts.
¥V is a family of denumerable sets of variable symbols indexed by simple sorts.
2
8

2
o
W

: family of sets of function symbols indexed by functional sorts.

family of sets of predicate symbols indexed by relational sorts,
Families are defined in the language by declarations, which assign a specific sim-
le or functional or relational sort to each object.

ey
b
o

P
Examples are:
O:r==NAT: succ: NAT-=NAT +: NAT x NAT-=NAT
nil:=NLIST; cons: NAT x NLIST-=NLIST eqn: NAT x NATﬁoBOOL
ndiv: NAT x NAT-=NAT x NAT.

A FPL program is a set of declarations and equations. Each symbol occurring in an

equation must be declared.
The syntax of equations..is based on the. standard concepts of term and atomic for—

A term is either a data term or a functional term.
A data term of sort s (seS) is
i} a constant symbol of sort s,
ii} a variable symbol of sort s,
i) a data constructor application d(t_,...,t) such that t ,...,t are data terms
of sort s_,...,8 and deD has sort s x ,,? X 8 =8, t n
A functiongk term of sort s (se3) is a functig% application f(tl,..,,tn), such

that t ,...,t are data terms of sorts sl,,,,,s and f& F has sort s1 X +esX S ~» 8,
n n

L n . .
An atomic formula is either
i) & functional atomic formula of the form t=d, where d is a data term of sort s and

t is a term:of the same sort, or

ii} & relational atomic formula of the form r(in:tl,,u,,t ; out:t l,n,.,t }, such
= mo T me+ n
that ¢ ,...,t ,% yo»s3t are data terms of sorts s_,...,s5 ,s ;0058 and re
m m+l n 1 m m+l n
R has sort 8. X +.. X § =5 X o.s X S
m+ 1 n

A constraint is either
J an atomic formula, or
i) a formula of the form cl,c2 such that Cl is an atomic formula and c2 is a con-

straint,

Constraints are used to combine functional terms (function calls) and atomic formu—
las (procedure calls) in a program. Constraints define a local environment which is
shared by {and allows the interaction among) its components. Constraints can be used
within function and procedure definitions, according to the following syntax of equa-
tions.,

Equations are formulas of the following form le=r, where 1 is the left part and r isg
the right part, such that its left part 1 is an atomic formula possibly followed by a
congtraint and its right part r is either empty or a constraint,

The equation is functional or relational, -according to the .type. of -its atomic

formula.

Example.:

1. true:—=BOOL 7. ndiv: NATxNAT-e NATxNAT

2. false: -~BOOL eB. minus(%X,0)=X

3. O: = NAT e9, minus(s(x),s(y))=2<minusix,y)=z
4, s: NAT==NAT el0. 1t(0,s(x))=true <

5, minus: NATXNAT-=NAT ell. 1t{(x,0)=false =

6. 1t: NATXNAT-=BOOL el?2, 1t(s(x),s(y))=z=-1t(x,y)=z2

el3. ndiv(ig:x,y:gEE:O,x),lt(x,y):trueav

eld, ndiv(ig:x,y;ggi:s(q),“),lt(x,y):false<~ndiv(££:z,y;ggﬁ:q,r),minus(x,y):z
el5. isfact(x,y)=false,ndiv(in:y,x;out:z,s(r))-

el6. isfact(x,y)=true,ndiv(in:y,x;out:z,0)<

Declarations 1-3, 4, 5-6, 7 are constant, data constructor, function and relation
declarations, respectively. The _example is completed with the functional equations
eB~el?2, el5-el6 and the relational equations el3-eld.

The above definition of equation is inadequate, since context-dependent condi-
tions on variable occurrences are needed to guarantee proper nesting of constraints
and binding of local variables. Some more definitions are needed to introduce the con-
ditions. In order to give some insight into the meaning of the conditions, we will
informally use operational arguments.

A definition contains atomic formulas of the form r(in:x_ ,...,x ;out:y ,...,y),
or f(%x_ ,...,x)=y. Let us define, for each atomic formula a the multisets of input and
output»variabfe occurrences. Namely,

Mi (a) is the multiset of the variable occurrences in terms xl,...,xn, while

M (a) is the multiset of the variable occurrences in terms y_;...,y . or.y.

Each definition has a header, consisting of the leftmos% atomic formula, .and a
set of invocations, wliose element .are the other. atomic formulas. Let H and I={I_} be
the header and the set of invocations of an equation e. *
Condition 1. The multisets Min(H) and Mout(1)= ? Mou (Ii) must be sets,

The absence of multiple occurrences . of a variable in the header corresponds to
the left-linearity, while the absence of multiple output occurrences of a variable in
the set of invocations rules aliasing out.

Examples of equations not satisfying condition 1 are:

eq{®,x)=true == (since it would impose a specific relation on input values}),
r(inix;out:y,z) =— glw)=y,f(x)=w,q(in:x;out:w,z) (since variable w is (output) con-
strained (i.e. could be computed) by two different constraints).

Condition 2. M, (H) N M_ (I)=d.

Disjointness of sets of header input variables and invocations output variables
in an equation is connected with the non invertibility of programs. As an exemple, the
equation p(in:x,y;out:z) «— r(in:y,zjout:x),f(y)=z,is ruled out, because it imposes a
constraint on the variable x (i.e. it may invert with respect to x).

3.1. All variable symbols occurring in M (H) and M. (I); must belong either to
M, (H) or to M (I..), whers I i an inneriénvocation (éﬂ% innermost invocations pos-
s%gly being in‘%ﬁ% left part constraint).

3.2. For each invocation I in a right part constraint, M (I) must contain at
least one variable symbol be%onging either to M (H) or to %?t{I,), where I in an
inner invocation, out Mol K

Example of sguations which do not satisfy condition 3 are:
r(ga:xgygcut:zgw),f(x,y)zte~h(t)=w (since the output z cannot be computed),

plin:x,y;out:z) < g(t,w)=2,f(x,y)=w (since intermediate variable t cannot be comput-
ed)a

filx,y)=2,k{x,y,t)=2 == h{x)=t (since the lett part constraint could not be computed
before the right part constraint),

hi{x)=teg(x,z)=t,f(x,t)=2 (since there exists a circular precedence relation between
invocations),

riin:s(x),y;out:s(z)) - r(in:x,y;out:z),f(x,y)=w (since the invocation f(x,y)=w never
nseds to be computed).

r(in:x,y;out:z) « h(x)=2,f(x,y)=false (since false is a constant symbol occurring as
output of an invocation which will never be computed).

Thus far we have defined well-formed equations. A set of equations should denote
sets of procedures. Since our aim is to restrict sets of equations so as to define
{deterministic) procedures by disjunct cases, we are forced to introduce more defini-
tions and conditions. ;

Conditions on a set of equations are concerned with the non superposition proper-
ty on the equations left parts and relies on (first order) unification.

An equation left part consists of a header and a (possibly empty) set of invoca-
tions. Let ¢ be any header or invocation,

i) n{c) be the function or relation symbol in c;,

i1) D. (¢} the n-tuple of input data terms in'¢,

111) D;S (¢) the n-tuple of output data terms in c.
Given a set of equations E={e.} , the set has the non superposition property if for
any pair of equations 1 *mz*, 1 «nr so-the beft parts 1, and 1, are non overlapping.
Condition 4., Two left parts lJ and l are non over applngjlf one of the following

properties holds:
1) nilh)#ﬁ(hj), where hi and hj are the header of li and lj'

2) Q (h,) and D. (h.) are non-unifiable.,
i in J

3) E (hi) and Din(hj) are unifiable with most general unifier A, li and 1. have
J

Constraints ki and kj' and [kil1 , [kjll are syntactically disjoint.

Condition 5. Two constraints k, and kj are syntactically disjoint if one of the fol-

o~ S T 5 i

lowing properties holds. '

1) k, and k, are invocations, n(k Jen(k), D, (k.)=D (k.) and D (k,), D (k) are
out i out J

nénwunifiablee J i in

a} Hi and kj have the form eil' ki and le j2 respectﬁvali, and either
2.1 Qil and @jl are syntactically digjolint, or
2,2 n{@)mn(cjl B (e)nD (cjl), ﬁcut(cil) and Dout(cjl) are unifiable with

m@@t general unifler A and [k]A . {x,gjg are syntactically disjoint. The
- following are sets of overlapping equaﬁlens' J

{+(x,0)2x, plus(in:x,y;out:x),eq(y,0)=trues,
T e{0, %) =x =, plus{in:x,y;out:0),+(x,y)=0=,
{plus{in:x,y;out:y),eq(x,0)=true =, plus{in:x,y;out:z),+(x,y)=z)}

plus(in:x,yjout:z)e-plus(in:y,x;out:z),

o

Let - us finally introduce the syntactic construct grogram. A program has the samse
form of en equation right part, namely it is & constraint. Hence a program consists
of a ﬁet of invocations. Is= {1} whose variables must obey the following canéi%i@ﬁ%@
- M (zﬁm%g LIS) must be a set.

7.1. For each X} in a program, each variable belenglng to M (Iq) must belong to
M {I), where I, . is a inner invocation. : :

% 2 For each ﬁ in a program, ¥ (I,) must contain at leaat one variable @y%@@é
which belongs to % (1 ¥y where I 15“2% inner invocation,.

Conditions & and % ansure tha% a program is closed,

In section 3 we will introduce FPL operatlonal semantics, which allows to define
a - computation' from given program and set of equations., It is worth noting that our
lengthy eand tediocus definition of the FPL syntex (typically, the . conditions for well-
formedness of eguations, sets of esquations and programs), was mainly concerned with
semantic properties, which can be incorporated into the syntax and statically checked.
The possibility of defining a deterministic FPL interpreter relies exactly on such
conditions. : :

Let us finally note that the syntax we have defined does not allow functicn com
position. However, our syntax has to be seen as the abstract FPL syntax. The concrate
syntax will allow to use standard function composition. Namely, a general term ob-
tained by function composition can replace a functional term every where in an
equation, but in an equation header,

The functional end relational aspects of FPL can be distinguished leading to two
different subsets of the language.

The language obtained ruling out relational atomic formulas and left pgfﬁvﬁéﬂw
straints, is a subset of the functional language TEL" /15/, since it does not sllow
to express properties,

Ruling out functional atomic formulas and left part constraints, we obtain a
specific class of Horn clauses, characterized by input-output separation and ordering
of the right part atomic formulas. The above constraint forbids program invertibi-
lity, vet leads to a deterministic interpreter.

FPL can be %xtended by releasing some of the above conditions in order to sllcy
to express progartles of programs as well. Such an extension, however, is outside thse
scope of this paper.

3. Operational Semantics.

The operational semantics will be defined by deseribing the FPL interpreter. The
interpreter consists of a set of mutually recursive procedure (EVAL,MATCH,UNIFY)
which operate on abstract representations of programs and constraint@ (closure siruc-
tures), that will be defined in the following.

A set of invocations I={I,} can be represented as & closure get, which @@ﬁﬁ@iﬁ%

& closure for each invocation I, . The closure corresponding to invac&ti@n I'"is the
palyr c=<I.,env(I }» , where @nv%z) is ‘a set of bindings for all the input vgzi&%i@%
of Ii (whf@h gre alsc input Vﬁ?i@@%%@ of closure c).

A bindi possibly associates an input variable v to the closures which corre-
spond to those invocatlons in I which have v among ‘theilr ocutput verisbles.

A closure structure ' is & set of closures Cg{c,}, guch that:

1) For each closure ¢, in the set and for each input variable v in ci, v i bound to
exactly one closure in C.
1i) The multiset of output variables of all the closures of C is & set. o

PR

Let [‘be a closure structure. If we associate a labeled node to each closure inl
and a directed arc from node labeled ci to node labeled c¢,, if some input variable of
¢. is bound to ¢, Then, a closure structure is a directed;é?aph.

Let I be d closure structure and c. be a closure in I’ , The substructure of]
rooted at ¢, is the closure structure l/cl defined as follows;
i) ¢, & I?c i
ii) 1 closuré c, belongs to I'/c,, then fyc contains all the closures of [

whose output variables are 1np5t variables of C
A substitution is a closure structure A, such that for each closure céeA .and for
each output variable v in c, there exists no closure belonging to the substructure
A/c which has v among its input variables.

A root is any closure c, of A, such that there exists no closure in A having an
input varlable bound to cl. Hence a substitution is a directed acyclic graph, Note
that each substructure of a substitutions is itself a substltutlon.

The composition A.y of a substitution A with a substltutlon 4 is the closure
structure containing the following closures.

i) All the closures of u.
ii) Only those closures of A whose output.variables are different from the output var-

iables of closures of u .

The closure structure A.g# = 1is itself a substitution, because it is acyclic. In fact,
the presence of a cycle would require the existence of a closure ci, such that c e p
and c, € A.p , which has as input variable a variable v which is bound to some closure
sich that ¢ e A and c_ e A. . Even if such a ¢, belonging to A may exist , ¢
cgnnot belong tg A.p by éeflnltlon of composition, &ince variable v must also be ag
output variable of u.
- A set of closures C={ci} can be appended to a substitution A4, only if:
i) For each closure ¢, and for each input variable v of Ci' v is an output variable

of some closure in A,
ii) The multiset of output variables of C is a setb,
111) The sets of output variables of C and A are disjoint.
The result C HA . of appending a legal set of closures C to a substitution A is a sub-
stitution.

A FPL program, 8s defined in Section 2, is a single-rooted substitution (i.e. a
directed single-rooted acyclic graph). A program is a closure structure, because
1) Each input variable in an invocation is bound to at least one invocation (condi-

tion 7.1) end such an invocation happens to be unique (condition 6).
ii) The multisebt of output variables of its invocations is a set (condition 6).
Moreover, a program is a substltution, i.e. it is sacyclic, because each invocation
input variable is bound to an inner invocation (condition 7.1). Finally, it is single-
rooted because condition 7.2 ensures that there existe only one invocation which does
noet occur in any binding. .

The interpreter procedure EVAL will operate on & program, glving & new program as
output.. In order to allow single-rootness to be preserved by EVAL, the substitution
corresponding to a program will be "“topped" with a virtual closure (which models the
external environment) which contains an empty invocation and has as input variables
2ll the output varisbles of the program.

It is worth noting that each substructure of a program is a program.

A set of closures C={c,} is & schematic closure structure if
i) For each closure ¢, and for each variable v in ci’ either v.is bound to & unigue

closure of C, or v is free,

ii) The multiset of all the output variables of closures in C is a set,.

Hence, a schematic closure structure is different from a closure structure only be-
cause some input variables can be free. Schematic substructures and schematic substi-
tutions can easily be defined following the definitions given for the closure struc-
ture case. In particular, a schematic substitution G is an acyclic schematic closure

gtructure.

Let free(G} the set of free input variables in G. A schematic substitution ¢ can
be instantiated by a substitution A, if
i) For each variable v in free(G), there exists a closure in A having v among its

outputs.
ii) The sets of output variables of G and A are disjoint.
The instantiation [G]A contains all the closures of G and only those closures of
A which belong to a A/c, such that ¢ has some variable in free(G) among its outputs.
[G] is a substitution, because all its inputs are bound, all its outputs are
different, and there are no cycles since each input of a c¢losure of A cannot be an

output of a closure of G.

A FPL equation e is a triple <H(e),G
i) H(e) is the header.
ii) G_(e) is the left part constraint.
iii) G (e) is the right part constraint,
It is gossible to prove that both G (e) and G (e) are schematic substitutions. In fact,
for each closure c¢ corresponding to an invocation of either G_(e) or G (e), and for
each variable v in ¢, v is either free, or bound to at least one closure {condition
3.1), which is unigque (condition 1). Moreover, the multiset of output variables is a
set (condition 1), and there are no cycles, since v can only be bound to an inner
constraint (condition 3.1).

We are now able to describe the interpreter procedures.
UNIFY {(X:n-tuple of terms,Din-tuple of terms, A :substitution);

returns < failure/success; 4 :substitutions

(e),G (e)> , where:
1 r

X is @ n-tuple of data terms (x_,...,%x), which contain free variables not occur-
ing in any closure of A4, with no mul%iple occurrences of the same variable,
D is a n-tiple of data terms (dl,.,.,dn), whose only variables are bound to some

closure of A .

UNIFY is basically first order unification, which returns failure or, in case of
success, a gset of associations of the form t=v, where v is a variable and t is a data
term. In our framework, each association is a closure, having the association as the
invocation, variable v as output, and all the variables occurring in t as inputs. As
soon as a new association is generated, the corresponding closure is inserted in the
(initially empty) set of closures MGU.

Unification proceeds like standard first order unification comparing terms of ¥
to terms of D (possibly) assoclating variables occurring in X to terms occurring in D.
The difference has to do with bound variables occurring in D, which cannot be
instantiated, Jjust becausé they are bound. If unification reaches the point where a
bound variasble b is matched against a non-variable data term t (which occurs in ¥},
the following actions arée taken. K

Step 1. If bi is" bound to closure ¢ whose invocation has the form t_zbi and ¢ is.8
data term, then unification proceeds with b, replaced by t.. J J

i J

Step 2. Otherwise, standard unification is suspended and a call is made to EVAL,
passing the closure ¢ (to which b, is bound) and the substitution A, as parameters.
If EVAL returns failure, UNIFY returns failure. Otherwise, EVAL returns a new sub-
stitution A', such that the closure of A' which has b, among its outputs is dif-
ferent from ¢, Step 1 is taken one more time, possibly ieading to a further evalu-
ation.
Eventually, unless some EVAL process does not terminate, unification will end up
with failure or with a set of closures MGU and a substitution A*.
REMARK. The output variables of MGU are exactly the variables occurring in the n-tuple
X, while its input variables are all bound to some closure of A%, From the conditions
imposed on variables occurring in X (which also prevent circularity in most general
unifiers), it follows that the set of closures MGU can be appended to the substitution
A#,
UNIFY returns the substitution u=MGU | A*.

MATCH (e:equation,a:atomic formula, A :substitution);
returns < failure/success, #:substitution>
a is an atomic formula, whose only variables are bound to closures of A,
e is an equation, with header H(e) and (possibly empty) left part constraint
G (e).
Step 1. If the function (or predicate) symbols occurring in a and H(e) are differ-

ent, returns failure.
Step 2. Otherwise, let X be the n-tuple of input data terms in H(e) and let D be the
n-tuple of input data terms in a.
REMARK. When MATCH is called, e is a renaming of a FPL equation. Hence all the varia-
bles in X do not occur in any closure of A . Moreover, because of condition 1, no vari-
able can have multiple occurrences in X. Finally, all the input variables of D are
bound to some closure of A . Therefore, UNIFY can be applied to parameters X, D andA.
Call UNIFY(X,D, A). If UNIFY returns failure, return failure. Otherwise, let A' be
the substitution returned by UNIFY. If G. .is empty, return p=_A'.
Step 3. Otherwise, let A" =[Gl(e)] 1 be the instantiation of the schematic substi-
tution G.(e) by the substitution A'.
REMARK. Each variable in free(G_(e)) is bound to some closure in A', because a free
input variable in the left part constraint can only be an input variable of H{e) {con-
dition 3.1), and because all the input variables of H(e) are output variables of A
(by definition of UNIFY), Hence A' can be used to instantiate G (e).
Let C:{c,}, 1< i€k, be the k-tuple of closures, such that each ¢, is a root of
A", Set i=I and A = A", '
Step 4, Call EVAL(C A ,c). If EVAL returns failure, return failure. Otherwise, if
i=k return the substitution u= A'. Ai+ , which is the composition of the output
gubstitution of UNIFY and the output substi%ution A, of the last EVAL.
Step 5. If i%k, increase 1 by 1, and iterate Step 4.1+1
REMARK. If eventually, MATCH returns. success, its output substitution u has among its
output variables all the input variables of H(e) and all the output variableés of G. (e)
(47 any). !
EVAL (A :substitution,c:closure);
returns < failure/success, pisubstitution>, c is any closure of A .
Step 1. Let I be the invocation associated with the closure c. According to the
form of I, one of the following actions is taken.
1.1 If I is empty (top closure of a program), let C:{ci}, 1< i<k, the k-tuple

Vvﬁf closures to which the input variables of I are bound., Set i=1 and Ai=.l/ci.
1.1.1 Call EVAL(Ai,c,)’ If EVAL returns failure return failure. Otherwise let
A", be the substitutfon returned by EVAL. If i=k, let A' = A' and go to step 2,
othérwise increase i by 1, set A, .= A/c, .. A', and iterate step 1.1.1.
1.2 If I has the form d=v, where é+%s a da%g termland'v is a variable, then
1.2.1 If d is not a variable, then return A .
1.2.2 If d is an (input) variable, let c¢' be the {(unique) closure in 1 to which
d is bound., Call EVAL(A /c';c'). If EVAL returns failure, return failure. Other-
wise, let 1A' be the output substitution of EVAL and go to step 2.
1.3 If I is an atomic formula, for each equation e, in the global set of equations
E, a nondeterministic call to MATCH is performed, MATCH(e, ,I, A+), where e, is &
new consistent renaming of equation ei, and A is the subs%ructure of A Poé%gé at
¢, ¢ non included.
1.3.1 If no MATCH succeeds, return failure. Otherwise, let e' and A be ons
successful equation and the output substitution of the corresponding MATCH. If
Gr(e'i) is empty, set ' =.lk and go to 1.3.3. ;

REMARK. Because of the non superposition condition (conditionas 4 and 5) on sets of

equations, a unique MATCH can terminate successfully. However, we are not allowed %o

handle the different equations sequentially since MATCH could be nonterminating.

1.3.2 Let v be the instantiation [G (e')]Al<' of the schematic substitution,
associated to the right part constraigi o# the successful equation by the output
substitution of the successful MATCH, and v' =4 .v . ’

REMARK. A can be used to instantiate G (e'), because each variable in frse

(G (e)) 1is either an input variable of H(eF‘) or an output variable of G_(e') (be-

cagse of condition 3.1), and A ~has all sucﬁ variables as output variables (see the

last remark to MATCH). Moreover, for each output variable v of G (e'), v cannot be
an output variable of A . In fact, because of equation renaming,x}or v to be an out-
put variable of A , v must be either an input variable of H(e') (contradictory be-
cause of condition 2) or an output variable of Gl(e’k) (contradictory because of con-

dition 1).

1.3.3 Let X be the n-~tuple of output data terms of closure ¢, and D be the n-
tuple of the output data terms of H(e').

REMARK. We want to show that X, D and v' are legal parameters for UNIFY. We must

prove that

i) There are no multiple occurrences of a variable in X (by condition 6, i.e. ab-
sence of aliasing in a procedure call),

ii) All the variables in D are bound to some closure in »'. Each variable in D is
an output variable of H(e'). By condition 3.1 it must also be either an input
variable of H{e') or &n output variable of G (e’) or G (e'). On the other
hand, all the ougput variables of G (e') are o&tpugﬁ of v, while all the input
variables of H(e') and the output $ariablﬁs of G (e’k) are output variables of
A . Hence, they are all output varlables of ' = A .v .

iil) Each variable v in X is not an output variable of any closure in »’ Initially,
¢ is-the only clesure in A having v a8 output variable, It is rather sagy to
prove that the only new output variables directly generated by MATCH and UNIFY
are varisbles coming from rensmed equations (end thersfore different from v). e
only need to show that each recursive call to EVAL (via MATCH and UNIFY] has the
following property.

EVAL property. Let u be the output of EVAL(A ,c); for each closure c' such that:
a) clep b) c’# A ¢) ¢' has an output variable which is also an output variable
: of some closure c" in A,
the closure c" belongs to A/c.
We will assume here the property to hold.
©1.3.4 Call UNIFY(X,D, v'). If UNIFY fails, returns failure. Otherwise, let A% be
the output substitution of UNIFY.
REMARK., A* has all the output variables of ¢ as outputs,
Let A' be the structure which contains only those closure of A% which belong
to substructures of 1% rooted at closures which have as output variable an out=-
put variable of c.
REMARK. A' is a substitution.

Step 2. Return u=A. A'.
REMARK The EVAL property follows directly from the above construction.

A FPL program Il is evaluated by calling EVAL with .substitution IT and with the
unique root of II as closure.

EVAL is clearly based on an external rule. Since our language has no builtin
data types, and since '"constructors are not evaluated", the FPL rule is a call-by-
need, whose behaviour can be summarized as follows. "An atomic formula is evaluated
go much as it is needed to allow unification',

The above defined abstract interpreter suggests an efficient implementation,

"which does not require equation renaming, and which modifies programs and substitu-
tiong by side effects, through the use of structure sharing. The same technigue was
successfully used in several predicate logic language implementations and theorem
provers. In fact, with structure sharing, different instances of the same atomic for-
mula are identified, thus avoiding multiple evaluations of atomic formulas which
typically arise in call-by-name interpreters.

Even if the language is deterministic, the above described interpreter is non=
deterministic. The EVAL Step, in which a program is nondeterministically WMATCHED a-
gainst all the equations left parts, could be implemented by backtracking, provided
that the following property holds.

Backtracking property. let I be an invocation whose input variables are bound in a
substitution A, and let E:{e yeees€) be a set of equations, such that for each
equation ei in E, H(e,) contains the fgnction or predicate symbols occurring in I, If
MATCH(e ,I, A), for some e < E, diverges, then MATCH(ei,I, A) diverges for all e
velonging to E. J

The above property holds if one more simple condition is imposed on séts egua-
tione, For the sake of brevity, the condition will not be described here. Let us
only remark that if we take equations satisfying such & condition- (which, roughly
speaking, are 8imply good recursive definitions), the call-by-need and structure
sharing implementation is in & seénse 'optimal', because all the evaluations which
could have been performed within & failing MATCH are transmitted %o the next MATCH,
and would have been, in any case, performed by the successful MATCH, if any.

We will now give an example showing our use of the left part constraint, which
allows recursive by cases definitions (without built-in conditional), with cases be-
ing defined by general atomic formulas. The exemple shows the evaluation of the pro-
grem isfact(s(e(0)),s(0)) with equations e8,...,el6 in Section 2 (i(c) denotes the
invocation of closure ¢).

4. Fixed-point Semantics.

’ In this Section, we will describe the fixed-point semantics of a set of equations
={e.}. For the fixed-point semantics, each equation e can be seen as a pair<<H(el)
G(e, >4 such that G(e) is the set of all the invocations occurring both in the left

part and in the right part of e1 It is worth noting that generally two equations

1. P, QeR , S 2, P==R , S, Q
which differ only because one invocation occurs in the left part and in the right
part, are different both from the operational and the mathematical viewpoint. The
difference is only operational if invocation Q satisfies condition 3.2 (i.e. ‘it has at
least one output variable, which is an input to S or to R or.an output of P}. If this
is the case equation 2 is a legal equation. The operational difference is concerned
with nondeterminism. With equation 1, as soon as a MATCH: succeeds, the other
nondeterministic attempts in EVAL can be killed (since we are guaranteed from condi-
tions 4 and 5 that any other MATCH would fail). Failing in the evaluation of Q, within
MATCH, would just kill the current attempt. With equation 2, a failure in the evalu-
ation of Q could only be detected after the successful MATCH. This would require to
backtrack to a choice-point which had already succeeded (nonrecursive backtracking).
This situation corresponds to the fact that equation 2 could possibly have a super-
position with other equations. In such a case we are not guaranteed that when a match
is successful, no other successful MATCHing is possible.

On the other hand, if 2 does not satisfy condition 3.2, equation 2 is not a legal
equation. As a matter of fact, equations 1 and 2 would have a completely different
semantics 1if the evaluation of Q diverges or fails. In fact, in.-such a case, § would
not be evaluated by equation 2.

The fixed-point semantics gives to equation ei a semantics which is equivalent to
the operational semantics of e,, only if all the invocations of G(e.) which do not
satisfy condition 3.2 occur in the left part of ei (i.e. if ei is a fégal equation).
The fixed-point semantics of E is a model of E, obtained as the fixed-point of a
transformation ¢ _ on interpretations. Our fixed-point semantics is very close to the
semantics defined in /9/. Our semantics however, is a call—byéname semantics. There-
fore our domain will contain an undefined object w , for each simple sort s.

’ Interpretations are defined on an abstract domain A, which is a family of sets
A , each set beeing indexed by a sort s occurring in E. Each AS is defined as follows:

i? w belongs to A ;

ii) A?l the CQnstan% symbols of sort s, occurring in E, are in A

iii) For each data constructor symbol d of sort s x ... X S «»g, A contains all the

terms d(t_,...,t), such that t ,...,t belghg to A ?..,A ? respectively. A

term belonging to a family A is undefined if it con%alns (un, for some sort s
which indexes a set A in A. 5

An interpretatigi gi is any subset of the interpretation base B. The interpre-
tation base B is a set of atoémic formulas defined as follows:

i) For each function symbol f (occurring in E) of sort 5. % ... % s ~='g, B contains
all the formulas (%t ,...,t)=t such that ¢ ,,,,,t and. € have sgyts B 4...58 ,8
respectively, and term t is not undefined. ! n

il) For each predicate symbol P{occurring in E) of sort s X...Xs -8 _x...%s , B con-
tains all the formulas P(in:t ,..e,t routbs tm+1,...,ﬁ), such %hatm% ,,,.,tgg

p=dhaiing

,o,.,t have sorts. s ,s 8s respectively, and terms 't ses4y L oare
@ 1 m+1 n m+1 n
not undefined.

Roughly speaking, an interpretation .assigns output values to applications of
functions ‘and relationg to ground input values. All the other applications have some
undefined output. An interpretation é, is "more defined" than interpretation § if§§§

ggﬁ where 2 is set inclusion., Note that the partial ordering relation” 3 gn
interpretations corresponds to an intuitive notion of better approximation. In fact,

if gﬁ 3 §,3 éi assigns output” values to ‘some applications that in- §i had some
e d .

undefinegd outptta ’
Transformation QE maps ‘interpretations on ‘interpretations and is defined as
follows, ;
Let gi be eny interpretation and e'=<H(ek),G(e)> be an equation 2f E, Equation
e defines a transformation ¢ which maps g‘ onto éﬁe interpretation é_:@ (§,39 guch
that ‘ ' * *
1)) All the atomic formulas of gi are in gf.
2) For each instantiation A of variables to terms such that, for each invocation I
in G(e) either
2.1) | jjﬁ is in ¢, or
2.2) An output variable v of I_, which is not an output variable of H{e }, is
instantiated to an undefine& term by A, k
the formula [H(ek)}ﬁ is in égk
Note that A must instantiate a variable v of sort s to a term belonging to & ,
and that if G{e) is empty, condition 2.2 is satisfied for any instantation A . 8
The transgérmation ¢_ is the transformation deﬁined by all the egquations of E

i h finition, i.e. =U .
according to the above definition, i.e wE(gi) e ¢ (gi)

It can be proved that transformation ¢ on the set of interpretations partially
ordered by set inclusion iz monotonic and continuous. Hence, there exists the least
fixed-point interpretation g* such that g*: ¢ (g*), which can be obtained by itera-
tively applying ¢_, starting with the empty subset of B, which is the bottom element
of the partially or%ered set of interpretations.

5, Conclusion

We have described a new first order logic language, which combines the functional
and . the relational approach. We have defined the fixed-point semantics and we have
shown an interesting operational model which is both formal and close to efficient
implementations. Both the fixed-point and the operational semantics are based on the-
orems that have been either assumed or informally proved in this paper. A complete
formglization was certainly outside of the scope of the pressnt paper.

We have szome nice examples of FPL programs, that would be innatural and swkward,
in & predicate language without left part constraints or in a functional language.
The improved expressive power of the lenguage is due 10 the presence of both the func-
tion and the procedure congtriugte and to the left part constraints which provide the
full power of & built-in condi%ional, while saving the first o6rder loglec axiomatic
flavour. One more interesting festure of FPL i its ability to describe non=strict func-
tions and relations. Non strict functions, 88 the if-then-else, can essily and natural-
1y be defined in FPL, just becauss of its call by need evaluation rule.

We have almost completed an experimental FPL interpreter, whose -architecturs is
strictly related to the operational model of Section 3. The interpreter (written in
LISP} is based on structure sharing and relies on LISP garbage collector.

Future work on FPL will include its extension to allow the definition of theorems
and parallel programs. Our final goal is creating an FPL environment providing tools
for program proving also.

1.

.

lOQ
11.

12.
13,

14,

15.

16.

17,

QQ§~

"19.
20,
21,
22,

23,

REFERENCES
Backus,J. Can programming be liberated from the von Neumann style? A functlonal
style and its algebra of programs. C.ACM 21,8 (1978), 613-641.
Warren, D, Implementing PROLOG -~ compiling predicate logic programs. Report 39,
Dept. of AI, Edinburgh, 1977.
Roussel;P. PROLOG: Manuel de Réference et d'utilisation, Groupe d'Intelligence
Artificielle. Université d'Aix-Marseille.
McCabe,F.G. Programmer's guide to IC-PROLOG. Dept. of Computation and Control,
Imperial College, London, 1978,
Roberts,G.M. An implementation of PROLOG. M.Sc. TH,, Dept. of Computer Science,
Univ. of Waterloo, 1977.
Szeredi,P, PROLOG- a very high level language based on predicate logic. 2nd Hunga-
rian Computer Science Conf., Budapest, 1977,
Hewitt,C. Description and theoretical analysis (using schemata) of PLANNER: a lan-
guage for proving theorems and manipulating models in a robot. AI Memo 231, MIT

Project MAC, 1972.

‘Kowalski,R.A. Predicate logic as a programming lenguage. Information Processing 74,

North Holland (1974), 556-574.

vanHemden,M.H., and Kowalski,R.A. The semantics of predicate logic as a programming
language. J.ACM 23,4 (1976), 733-742.

Warren,b., Pereira,lL.M., and Pereira,F. PROLOG - the language and its implement-
ation compared with LISP. Proc. ACM Symp. on AI and PL, Rochester, 1977.
Colmerauver,A. Le grammaires de metamorphose. Group d4'Intelligence Artificielle.
Université d'Aix Marseille, 1975.

Tarnlund,S-A. Horn clause computability. BIT 17 (1977), 215-226.

Hansonn, X and Tarnlund, S-R. A natural programming calculus. Proc. 6th IJCAI,
Tokyo 1979.

Stickel,S.‘Ipvertibility of logic programs. Proc. 4th Workshop on Automated Deduc-
tion, Austin, 1979, 103-109.

Levi,G. and Sirovich,F, Proving program properties, symboli¢ evaluation and logical
procedural semantics. Proc. MFCS '75, Lecture notes in Computer Science, Springer
Verlag (1975)), 294-301.

Burstall,R.M. Recursive programs: Proof, transformation and synthesis.. Rivista di
Informatica 7, 2 (1976), 25-42,

Aubin,R. Strategies for mechénizing structural induction. Proe. S5th IJCAI,Cambridge
1977, 363-369.

Boyer,R.S. and Moore,J 5. A lemma driven automatic theorem prover for recursive
function theory. Proc. 5th IJCAI, Cambridge, 1977, 511-519.

Cartwright,R. and McCarthy,J. First order programming logic. Proc, of 6th POPL, San
Antonio, 1979, 68-80. '

Burstaell,R.M. and Goguen,J.A. Putting theories toghether to make specifications.
Proc. 5th IJCAI, Cembridge, 1977, 1045-1058.

Goguen,J.A. @nd Tardo,J. OBJ=0 Preliminary user manual. Semantics and theonyvcf
computation Report, UCLA, 1977, -
Guttag,J.V., Horowitz,E. and Musser,D.P. Abstract data types and software valida-
tion. C.ACM 21, 12 (1978), 1048-1063.

Musser,D.R., Abstract data type specificatlon in the AFFIRM system. Proc. Spec1f;caw
tion of Reliable Software Conf,., Boston, 1979.

