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be considered as a text constituted by words arranged in sentences. Syntactically we can
describe a DNA sequence in the following way:

G={s1Usz...Usn}
OUTPUT LAYER

Each s, is a ‘word’. This representation is greatly limited because at present it is not
possible to separate the words into &mnamw# classes based on their functionality. This:is the
main difference from the natural language ptocessing field and it is for this reason reliable
dictionaries containing words and their specific functional relation are not available. A
system describing the primary sequence has been developed which operates in the: same
ways as a linguistic parser in a genetic text [2]. The first step in the analysis of syntactical
and semantical structure of the gene requires the identification of more relevant words. Many
different approaches are applied in order to perform this task: e.g., dynamic programming
[3] and statistical mechanics. In 1984 Stormo applied the Perceptron model, considered the
oldest connectionist model to nucleotide sequence analysis. Generally, only limited regions of
the genomic sequence are analyzed. Instead we believe that it is very interesting to analyze
the whole sequence in order to detect the presence of singular and more frequent substrings
and their relative placements. The aim of this work is to analyze a subset of the Eukaryotic
Promoter Database EPD [4] by using an Unsupervised Neural Classifier.

1 ..
b
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n

Figure 1. WTA Network.

The activation level of the winner neuron is considered equal to 1.
The second step of the learning phase involves the modification of the synaptic weights
associated with the winner néuron; the weights adaptation is influenced by a gain factor,

the learning rate (a(t)), that linearly decreases with time. This parameter varies in the
following range:

35.2 The Eukaryotic Promoter Database

The promoter region is a nucleotide domain related to the regulation of the starting point
of the transcriptional process. The eukaryotic promoter region is not as well known as the
bacterial promoter. At present all the information related to promoters is collected in
specific database (Eukaryotic Promoter Database). The knowledge about the functional
signals present in this region has not yet been fully investigated. In our study we analyzed
a subset of EPD (about 40% of the full database) extracted from the region —200 to +200
around the starting point of the transcriptional site.

le" <o) <1.0

35.3.1 Data Representation

1t is possible to represent the data in different ways, the most widely used knowledge rep-
resentation for the neural classifier is binary coding. On the basis of clustering theory it
is possible to use different types of data representation. The nucleotides can be labeled by
a finite number of values (nominal variable) [6] and each element is labeled by a specific
value. It is important to note that the dissimilarity measure must be invariant to the data
tepresentation. The following nominal coding procedures are available:

e (molecular weights)~?

® f, base frequency where b € A

¢ clectronic potential (Velicovic)

e ordinal numbering

35.3 The Neural Network

In order to partition the data set we applied a self-organizing neural classifier based on th
Winner Take All (WTA) methodology [5]. At present we do not know how many k-tupl
classes there are nor their occurrence frequencies and for this reason we chose unsupervise
neural classifiers. Figure 1 shows a schema of the applied network. The neurons reside on
square lattice (NK, x NK.) (the maximal dimension is 10* neurons). The synaptic weigh
matrix is a 3D array [(N K, x NK.x I)] where I is the dimensionality of the input data vector
The WTA uses a distance parameter for the assignment of each pattern to the neuron; from
statistical point of view the distance can be considered as a dissimilarity measure. In‘order t
identify the activated neuron, the widely applied measure is the Euclidean metric Euchd,
(r = 2) or city block (r = 1) metric; following previous papers, we use the Euclidean metri
here:

The X = {x1,X2, ...,Xn} was subjected to a regularization using the following constraint:
Il = llwll = 1.

This data normalization was performed by the following method Vi € d, where d is the input
vector dimensionality:

(2", wa) = [P (27 — war ) 1"

=1
We define X as the input vector data set; Vxn € X each neuron of the lattice will presen!
a different level of activation (7). The d* is computed Vnk € (NK, x NK_); the winn
neuron must satisfy the following minimization constraint:

R ©)

1%i

35.3.2 Learning Phase

We defined a set X of data vectors: X = {xq,%2,...,Xn} to be stored into a 2D neural

nk: MIN{d®} — n = 1.0.  lattice. The synaptic weight matrix was initialized by uniformly distributed random values
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W?¢ = U(0,1), computed by a machine-independent random number generator [7].- The
learning phase was performed by a pattern, this term signifies that the connection weights
were modified after the presentation of each single pattern x,. The weight vector update

involves only the winner neuron, Best Matching Unit, indicated by nk* and is based on the
following dynamical system:

Table 2. Most frequent hexamers.

Maximal frequency of k-tuple
EDP set k-tuple |Frequency

1) Without shift|TATAAA| 34

£ 2) Shift 1 base |TATAAA| 40
Woke (t + 1) = Woie (2) .0m(%n = Wi (1)) ®) 3) Shift 2 bases |TATAAA| 40
4) Shift 3 bases |TATAAA| 55
5) Shift 4 bases | TATATA| 44

The o(t) parameter linearly decreases according to the following equation:

at) = alt — 1) — Auep )

The step is time varying by the ratio: aue, = Slpm_mmolnm The activation level of the winner

neuron, 7, was computed in.an adaptive way according to the specific Euclidean distance.
The learning convergence is evaluated on the basis of the previously applied parameter [8].

In order to compare the results we considered k-tuples of £ = 6; this amplitude was
chosen as an average dimension of promoter signals. There are 4% possible combinations of
symbols extracted from the nucleotide alphabet .A. In this study we only considered the
frequency of occurrence for each hexamer obtained by decomposition of the promoter data
set. We considered all the potentially relevant information stored in the net at the end of
the learning phase. In order to highlight the relevant features our study simply took into
account the occurrence frequency of each k-tuple. We considered a cut-off frequency of 16
occurrences. However, there are three possible approaches:

16 times. It should be noted that the shifting procedure increases the fraction of k-tuples
capable of passing the frequency cutoff . This effect takes place when a very frequent signal is
cut, for instance the TATA-box. Table 2 displays the highest frequency hexanucleotides for
each run; from a compositional point of view, this set represents the possible combinations
of the canonical TATA-box consensus.

A A

TATA—-A—
H>H>H

Table 3. Bach column shows the miost common hexamers for each training set: 1 — without shift,
2 - shift of 1 base, 3 ~ shift of 2'bases, 4 — shift of 3 bases, 5 — shift of 4 bases.

o k-tuple frequency Most common k-tuples

k-tuple |set 1|set 2[set 3[set 4[set 5
AAAAAA| 33 | 28 | 25 | 30 | 28

e neuron activation frequency

e mutual information method

ATAAAA| 26 | — 125 | 24 | 34

35.4 Results ATAAAT | 25 | 19 | 19 | - | 25
; TATAAA | 34 | 40 | 40 | 55 | 23

At the end of the learning phase it is possible to obtain a distribution of k-tuples: We - TATATA | 28 | 28 | — | 22 | 44

considered the hexamers with the highest frequency of occurrence. The following tables
report the subsets filtered by the network. Our basic training set consisted of 652 Eukaryotic
Promoter region sequences; in this way 16911 six-base-long, non-overlapping patterns were
considered. In order to reduce the effect of signal cutting, we processed the training sets
obtained from the original set by shifting either one, two, three, or four bases, starting fro
the initial position.

TTTTTT | 24 | 21 | 19 | 17 | 17

In Table 3, the most common hexamers in all five analyzed sets are shown. It should
be noted that all the hexamers in this table, excluding the AAAAAA and TTTTTT, are
part of the general TATA-box consensus. In this case the TATA-box consensus frequency is
increased due to the sum of each individual component. The distribution obtained by the
program is the actual distribution of pattern without a priors alignment and constraints.
Tables 4 through 8 show the different subsets of hexamers filtered by the net.

Table 1. Hexamers extracted from each training set.

k-tuples extracted from each EPD dataset Our methodology is capable of recognizing strong signals like the TATA-box. In its
k-tuple Number of k-tuples present form, the identification of weak signals needs a more careful investigation at a low
§ _ frequency cutoff level and it requires a parallel analysis of neuron activation frequency and

1) Without shift 28 X . . X
" mutual information. In this paper we show only the most frequent patterns. The simultane-

2) Shift 1 base 43 " . . . ..

3) Shift 2 bases 43 ous application of different statistical approaches offered by this connectionist method can

nh th iti ili it .
4) Shift 3 bases 45 enhance the recognition capability of weak signals
5) Shift 4 bases 47

Table 1 shows the resulting fraction of filtered hexamers for each run of the program wi
a cutoff frequency of 16; we extracted only patterns which occur in the dataset more than
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Table 4. Hexamers extracted by the program from the first dataset.

k-tuples extracted from EPD dataset without shift
k-tuple |frequency| k-tuple Frequency

AAAAAA| 33 | ATACTT i

AAACAA 31 | CATGTG 19

AAATAG 21 O(O AAAT 19 Table 7. More frequent hexamers extracted by the program from 3-base shift of EPD training set.

AAGCAA 19 CGCCAC 23 k-tuples extracted by EPD dataset with shift of 3 bases

ACTCAT 19 CGCOCT 19 k-tuple | frequency k-tuple frequency k-tuple | frequency k-tuple Frequency

ATAAAA 26 CGCCGe 18 AAAAAA 30 GATTTT 19 CAAAAT 19 TAAACT 22

ATAAAT 25 CGCTAA 18 AAAAGA 17 GCCGCC 16 CAACAT 30 TAAATA 18

CGTGGC 18 CTATAA 99 AAAAGG 22 GCGGCG 18 CACCGC 19 TATAAA 55
AAAAGT 17 GCGGGA 18 CATTCT 20 TATATA 22

GCGGGG 17 GTGCTG 16 AAACAA 19 GGCCGC 18 CCAAAT 18 TCATTC 19

TAAATT 16 TATAAA 34 AAAGAA | 16 GGCTCC 16 CCTCGT 19 TCTCTT 16

TATATA 28 TCAGTG 21 ACTCCG 16 GGGAGC 16 CGCCGC 17 TGAAGT 22
ATAAAA 24 GGGGCG 17 CTATAT 21 TGGCAG 16

%%M%MM ww %%%WMM MM ATATAT 19 GTGAAA 18- CTGCGC 24 TTTCCT 17
CAAAAA 19 TAAAAG 16 CTTCGT 16 TTTTCT 17

TTTCTC 17 TTTTTT 24 GAAGTA 20 GAAGTT 18

Table 5. Hexamers extracted from the second set.

k-tuples extracted from EPD dataset with shift of 1 base

k-tuple frequency k-tuple Frequency k-tuple Frequency k-tuple Frequency.
AAAAAA 28 ATATAA 19 AGAAAA 21 CTCTGC
AAAGCA 19 ATGATC 16 AGAAGA 19 CTCTTC
AAATAT 19 ATGGCC 21 ATAAAT 19 CTTCTC
AAATTC 16 CAAAAA 19 GCACTG 24 GCCACC
ACTCAT 19 CAGTGA 18 GCCCTC 18 GCCGCC
AACAAC 22 CATCAT 18 GCTAAA 21 GGGCGA
ATAAAT 25 CGCTAA 18 GTCTGC 17 GTCTGC -
AAGGGA 17 CCGCCG 16 GTGGCA 19 TAAAAG
AAGTCA 18 CGCCGG 18 TAAATA 24 TATAAA
AAGTGA 18 CTCATT 23 TATATA 28 TCAATA Table 8. gﬁum frequent hexamers extracted by the program from 4-base shift of EPD training set.
ACCTTC 16 CTCCTC 17 TCACAA 17 TCTGAA k-tuples extracted by EPD dataset with shift of 4 bases
TTTTTT 21 k-tuple | frequency k-tuple | frequency k-tuple | frequency k-tuple | frequency

AAAAAA 28 ATAAAT 25 GCCGCC 16 TGCGCC 18
, AAAAAG 24 ATATAA 16 GCCGCT 20 TGGAAA 20
Table 6. Most frequent hexamers extracted by the program from 2-base shift of EPD training set. AAACTC 19 ATCCAA 20 AGAAAA 21 TTACCT 17

AAAGGA 19 ATTTTT 25 GTATAA 22 TTCGCT 17
AACAGA 16 CAAATG 16 GTTTTC 16 TTCGTC 16
AACATG 27 CATTCT 28 TATAAA 23 TTCTCT 16

k-tuples extracted from EPD dataset with shift of 2 bases
k-tuple | frequency | k-tuple | frequency | k-tuple | frequency | k-tuple | frequency

AAAABA 25 CGGGGC 16 AAGTGA 18 TAAATA ACCATG 24 AAGAAG 20 CCAGCC 16 TATATA 44
AAAACA 21 CTAAAC 20 ACCTTC 16 TATAAA AAGGTG 19 CTCCGG 18 TCAGTT 19 TGGCAC 16
AACCAA 16 CTATAA 21 AGAAAA 21 TCATTC . AAGTTT 19 CTCCTC 20 TGAAAC 16 TGGCCG 19
AATTCT 17 CTCATT 19 AGAAGA 19 TCTGCG | ACCGCC 17 GAGAAA 18 TGACCC 17 TTTTTT 19

ACAAAA 18 CTGAAG 18 ATAAAT 19 TCTTCC ATAAAA 34 GCAGAG 16 TGCCTG 17
ACAACA 21 GCCGCC 17 ATATAA 22 TCTTCG ,

AGAAGG 25 GCTGCT 19 CAAAAG 19 TGCGGG
AGGAGG 17 GGCGGC 22 CAACAA 17 TGGCAC
AAGTCA 18 GTATAA 19 CAAGCA 17 TGGCCG
CACTCC 18 TTCTCT 16 CCACCG 23 TTTTTT
CCCAAA 16 CCCTCG 17 CCGCCG 18
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The regulation of gene expression is a phenomenon exerted at every step in the cascade
of events that leads to the synthesis of a given protein. There are signals at the level
of the DNA source code (promoters, operators, etc.), the RNA transcript (splicing and
processing sites), and the final protein itself {phosphorylation and processing sites) that
must be recognized and acted upon by appropriate regulatory molecules. Most of the detail
in current theoretical frameworks of the gene regulation system is at the transcriptional
level [1-4], whereas regulatory events in the latter stages of gene expression, namely mRNA
translation, are understood in much broader terms. Transcriptional regulation is associated
with Telatively easily measured and recognized components, and a large body of data and
_ theory has been accumulated. Events occurring at the translational level are less spectacular,
_ dependent on more subtle features of the genetic code, yet no less important.

The non-randomness in the use of synonymous codons in natural coding sequences has
been a source of interest as a feature that might be related to levels of gene expression. In
_ prokaryotes, the preferential use of certain synonymous codons over others has been regarded
by some investigators as a regulatory strategy aimed at maximizing the translation rate of
_ highly expressed proteins. It has been shown in bacteria that the relative abundance of
tRNA species changes notably between different growth rates, and during rapid growth the

available species are reduced to a streamlined set of isoacceptors [5], which appear to reflect
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