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A vertically shaken granular medium hosts a blade rotating around a fixed vertical axis, which acts as a
mesorheological probe. At high densities, independently of the shaking intensity, the blade’s dynamics
shows strong caging effects, marked by transient subdiffusion and a maximum in the velocity power
density spectrum, at a resonant frequency ∼10 Hz. Interpreting the data through a diffusing harmonic cage
model allows us to retrieve the elastic constant of the granular medium and its collective diffusion
coefficient. For high frequencies f, a tail ∼1=f in the velocity power density spectrum reveals nontrivial
correlations in the intracage microdynamics. At very long times (larger than 10 s), a superdiffusive behavior
emerges, ballistic in the most extreme cases. Consistently, the distribution of slow velocity inversion times τ
displays a power-law decay, likely due to persistent collective fluctuations of the host medium.
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A comprehensive theory of dense granular media is still
lacking [1]. Unperturbed granular systems may support
external forces without flowing, behaving like a solid: in
this configuration, a granular packing may show an elastic
response to small stresses. Under gentle tapping, the
granular medium undergoes very slow rearrangements,
which resemble the sluggish response of molecular glasses
[2–5]. The jamming transition, observed when reducing the
vibration intensity, or increasing the density, is commonly
compared to the glass transition in undercooled liquids [6].
When the energy of the external vibration is increased or the
density is decreased, the granularmedium enters a liquidlike
phase [7], which has not received as much attention as the
glass or solid phases or the much more dilute gas phase [8].
Nevertheless, learning from molecular fluids, the dynamics
of the liquid phase is rich in information: in particular, it
gives important hints about the many time scales developing
when the glass transition is approached from above [9].
Recent theoretical and experimental insights into the liquid
phase have highlighted the differences between molecular
glass formers and driven granular media, in particular the
presence of superdiffusive behavior [10–13].
As rheometers are usually conceived to apply the

excitation at the boundaries, standard rheology in granular
liquids is typically limited by problems of slip and shear
localization. Other techniques exist to probe the bulk
response properties of granular media, e.g., magnetic

resonance imaging, x-ray tomography, and high-speed
particle tracking [14], confocal microscopy [15], or multi-
speckle dynamic light scattering [11]. Microrheology [16]
is also used, e.g., to probe transient subdiffusive behavior
and cage effects [17]. However, the ability of small
intruders to probe the collective behavior at large spatial
scales in the host granular medium is not evident.
We propose a technique, which could be named passive

mesorheology, see Fig. 1(a), inspired from previous works
[7,18–20]. The granular medium made of spheres of

FIG. 1 (color online). (a) Schematic of the experimental setup.
(b),(c) Mean squared angular velocity of the blade in the various
experiments.
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diameter d ¼ 4 mm is placed in a cylindrical container of
volume ∼7300 times that of a sphere. The container is
vertically shaken with a signal whose spectrum is approx-
imately flat in a range ½fmin; fmax� with fmin ¼ 200 Hz and
fmax ¼ 400 Hz. A blade, our probe with a cross section
∼8d × 4d and momentum of inertia I, is suspended into
the granular medium and rotates around a vertical axis. Its
angular velocity ωðtÞ and the traveled angle of rotation
θðtÞ ¼ R

t
0 ωðt0Þdt0 are measured with a time resolution of

2 kHz. The blade, interacting with the spheres, performs
a motion qualitatively similar to an angular Brownian
motion. Two families of experiments have been performed:
(a) a series at high density (N ¼ 2600), varying the shaking
intensity Γ ¼ ̈zmax=g ∈ ½19.5; 39.8�, and (b) a series at
high shaking intensity (Γ ¼ 39.8), varying N ∈ ½300; 2600�
and the packing fraction ϕ as indicated in the figures.
Figures 1(b) and 1(c) report the values of the mean squared
angular velocity hω2i of the blade in the different experi-
ments. Details on dimensions of the setup and shaking
parameters are reported in the Supplemental Material [21].
Velocity power density spectrum.—In Fig. 2, we present

our main results in the form of the velocity power density
spectrum (VPDS) of the velocity signal ωðtÞ, which is
defined as SðfÞ ¼ ð1=2πtTOTÞj

R tTOT
0 ωðtÞeið2πfÞtdtj2. We

recognize four frequency ranges, denoted as regions I,
II, III, and IV. In the experiments at fixed (maximum)
density, N ¼ 2600, displayed in Fig. 2(a), the spectrum
conserves the same qualitative shape, vertically shifted
due to the differences in Γ. The most striking properties
are observed in regions II and III: SðfÞ goes from a plateau
in region II to a roughly parabolic maximum centered
at a frequency f� in region III. The value of the resonant
frequency f� slightly shifts from 10 to 20 Hz as Γ
decreases. To avoid interference, we ensured that the shaker
vibration is in a distant region (200–400 Hz); we changed
such a range (including trials with a single frequency, i.e., a
harmonic vibration), obtaining always the same shape SðfÞ
with the same values of f�. A mechanical resonance is
also observed at ∼70 Hz, due to the nonperfect acoustic
insulation of the plate on which the couple encoder or
blade is mounted. In conclusion, the maximum in f� is a
resonance experienced by the blade in its motion through
the granular medium, and we interpret it as a transient
trapping phenomenon, analogous to caging effects in low-
temperature or high-density liquids. We will see that such
an interpretation is well supported by other observations
and by a theoretical model. In both “extremal” regions I and
IV, SðfÞ is a decreasing function of f. In particular, in
region IV, the high-frequency decay presents a power law
∼f−β with 1 < β < 2, close to 1 for the lowest values of Γ.
This is evidence of collective effects, in the fast processes
inside a cage (as f ≫ f�), occurring without a character-
istic frequency [22]. The decay in region I is also
anomalous and denotes the emergence of long character-
istic times, possibly larger than the experiment duration

tTOT ¼ 3600 s. Note that the asymptotic diffusion is
governed by limt→∞hΔθ2ðtÞi=t ∼ 2πSðf → 0Þ; therefore,
an increasing value of SðfÞ as f → 0 (i.e., at increasing
time) indicates a superdiffusive behavior, detailed below.
When the density is reduced, see Fig. 2(b), the shape of

SðfÞ drastically changes. The slope of the decay in region I
decreases and eventually vanishes: at low densities a
plateau spans both regions I and II. The maximum in
region III is reduced and disappears for N < 1000, called
the “gas” phase. The exponent of the power-law decay in
region IV increases, β → 2. The whole spectrum at the
lowest densities is well fit by the Lorentzian
SðfÞ ¼ ðT=πγÞ=½1þ ð2πIf=γÞ2�, expected for diffusion
in diluted gases at temperature T with a collision frequency
∝ γ [23]. Here T is the probe’s “kinetic tempera-
ture” T ¼ Ihω2i.
Mean-square displacement.—The several phenomena

observed in SðfÞ are reflected in the diffusion properties,
see Fig. 3, where the mean-square displacement (MSD)
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FIG. 2 (color online). Power density spectra of the blade’s
angular velocity for the two series. (a) The number of beads
is fixed (N ¼ 2600) and the shaking intensity varies. (b) The
shaking intensity is fixed to Γ ¼ 39.8 and N changes. The
frequencies of vibration are marked by the yellow bar. Dashed
lines are fits of Eq. (2) to the experimental data in regions II and
III. Thick-dashed lines show the limit behaviors f−2 and f−1.
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h½ΔθðtÞ�2i after a time t is plotted. The four temporal
regions corresponding to the frequency regions discussed
above are marked on the graph. Our “cagelike” interpre-
tation of the maximum of SðfÞ in region III is corroborated,
in Fig. 3(a), by the dramatic slowing down of h½ΔθðtÞ�2i in
the same region [24], resembling the typical dynamical
slowdown in the diffusion of tracers dispersed in viscous
liquids. At small times (region IV) the usual ballistic
behavior appears. More remarkable is the behavior at large
times. All the experiments with N ¼ 2600 present a
superdiffusive range ∼tα in region II, with α > 1. For
the largest values of Γ, this behavior changes to a diffusive
behavior ∼t in region I. On the contrary, at lower Γ, the
superdiffusive exponent α > 1 remains the same as that of
region II at large times. In particular, for Γ < 31, we find an
almost ballistic superdiffusion, α ∼ 2. The situation is very
different when the density is reduced [Fig. 3(b)]: the long
time behavior (region I) is always of the normal type ∼t. In
the most dilute cases (N < 1000) the typical scenario of
diffusion in a gaslike fluid is fully recovered in the form of
a monotonic crossover from the ballistic region IV to the
normal diffusion of regions II and I. Changing the size and

shape of the blade, see Ref. [21], does not lead to relevant
changes in the above scenario.
The study of the VPDS and MSD is consistent with

measurements of the velocity-autocorrelation function
(VACF) CðtÞ, which is the inverse Fourier transform of
SðfÞ. In the very dilute cases, it is close to a simple
exponential decay. The most dense and “cold” experiments,
on the contrary, reveal a VACF with many features: a fast,
though nonexponential, decay at small times, followed by a
backscattering oscillation through negative values, inter-
preted as the “cage,” and finally a slow decay to zero [25].
The final decay of the VACF could also shed light on the
origin of the superdiffusion. Unfortunately, at large times
the VACF is exceedingly noisy. A more promising way to
probe long memory effects is to measure the times of
persistency, i.e., the times during which the signal remains
positively correlated. Our operative definition consists in
two basic steps: (1) filtering out high frequency oscillations
that are not relevant to the behavior at large times of ΔθðtÞ,
by taking the running average ωsðtÞ ¼ ð1=τÞ R tþτ

t ωðt0Þdt0
over a large time τ ≥ 1 s, and then (2) computing the
statistics of the times separating two consecutive zeros of
ωsðtÞ, which we call the inversion time tinv; see Figs. 4(a)
and 4(b) for experimental samples of ωðtÞ, ωsðtÞ, and tinv.
The statistics of tinv is a natural measurement of the long
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FIG. 3 (color online). Mean-squared displacement h½ΔθðtÞ�2i
after a time t for the two series. (a) N ¼ 2600 and Γ varies.
(b) The shaking intensity is fixed to Γ ¼ 39.8 and N changes.
Black dashed lines are guides for the eye.
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FIG. 4 (color online). (a),(b) Angular velocity ωðtÞ and filtered
signal ωsðtÞ (with a running average over a time τ ¼ 2 s), for
N ¼ 2600 and Γ ¼ 26.8. (c)–(f) PDF of the inversion times
calculated (with τ ¼ 1 and 2 s) in different experiments. From
(c)–(f) the following configurations are displayed: very dilute,
intermediate, dense at high energy, dense at low energy. Colored
dashed lines are guides for the eye.
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term memory of the signal. The experimental probability
density function (PDF) of tinv is shown in Figs. 4(c)–4(f) for
a few choices of parameters and values of τ. We observe
that it rapidly decays with an exponential cutoff smaller
than or equal to ∼10 s in all cases where the MSD
asymptotically showed normal diffusion, signaling a finite
memory of the dynamics. The cutoff apparently jumps to a
much larger value in the cases where the MSD displays
superdiffusion: in such cases, the PDF decays to zero as a
power ∼ − 2 or even slower. This is fair evidence that long
memory effects arise together with the observed super-
diffusion. Long memory may be due to a slow, rotating,
creeping motion of the surrounding granular medium,
which acts as a coherent block and drags the blade.
Such a “secondary” motion has long relaxation times
due to the involved large inertia. New experiments are
being designed with the aim of demonstrating this picture.
We mention that longer experiments (shown in the
Supplemental Material [21]) still display a superdiffusion
that evolves in normal diffusion after many hours.
Modeling the dynamics of the blade.—In the most dense

and cold experiments, the VPDS and the MSD display an
intriguing superposition of phenomena over almost 6 dec-
ades of time scales. It seems hopeless to reduce such a
complexity to a model with a simple physical interpreta-
tion. It is tempting to disentangle the two main phenomena,
i.e., caging (occurring at times smaller than 10−1 s) and
superdiffusion (more evident at times larger than 10 s), by
decomposing the dynamics into a slow and a fast compo-
nent ωðtÞ ¼ ωsðtÞ þ ωfðtÞ, with ωsðtÞ defined above.
Experimental data demonstrate that the standard deviation
of ωfðtÞ is much larger than that of ωs and therefore
dominates at short times (large frequencies). At long times
(small frequencies), on the contrary, the fast dynamics
averages out and ωsðtÞ emerges as the leading signal. For
the fast dynamics, we propose a simple interpretation of the
transient caging phenomena through a “diffusing harmonic
cage” model: this is a simplified version of the itinerant
oscillator model describing translational and rotational
diffusion of particles in liquids [26,27], and reads

_θðtÞ ¼ ωfðtÞ; _θ0ðtÞ ¼
ffiffiffiffiffiffiffiffiffi
2D0

p
ξ0ðtÞ; ð1aÞ

I _ωfðtÞ ¼ −γωfðtÞ − K½θðtÞ − θ0ðtÞ� þ
ffiffiffiffiffiffiffiffi
2γT

p
ξðtÞ; ð1bÞ

where ξðtÞ and ξ0ðtÞ are white normal Gaussian noises. The
model represents the diffusion of a particle in a harmonic
potential with “stiffness” K and an unfixed minimum,
under the effect of a thermal bath at temperature T and
relaxation time I=γ. The harmonic potential, representing
the cage due to the confining effect of the dense granular
host fluid, is not fixed but moves, as θ0ðtÞ behaves as
Brownian motion with diffusivity D0. Motivation for this
model is twofold: (1) the main features of the VPDS, i.e., an
elastic resonance (region III) and a plateau revealing loss of

memory at larger times (region II), and (2) that in the dilute
limit it can be rigorously derived [28], while at intermediate
densities a series of studies showed that memory effects
(coming from correlated collisions) are well described by a
coupling with an additional degree of freedom fluctuating
at slower time scales [23]. The VPDS of the above model
can be calculated and reads

SðfÞ ¼ 1

π

D0K2 þ γTð2πfÞ2
γ2ð2πfÞ2 þ ½K − Ið2πfÞ2�2 : ð2Þ

Two limiting cases are recovered: when K ¼ 0, the
Ornstein-Uhlenbeck process is obtained, with SðfÞ taking
the Lorentzian form mentioned before. When K > 0 and
D0 ¼ 0, one has the Klein-Kramers process in a fixed
harmonic potential, and SðfÞ → 0 for f → 0, expressing
the absence of diffusion at large times: the cage does not
move and fully confines the particle. Formula (2) fairly fits
all experimental spectra in regions II and III, with param-
eters given in Tables 2 and 3 of Ref. [21]. Reasonably, the
“cage stiffness” decreases at increasing shaking intensity. It
also decreases as the density is reduced, and abruptly goes
to zero for N ∼ 1000. The “cage diffusivity” D0 rapidly
increases with increasing Γ and with decreasing N. A more
detailed study of the transition from the cage behavior
K ≠ 0 to the free behavior K ¼ 0 is postponed for future
investigations.
A more ambitious task is to devise a simple mechanism

for ωsðtÞ, leading to superdiffusion. In driven granular
systems it has been observed below the jamming transition
[12] and in a few cases above it, where it was imputed to
“zero” modes of the host fluid [10], to Taylor dispersion
[13], or to turbulencelike cascade effects [29]. We stress
that, at variance with standard diffusion, for anomalous
diffusion there is nothing similar to universality [30]. A
systematic derivation of anomalous diffusion is a hard task
and it is possible only in few specific cases [30]. Of course,
the basic ingredient must be an enduring memory: a way
to achieve it is to replace standard time derivatives with
fractional derivatives in the Fokker-Planck equations, an
approach that is the subject of a vast literature [31]. Such
an approach is capable, in principle, of describing both
caging and superdiffusion within a single model equation,
at the price of losing an immediate interpretation and plain
calculations. In a complementary approach [32], a coarse-
grained value of ωsðtÞ (where only the sign of this quantity
is traced) follows a continuous time random walk (CTRW):
it takes discrete values with random transition times
extracted from a given distribution. A simplified version
of the CTRW is discussed in the Supplemental Material
[21]. We highlight that the CTRW gets a suggestive
experimental confirmation in the observations of Fig. 4;
indeed, the CTRW model quantitatively connects the
observed slow decay of PðtinvÞ to superdiffusion.
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Conclusion.—An experimental study of dense granular
mesorheology allows us to probe time scales in a range of
6 orders of magnitude. Such an investigation reveals a
complex scenario with different dynamical behaviors in
four frequency or time regions. Three crucial features are
observed at large density and low temperature: a “resonant”
caging phenomenon at intermediate scales, nonwhite noise
at fast scales, and superdiffusion at long times. The caging
phenomenon is compatible with a diffusing harmonic cage
model, while the superdiffusion seems to be rooted in the
long inversion times appearing in the dynamics ωsðtÞ,
possibly related to creeping rotating motion of the granular
media. A more detailed investigation of transitions is in
order: a gas-liquid transition could be put in evidence by
studying how K → 0 when N decreases; a liquid-glass
transition could be taking place at the lowest values of Γ or
upon eventually increasing N > 2600. Superdiffusion and
large values of tinv could be signaling such a transition.
Another promising line of investigation is active meso-
rheology, i.e., probing the response of the system to the
application of an external force, achieved by coupling a
controllable motor to the blade [19].
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