
 

Forests2018, 9, x; doi:FOR PEER REVIEW www.mdpi.com/journal/forests 

Article 

Taper function for Pinus nigra in central Italy: is a 

more complex computational system required? 

Maurizio Marchi*1, Roberto Scotti2, Giulia Rinaldini3, Paolo Cantiani4 

1 CNR - Institute of Biosciences and BioResources (IBBR), Florence division. Via Madonna del Piano 10, I-

50019, Sesto Fiorentino (Firenze), Italy 
2 Nuoro Forestry School, Department of Agriculture, University of Sassari, Via C. Colombo 1, I-08100, Nuoro, 

Italy 
3 Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via San 

Bonaventura 13, I-50145, Firenze, Italy 
4 CREA - Research Centre for Forestry and Wood, Viale S. Margherita 80, I-52100 Arezzo, Italy 

* Correspondence: maurizio.marchi@cnr.it ; Tel.: +39-055-522-5746 

Received: date; Accepted: date; Published: date 

Abstract: Stem tapers are mathematical functions modelling the relative decrease of diameter (rD) 

as the relative height (rH) increase in trees and can be successfully used in precision forest 

harvesting. In this paper the diameter of the stem at various height of 202 Pinus nigra trees were 

fully measured by means of an optical relascope (CRITERION RD 1000) adopting a two-steps non-

destructive strategy. Data were modelled with four equations including a linear model, two 

polynomial functions (second and third order) and Generalised Additive Model. Predictions were 

also compared with the output from the TapeR R package, an object-oriented tool implementing the 

β-Spline functions and widely used in literature and scientific research. Overall the high-quality of 

the database was detected as the most important driver for modelling with algorithms almost 

equivalent each other. The use of a non-destructive sampling method allowed the full measurement 

of all the trees necessary to build a mathematical function properly. Results clearly highlighted the 

ability of all the tested models to reach high statistical significance with an adjusted-R squared 

higher than 0.9. A very low Mean relative Absolute Error was also calculated with a cross validation 

procedure and small standard deviation were associated. Anyway, substantial differences were 

detected with the TapeR prediction. Indeed, the use of mixed-models improved the data handling 

with outputs not affected by autocorrelation which is one of the main issues when measuring trees 

profile. The profile data violate one of the basic assumptions of modelling: the independence of 

sampled units (i.e. autocorrelation of measured values across the stem of a tree). Consequently, the 

use of simple parametric equations can only be a temporary resource waiting for more complex 

built-in apps able to allow basic users to exploit more powerful modelling techniques. 

Keywords: silviculture; ecological modelling; ecological mathematics; precision forestry; statistical 

sampling; optical relascopy  
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1. Introduction 

The European black pine (Pinus nigra J.F. Arnold) sometimes reported as Austrian pine or simply 

black pine, is a long-lived tree botanically recognized as a collective species occurring across the 

northern part of the Mediterranean basin, from Spain to Turkey [1]. Thanks to its ability to grow on 

poor and bare soils, this tree has been widely used for ecological restoration activities across the 

whole Europe since the beginning of XX Century and especially after the first and second World War 

[2,3]. The main aim of many reforestation programs was to avoid landslides and to fight the land 

abandonment when people were moving from the countryside to the cities in early 1950s [4]. As 

expected, the use of this species improved the soil quality after decades of agricultural exploitation, 

allowing the ecological succession and the restoration of native hardwood forest tree species of the 

climatic envelope, generally composed by trees belonging to the Quercus genus [5]. 

According to the data delivered with the last available national al forest inventory (INFC2005), 

pure European black pine stands in Italy cover an area of 444,785 ha (Figure 1) representing 4.25% of 

the whole forests [6] with an age ranging from 50 to 95 years. Most of these stands were established 

under the main reforestation program occurred after the II World War. Pandering the well-known 

ecological requirements of the species due to its ability to adapt to many different environments [7], 

seeds came from many areas of the natural range to be used in many different ecological conditions. 

The Calabrian provenance (Pinus nigra subsp. laricio) was collected from Southern stands populations 

[8] and a different ecotype was selected from Northern populations, the Austrian pine (Pinus nigra 

subsp. nigra) naturally occurring on the borders between Italy and Austria [9]. While the first was 

planted on acid soils, the second one was mainly used on calcareous conditions [3,10]. In addition, a 

third and ecologically intermediate variety was often used in central Italy, coming from a small and 

isolated population close to the town of Villetta Barrea, province of Aquila (Pinus nigra spp. nigra var. 

italica) and currently acknowledged as a marginal forest population [11]. Overall, artificial stands 

were established for hydrological purposes, soil protection and for social well-being. Unfortunately, 

forest management plans were rarely applied, few thinning interventions were made in both private 

or public areas and, consequently, the economic interest on this species decreased gradually. 

Optimal assortment allocation is a key element in the wood products supply chain [12], 

particularly artificial stands. The use of spatial indices and models to describe the structure of a forest 

and to support forest management trajectories [13–16]⁠ are nowadays acknowledged as compulsory 

in a precision forestry framework [17,18] but research in this area, in Italy, is in serious delay [19]. 

Recent studies also raised the interest around Pinus nigra spp. ability to provide a wide range of 

ecosystem services [20,21] creating an ecologically dynamic system where biodiversity level 

increased quickly, thanks to all the ecological processes restored thanks to the artificial stands [22]. A 

new potential roundwood market has also been studied in addition to woodchips [5,23] and non-

woody products such as truffles [24,25]. Research on modelling tools targeted to a simple and cost-

effective management of European black pine trees is targeted to favour this market.  
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Figure 1. Spatial distribution of all INFC2005 inventory points (all dots) and sampling units which 

were classified as “Artificial black pine stands” (dark dots) during field activities. 

Stem taper functions [12,19,26,27] are needed to support the decision-making process where 

trees are characterized according to the potential assortments to be retrieved from harvesting. Such 

functions are used to model the diameter reduction of the stem as distance from the ground (i.e. 

height along the tree) increases. Modelling stem taper and volume is crucial in many forest 

management and planning systems dealing with economic aspects. Taper models are used to predict 

the diameter size at any location along the stem. These predictions provide flexible means to estimate 

the volume of the stem and of any assortments potentially achievable in forest harvesting [27]. A 

great variety of equation structures have been proposed as mathematical core of taper functions 

estimating (for a given species, in given growing conditions) stem diameter (d(h)) at height (h) along 

the stem with diameter at breast height and tree height as additional input parameters. In the past, 

data came from felled trees where all the stem was easily accessible on the ground and measurements 

with a calliper or a tape were possible. Researchers were also forced to follow enterprises activities, 

with safety risks. Moreover, felled trees were sometimes damaged, malformed and small such as 

those deriving from thinning with potential impact on the predictive model. Nowadays optical tool 

simplified the work [12]. The data required for model calibration can be easily measured on standing 

trees by means of optical instruments such as TLS or older instruments as the Bitterlich’s relascope, 

the Finnish parabolic calliper or optical telescopes.  

The paper reports results from a study concerning sample size optimization and taper function 

model complexity evaluation. In this paper a comparative test between modelling methods has been 

performed, running on a two-stages-derived dataset with measurement coming from a survey 
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campaign in 2018. An optical relascope was here used (CRITERION RD-1000) allowing the sampling 

of 202 European black pine trees without felling. The main aim of this paper is to demonstrate the 

importance of an adequate sampling criteria and the low impact of the tool used to build the model 

(i.e. the mathematical function). 

2. Materials and methods 

2.1. Sampling method 

Sample size heavily conditions research cost (or is conditioned by research funds) and in this 

work a specific attention has been devoted the minimum sampling size required to produce a useful 

result. In random sampling with uniform probabilities, the minimum number of samples required to 

provide an estimate of the population mean with an error not exceeding ε at a confidence level of p 

can be estimated by the following formula, also used in forest monitoring [28]: 

𝑛 = (
𝑡 ∙ 𝐶𝑉

𝜀
)2  (1) 

where n is the number of samples to be effectively measured, CV is the coefficient of variation 

(CV) of the parameter to be estimated, ε is the relative error (= 5% in this case) and t is the value of 

Student’s t for a given confidence level (generally 95%). The importance of a reliable CV estimate is 

one of the most critical steps and needs to be evaluated before sampling campaign. To achieve this, 

two common ways are generally proposed: i) exploit historical data or previous studies in similar 

areas; ii) carry out an exploratory analysis in test areas. For this study case a high-quality, detailed 

and recent dataset was available for two study areas in Central Italy where more than 4,000 Pins nigra 

trees were geo-referenced and measured in two even aged 50 years-old stands. Data stem from the 

A2 action of the SelPiBio LIFE+ project and are freely available in a public repository [10]. Among the 

provided data the diameter, height and crown projection on the ground are the most basic. Indeed, 

no profile measurements were made. Firstly, 80 trees were randomly sampled by means of a stratified 

random using the DBH classes and the quartiles as strata (20 trees x 4 quartiles = 80 trees in total). 

The elements of this exploratory sample have been located, thanks to the availability of the 

coordinates and of the ID number marked on the stem and measured for stem taper. Afterwards the 

remaining trees to be measured were measured in a second-step activity and added to this starting 

dataset. 

In order to use equation (1) data were firstly standardized to deal with their use in profile 

functions (i.e. relative diameter ad a function of relative height). While all heights were transformed 

in proportion of the total height of the trees, the same was done for diameters which were divided by 

the diameter at breast height. Then the CV values of the measured diameters at any measurement 

distance from the ground (i.e. CV10%m, CV15%m, CV20%m, etc.) were calculated to obtain an n value for 

each stratum using equation (1). Then the maximum n value between the range 10% - 90% was used 

as reference number of samples to be representative at any section of the stem, except the top which 

was not of our interest and expected as too variable to be sampled in a cost-effective way. The final n 

value has been estimated iteratively. Indeed, the sample size n conditions the determination of t. The 

starting values and degrees of freedoms (DF) are firstly estimated using an n0 value equal to n-1 (with 

n0=80 in this case). Then the calculation of t0 is performed to find n1 samples. Afterwards the DF are 

recalculated again using n1 samples, then a new t1 is estimated and so on until nx stabilizes. 

2.2. Stem taper functions 

Stem taper functions model the relative decrease of diameter (rD) as the relative height (rH) 

increases. As reference diameter, defining the relative value, possible options are the maximum value 

along the stem or the diameter at breast height (DBH). However, the relative decrease of the diameter 

should be referred to a directly measurable and easy to access parameter. For this reason, in this 

paper, the collected data were standardized dividing the diameter we measured in each tree at each 

sampling height by the DBH. Four equations were tested including polynomials of degree 1 to 3 as 
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well as a non-parametric model. The selected models correspond to a simple linear model - eq. (2) -, 

second and third order polynomial models - eq. (3) and (4) respectively - and a Generalized Additive 

Model (GAM) - eq. (5). The relative diameter of the stem measured at each sampling height (rDi) has 

been modelled as a function of the relative height of the tree (rHi): 

𝑟𝐷 = 𝛼 + 𝛽 ∙ 𝑟𝐻 + 𝜀 (2) 

𝑟𝐷 = 𝛼 + 𝛽 ∙ 𝑟𝐻2 + 𝛾 ∙ 𝑟𝐻 + 𝜀 (3) 

𝑟𝐷 = 𝛼 + 𝛽 ∙ 𝑟𝐻3 + 𝛾 ∙ 𝑟𝐻2 + 𝛿 ∙ 𝑟𝐻 + 𝜀 (4) 

𝑟𝐷 = 𝑠(𝑟𝐻) + 𝜀 (5) 

where and α, β, γ and δ∙are coefficients to be estimated and ε is the error term and representing 

the amount of remaining unexplained deviation. Concerning GAM the notation s(…) denotes the use 

of smoothing function for modelling.  

The selection of the best performing model has been then based on the underlying physical-

biological process (i.e. the expected shape) of the rD~rH relationship as well as the possibility to 

replicate (i.e. use) the model beyond the compiled dataset and the here described research work. In 

order to derive indications on the goodness of fit, the prediction from the four mathematical models 

were tested by a cross-validation procedure reserving 25% this purpose, randomly extracted from 

the database for this purpose. The Mean relative Absolute Error (MAE) and the fraction of explained 

variance or r-squared (R2) were used as indicators and to test whether the sampling strategy 

generated fair models with an error below the threshold we used in equation (1), which was 5%. The 

random extraction was repeated 1,000 times and single-run MAE and R2 values were then averaged 

to obtain unbiased estimation of goodness of fit. The best performing model was finally compared 

with the output from TapeR package [27] an object-oriented tool where more complex equations are 

implemented such as the cubic regression models using β-Splines and mixed models, running in R 

statistical Language [29]. The setup we used for TapeR package was four knots positioned at 0.0, 0.12, 

0.75, 1.0 relative heights and a fourth order spline function for fixed effects (cubic). Then three knots 

positioned at 0.0, 0.1 and 1.0 and a fourth order spline function for random effects (cubic). 

2.3. Measurement technique 

In this work profile measurements of model trees were carried out with a non-destructive 

method on standing trees by use of an electronic relascope, the CRITERION RD 1000 by laser 

technology®  (https://www.lasertech.com/Criterion-RD-1000.aspx). This optical instrument allows to 

measure the diameter of every section of the stem on standing trees at any visible height chosen by 

the user, with the horizontal distance between the operator and the tree as parameter to adjust the 

optical scope. Thanks to this tool, all selected trees were fully measured including all the social ranks, 

dimensions and generating an unbiased sample for stem taper equation fitting. The stem profile of 

all the selected tree was here fully measured with the CRITERION RD 1000, measuring the diameter 

every meter from the ground to the top. The instrument was combined with a TruPulse360B Laser 

Rangefinder form Laser Technology (https://www.lasertech.com/TruPulse-Laser-Rangefinder.aspx) 

using a serial cable to record distance from the target tree. The distance from the trees is a key 

parameter for the optical relascope in order to derive metric values from the bandwith the operator 

set in the instrument’s scope for measurement. Overall the average distance from target trees ranged 

between 15 and 20 meters which allowed a clear view of the stem reducing distortion. The quality 

assessment of measurements was made comparing the first three measurements we obtained with 

CRITERION RD 1000 (i.e. ground level, 1 meter and 2 meters from the ground) with the vales we 

measured with caliper assessing an accuracy around 98%. 

3. Results 

Based on the 80 trees measured as pilot sample and the iterative process, the size of the final 

sample required to estimate the mean of the most sensitive sections (between the ground and 90% of 

https://www.lasertech.com/TruPulse-Laser-Rangefinder.aspx
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the total height of trees) with an error within 5%, at a 95% confidence level, has been estimated to be 

just above 207. However, the iterative process on sampling data stabilized on a value or 202 trees to 

be measured for an error equal to 5% (Table 1) The variability of the relative diameter increased as 

the relative distance from the ground increased with a maximum CV of 1.783 at the top. In the 

collected sample trees the maximum height was 23.5 metres, a measure reached by only a few trees 

while the average height of the stand was around 18 m for both study areas. Concerning the structure 

of analysed stands and according to the collected data, stem diameters at central height classes, 

between 11.5 and 14.5 metres from the ground, were detected as the most variable. Even if apparently 

in contrast with wood anatomy where the bottom of the stem is usually observed as most variable, 

due to many causes such as high slope of the ground, the presence of basal buttresses of the stem etc., 

this aspect is an expected result given the structure of the stands we studied. No thinning intervention 

was applied since its establishment around 1950s [3,5]. This brought to a stratified stand with many 

suppressed treed still alive and reaching heights between 11 and 14 metres. Therefore, such small 

diameters we measured with the optical relascope, increased the CV of the stratum and, consequently 

the number of trees to be measured. However, the standardisation of the data and the calculation of 

the relative diameter (rDi) simplified the model fitting, cleaning the database and allowing models to 

work properly. 

Table 1. Coefficient of variation for each cross-section of Pinus nigra trees measured with CRITERION 

RD 1000 calculated using the 80 trees measured in the first stage sampling and derived number of 

trees (n) to be fully measured to achieve a statistical error lower or equal to 5% according to equation 

(1) and iterative self-calibrating estimation of sample size using p=0.95, ε= 5% and a starting n=80. 

Relative height class Mean relative diameter Standard Deviation CV Number of samples 

0 - 0.05 1.028 0.023 0.022 1 

0.05 - 0.1 0.988 0.020 0.021 1 

0.1 - 0.15 0.941 0.035 0.037 2 

0.15 - 0.2 0.890 0.035 0.039 2 

0.2 - 0.25 0.842 0.040 0.047 3 

0.25 - 0.3 0.798 0.043 0.055 5 

0.3 - 0.35 0.758 0.047 0.063 6 

0.35 - 0.4 0.716 0.049 0.068 7 

0.4 - 0.45 0.680 0.051 0.075 9 

0.45 - 0.5 0.635 0.052 0.082 10 

0.5 - 0.55 0.594 0.058 0.098 15 

0.55 - 0.6 0.552 0.057 0.104 17 

0.6 - 0.65 0.504 0.064 0.126 24 

0.65 - 0.7 0.456 0.067 0.146 33 

0.7 - 0.75 0.404 0.075 0.185 52 

0.75 - 0.8 0.345 0.072 0.209 67 

0.8 - 0.85 0.278 0.077 0.277 118 

0.85 - 0.9 0.194 0.070 0.363 207 

0.9 - 0.95 0.105 0.056 0.536 441 

0.95 - 1 0.017 0.030 1.783 4885 

 

Iteration DF t Number of samples to be measured  

1 79 1.9905 206 

2 205 1.9716 202 

3 201 1.9718 202 
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The fitting ability of the four tested models is summarised in Table 2 and graphically shown in 

Figure 2. Overall very low MAE with small associated standard deviations were calculated with the 

cross-validation procedure. R2 values were always higher than 0.95 and all models were statistically 

significant at 95% confidence level. In this scenario only slight differences were detectable between 

models. GAM was the best performing algorithm and the linear model was the worst. This was also 

reflected by the slightly lower R2 and higher MAE. Concerning the remaining GAM and third order 

polynomial models, only the last one was selected for further comparison with TapeR prediction. 

This was due to the complexity of GAM to run on external data and outside the modelling framework 

(i.e. the R environment in this case), even if characterised by a better fitting. 

Table 2. Cross validation results. 

Model Mean Relative Absolute Error Explained variance 

Linear 0.03273 (±0.96e-3) 96.1% (±0.60e-3) 

Second order polynomial 0.03195 (±0.85e-3) 97.1% (±0.55e-3) 

Third order polynomial 0.01362 (±0.83e-3) 97.4% (±0.49e-3) 

GAM 0.01254 (±0.84e-3) 97.5% (±0.50e-3) 

 

Figure 2. Fitted models on the whole database using the four models. Confidence intervals were not 

displayed because too small and not possible to be observed in a small image. 
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MAE values estimated by cross-validation are actually much lower than the maximum tolerated 

5% error value used to determine sample size. MAE values appear quite constant for all relative 

heights (Figure 3). Sample size estimation procedure could possibly be improved in order to reduce 

oversampling in case of greater budget limitations. 

 

 

Figure 3. MAE of tested models at different relative height along the stem. Boxplots are coloured 

according to the legend in the figure. 

Finally, the third order polynomial function was selected as the most simple and effective model. 

Calibrating it using the complete data set, the final coefficients were estimated and are reported in 

Table 3. The inflection was detected around rH = 0.55 demonstrating a sort of change of the 

relationship between rD and rH almost in the middle of the range of the data. 

The comparison between the third order polynomial model estimates and TapeR showed that 

all the predictions of the simple parametric model were included within the 95% confidence interval 

provided by TapeR. When plotting the estimates from the two techniques for a simulated tree, no 

significant differences were apparently found. This comparison is graphically shown in Figure 4 

where the two models have been used to simulate the profiles of two hypothetical groups of Pinus 

nigra stems, one with a fixed height and variable DBH, the other with a fixed DBH and variable 
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height. Indeed, the estimates of the two methods were linearly correlated with highly statistically 

significant parameters (p.value < 0.0001, cor = 0.99). 

 

Table 3. Estimated coefficients for the third order polynomial function. 

Coefficient Estimate Standard Error t value Pr(>|t|)  

α 0.590 0.00072 817.57 < 2.2e-16 *** 

β -1.265 0.03827 -25.92 < 2.2e-16 *** 

γ -2.075 0.04882 -42.50 < 2.2e-16 *** 

δ -20.44 0.02213 -418.71 < 2.2e-16 *** 

p-value: < 2.2e-16 - R-squared: 0.9749 - Residuals Standard error: 0.04882 

 

 

Figure 4. Stem profile generated using the third order polynomial function (continuous line) and 

TapeR package (dashed line) with two different hypothetical groups of Pinus nigra trees with same 

height but different DBH (left) and the opposite study case (i.e. same DBH but different height). 

4. Discussion 

The use of adequate models both for prediction and data collection (i.e. balancing the sample 

size) deeply affected the results of the experiment. Stem taper functions are basic tools in forest 

management practices to derive information on the value of the timber yield and the statistical 

evaluation of the sample size offers means for rational approach to sample size optimization. The 

non-destructive two-stages sampling strategy here presented stressed the importance of the data as 

the focal point for modelling to derive reliable and accurate stem taper functions presents high data 

requirements. While the effective MAE was much lower than selected relative error (5%) we used in 

equation (1), reliable models were built with all the four tested equations. Then concerning the sample 

balancing, equation (1) proved to be too general and not reliable. However, this result is in line with 

previous studies in forest monitoring where the same issue was found [28]. Model selection has often 
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been acknowledged as one of the most critical steps by modellers in many research fields, correctly 

achievable through a statistical comparison [30–32]. Several studied also focused on data quality 

when dealing with climate [33,34], forest mensuration [35,36] and modelling activities in general [37–

39]. While data quality has been here detected once more as the focal point for a cost-effective 

research, the same can’t be said concerning modelling tools. A small difference within the group of 

parametric/non-parametric models was here found but a wide discrepancy between them and the 

mixed-modelling TapeR package was determinant for the model selection. In our case, while the 

linear model and the second order polynomial function were simply inadequate to represent the 

sigmoidal shape of the point cloud we obtained, all the equations were not able to handle the 

autocorrelated structure of the data we measured. Conversely the mixed-model approach can handle 

the hierarchical structure of the data where the assumption of the independency between sampling 

units is violated. The profile measurements of trees are a typical example where the measurement 

made at height H+h is strongly correlated to the data collected at height H [27]. 

The economic sustainability of forest harvesting in artificial Pins nigra spp. as well as in the case 

of many other forest tree species has often been acknowledged as one of the main shortcomings for 

the application of a successful forest management [5,40]. Many Pinus nigra stands originally planted 

in the XX Century in Italy (but also in many other EU countries) are quite like those we studied and 

are still abandoned to natural dynamics even if characterised by an increasing biodiversity level and 

ecological success [21,22]. The use of the provided model might support a renewed interest around 

this species allowing forest enterprises and stakeholders in general to plan forest harvesting 

according to the expected timber potentially achievable from a specific forest stand. This could also 

be positively seen by research in order to test the provided equation and implement novel modelling 

tools in addition to stem taper equations. The use of a small spatial extent for sampling might be a 

potential shortcoming of the provided models where “just” 202 trees were measured from two 

stands. This issue might not allow our model to be applied for estimates in other regions where 

different growth trends might occur. 

Even if further research efforts are necessary to test and validate the provided model, the genesis 

of analysed stands i.e. artificial stands with seeds coming from different parts of Italy [8,11] and, 

consequently, the possible mixture of considered genotypes, could be seen as an additional positive 

trait of this study. Anyway, the low variability of the dataset we compiled, and the high predictive 

power of TapeR package needs to be confirmed by additional study cases. Even if object-oriented 

tools and portals could be packed by modellers or informatic engineers with more sophisticated 

modelling methods such as Neural Networks or Random Forests algorithm, the use of mixed-effects 

models like TapeR seems to be compulsory for unbiased estimates. The idea of running simple 

equations outside the framework of a programming language such as R, Phyton or MATLAB should 

be, in our opinion, discouraged in favour of web-tools and cloud computing systems, able to exploit 

the full functionality of statistical environments such as, for instance, R even by common users. The 

development of taper functions can’t be limited to simple equations on sheets. Forest planning and 

management activities require timber volume estimations with adequate accuracy and taper 

functions are developed in order to improve timber volume estimation capacity and particularly the 

accuracy of timber value estimation, as the volume is divided into assortments [5,41]. Growth and 

yield models are used to provide longer term scenario evaluations and to develop planning decisions 

[16,42,43]. 

In other ordinary processes like the detailed planning of harvesting operations, the requirement 

is to estimate timber volume, possibly by assortment, for given stands [12]. In this case, more general-

purpose software environments are used, typically spreadsheets. Timber volume estimation 

functions are generally sufficiently simple. Ordinary operators can implement the functions required 

in the spreadsheet computations and a relatively simple model representing a taper function offers 

the opportunity for an ordinary user of spreadsheets to implement it and perform some testing, get 

acquainted with the tool. But an effective use of the function as a tool for optimizing the subdivision 

of the total volume in the desired assortments is not obtainable with only basic capacity in the use of 

spreadsheets. Taper estimation implies, in the optimization process, a pair of functions: one 
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estimating the diameter of the cross section at any given height, the second coherent with the first, 

estimating up to which height the diameter of the cross section is greater than a given threshold 

[19,27]. Looking short ahead of the current situation, basic coding competencies and skills will 

become unavoidable as cloud-based environments extend and forest operators will need to connect 

databases and processing modules to perform the tally, store temporary and final measurements and 

observations, process the data and produced the required reports. 

5. Conclusions 

Paper title includes a question “is a more complex model required?”. The model finally selected 

as taper function for the studied Pinus nigra stems is quite simple, it is a third-degree polynomial 

estimating relative diameter for any given relative height along the stem. A competitive solution is 

the output that R-package TapeR can provide. While implementing our solution in a spreadsheet or 

in any programming framework is straightforward, the competitive solution can be conveniently 

used to develop estimation procedures within the R environment, but it is quite complicated to 

transfer to other environments.  

Since the use of stem taper equations is still rare in the forestry sector, despite their potential as 

basic forest management tools, the complexity of the tool has a relevant impact on the possibility for 

their use to spread. To this end, the simple solution developed offers several opportunities for 

foresters that are not specialised in coding to get in direct touch with the tool. 

An option for more complex models to be made accessible by non-specialists could be providing 

Internet based solutions. TapeR functions and the parameter set that can be estimated with the 

package can be incapsulated in a shiny-web-app (https://shiny.rstudio.com/) that can be a powerful 

environment where also non-statistician users might be able to generate stem taper profiles using 

more complex β-Splines and mixed models. 
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